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ABSTRACT

Grasping and Fixturing:
a Geometric Study and an Implementation

Marek Teichmann

Research Advisor: Professor Bhubaneswar Mishra

The problem of immobilizing an object by placing \�ngers" (or points) on its bound-

ary occurs in the �eld of dexterous manipulation, manufacturing and geometry. In this

dissertation, we consider the purely static problems of good grasp and �xture set syn-

thesis, and explore their connection to problems in computational and combinatorial

geometry. Two e�cient randomized approximation algorithms are proposed for �nding

the smallest cover for a given convex set and for �nding the largest magnitude by which

a convex set can be scaled and still be covered by a cover of a given size. They generalize

an algorithm by Clarkson [Cla93]. The cover points are selected from a set of n points.

The following bounds are valid for both types of problems. For the former, c is the size of

the optimal cover, and for the latter, c is the desired cover size. In both cases, a cover of

size 4cd lg c is returned. The running time depends on the set to be covered: covering an

n-vertex polytope in Rd takes O(c2n logn log c) expected time, and covering a ball takes

O((nc)1+� + cbd=2c+1 logn logbd=2c c) expected time. These algorithms have applications

to �nding a good grasp or �xture set. An O(n2 logn) algorithm for �nding optimal 3

�nger grasps for n sided polygons is also given. We introduce a new grasp e�ciency

measure based on a certain class of ellipsoids, invariant under rigid motions of the object

coordinate system. To our knowledge, this is the �rst measure having this property. We

also introduce a new reactive grasping paradigm which does not require a priori knowl-

edge of the object. This paradigm leads to several reactive algorithms for �nding a grasp

for parallel jaw grippers and three �nger robot hands equipped with simple sensors. We

v



show their correctness and discuss our implementation of one such algorithm: a parallel

jaw gripper with light-beam sensors which we have built.
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Chapter 1

Immobility

If you think you can grasp me, think again:

My story 
ows in more than one direction

A delta springing from the river bed

With its �ve �ngers spread.

|Adrienne Rich, 1989

1.1 Introduction

The problem of immobilizing an object occurs in the �eld of dexterous manipulation,

manufacturing and geometry. Various models of immobilization exist and are closely

related. In this dissertation, we consider the purely static problems of good grasp and

�xture set synthesis for polyhedral objects, and the corresponding geometric problems.

An e�cient randomized approximation algorithm for convex set covering is given with

applications to �nding a good grasp or �xture set. We introduce a new grasp e�ciency

measure, invariant under rigid motions of the object coordinate system. To our knowl-

edge, this is the �rst measure having this property. We also introduce a new reactive

grasping paradigm, show its correctness and discuss our implementation: a parallel jaw

gripper with light-beam sensors which we have built.

Immobilizing an object consists of placing a set of \�ngers" whose contact with the

object prevents its motion. Such problems arise in manufacturing in pick{and{place

tasks where an object is acquired by a robot hand and placed in a desired location.
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Another application is �xturing, where �xture elements are used to hold a part in place

for machining.

The area of dexterous manipulation studies the problems of grasping, �ne manipu-

lation and control with multi-�ngered robot hands. Several hands have been developed,

including Utah/MIT Dextrous Hand [JWKB84], and the hands by Asada [Asa79], Sal-

isbury et al. [SR81], Okada [Oka82a], and Tomovic et al. [TB62]. These hands usually

consist of a small number (four or �ve) of articulated �ngers, possibly with a palmar

surface. Each �nger is usually an open kinematic chain. The �ngers consist of a set of

phalanges (i.e. links) usually with active joints and force-sensors; in addition, the �nger-

tip and the surface of the distal phalanx may contain touch- and slippage-sensors. A

variety of �nger arrangements have been suggested, the more common being an anthro-

pomorphic arrangement, which consists of an opposable `thumb' and the others arranged

to work cooperatively. But other end-e�ector constructions are possible, and it may be

argued that some, like the parallel jaw gripper are quite su�cient for many tasks, partic-

ularly pick and place operations [GF93]. See also the recent work of Zhuang, Goldberg

and Wong [ZGW94].

In manufacturing, �xtures and other workholding devices need to be placed so as to

secure the stock to the tool base and withstand high cutting loads while machining takes

place [HW90, Mis91, BG94b, ORSW95]. For example, modular �xtures are increasingly

being used in 
exible manufacturing and job shop machining [ZGW94].

Similar problems can be posed in a geometric setting. A set of points is placed in

R
d and the points are forbidden to penetrate the interior of the object. Questions such

as the following arise: how many points are needed and how should they be placed in

order to immobilize the object. The techniques used to solve these problems bear much

similarity to those used in grasping theory.

In the �rst part of this dissertation, we exploit the connection between grasp analysis

and some theorems in Discrete and Computational Geometry �rst established by [MSS87].

See also [MNP90]. Such theorems include Steinitz' theorem [Ste16], and its quantitative

version which is used for grasp quality measurement [BKP82, KMY92]. We examine

the extension of this theory to multiple objects in contact for the analysis and quality
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evaluation of �xture placement. This extension was �rst introduced by Bara�, Mattikalli

and Khosla [BMK94] who provide heuristics for minimizing the number of �xture elements

needed. In addition, we examine the e�ects of friction, and show that the model remains

valid in this case.

In the remainder of this chapter we examine these notions in detail. We show new

convexity properties of the wrench map which is useful for computational purposes. We

also establish a connection between the problem of testing whether an object is immobi-

lized by a set of �ngers and the problem of testing rigidity of bar and joint frameworks,

and discuss various types of immobility in those two areas. We also analyze the e�ect

of friction on the wrench map and show that the notion remains applicable. Finally, we

brie
y describe two approaches to �nding grasps which do not require knowledge of the

object to be grasped, including our new reactive approach.

In chapter 2 we examine existing grasp e�ciency measures and present a new measure

that is invariant under rigid motions of the coordinate system in which the object is

de�ned. This answers an open problem posed in [KMY92, FC92]. This measure is based

on a certain class of ellipsoids. We also present methods for its computation. Finally, we

examine the e�ect of friction on grasp strength and correct a misconception which has

appeared in the literature.

In chapter 3 we describe a new algorithm for �nding three �nger optimal grasps of

an n sided polygon in time O(n2 logn) and some approximation algorithms. In chapter 4

we provide randomized approximation algorithms for �nding close to optimal grasps and

�xture placements and minimizing either the number of `�ngers' or maximizing the quality

of the grasp | two contradictory goals. These problems translate to purely geometric

covering problems in three and six dimensions, but we study them in arbitrary dimension.

These problems can be formally described as follows.

Let L � Rd be a convex set, and for r > 0, let rL represent the set frx : x 2 Lg. For
a set U � Rd, denote the largest scaling factor r of L such that rL � conv U by �(U).

When L is a ball in Rd, call �(U) the residual radius of U . Also let a set of points C be

a cover for a set L, if L � conv C.

[MinCover-L]: Given �0 > 0, we wish to �nd the smallest cover C for �0L
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that is, a set C � U of size c� with �(C)� �0.

Since this problem is di�cult [MSS87, BMK94], we will solve a corresponding approx-

imation problem: that of �nding a cover of size c�d log c�. We will call this a d log c�-

approximation of the optimal cover. The companion problem is:

[MaxScale-L]: Given an integer c, �nd the set C � U of size c which maxi-

mizes �(C). Let ��(c) denote this maximum.

In the approximation version, we ask for a d log c�-approximation of the best cover C.

In this thesis,MinCover-L and MaxScale-L will refer to the corresponding approximate

versions. We shall provide randomized algorithms for these approximation problems that

generalize a result by Clarkson [Cla93] for polytope covering. The results hold for any

convex set L for which there is a strong violation oracle [GLS88], also called half-space

emptiness query [Mat92]. In our application we will replace L by various convex sets,

in particular the d-dimensional ball and a polytope. Let 
 = 1=bd=2c and � be any

positive constant. For both types of problems, when L is a polytope, we get roughly

the same expected time bounds as Clarkson, and for a ball, the expected running time

is O(n1+� + (nc)1=(1+
=(1+�))+ c log(n=c)(c logc)bd=2c) for �xed d. We also give bounds

when d is not constant. In our application d = 6 and this translates to O(c2n logn log c)

expected time when L is a n-vertex polytope, or O((nc)1+�+ c4 logn log3 c) when L is a

ball.

Upto now we have assumed that the shape of the object to be grasped is known in

advance. This is not always easy to achieve. In chapter 5, we introduce a set of reactive

algorithms for �nding a grasp. The algorithms use simple sensors attached to the robot

hand to �nd good gripping points on the object. We consider two types of hands: a

parallel jaw gripper with light beam sensors and a three �nger hand with object normal

sensors. These algorithms use ideas from geometric probing [DEY86, CY87] to avoid

disturbing the object. They also perform motion planning for the hand, and are robust.

In chapter 6, the implementation of the reactive control algorithm and the associated

parallel jaw gripper equipped with light beam sensors is described.
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1.2 The Theory of Grasping

The hand we consider in the �rst part of this thesis will be somewhat idealized1. It

consists of several independently movable force-sensing �ngers; this hand is used to grasp

a rigid object B. The �ngers will be placed at points p of the boundary of B, which

we shall denote by @B. We will consider only the points of contact of this hand with B,

and ignore issues such as motion planning and accessibility. Furthermore, we make the

following simplifying assumptions:

� (Smooth Body) B is a full-bodied (i.e. no internal holes) compact subset of the

Euclidean 3-space. Furthermore, B has a piece-wise smooth boundary @B.

� (Point Contact) For each �nger-contact on the body, we may associate a nominal

point of contact, p 2 @B. We let @B� denote the set of points p 2 @B such that

the direction n(p) normal to @B at p is well-de�ned; by convention, we pick n(p)

to be the unit normal pointing into the interior of B.

For each such point p, we can de�ne a wrench system f�(1)(p), �(2)(p), : : :,

�(m)(p)g, (0 � m � 6), where the number and screw-axes of the wrench sys-

tem depend on the contact type. Some of these wrenches can be bisense (i.e. can

act in either sense) and the remaining wrenches, unisense. (For a discussion of

screw theory, and in particular, wrenches and twists, see Appendix A.2. Also see

[Hun78] and [Ohw80].)

� (Compliance) We will consider the case when the �ngers are sti�|the force/torques

applied at the �ngers are generated by some actuators whose mechanics need not

concern us.

Many interesting special cases occur, depending on how we model the static friction and

the stiction between the �ngers and the body B. In the case, where the contacts are

frictionless, a �nger can only apply force f on the body in the direction n(p) at the point

p. Also if the �ngers are non-sticky, then the force f has a non-negative magnitude,

1Part of this section previously appeared in [MT92].
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f = f � n(p) � 0. Such grips are also known as `positive grips'. In this case, the wrench

system associated with each point is:

�(p) = f[n(p);p� n(p)]g

Thus, corresponding to a set of �nger-contacts, we have a system of n wrenches,

fw1; : : : ;wk;wk+1; : : : ;wng ;

the �rst k of which are bisense and the remaining last n�k of the wrenches are unisense.

Let us assume that the magnitudes of these wrenches are given by the scalars fi's

ff1; : : : ; fk; fk+1; : : : ; fng ;

where f1, : : :, fk 2 R and fk+1, : : :, fn 2 R�, and not all the magnitudes are zero. We

call such a system of wrenches and the wrench-magnitudes, a grip, G, and say that this

grip G generates an external wrench w = [Fx; Fy; Fz ; �x; �y; �z] 2 R6, if

w =
nX
i=1

fi wi:

In matrix notation, the above equation is expressed as

w = G

26666664
f1

f2
...

fn

37777775 ;

where G is a 6�n matrix whose columns are the corresponding n wrenches of the system

fw1; : : : ;wk;wk+1; : : : ;wng ; associated with the contact points of the grip. The matrix

G is called a grip matrix of the grip de�ning the system of wrenches

fw1; : : : ;wk;wk+1; : : : ;wng :

The grip matrix has already been used by Salisbury [Sal82] for example.
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1.2.1 Equilibrium and Closure Grasps

Next, we consider the concept of a closure grasp:

De�nition 1.2.1. A set of gripping points on an object B to which corresponds a system

of wrenches w1, : : :, wn (as before) is said to constitute a force/torque closure grasp if

and only if any arbitrary external wrench can be generated by varying the magnitudes of

the wrenches (subject to the constraints imposed by the senses of the wrenches).

This property was introduced by Reuleaux [Reu63] in the nineteenth century. Other early

studies include Somo� [Som00], and more recently Lakshminarayana [Lak78]. In robotics,

this concept has been used in the context of grasping since Salisbury's thesis [Sal82].

The terminology used in these works and also the work of Markensco� et al. [MNP90]

however is form closure, while other papers by Nguyen [Ngu87], Mishra et al. [MSS87]

and the books by Murray et al. [MLS94] use the terminology we adopt. We reserve the

term form closure for a dual notion, which turns out to be equivalent; see below. For this

reason, we shall sometimes simply refer to force-torque closure grasps, as closure grasps.

Note that Trinkle [Tri92] proposes yet another notion which is quite di�erent from ours.

See [Mis94] for a comparison between these notions.

A necessary and su�cient condition for a closure grasp, which was shown in [MS89],

is that the (module) sum of the linear space spanned by the vectors w1, : : :, wk and the

positive space spanned by the vectors wk+1, : : :, wn is the entire R6:

lin (w1; : : : ;wk) + pos (wk+1; : : : ;wn) = R
6:

Let us denote, by L, the linear space lin (w1, : : :, wk), and, by L?, the orthogonal

complement of L in R6. Let � be the linear projection function of R6 onto L? whose

kernel is L. Then it can be shown that a necessary and su�cient condition for a closure

grasp is

lin (w1; : : : ;wk) + pos (�wk+1; : : : ; �wn) = R
6:

The above equation in turn is equivalent to the following conditions:

0 2 int conv (�wk+1; : : : ; �wn)
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in L?. Here, if k = 0 (i.e. positive grip) then the above condition reduces to the following:

0 2 int conv (w1; : : : ;wn) :

Testing for closure can be done in constant time using any convex hull algorithm. See

for example [Ede87]. Several implementations of such algorithms exist. See for example

O'Rourke's book [O'R94], the qhull implementation [BDH93], or the implementation by

Emiris which uses a symbolic perturbation technique for removing degeneracies [EC92].

A simple linear time algorithm for �nding at least one set of force targets that can

generate a given external wrench has been presented in [MSS87]. Also, as the external

wrench is varied in the course of a manipulation task, this algorithm updates the force

targets in constant time.

Similarly, we have

De�nition 1.2.2. A set of gripping points on an object B to which corresponds a system

of wrenches w1, : : :, wn is said to achieve an equilibrium grasp if there exist f1, : : :,

fk 2 R and fk+1, : : :, fn 2 R�, with not all the magnitudes zero such that

0 =
nX
i=1

fi wi:

And the equivalent condition [MSS87] is that

0 2 conv (w1; : : : ;wn) :

At this point, we emphasize that the above formulation has turned a problem in

mechanics into a purely geometric problem, now amenable to many interesting techniques

in convexity theory and computational and combinatorial geometry. This observation and

its generalizations are the basis of this thesis.

1.2.2 Form Closure

Another approach to immobility is that �rst introduced in [Lak78] and further examined

in [Ohw80]. Each wrench associated with a contact point reduces the set of possible

twists that the body can undergo. The remaining twists are exactly those whose virtual
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coe�cient with any wrench is non-negative, since otherwise the virtual work done by such

twists would be negative.

A set of wrenches associated with the contacts constitutes a form closure if any

arbitrary twist d of the object is resisted by the set of contacts, i.e. if d is non-reciprocal

to some wi (i = 1; : : : ; k) or contrary to some wj (j = k + 1; : : : ; n).

It was shown in [MS89] that form closure, also referred to as zero total freedom, and

force closure are equivalent, as they are dual to each other.

1.3 The Case of a Positive Grip

Recall that a non-frictional grip is called a positive grip. Note that, in this case, the

�ngers are assumed to be point �ngers; a �nger can only apply a force on the object

along the surface-normal at the point of contact, directed inward. In this situation, we

have a wrench map, �, mapping @B� into the six-dimensional wrench space R6 as follows:

�: @B� ! R
6 :p 7! [n(p);p� n(p)]:

Essentially, � maps p to the point �(p) in the wrench space that represents the e�ects

of applying a unit force at p in the direction n(p). Furthermore �(@B�) belongs to the

unit radius \cylinder" S3 � R3 (or for planar objects S2 � R). See Figure 1.1 for an

illustration. We also extend this de�nition to denote the closure of �(@B�) by �(@B).

We can say even more about the structure of the wrench map. We show that the

image of a set of points on the boundary of an object lies on the boundary of its convex

hull. This will be useful later when we study grasp e�ciency measure. Let us begin with

a purely geometric de�nition and lemma.

De�nition 1.3.1. A set of points S 2 Rd is said to be in convex position if no point of

S can be written as a convex combination of points of S with all coe�cients non-zero.

This is equivalent [MS71, p.8] to saying that no point lies in int conv S.

Let x1; x2; : : : ; xn 2 Rk be distinct points in convex position. To each xi, we associate

a set of ni points yij 2 Rl, j = 1; : : : ; ni. Let wij = [xi; yij ] 2 Rk+l, and W = fwij : i =

1; : : : ; n; j = 1; : : : ; nig. Also de�ne the projection �:Rk+l ! R
k :wij 7! xi.
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Figure 1.1: The wrench map.

Lemma 1.3.1. For all i0 2 f1; : : : ; ng and j0 2 f1; : : : ; nig,

wi0j0 2 conv fwi0j : j = 1; : : : ; nig:

If in addition fyij : j = 1; : : : ; nig is in convex position for each i, then so is W .

Proof. Let q = wi0j0 . Clearly, q 2 convW , in other words q =
P

ij �ijpij , for some �i,

0 � �ij � 1. Then

�q =
X
ij

�ij�wij =
X
i

0@X
j

�ij

1A xi

) �q 2 conv fxi : i = 1; : : : ; ng:

But since the xi are in convex position, �q = xs for some s 2 f1; : : : ; ng and we must

have s = i0 by equating the �rst k coordinates. This means �ij = 0 for i 6= i0. Therefore

q =

ni0X
j=1

�i0jwi0j (1.1)
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as required. To show the second statement it is su�cient to note that if (1.1) is also

satis�ed then q = wi0j0 for some j0 2 f1; : : : ; nig.

In particular, if ni = 1, q 2 W must be a vertex of convW . We also have

Corollary 1.3.2. If for a grasp G = fpi : i = 1; : : : ; ng with grip points pi, no 3 �ngers

have the same normal, and if n(pi) = n(pj) then pi � pj is not parallel with n(pi)

(i.e. the lines of action of the applied forces are not identical), then �(G) are vertices of

conv �(G).

Proof. In Lemma 1.3.1, let (k; l) = (3; 3) (or (k; l) = (2; 1) for planar objects). Note

that n(G) is in convex position, and for each normal n(pi) 2 Rk, the associated points

in Rl are also in convex position, since any two distinct points are. Then an application

of Lemma 1.3.1 to �(G) �nishes the proof.

A slightly weaker property of �(S) can be shown when S is the set of boundary points

of a polyhedral object.

Theorem 1.3.3. When B is a polyhedron with n vertices, conv �(@B) is polyhedral and

has at most n vertices, and �(@B) � @ conv �(@B).

Proof. Let F be a face of B. For all p 2 F , n(p) = n0 are identical. Then �(F ) is a 2

dimensional polygon, possibly degenerate, by linearity of �. For p 2 @B, �(p) belongs

to the \vertical" hyperplane h = fx 2 R6 : [n(p); 0] � x = 1g. Let the positive side h+
of h be the closed halfspace delimited by h and containing the origin. Then �(p0) 2 h+

for any point p0 2 @B since n(p0) � n(p) � 1. Hence h is a supporting hyperplane for

conv �(B). Now for normal n0, consider the set D = fp 2 @B : n(p) = n0g. D is

a collection of faces of B and includes F . For p 2 D, p � n0 lies in the 2 dimensional

subspace a� F of R3 (one dimensional for planar objects) since any point of �(D) has its

�rst three (two) coordinate those of n0, and in addition, p� n0 ? n0. �(D) is the union

of the image by � of the set of polygonal faces ofD which is a set of planar polygons, a set

with linear boundary, as seen above. Since h is a supporting hyperplane for conv �(@B)

and no other points of �(@B) lie on h but those of conv �(D), conv �(D) must be a

2-face (edge) of conv �(@B).
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If B is a polyhedron with N vertices and faces, then the �(@B) has at most O(N)

vertices and at most O(N3) total complexity [McM70, Ede87]. Computing the convex

hull of �(@B) takes at most O(N3) time [Cha93]. If B is planar with N vertices, then the

number of faces of �(@B) 2 R3 is only O(N), and its convex hull takes only O(N logN)

time to compute. It is interesting to note that the computation of the convex hull requires

only O(N) time if the points are sorted by their corresponding normal. This is due to

the structure of the set of points: all points lie on N vertical segments. This follows from

the results of Aggarwal, Guibas, Saxe and Shor [AGSS89]. They provide a linear time

algorithm for computing the convex hull of points structured as in Lemma 1.3.1 with

ni = 2, k = 2 and l = 1, i.e. points which lie \above" the vertices of a convex polygon in

the xy-plane, two points per vertex. They assume the polygon is given as an ordered list.

In our case, the points project onto the unit circle centered at the origin in the xy-plane,

and we need to know in addition which points are the highest and lowest for each vertical

segment and identify the vertical segments. A similar structure occurs in six dimensions

for the case of three dimensional objects. We therefore believe that the bound on the

number of faces for three dimensional objects can also be improved.

1.3.1 Number of Fingers Required for Closure

In order to obtain a particular grasp on an object, it must be determined if that grasp

is achievable. It is for this reason, researchers have studied the question of how many

�ngers (wrenches) are required to obtain certain grasps on the object.

Here we consider the frictionless case. Reuleaux and Somo�, followed by Lakshmi-

narayana determined that a closure grasp of a two dimensional object requires at least

four �ngers and of a three dimensional object requires at least seven.

Mishra, Schwartz, and Sharir [MSS87] then gave general bounds on the number of

�ngers in the case of a positive grip, for piece-wise smooth surfaces. They show that six

(resp. twelve) �ngers are su�cient to obtain a closure grasp of objects bounded by non-

exceptional surfaces in the plane (resp. in three dimensions). To achieve equilibrium,

only four (resp. seven) �ngers are required.

A surface � is exceptional [MSS87] if for some wrench [f ; t], at each point p on �,
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the normal n(p) at p is perpendicular to f + t � p. It is shown in that paper that such

surfaces are exactly surfaces of revolution. A similar result has been obtained by Selig

and Rooney [SR89].

Let us brie
y describe the technique of [MSS87] for showing these bounds. But �rst

let us recall a fundamental theorem from combinatorial geometry2 [Ste16].

Theorem 1.3.4 (Steinitz). If X � Rd and x 2 int conv X, then x 2 int conv Y for

some Y � X with jY j � 2d:

First it is shown that if a �nger is placed at every point of the object, then closure is

achieved for non-exceptional objects. In other words,

0 2 int conv �(@B):

Then Steinitz's theorem is applied to �(@B) to show the bounds for closure. For the

bounds on the number of �ngers needed for equilibrium, Carath�eodory's theorem [Car07]

is used.

Theorem 1.3.5 (Carath�eodory). If X � Rd and x 2 conv X, then x 2 conv Y for

some Y � X with jY j � d+ 1:

Mishra et al. also provide an algorithm that �nds at least one such grip on a polyhe-

dral object which runs in time linear in the number of faces of the object.

Similar results have also been obtained by Markensco�, Ni, and Papadimitriou [MNP90],

although their proof techniques are quite di�erent from those used by [MSS87].

For certain types of objects, it can be shown that seven �ngers are su�cient thus

closing the gap between the bounds for those objects. Let us �rst give a de�nition.

De�nition 1.3.2. A set of vectors in Rd is positively spanning if every vector in Rd can

be expressed as a positive linear combination of those vectors.

2We attempt to distinguish general facts in combinatorial geometry from facts about wrench spaces

by using bold type for vectors in the latter.
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2D Objects 3D Objects

Equilibrium grasps

Piecewise smooth 4 7
Smooth 3 5

Closure grasps

6 12

Piecewise smooth (excluding disks)
(excluding objects with
a surface of revolution)

Polyhedral 4 7

Table 1.1: Bounds on the number of �ngers su�cient for force/torque closure.

In [MNP90] it is shown that such a grasp is achievable for an object B in R3 with-

out rotational symmetry such that there is a maximal inscribed sphere S and a set P

of isolated points on @B \ S such that the normals to B at those points are positively

spanning. This is shown using the largest inscribed sphere inside the object and a pertur-

bation argument. For planar objects, the bound is four. In particular the result applies

for polyhedral objects. For convex polyhedral objects, Meyer [Mey90] also shows that

seven �ngers are su�cient and provides an algorithm with O(n3=2
p
logn) running time

to �nd such a grasp. In [Mey90], an initial grasp of six �ngers is found. It consists

of three �ngers near each of the vertices forming the diameter of B. This is also done

using an inscribed sphere near those vertices. Torque cannot be exerted around the line

connecting the two spheres, but this is remedied by splitting one of the points into two

nearby ones, again achieving form closure. Table 1.3.1 summarizes existing bounds found

in [MSS87, MS89, Mey90, MT92, MLS94].

1.3.2 Algorithmic Techniques

Given the bounds on the number of �ngers, and a polyhedron P of n faces, we wish to

�nd a set of �ngers and force targets that will produce a force-torque closure grasp.

Meyer's algorithm has been brie
y described in the previous section. The complexity
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of the algorithm is due mainly to �nding the diameter of the convex polyhedron. It would

be interesting to determine whether another pair of vertices that is not so hard to �nd

might su�ce.

Mishra, Schwartz and Sharir [MSS87] have an algorithm with a more algebraic 
avor

for any polyhedral object. The algorithm works in two phases: the �rst phase �nds a set

of O(n) �ngers forming a force-torque closure grasp, the second then reduces the number

of �ngers to a constant number. In fact this algorithm may �nd a grasp with less than

twelve (six) �ngers, but this is not guaranteed.

Markensco�, Ni, and Papadimitriou [MNP90], brie
y mention that their proofs are

constructive and can be applied to the case where the object is a polytope. Their algo-

rithm consists of �nding a largest inscribed sphere. For convex polytopes, this can be

done in linear time. See for example [Meg84]. For non-convex polytopes, the algorithm

of Milenkovik [Mil93] for computing the Voronoi diagram of a polyhedron can be used.

It runs in O(nv log2 b) time, where v is the number of vertices of the Voronoi Diagram of

the n vertex polyhedron, and b is the number of desired bits of precision. This produces

four or more points on the boundary of the object where the sphere touches (recall the

conditions of validity.) Then �nger positions, near these points must be found. For ex-

ample if four points are found, three of the points are \split" appropriately, producing a

seven �nger grasp. Other cases are similarly covered.

1.4 Friction and Other Contact Types

The number of �ngers necessary for a closure grasp can be reduced in the presence of

friction. Usually the Coulomb friction model for the surface contacts is assumed, as is

done for example in [SR82] and [KR86]. A friction cone is associated with each contact,

and the line of action of the force transmitted through the contact must lie within this

cone.

In the plane, only three �ngers are required for form closure and in R3, form closure

is possible with four �ngers, and these numbers are also lower bounds. This was shown

in [MNP90].

Let � > 0 be the friction coe�cient. Form closure with n �ngers under friction occurs
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when any arbitrary external wrench w can be expressed as

w =
nX
i=1

fi
h
�(pi) + ti(n

?
i ;pi � n?i )

i
; (1.2)

where fi � 0 and n?i is a unit normal to n(pi) with 0 � ti � �, (1 � i � n). In other

words, the actual force applied at point pi is a non-negative multiple of n(pi)+ tin
?
i and

belongs to the friction cone C�(pi), a set of vectors forming an angle of at most arctan(�)

with n(pi). Let us also de�ne the set of forces of unit magnitude in the friction cone

F�(p) = ff 2 C�(p) : kfk = 1g :

We now show that the techniques for testing the closure properties of Section 1.2.1

still apply. We would like to say that since the �nger can apply a force anywhere in the

friction cone, we can include the image by pos � of the entire friction cone in the set of

forces that can be generated at the contact point. Let �(p; f) = [f ;p� f ] and de�ne

��(p) = �(p;F�(p)): (1.3)

Note that �0(p) = f�(p)g. We require the force applied from any direction to be of unit

magnitude (in contrast with [FC92]) so that f��(p) represents the e�ect of applying a

force of magnitude f at p. This avoids certain problems when evaluating grasp strength

as discussed in chapter 2.

To generate an external wrench w, we would like to select points from
S
i pos ��(pi)

each point corresponding to a �nger position, direction and magnitude of applied force.

There are two potential di�culties. First, to a point in wrench space may correspond

two or more �ngers. This is the case for example when two �ngers apply the same force

at two points on the line of action of this force. In this case, one may pick either �nger

to generate that wrench.

The second di�culty is that we are allowed to select at most one point (actually ray)

for each pos ��(pi) since a �nger can apply a force only in one direction at any one

time. We now show that this is always possible. Our solution will become particularly

important in the next chapter where forces that �ngers can apply are bounded. There,
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it is not su�cient to simply add all the wrenches that a �nger is required to apply, since

this might yield too large a force. We will need the following properties of convex sets

and of the wrench map. For S � Rd, denote by [0; 1]S the set f�s 2 S : 0 � � � 1g.

Lemma 1.4.1. Both pos ��(p) and [0; 1]��(p;n) are convex.

Proof. To show the �rst statement, let wi = [fi;pi � fi] 2 pos ��(p), i = 1; 2. For

�1; �2 � 0 with �1 + �2 = 1,

�1w1 + �2w2 = [�1f1 + �2f2;p� (�1f1 + �2f2)]:

But �1f1+�2f2 2 F�(p) by convexity of the friction cone, which proves the �rst statement.

Since ���(p;n) = ��(p; �n), if in addition kfik � 1, then we have k�1f1 + �2f2k �
�1 + �2 = 1 by the triangle inequality and the second statement follows.

In two dimensions, the friction cone C�(p) is bounded by two rays emanating from

the origin and its image in wrench space ��(p) is a planar cone (� being linear) and

also bounded by two rays. For three dimensional objects however, the friction cone is a

circular cone in three dimension with apex at the origin. Its image under � is a convex

cone with apex at the origin, but is no longer linear. An early analysis of the image of a

friction cone was done by Ji [Ji87].

Let us also show two generalized versions of Carath�eodory's theorem, which we call

thickened versions3.

Theorem 1.4.2. Consider a family A1; A2; : : : ; An of convex sets in Rd and a point

x 2 conv (A1; : : : ; An). Then there exist m = minfn; d+ 1g points y1; y2; : : : ; ym, each

belonging to a unique Ai such that x 2 conv fy1; : : : ; ymg.
Proof. By Carath�eodory's theorem, there exist d + 1 points y1; y2 : : : ; yd+1 2 Sn

i=1Ai

such that

x =
d+1X
i=1

�iyi with 0 � �i � 1: (1.4)

3A di�erent generalization called a multiplied [GW93, p.431] version appears in [B�ar82].
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Assume without loss of generality that p1; p2 2 A1 and �1; �2 6= 0. Then

x = �1y1 + �2y2 +
d+1X
i=3

�iyi

= (�1 + �2)

�
�1y1 + �2y2
�1 + �2

�
+

d+1X
i=3

�iyi

= (�1 + �2)q +
d+1X
i=3

�iyi

for q =
�

�1
�1+�2

�
y1 +

�
�2

�1+�2

�
y2 2 A1 by convexity of A1. Now x lies in the convex hull

of d points which resides in an a�ne space of dimension d� 1. In e�ect, the hyperplane

containing y3; : : : ; yd+1 is rotated around these points until it contained x. This process

can be continued until the requirement of the theorem is met.

Note that this procedure can easily be made constructive given an appropriate de-

scription of the convex sets Ai. In particular when the Ai are polytopes given by their

vertices, and we are given �i and yi sorted by their set number, such that (1.4) is satis�ed,

then it takes only O(d) time to perform one step in the proof of the theorem, hence the

total time is bounded by O(nd). Note also that Theorem 1.4.2 becomes Carath�eodory's

theorem when the sets Ai are reduced to one point each.

We also have the following

Theorem 1.4.3. Consider a family A1; A2; : : : ; An of convex sets in Rd and a point

x 2 conv (0; A1; : : : ; An). Then there exist m = minfn; dg points y1; y2; : : : ; ym, each

belonging to a unique Ai such that x 2 conv f0; y1; : : : ; ymg.
Proof. Similar to that of Theorem 1.4.2 using a version of Carath�eodory's theoremwhich

allows us to specify a point (0 in this case) such that x 2 conv f0; y1; : : : ; ydg. See for

example the paper by B�ar�any [B�ar82] for (a more general version of) this theorem.

Applying Theorem 1.4.3 to the sets pos ��(pi), which are convex by Lemma 1.4.1,

we conclude that only one point from each is necessary to generate an external wrench

(which is called x in the theorem.) Hence
S
i pos ��(pi) does indeed represent the set
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of possible wrenches the �ngers can generate. The second problem mentioned above is

solved. Therefore, to test for closure in the frictional setting, we can check if the origin is in

the interior of the convex hull of the friction cones associated with the �nger contacts. This

is however computationally non-trivial, as pos ��(pi) has non-linear boundaries, at least

for three dimensional objects. In practice, an approximation is usually used [PSS+95];

in chapter 2 this is examined more closely. The test for closure can then be implemented

as in the non-frictional case using such an approximation.

It is also interesting to note [MNP90, lemma 9] that a given grasp with positively

independent �nger wrenches is a form closure under friction coe�cient � > 0 if and only

if it is a form closure with unbounded friction coe�cient. This is used to prove the �nger

bounds in their paper.

Two �nger grasps and other contact types

In three dimensions, two �nger grasps are slightly more complex. Salisbury [Sal82] and

later, Murray, Li and Sastry [MLS94] show that two �ngers with soft frictional contact

are su�cient for attaining closure in certain cases. The condition (satis�ed for smooth

objects for example) is that there are two contact points p1 and p2 with surface normals

n1 and n2 resp. such that the line of action of the force applied at one point goes through

the other point. Since the angle is bounded by arctan(�) we need to �nd two points on

the object that are `almost antipodal'. The wrenches generated by such a �nger include

those above for the frictional contact, along with [0; tn] with jtj < �f , where f is the

magnitude of the force applied by the �nger, and � is the torsional friction coe�cient.

There are other contact types that should be included in the study of form closure

grasps. The theory described here can be used to analyze contacts such as line contacts,

planar contacts, both frictional and non frictional. These are described in detail by

Salisbury [Sal82] and Cutkosky [Cut85]. A �rst step in this direction has recently been

taken by Overmars, Rao, Schwarzkopf and Wentik [ORSW95] who consider a line contact

in the plane. There are also di�erent models of friction for materials such as rubbers,

which usually display a coe�cient of friction that varies as a function of the normal force

[CAHK87]. Algorithms need to be developed for �nding good grasps using those more
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general contact types.

1.4.1 Algorithmic Techniques

Two and Three �nger grasps

In the plane, Nguyen [Ngu87] gives an algorithm for �nding two maximal regions on a

polygon, called maximal independent regions, on which �ngers can be placed. Each �nger

can be placed anywhere in its region and the graspmaintains closure. Synthesizing a grasp

with n independent regions, requiring c contacts to achieve closure takesO(cnc2c) time. A

generalization to three �ngers has been done by Pollard and Lozano-P�erez [PLP90] as part

of a complete manipulation system. For non-polygonal objects, Chen and Burdick [CB92]

and Ponce, Stam and Faverjon [PSF93] have also generalized the maximal independent

regions of Nguyen for curved objects using global optimization and algebraic techniques.

Let us describe a new algorithm for �nding such two �nger grasps for polyhedral

objects. We have seen in the previous section the conditions for two �nger closure. Here

we assume that both �ngers cannot be placed at the vertices or edges. The following

considerations yield a simple O(n2) algorithms for �nding the set of all possible two

�nger grasps for convex polyhedral objects. Consider a polyhedron P 2 R3 with n

vertices (it also has O(n) faces and edges [Ede87]). Let F1; F2 be two faces of P , with

normals n1;n2 respectively.

The Minkowski sum of F1 and the negative of the friction cone for points on F1

represents the set of points in space where the second �nger can be placed without

violating the friction constraint for the �rst �nger. This produces a curved surface with

conical and planar pieces [PSS+95] of complexity no larger than O(N), if N is the number

of vertices of F1. This surface, when intersectedwith the plane of F2 forms a \generalized"

polygonQ2 on F2 with elliptical and straight edges. We do the same for F2 producing Q1.

If Q1 or Q2 is empty, it means we cannot place �ngers on this pair of faces. Otherwise,

one can simply select two points, one on each Qi on which to place the �ngers. Such

polygons fall into the category of spline-gons which have been studied by Dobkin and

Souvaine [DS90]. They show that the intersection of two such polygons with at most N

(curved) edges each can be accomplished in O(N) time. Hence, we can test each pair of
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faces in O(N) time where N is the size of the largest face. If we �x one of the faces, the

sum of this number over the entire polyhedron is O(n) since each edge is counted only

twice. The entire algorithm therefore takes O(n2) time, and �nds every candidate pair of

faces for two �nger grasps.

Four �nger grasps

Recently Ponce, Sullivan, Sudsang and Boissonnat [PSS+93, PSS+95] have classi�ed

four �nger frictional grasps of three dimensional objects using screw theory and propose

methods for �nding four �nger equilibrium and closure grasps.

They de�ne anm-�nger grasp to achieve non-marginal equilibrium when there exists a

set of forces in the open friction cones at the �nger contact points such that the associated

wrenches sum to zero. Their results are based on

Theorem 1.4.4 (Ponce et al). In the presence of friction, a su�cient condition for

three dimensional, m-�nger closure with m � 3 is non-marginal equilibrium.

Equivalently, one could say that an equilibrium grasps with friction coe�cient � is a

force/torque closure grasps with friction coe�cient �0 > �. This generalizes a result of

Nguyen for the two �nger case.

They apply this result to �nding four �nger non-marginal equilibrium grasps, which

are in fact closure grasps by their theorem. This result allows them to work in object space

instead of wrench space, simplifying the algorithms for �nding a grasp. They also use

the following classical result [Hun78]. Four lines in space which are linearly-dependent,

either

1. lie in a single plane,

2. intersect at a point,

3. form two 
at pencils having a line in common, or

4. form a regulus.
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They categorize four �nger equilibrium grasps into three classes corresponding to the

last three possibilities above. Each line corresponds to the line of action of a force applied

by a �nger. The �rst possibility above does not constitute a grasp since the forces must

be positively spanning to span the force space R3.

Ponce et al. give algorithms for �nding independent regions corresponding to the �rst

two types of grasps. Also independent regions for three �nger grasps are found. Their

algorithms are based on linear programming. The algorithms however are not guaranteed

to �nd a grasp if it exists, since they are based on su�cient, but not necessary conditions.

Sudsang and Ponce [SP95] recently gave algorithms for �nding the third type grasps, but

not independent regions which appear hard to �nd in this case.

1.5 Fixturing of Frictionless Assemblies

We now consider the case of grasping several objects that are possibly in contact with

each other, using a set of �ngers, or �xture elements. We wish to take advantage of the

object to object contacts to reduce the number of �ngers necessary. This problem arises

in manufacturing where many assembly tasks require a set of contacting objects to be

held �rmly. The �ngers, here called �xture elements or �xtures are positioned in contact

with the objects to achieve this. Often there is only a �nite set of possible placements

due to the construction of workholding table [Mis91, ZGW94]. Typically, such a table

o�ers a precise lattice of holes into which clamps and locators can be inserted. Locators

are essentially pins of a certain diameter. Clamps can apply pressure on the object at a

point on one of the lattice axes. Thus, for a �xed object position, there is a �nite number

of possible points on the boundary of the objects where the �xture elements can make

contact. See Figure 1.2 for an illustration. The contacts considered in this section are

frictionless. This is particularly justi�ed in manufacturing where vibrations can make

frictional contacts unreliable, and machining forces can be particularly large.

In the case of a single object, Brost and Goldberg [BG94b] provide an algorithmwhich

�nds all possible positions of an object on such a table, along with �xtures corresponding

to those positions. Zhuang, Goldberg and Wong [ZGW94] show that for a given lattice

size, there exist polygonal objects which cannot be �xtured using three locators and
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Figure 1.2: Fixturing a single object with 3 clamps and 1 locator

one clamp. Recently, Overmars, Rao, Schwarzkopf and Wentik [ORSW95] presented an

algorithm to list all possible �xture sets of a polygonal object using one edge �xture,

one clamp and a locator as �xtures. If k is the number of �xture con�gurations that are

output, n the number of vertices of polygon, and p the polygon's perimeter in grid units,

their algorithm runs in time O(n(n+ p)4=3+� + k).

We consider here the case of multiple �xed objects. In this setting, forces applied to

an object are both due to contacts between objects, and the �xtures. As in grasping, it

is desirable to use a small number of �xtures, and/or limit the forces they must apply on

the objects. The previous framework of section 1.2 generalizes to this case by essentially

concatenating the force-torque vectors for each object and working in R6k where k is the

number of objects [BMK94].

Let mi be the center of mass of object i. In the following de�nitions 0 is the 6

dimensional zero vector. For each object Bi and contact point p let �i(p) = [n(p); (p�
mi)� n(p)]. A �xture applied at p to Bi generates the generalized force-torque

��(p) = [0; : : : ; 0| {z }
i�1

;�i(p); 0; : : : ; 0] 2 R6k:

The i-th position contains �i(p). A contact between object Bi and object Bj generates

��(p) = [0; : : : ; 0| {z }
i�1

;�i(p); 0; : : : ; 0| {z }
j�i�1

;�j(p); 0; : : : ; 0] 2 R6k:
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Figure 1.3: An assembly with �xtures.

The forces involved are illustrated in Figure 1.3. It is worth noting that as before this

framework specializes to the case where the objects are planar; in this case, the force-

torque space for each object is three-dimensional.

In this context force-torque closure can be de�ned analogously to the previous one-

object case: a set G of �xtures (i.e. of these generalized force-torque vectors) is a

force/torque closure �xture set if and only if 0 is in the interior of conv ��(G). It is easy

to see that�
8i 0 2 int conv �i(G)

�
if and only if 0 2 int conv ��(G):

so we have closure for each object individually exactly when the de�nition above is sat-

is�ed.

We note that the techniques of [MSS87] for �nding a closure grasp apply in any

dimension and can be used for �nding closure grasps. This was observed by Bara�,

Mattikalli and Khosla [BMK94]. Again, by Steinitz's theorem, one needs at most 12k

�xtures (or 6k in the plane).

One problem addressed in [BMK94] is to select the smallest subset G of �xtures

among a �nite set S of possible �xtures that have this property. Again, there is a bound

of 12k on the number of �xtures required to achieve force-torque closure. However such

a set G does not guarantee any given grasp quality. They show that several variations
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of this problem are NP-hard, they also provide two heuristics for the problem described

here, but without an analysis. In Chapter 4 we present a randomized algorithm which

produces a number of planar �xtures that is at worst a factor of 12k log c times larger

than the optimal cover, if the latter has size c.

1.6 Other Types of Immobility

The analysis of grasping given so far is based on screw theory and depends only on

the in�nitesimal motions and forces. There is another method for analyzing the relative

motion of bodies in contact. It considers the con�guration space of object. For a de�nition

of con�guration space (also called c-space), see for example the book by Latombe [Lat91].

In fact there are two other possible notions of immobility and we shall examine them in

this section. Here all contacts are frictionless. The purpose of this section is to show a

parallel between two related �elds. Certain de�nitions, based on which we shall not show

any results, will not be given in their full mathematical precision as this would require

a disproportionate amount of space. We refer the interested reader to the corresponding

references.

1.6.1 First and Second Order Immobility

Recently, Rimon and Burdick [RB94] consider the con�guration space of a rigid body

in contact with other �xed bodies (�ngers) and study possible free motions of the body.

They propose two notions of immobility.

First order immobility is de�ned in terms of the local tangent hyperplanes in con�g-

uration space at the initial con�guration. To each �nger is associated an open halfspace.

If these halfspaces cover the entire c-space (except for the initial con�guration), there is

no �rst order motion possible. It is shown that �rst order immobility is equivalent to

force/torque closure.

Second order immobility depends on the local curvature of the con�guration space,

hence also on the local relative curvature of the �ngers and the body at the contact points.

In [RB94] it is shown that a set of �ngers which immobilizes an object to �rst order

also immobilizes it to second order. Furthermore, they show that some grasps that are
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not force/torque closure are immobile to second order. Consider for example a triangle

with �ngers placed at the intersection of the triangle and its inscribed circle. The �rst

order theory fails to distinguish between these two types of grasps.

1.6.2 Finite Immobility

Yet a di�erent concept of immobility, which we call here �nite immobility, has been

introduced by Kuperberg [Kup90], and discussed in [O'R90] and [CSU90], [CSU91].

De�nition 1.6.1. A set of points I in R3 is said to immobilize an object B if any rigid

motion of the object causes at least one point of I to penetrate the interior of B.

Czyzowicz, Stojmenovic and Urrutia [CSU90] establish that four points su�ce to

immobilize any object in the plane, and 2d points are su�cient in Rd using techniques

such as �nding the largest sphere inscribed inside the object. The arguments bear some

similarity to those used in [BFG85] and [MNP90] to show analogous results about the

number of �ngers required for closure grasps. They also show that polygons without

parallel sides can be immobilized using three points, and provide an O(n logn) algorithm

for �nding such an immobilizing set [CSU91].

For smooth objects, its turns out that three points are always su�cient [MU91]. This

mirrors the reduction of number of �ngers required for closure grasps when one requires

the object to have a smooth boundary. Similarly, Rimon and Burdick [RB94] conjecture

such a reduction for second order immobility. In fact they show that a force/torque closure

is su�cient to achieve immobility. Thus any algorithm which computes a frictionless

closure grasp of an object also �nds a set of points immobilizing the object. Although

Rimon and Burdick mention the work of Czyzowicz et al., they do not seem to explicitly

show a connection between second order immobility and �nite immobility.

Finally, testing whether a given set of points immobilizes a polygon takes O(n)

time [CSS92] if the points are not placed on convex vertices, otherwise the bound is

O(n2).

We can summarize the relationship between the various de�nitions of immobility as

follows. Let De�nition A =) De�nition B mean if a body is immobilized by n �ngers
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under De�nition A then it can be immobilized by n or fewer �ngers under De�nition B.

Then

Force/Torque Closure () Form Closure () First Order Immobility

=)
8<: Second Order Immobility

Finite Immobility:

1.6.3 Rigidity of Bar and Joint Frameworks

A framework G in Rd consists of a set of v vertices pi 2 Rd or joints together with a set

of e edges. An edge fi; jg connects two vertices i and j, and represents a rigid bar. To

such a framework, we associate a point in the con�guration space of G:

p = (p1; : : : ; pv) 2 Rdv

which represents the positions of the vertices inRd. Edges are simply closed line segments

[pi; pj ]. De�ne the edge function f : Rdv ! R
e of G by

f(p) = (: : : ; kpi � pjk2; : : :):

De�nition 1.6.2. The framework G(p) is 
exible if there exists a continuous function

x : [0; 1]! R
dv satisfying

1. x(0) = p

2. x(t) 2 f�1(f(p)) for all t 2 [0; 1], and

3. x(t) is not an image of p by a rigid motion for all t 2 (0; 1].

Such a path is called a 
exing of G(p). The framework is rigid if it is not 
exible.

In other words, there is a path in the con�guration space that begins at p, which

preserves edge lengths and which is not simply a rigid motion. See for example [Rot81,

CS94], where most of this material can be found.

In this setting there are also several additional types of immobility. We will see that

the de�nitions of various types of rigidity parallel those for immobility. This connection

is formalized in the next section, at least for rigidity and immobility.
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A �rst-order 
ex of G(p) is a con�guration of vectors p0 = (p01; : : : ; p0v) 2 Rdv such

that the equations

(pi � pj) � (p0i � p0j) = 0 for all fi; jg bars of G

are satis�ed. These equations come from the formal derivative of f(p). If G has pinned

vertices, we will say thatG(p) is �rst-order rigid if its only �rst-order 
exes satisfy p0 = 0.

Finally, a second-order 
ex is a pair of con�gurations of vectors (p0; p00), where p0 is

a �rst order 
ex of G(p) and p00 = (p001; : : : ; p00n) 2 Rdv such that the equations

(pi � pj) � (p00i � p00j ) + (p0i � p0j) � (p0i � p0j) = 0 for all fi; jg bars of G

are satis�ed and in addition p00i = 0 for all pinned vertices i. One can interpret p0 as

velocities and p00 as accelerations permitted by the distance constraints of G(p). If G has

pinned vertices, G(p) is second-order rigid if every second-order 
ex (p0; p00) has p0 = 0.

We are now ready to state some of the basic results in this �eld.

1. G(p) is �rst order rigid, if and only if the rank of df(p) = dv � �d2� [Rot81].
2. If G(p) is �rst order rigid, then it is rigid [AR79].

3. If G(p) is �rst order rigid, then it is second order rigid. But the converse is not

true.

4. If G(p) is second order rigid, then it is rigid [Con80].

5. If G(p) is in \general position" (p is a regular point of f), then G(p) is rigid if and

only if it is �rst-order rigid [Rot81].

These results are summarized below.
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Figure 1.4: Peaucellier's Inversor.

1.6.4 Immobility and Rigidity

The previous subsections clearly show a parallel between notions of rigidity in bar and

joint frameworks and notions of immobility. In fact it seems the underlying concepts are

the same.

A simple construction establishes a connection between testing for �nite immobility

and testing framework rigidity. Namely, given a polygon and a set of points on its

boundary, we give a construction that is rigid if and only if the polygon is immobilized

by these points. Consider the mechanism of Peaucellier illustrated in Figure 1.4. It is

described by Hilbert and Cohn-Vossen in [HCV52, page 273]. The vertices L and M are

�xed to the plane and the length of bar QM and the distance LM must be identical.

This mechanism allows the vertex P to move only along line `, subject to the restrictions

imposed by the length of the bars. We will make a slight modi�cation to allow P to

move on one side of the line (on the right side in the �gure), again subject to the same

restrictions. We simple introduce a joint Q0 in the middle of bar MQ. This allows

distance LQ to shorten and P to move away from L. First note that L, Q and P are

always collinear, and that LQ:LP = constant = (LA)2�(QA)2 [HCV52, page 273]. Also

Q is on or inside the circle of radius MQ centered at M . For a given direction of LP ,

and for \LQM < �=2, Q can move closer to L by shortening MQ, but this moves P to

the right of `.
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Figure 1.5: Inversors used to immobilize a rectangle.

Now imagine ` to be locally an edge of a polygon P with the interior on the side of

` containing L. Notice that locally P acts like a point \�nger" with respect to `: it can

only move away from the polygon or tangentially to it. Figure 1.5 shows an example

of our construction: a rectangle and four point �ngers which lie on its boundary. The

vertices marked by a diamond are �xed on the plane. In fact polygon P will be �xed on

the plane, and the set of immobilizing points will be attached to the `P ' vertices of the

mechanisms, and will be free to move (subject to the �nger restrictions). These vertices

also need be held in a rigid con�guration with respect to each other by a framework

representing the fact that in the original problem, they are �xed on the plane. This is

easily accomplished by triangulating the set of vertices. This triangulation is rigid, and

is shown by long thin lines. We have thus established that the framework given by this

construction is rigid if and only the polygon is immobile.

Theorem 1.6.1. Finite immobility in R2 can be reduced to planar rigidity.

Note that if n is the number of immobilizing points, there are 9n + 1 bars and 5n
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movable vertices and 2n vertices pinned on the plane.

The same construction does not establish a similar connection between force/torque

closure and in�nitesimal rigidity, because even if the P vertices are pinned down, the

framework is not in�nitesimally rigid due to the Q0 vertices.

Finally let us note that it seems that neither purely �rst and second order frictionless

contact analysis, nor �rst order frictional analysis are su�cient to completely understand

the issue of immobilizing an object. In the classical example of a triangle with three

�ngers at the intersection with its inscribed circle, �rst order immobility requires friction

to be successful, but second order immobility is guaranteed [RB94]. On the other hand,

appropriately placing three �ngers on two parallel edges (of a rectangle) also produces

�rst order immobility with friction, but never second order immobility.

1.6.5 Immobilizing With Clamps

A variation of �nite immobility was de�ned in the context of grasping with a clamp,

which is a geometric idealization of a parallel jaw gripper with bounded jaw width. The

de�nition of a clamp was made to model the \real world" gripper. Friction is allowed,

but only to prevent an object from sliding in a direction parallel to the gripper. Several

results exist.

Souvaine and Van Wyk [SV94], de�ne a stable clamp to be a position of the gripper

which prevents the object from rotating, and a small change in the position of the gripper

maintains this property. These clamps usually contact the polygon at three or more

points, the requirement being roughly that one of the points lies on one jaw and projects

perpendicularly to the jaws onto the segment spanned by the two other points. They

consider in�nitesimally small gripper widths, and show that convex polygons, and certain

polygons composed of convex chains can be clamped. Capoyleas [Cap93] extends their

work to arbitrarily wide jaws, and some more types of polygons.

Albertson, Haas and O'Rourke [AHO90] de�ne a slightly more general type of clamp

and show that yet other classes of polygons are clampable using their de�nition. It is

still a conjecture whether any polygon can be clamped under any of the above-mentioned

de�nition.
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Bose, Bremner, and Toussaint [BBT94] extend the de�nition of clamp to three di-

mensions and show that all convex polyhedra can be clamped with a parallel jaw gripper

of su�ciently large size. They also provide an algorithm to �nd all such clamps for a n

sided convex polytope in O(n+ k) time, where k is the number of antipodal \features",

a feature being a vertex, edge or facet of the polytope.

1.6.6 Finger Gaiting

Once an object is grasped, certain tasks require the object to be manipulated, for example

rotated [CGRW94]. Such rotations can be accomplished as in the work of Rus [Rus92]:

�ngers slide on the object and cause it to rotate. Here very little sensory information is

used, providing a robust algorithm. A geometric planning phase takes O(n logn) time

for an n sided polygonal object.

Another fundamentally di�erent approach consist of \walking" on the object, a pro-

cess called �nger gaiting. It consist of going from a grasp to another, lifting one �nger

at a time, and maintaining equilibrium (closure) at all times.

Finding such a gait is non-trivial, and requires motion planning. See for example the

book by Latombe [Lat91] for a description of motion planning. Hong, Laferriere, Mishra

and Tan [HLMT90], used topological techniques to show that for smooth objects, there

exist two and three �nger gaits.

More recently, Chen and Burdick [CB93] study the space of con�gurations of points

on the surface of an object forming a closure grasp, for the purpose of gaiting. This space

is parametrized by the object surface positions, and they study the surfaces formed in

this space by con�gurations corresponding to closure grasps for an elliptic object.

Here we consider the situation in wrench space to �nd valid positions for �ngers. As-

sume we are given a hand with one more frictionless �nger than is necessary for obtaining

closure. Say this number is k + 1. We now wish to manipulate the object B, and one

of the �ngers, say the �nger at p1, call it F1, is about to reach a limit imposed by the

mechanism or force constraints. We wish to replace it with the free �nger. Where can

we place the free �nger on @B so that closure is guaranteed when F1 is removed?

If the grasp G is still a closure grasp without F1, we are done. However this does not
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occur in general, so we assume that this is not the case. Let G0 = G n fp1g.
De�ne the set of wrenches, which when added to �(G0), guarantee closure:

C =
n
w 2 R6 : pos (fwg [ �(G0)) = R6

o
:

We wish to �nd H , the points on @B which correspond to C:

H = ��1(�(@B) \ C):

But C is nothing but �int pos �(G). To show this, let us show a geometric lemma

without the baggage of wrench maps:

Lemma 1.6.2. Let S � Rd, pos S 6= Rd. Then

C = fx 2 Rd : pos (x; S) = Rdg = �int pos S:

Proof. If x 2 �int pos S, there is an � > 0 such that �x + y 2 pos S for all y with

kyk = �. Then x�x+y 2 pos fxgSS i.e. y 2 pos fxgSS, and hence pos fxgSS = Rd.

Conversely, if pos fxgSS = Rd, then for any y 2 Rd, y =
P

i>0 �isi + �0x, for some

0 � �i, �0 6= 0, si 2 S. Then �x + y
�0

2 pos S which implies x 2 �int pos S, as
required.

In our application, d = 6, S = �(G0) and the set C is a polyhedral convex cone with

one bounding ray per �nger. Let us assume now the number of �ngers is constant. A

point of @B can be easily tested for being a valid placement for the free �nger in constant

time. When B is polyhedral, we have seen in Theorem 1.3.3 that �(@B) is a collection of

planar polygons in R6. Thus we can intersect C with �(@B) in time proportional to the

size of B. We obtain a set of polygons on the faces of B. If the free �nger is placed in

one of these polygons it guarantees, along with the remaining k� 1 �ngers, force/torque

closure.

1.7 Reactive Grasping

The physics{based models described so far assume that one can apply a variable force

at the �ngers that can be controlled. This implies sensors that can determine the force
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applied. More importantly, we assume complete knowledge of the object to be grasped.

These are rather strong requirements, and research has been done to relax them.

One possibility is to devise a mechanism with no sensors, which is guaranteed to

grasp the object without any knowledge of the object's shape. This has been done for

example by Goldberg and Furst [GF93]. We take an intermediate approach. We endow a

parallel jaw gripper or a three �nger hand with very simple sensors, and allow the sensors

to \guide" the hand toward a grasp. Our approach is non-disturbing, guarantees a grasp

is found, and requires no global knowledge.

1.8 Other issues

So far, we have only discussed the static problems (i.e. grasping) in dexterous manip-

ulation. There are still a large number of exciting and challenging questions related

to the dynamic aspects of dexterous manipulation. Examples of such questions include

�ne-manipulation of objects by continuous �nger-gaiting [HLMT90], dexterous adjust-

ment of grasp con�guration [LCS89, Rus92], prehension strategy and motion planning

[SHS86, SY87] and controlled motion of grasped object [LHS89, Sil93].

A variety of issues involving high-level task planning remain largely unexplored. A

thorough understanding of these questions are crucial to bring the science of dexterous

manipulation into practice.

34



Chapter 2

E�ciency of a Closure Grasp

The techniques of Mishra et al. [MSS87] yield a method to synthesize at least one closure

grasp of an object. However, in the absence of any measure of \goodness" for closures

grasps, the synthesized grasp may not be very robust, thus, not useful in practice. This

has motivated further research that attempts to quantify the goodness of closure grasps

and to synthesize provably good closure grasps [KMY92, Mis94].

One criterion for goodness is the \e�ciency" of a grasp, which is the amount of

external force and torque that can be resisted by applying at most a one unit of force at

each grasp point. Kirkpatrick, Mishra and Yap [KMY92] have shown such an e�ciency

measure and derive it from a stronger quantitative version of Steinitz's theorem. Ferrari

and Canny [FC92] propose a slightly di�erent measure based on Minkowski sums. They

also provide generalizations of both to include friction. There are some problems with this

generalization however, which we discuss in Section 2.1.4. More recently, Mishra [Mis94]

proposed a framework which uni�es both measures. We shall describe this framework

for the case of a positive grip, and extend it to the case of friction.

2.1 \Classical" Grasp Measures

In the description of closure grasps of Chapter 1, we have made an implicit unrealistic

assumption that the magnitudes of �nger forces are no way constrained. In particular, it

is quite likely that a force/torque closure grasp may resist any arbitrary external wrench;
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but it may only do so by applying an unrealistically large force at a �nger in response to

a fairly small external wrench in some direction.

In order to alleviate this problem, we may assume that certain additional constraint

is imposed on the magnitudes of the �nger forces|the \�nger force constraint" being

expressible as

� : R
n! f0; 1g

: (f1; f2; : : : ; fn) 7!
8<: 1; if the \constraint" holds;

0; otherwise:

Let G = fp1; : : : ;png be a grasp. The set of external wrenches that can be generated
by the grasp, subject to the �nger force constraint, �, is given byW�, called the \feasible

wrench set :"

W�(��(p1); : : : ;��(pn)) =
n
w =

nX
i=1

fi��(pi) : �(f1; f2; : : : ; fn) = 1
o
� R6:

We also call �W� the \resistable wrench set ," the set of external wrenches that can

be resisted by the grasp.

Note that if f��(p1), : : :, ��(pn)g forms a force/torque closure grasp and if

pos
n
(f1; f2; : : : ; fn) 2 Rn : �(f1; f2; : : : ; fn) = 1

o
= Rn

�0

then

0 2 intW�(��(p1); : : : ;��(pn)):

Some natural �nger force constraints that one may impose are of the following kinds:

� Convex Constraint:

�con : f1 � 0; : : : ; fn � 0 and
nX
i=1

fi � 1:

W�con is given by the convex hull of all the feasible wrenches:

W�con = convf[0; 1]��(pi) : 1 � i � ng:
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For � = 0, this corresponds to the constraints considered by Kirkpatrick, Mishra

and Yap [KMY92] and Ferrari and Canny [FC92]. This constraint allows us to

bound on the total force applied by all the �ngers.

� Max Constraint:

�max : f1 � 0; : : : ; fn � 0 and max
i2f1;:::;ng

fi � 1:

W�max is given by the Minkowski sum of the vectors ��(p1), : : :, ��(pn):

W�max =
nM
i=1

f[0; 1]��(pi) : 1 � i � ng :

This constraint has also been discussed in [FC92], albeit in a slightly di�erent

form. It corresponds to the case where each �nger can apply a bounded force,

independently of the others.

� Hybrid Constraint:

Let P1, P2, : : :, Pl be a partition of the indices f1, : : :, ng. Then

�hyb : f1 � 0; : : : ; fn � 0 and
X
i2Pj

fi � 1; 1 � j � l:

W�hyb is given by the Minkowski sum of the convex hulls of the feasible wrenches

corresponding to each partition Pj :

W�hyb =
lM

j=1

convf[0; 1]��(pi) : i 2 Pjg

= conv
lM

j=1

f[0; 1]��(pi) : i 2 Pjg

This constraint corresponds for example to the case where we have several robot

arms and wish to bound the total forces on each arm separately.

As in Chapter 1, for � > 0, we need to show that with the new constraints on the

�nger forces, we can still express an external wrench v 2 �W�(��(p1); : : : ;��(pn)) as
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a sum

v =
nX
i=1

fiwi

with �(f1; f2; : : : ; fn) = 1 and wi 2 ��(pi). That is, no two wi are taken from the

same ��(pj). This guarantees that we can select �nger force targets within the force

constraints.

For the case of �con, this follows from Theorem 1.4.3 applied to [0; 1]��(pi), i =

1; : : : ; n, which are convex sets by the second statement of Lemma 1.4.1. For the case

of �max, this follows from the de�nition of Minkowski sum. Finally for �hyb, again from

the de�nition of Minkowski sum, we can express the external wrench as a sum of vectors

wj from each partition j. For each such vector wj , we proceed as for �con: wj can

be expressed as a convex combination of vectors, with one vector from each ��(pi),

i 2 Pj and we are done. We conclude that grasp strength can still be measured using the

measures of this chapter, even in the presence of friction.

2.1.1 Grasp Quality Measures

For any set X � Rd, let the residual ball of X refer to the maximal ball B(X) centered at

the origin 0 such that B(X) is fully contained inside the convex hull of X . The residual

radius of X , denoted r(X) is the radius of this residual ball B(X).

Now de�ne

r = r�(��(p1); : : : ;��(pn)) = r(W�(��(p1); : : : ;��(pn)));

the radius of the largest ball centered at the origin, and inscribed in the feasible wrench

set. We shall refer to this r as the residual radius of W�.

Then there exists an external wrench of magnitude only in�nitesimally larger than r

that cannot be generated or resisted by the grasp under consideration, if it must respect

the �nger force constraint �. Let w be a point on the boundary of B(r) which touches

W�(��(p1); : : : ;��(pn)), then this external wrench simply corresponds to (1 + �)w for

any � > 0. This value of r may thus be used to de�ne a grasp measure. Note that we

have [Mis94]

W�con � W�hyb � W�max � nW�con
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and

r�con � r�hyb � r�max � n r�con:

Since the underlying geometric problem remains largely unchanged irrespective of

the �nger force constraint chosen, we shall mostly focus only on the simplest situation

represented by the constraint �con . We also note that, for example in the frictionless

case, the complexity of the Minkowski sum of the segments 0�(pi) is much larger than

the convex hull of those segments since every segment contributes more than one vertex

on the Minkowski sum. This Minkowski sum is known as a zonotope [Ede87]. In the six

dimensional case, the upper bound on its complexity is O(n5), while for the convex hull,

it is O(n3).

Another grasp metric was suggested by Je� Trinkle [Tri92] and is based on the null

vectors of the grip matrix. Li and Sastry [LS88] proposed yet a di�erent metric based on

alternate �nger constraints. Mishra [Mis94] shows that both metrics may be misleading

in some situations.

Alternatives

A variation on this theme may be obtained by considering some di�erent \geometric

object" inscribed in the feasible wrench set,W�. In Section 2.3 we replace the sphere by

a special class of ellipsoids to circumvent a problem with the measures described so far.

Another particularly interesting object to consider is �(@B). This object represents the

set of wrenches which a �nger can generate by applying a force on B. Let � 2 R�0 be a
maximal positive real number such that

���(@B) � �W�: (2.1)

Then it is clear that there is a point p 2 @B such that if one \pushes" at the object B

at the point p with a \nasty �nger" with a force of magnitude only in�nitesimally larger

than �, such a �nger will be able to break the grasp. Thus r�nasty = � de�nes a grasp

quality measure. In the frictionless case, this measure was de�ned by Meyer [Mey90],

and is also described in [Mis94]. It can be particularly useful in the context of machining.
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Here a \tool" is applied to the boundary and can apply potentially high forces on the

object. Other force-torques due to acceleration and gravity are assumed to be either

non-existent or negligible.

2.1.2 Some Existing Bounds

The question arises, how many �ngers do we need to achieve a certain e�ciency? In the

frictionless case, and for �con some results are known. In fact these results are purely

geometrical results, and we shall state them as such. We have already de�ned the residual

radius r. Now let

rd(m;X) = maxfr(Y ): Y � X and jY j � mg ;
rd(m) = min

n
rd(m;X):X � Rd and r(X) � 1

o
:

In the notation, we shall omit the subscript d, if the dimension is clear from the context.

(In our application, the interesting case is d = 6 or d = 3 for planar objects.) Thus the

original Steinitz's theorem can now be interpreted as saying that

rd(2d) > 0:

A quantitative version of Steinitz's theorem provides more precise bounds for the number

rd(m), when m � 2d.

In the case of the �nger force constraint given by �con, the grasp measure for a closure

grasp with m �ngers can be expressed in terms of the residual radius values given by a

quantitative Steinitz's theorem. It can be seen to be the value, r6(m; conv �(@B)). To

see this, note that if we choose m points in W�con = conv �(@B) with residual radius r

then any external wrench vector v of magnitude at most r can be written as a convex

combination of the m chosen points. So if v is any external wrench that is applied to the

body B, and v lies in the residual ball of radius r, we can resist this external wrench

by applying suitable forces (of magnitude at most 1) at the grasp points such that these

forces sum to �v; hence, we maintain the body in equilibrium. Thus, we see that the

quantity r6(m) gives a measure for the quality of a closure grasp.
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The special case where m = 2d had been studied by B�ar�any, Katchalski and Pach

[BKP82]; they showed that

rd(2d) >
c

(2ed)bd=2cd2
:

Kirkpatrick, Mishra and Yap [KMY92] have provided the following general bounds: For

any set X � Rd whose convex hull contains the unit ball Bd centered at the origin, we

can �nd a set Y � X of at most m points with residual radius r(Y ) of at least

1� 3d

 
2d2

m

! 2
d�1

;

where m is assumed to be su�ciently large.

Furthermore, let X � Rd be the set of all points on the surface of the d-dimensional

unit ball centered at the origin. Then, every subset Y � X of at most m points has a

residual radius r(Y ), bounded from above by

1� 1

17

 
2d2

m

! 2
d�1

:

In summary, for su�ciently large m, i.e. m � 13dd(d+3)=2,

1� 3d

 
2d2

m

! 2
d�1

� rd(m) � 1� 1

17

 
2d2

m

! 2
d�1

:

This indicates an interesting trade-o� between e�ciency of a closure grasp and the num-

ber of �ngers. These results seem to indicate that a twelve-�nger positive grip, while su�-

cient to provide a closure grasp, may not be adequate to achieve a desirable e�ciency|at

least when friction is not considered.

Meyer's Result

Another negative result has been shown by Meyer [Mey90]. He considers a seven �nger

hand with frictionless contacts and an upper bound of 1 on magnitude of the forces

it can apply. He shows that there are objects, which depend on an � > 0, for which

rnasty � 5
p
2�. The objects in question are rectangular parallelipipeds with one side of

unit length and two smaller sides of length �. In e�ect, Meyer's e�ciency measure takes

into account the geometry of the object.
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Figure 2.1: A four �nger grasp and its strength as a function of the friction angle.

2.1.3 The Case of Friction

Allowing friction at the �nger contacts causes the set of applicable forces to increase.

Thus it is not surprising that grasp strength, as measured by the measures described

earlier also increases. In fact some grasps which are not closure without friction, become

closure grasps for a su�ciently large coe�cient of friction. This is the case for example of

two �ngers placed at antipodal points on a planar object. Figure 2.1 shows a four �nger

closure grasp in the plane, call it G4, and a graph showing grasp strength as measured

by rcon as a function of the friction angle, the maximum angle a force can deviate from

the object normal at the contact point, while maintaining contact. Corresponding to this

grasp G4, we also show in Figure 2.2 two views of the set conv �(G4). The `top' view is

from a point on the positive torque axis.

Approximating Friction cones

The main di�culty in computing these measures, not to mention performing grasp op-

timization based on them, is that conv ��(p) has non-linear boundary for � > 0. It is

customary in the robotics literature to approximate the boundary of the friction cone by
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(a) Top view (b) Side view

Figure 2.2: The grasp of Figure 2.1 for friction coe�cient 0.2.

a polyhedral cone [PSS+95]. This is su�cient for detecting the presence or absence of

closure. For the purpose of computing grasp strength, this is not su�cient except for

small coe�cient of friction, and causes the grasp strength to be underestimated. This is

discussed in Section 2.1.4.

We have already de�ned �� in equation (1.3) to be the image by � of all unit forces a

�nger can apply at a given point. This set lies on S2�R3 or on S1�R for planar objects.

We can approximate this set as follows. We start by approximating the friction cone C�
as is usually done. Say we approximate a cone of angle 2 arctan(�) corresponding to a

coe�cient of friction of �, by N1 regularly spaced rays. This corresponds to approxi-

mating a unit circle by N1 points, and by elementary geometry, we are guaranteed that

this approximation contains a circle of radius cos
�

�
N1

�
. Thus the approximated friction

cone is a polyhedral cone, call it C�;N1 and contains a friction cone of friction coe�cient

cos
�

�
N1

�
�. For example, if we wish to loose no more than a factor of 10�2 (10�3, 10�4

resp.), we need 23 (71, 223 resp.) rays.

We now must approximate the part of the truncated friction cone F� that lies on
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S2. This is done using the techniques of Kirkpatrick et al. [KMY92]. We obtain a N2-

vertex polyhedron SN2 approximating a unit sphere. This polyhedron contains a smaller

concentric sphere of radius r = 1� 162=N2 for su�ciently large N2.

This polyhedron is then intersected with the approximation of the unbounded friction

cone described in the previous paragraph. The complexity of the resulting polyhedron

follows from a standard amortization argument: a face of C�;N1 intersects a face of SN2

in only one segment, adding at most 1 vertex to that face. Thus the total complexity of

the intersection is O(N1 +N2).

This procedure produces an approximation of F by a set of unit vectors which is

then mapped to wrench space by �. The origin is also included. This produces a convex

polytope of at most O((N1 +N2)3) vertices, as in Section 1.3. For the planar case, all

that is needed is to approximate a planar arc on S1 � R. The plane of this arc goes

through the origin. Let � be the half-angle of the friction cone. With N equally spaced

points, we get an approximation which looses a factor in the possible generated force of

no more than cos �
2N .

Generating Force Targets

Consider an external wrench v being applied to B which is being grasped by m �ngers

with frictional contacts. Mishra, Schwartz and Sharir [MSS87] give a linear time proce-

dure that given a set W of vectors wi = �(pi) in R6, i = 1; : : : ; m, �nds a subset of 6

of them such that v can be expressed as a positive combination of those vectors. This

can be used for �nding force targets for frictionless �ngers. The coe�cients returned by

their procedure however do not necessarily satisfy the �nger force constraints.

We now describe a linear time procedure for �nding force targets in the case of �con

constraint. The problem is:

Given v 2 R6, �nd �i, 0 � �i � 1, i = 1; : : : ; m, such that v =
P

i �iwi andP
i �i = 1.

One possible approach is as follows. It actually minimizes the coe�cients �i when

conv fwi : i = 1; : : : ; mg is non-degenerate (its facets have to more than 6 vertices). Con-
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sider the ray
�!
0v, and let F be the face of conv fwi; i = 1; : : : ; mg which it intersects. Let

vF be the points of intersection. Then the vertices of F are points from W . If F has

6 or fewer vertices, v lies in the simplex conv (0; F ) � a�(0; F ) and the force targets,

i.e. the coe�cients �i, will simply be the barycentric coordinates of v in this simplex.

Finding vF can be done using linear programming [MSS87, Sch86], and takes linear

time [Meg84, Cla86]. Computing barycentric coordinates can be done by transforming

the simplex into the canonical simplex with one vertex at the origin, and the others at

vertices of the unit cube in Rk, where k is the dimension of a�(0; F ). The origin maps

to the origin. This can be done by a linear transformation, see for example [MS71,

p.16], and requires constant time. This transformation is non-singular and unique if both

simplices are non-degenerate. The coordinates of the transformed version of v are the

required coe�cients.

Otherwise, F has more than 6 vertices, and we need to �nd a subset of them and

again use barycentric coordinates. Now vF lies in F , of dimension 5, which is one less

than the dimension of the original space. Let us pick an arbitrary vertex of F , say u,

and consider the ray ��!uvF . It intersects a facet H of dimension at most 4 at vH . We

can now apply the above procedure in (at most) one dimension less, where u plays the

role of the origin, and vF , the role of v in the description in the preceding paragraph.

We obtain at most 5 coe�cients which must be multiplied by �1 if vF = �1vH + �2u.

The entire procedure thus recursively �nds at most 6 vertices of �(pi), with appropriate

coe�cients, force targets in grasping terminology, in O(m) time.

Note that only 6 �ngers are in use at any given time. We also note that, just as

the procedure of Mishra et al., ours can also be generalized to arbitrary but constant

dimension:

Theorem 2.1.1. Given a set of points p1; : : : ; pm 2 Rd, with 0 2 conv fp1; : : : ; pmg,
and a point v 2 conv fp1; : : : ; pmg. Then one can �nd �1; : : : ; �m, with 0 � �i � 1, andPm

i=1 �i = 1 at most d of which are non-zero, such that v =
Pm

i=1 �ipi.

In the frictional case, one can use the above algorithm applied to an approximation

of the friction cones as in Section 2.1.3, then \merge" any two points selected from the
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friction cones as per Theorem 1.4.3. This might be su�cient in practice.

2.1.4 An Alternative Approximation

A di�erent method of approximating the image of a friction cone under the wrench map

has been used in the literature for the purpose of computing grasp strength. Consider

planar objects. It is possible to simply take the convex hull of image under � of the edges

bounding the friction cone, as done in [FC92]. However this may cause a signi�cant

underestimate of the quality of a grasp.

Let us consider for example the following somewhat contrived situation. A square is

being grasped with four �ngers placed at a; b; c; d, as in Figure 2.1. Fingers at b and d

are frictionless, while �nger at a = (�2;�1) and c = (2; 1) have a coe�cient of friction

�. Let � = arctan� be the corresponding half-angle of the friction cone. The point a

maps for example to two points a+ and a� in the wrench space. We have

a� = [cos�;� sin�;�2 sin�� cos�]:

Then as � is increased, The projections onto the xy-plane of a+ and a� move close to the

projection of �(d) and �(b) and the radius of the largest ball centered at the origin inside

conv fa�; b�;�(c);�(d)g decreases for su�ciently large angle �. This is illustrated by the

dotted curved in Figure 2.1(b). Thus for su�ciently large friction coe�cient, increasing

friction actually decreases grasp quality according to this simpli�ed measure. A di�erent

example is as follows. Again, a square is being grasped but with two �ngers placed at

a = (�1; 0); b= (1; 0), as in Figure 2.3(a). Both �ngers bene�t from coe�cient of friction

of �. Again, the grasp quality decreases for very large friction coe�cient, as is shown by

the dotted curve in Figure 2.3(b). The continuous curve represents r�con . However the

approximation is reasonably accurate for small �, at least in the planar case.

2.1.5 Computation of the Measures

In the frictionless case, to compute rcon for a given graspG, we simply compute conv �(G)

and �nd the facet that is closest to the origin. If m is the number of �ngers, this takes

time proportional to the size of conv �(G), which is O(m3) time for spacial objects, O(m)
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Figure 2.3: A pessimistic approximation of friction cones (dotted curve.)

for planar objects as described in Section 1.3. For the frictionless case, one can use the

approximation outlined above and replace m by the number of points generated by this

approximation. See Chapter 4 for details on the computation of the rnasty measure.

We have implemented the residual radius measuring algorithms by generating an

approximation of ��(G), using the qhull library [BDH93] of the Geometry Center,

University of Minnesota. It is used to compute the convex hull of this approximation,

and �nally traversing the facets of the convex hull and �nding the one closest to the

origin. This also allows us to display the situation in wrench space, for planar objects.

The program geomview also from the Geometry Center, was used for this purpose, and

to generate Figure 2.2.

2.2 Measures for Assembly Fixturing

We now introduce new grasp e�ciency measures for the case of several objects. Informally

the goal is again to keep the boundary of conv ��(G) bounded away from 0 for all objects.

In fact the grasp e�ciency measures of Section 2.1 generalize quite naturally to this case,

but we work in dimension 6k (or 3k for planar objects) instead of d = 6 (or 3 in the planar

case). The de�nition of residual radius still applies, we use r6k (r3k). The corresponding
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optimization problems of �nding optimal grasps with respect to this measure in any

dimension, discussed in Chapter 4, are MaxScale-B and MinCover-B.

For the nasty �nger measure, for the inscribed set, we simply take the direct sum of all

the conv �(@Bi) for each polyhedral object. This is a special case of taking Minkowski

sums of polytopes, and the result is still convex [Gr�u67]. Alternately, if �xtures can

be placed at only a �nite number of points on Bi, one can replace Bi by this set of

points. The corresponding optimization problems of Chapter 4, are MaxScale-P and

MinCover-P.

Finally we observe that a ball in high dimension is rather \small", and we might

prefer to consider the direct sum of (5 dimensional) balls of identical radius r (which we

call B(r)), one for each object, producing Bk(r). This measure applied to a �xture set G

is then the largest scaling factor � such that �Bk(1) � conv ��(G) and the corresponding

optimization problems are MaxScale-Bk and MinCover-Bk. The application at hand

will determine which measure will be used.

We describe the computation of these measures in the general dimensional case in

Chapter 4.

2.3 A Grasp Measure Invariant Under Rigid Mo-
tions.

The grasp e�ciency measure described in the previous sections is given by the radius of

the largest ball centered at the origin and inscribed in the convex hull of the wrenches

�(pi). It has the advantage that the radius gives a lower bound on how large external

wrenches the given grasp can resist. However the facets of this convex hull move signif-

icantly as we change the coordinate system of the object, hence the measure changes its

value. In fact the ball measure can be made arbitrarily small by translating the origin

su�ciently far. This will be shown in Section 2.3.7.

Here, we study the transformations of wrench space as the coordinate system in the

object space is changed, and derive a measure that is invariant under those changes.
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2.3.1 Wrench Space Transformations

Let wrench w0 = [f ;p0� f ] 2 R6. A translation of the origin in object space by a vector

�c 2 R3 transformsw0 into wc = [f ;pc� f ] = [f ; (p0� c)� f ], where subscripts indicate
origin of the reference coordinate system.

De�ne bc to be the antisymmetric matrix such that bcx = c� x for x 2 R3. We have

bc =
0BBB@

0 �cz cy

cz 0 �cx
�cy cx 0

1CCCA :

Furthermore, let

T (c) =

0@ I3 0bc I3

1A
Then wc = T (�c)w0.

T (c) is the matrix of a \shear" type linear transformation, with the properties that

T (c)�1 = T (�c) and T (c1)T (c2) = T (c1 + c2). Furthermore detT (c) = 1; it preserves

volume. For planar objects, w0 = [f ; (p0� f)3] 2 R3 and we get

wc =

0BBB@
1 0 0

0 1 0

cy �cx 1

1CCCAw0:

Let G be the set of grip points on the surface of the object to be grasped. Consider

the grasp e�ciency measure rcon(�) de�ned by the radius of the largest possible ball

centered at the the origin in conv �(G). Here it will be denoted by r(0)(�) to emphasize

the coordinate system. We now allow the origin in object space to change, and we wish

to �nd the largest of such balls of radius r(c)(G) among all possible translations of the

object coordinate system by c. These translations modify the wrench space by T (c). The

radius r�(G) = supc r(c)(G) of this optimal ball will be independent of such translations,

by de�nition.

Instead of transforming the facets of the polytope conv �(G) (which remain linear),

we can transform the sphere: we get an ellipsoid of a certain class.
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Let w0 2 R6 satisfy the equation of the ball of radius r centered at the origin:

wT
0w0 = r2

then w = T (�c)w0 satis�es

wTT (c)TT (c)w = r2:

Let

Qc =

0@ I3 + bcT bc bcTbc I3

1A = T (c)TT (c);

then

wTQcw = r2;

which is the equation of an ellipsoid. Note that Qc is symmetric and positive de�nite,

and has determinant 1. Let E(c; r) be the above ellipsoid in R6. Call r the radius of the

ellipsoid E(c; r), and let Qc be the matrix associated with E(c; r). Let �d be the volume

of the unit sphere in Rd, �d = �d=2=�(d=2+ 1) [Cox73]. (Here �(�) is the Euler gamma

function.) Then r6 is the volume of the ellipsoid, divided by �6. E(c; r) is a sphere of

radius r if and only if c = 0. The eigenvalues of Qc are

1; 1 +
cTc

2
�
s�

cT c

2

�2

+ cTc;

each with multiplicity two, and are all identical exactly when c = 0. Since, for an

eigenvalue � and the corresponding eigenvector x, which is one of the principal axes of

the ellipsoid, xTQx = �xTx, the pointw = rxp
xTQx

belongs to the ellipsoid boundary, and

kwk = rp
�
. Thus the largest eigenvalue corresponds to the shortest principal direction,

and is the radius of the largest sphere centered at the origin, inscribed in the ellipsoid.

Figure 2.4 shows this ellipsoid in the planar case for c = (0; 1).

We now introduce rotations of the object coordinate system. A fully general unit

determinant orthogonal transformation of the object coordinate system also gives a linear

transformation on the wrench space, which is de�ned by the following matrix [MLS94]:

U(c) =

0@ R 0bcR R

1A
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Figure 2.4: E((0; 1); 1) with the image of the unit circle in the xy-plane highlighted.

where R�1 is the rotation component of the transformation with RT = R�1. The matrix

associated with the ellipsoid becomes:

U(c)TU(c) =

0@ I3 +RT bcTbcR RTbcTR
RT bcR I3

1A =

0@ I3 + bdT bd bdTbd I3

1A = Qd

where d = RTbcR = dRT c. Hence adding rotations does not change the class of ellipsoids.

Let r�(G) be the radius of the largest ellipsoid of the above type inside conv �(G):

r�(G) = sup
c

r(c)(G):

We will de�ne the new grasp quality measure invariant under rigid motions of the coor-

dinate system by r�(G). It is the radius of the largest ellipsoid of the above type inside

the set of feasible wrenches. It is an absolute measure.

This de�nition however has the consequence that the `best' object space origin for

measuring a grasp is dependent on the grasp itself.
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2.3.2 Scaling

Scaling of the object coordinate system can create arbitrarily small or large torques. The

wrench space transformation matrix for a scaling by s is0@ I3 0

0 sI3

1A :

When followed by a general rigid transformation, we get

S(c) =

0@ R 0bc sR

1A
and the ellipsoid E(c; r; s) = fx 2 R6 : xTQc;sx = r2g has the matrix:0@ I3 + bcTbc sbcT

sbc s2I3

1A = Qc;s:

with determinant s6. In R3, the corresponding determinant is s2. The volume of this

ellipsoid in R6 is [GLS88, p.67]

�6r
6=
q
detQc;s = �6r

6=s3:

Unfortunately the volume r�(G) is not bounded below, but can be made arbitrarily

small because of the scaling. We can �x that by setting

r�(S) = sup
c;s

rc;s(S)s
k :

where k = 3 for spacial objects, 1 for planar objects. It not clear, however, how to

balance the optimization with respect to both c and s, and we shall not consider scaling

further.

2.3.3 Properties of E(c; r).

We concentrate here on rigid motions of the object coordinate system. We will need a

useful lemma, which is a slight extension of a result from [GLS88, p.68].
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Lemma 2.3.1. Let a 2 Rd n f0g and x 2 Rd. The linear objective function aTx over

the ellipsoid xTQx = r2 is maximized for x = rp
aTQ�1a

Q�1a. The maximal value of

aTx = r
p
aTQ�1a.

Also an easy calculation shows that rww
TQw

���
w0

= 2Qw0; this is a vector normal

to the ellipsoid at w0, provided w
T
0Qw0 = r2.

Since the force space is not changed by rigid motions, the projection of E(c; r) onto

the space of forces is a sphere in this space. Indeed, consider the points w 2 R6 on the

unit radius ellipsoid which maximize aTw, where a is a unit vector of the form [uT ; 0]T

in the force space, hence u is also unit. Furthermore it is easy to verify that

Q�1
c

=

0@ I3 bcbcT I3 + bcTbc
1A : (2.2)

It is convenient to note here that Q�1
c = T (�c)T (�c)T . Then by Lemma 2.3.1, the point

on the ellipsoid extremal in direction a is

1p
aTQ�1a

Q�1a =
Q�1[uT0]Tp

uTu
=

0@ ubcTu
1A

and the projection of this vector onto the �rst three coordinates forming the force space

is indeed on a unit sphere in that space.

2.3.4 Largest Ellipsoid Inside a Polytope.

We start by considering the constraint that E lies in the half-space aTx � b, where b > 0

and a 6= 0. Let Qc be the matrix of E(c; r). The extremal point on E(c; r) in the

direction of the normal a de�ning the bounding hyperplane must satisfy aTx � b, hence

by Lemma 2.3.1

r
q
aTQ�1

c a � b; or r � bq
aTQ�1

c a
:

De�ne for a hyperplane aTx � b,

ra;b(c) =
bq

aTQ�1
c a

: (2.3)
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Figure 2.5: Facet constraints on r.

One such constraint is illustrated in Figure 2.5(a). From the facets of conv �(G) we

obtain a set of constraints, in the variables cx; cy; cz, which r must satisfy. Thus to

compute r�, we need to �nd the largest r subject to these these constraints. Our measure

will be de�ned by r� = supcmina;b ra;b(c), where a; b range over all hyperplanes bounding

conv �(G) (or also conv �(@B) for polyhedral B). The set of constraints for the grasp

of Figure 2.1(a) is shown in Figure 2.5(b). It is not surprising that the \best" center is

at the center of symmetry of this example.

We show below that this is an optimization problem with linear objective function

r and quadratic constraints, with variables r; cx; cy; cz, solvable in expected linear time

by the Generalized Linear Programming techniques of [SW92]. We also show that this

problem can be formulated as a Semide�nite Program.

2.3.5 Convexity

So far we have not shown that the measure is well de�ned. This will be done in this

section and the next section. Although the ellipsoid of the preceding type of maximal

volume is not unique, at least in the 6 dimensional case, its volume is unique. In fact the
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Figure 2.6: Convex versions of the constraints of Figure 2.5.

values of c = (cx; cy; cz) corresponding to those ellipsoids forms a line segment in the

parameter space and we can always select the solution which is closest to the origin. We

will show that the set of constraints imposed by the halfplanes of the enclosing polytope is

convex. This is not true if we consider r as the function to be optimized. But minimizing

r amounts to maximizing 1=r2 since r > 0. Let

r0a;b(c) = 1=r2a;b(c) = aTQ�1
c a=b2: (2.4)

The new constraints will then be of the form r � aTQ�1
c a=b2, and these turn out to be

convex. Figure 2.6 shows the convex constraints corresponding to the original constraints

of Figure 2.5. In the following we consider only one facet and we will write r(c) (resp.

r0(c)) for ra;b(c) (resp. r0a;b(c)).

We now show that the constraints (2.4) are convex.

Lemma 2.3.2. For any a 2 R6, 0 � � � 1, c;d 2 R3,

aTQ�1
�c+(1��)da � �aTQ�1

c
a+ (1� �)aTQ�1

d
a:
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Proof. Let a = [uTvT ]T , u;v 2 R3. Then using (2.2), and the fact that for any 3 by 3

matrix M , vTMu = uTMTv, we have

�aTQ�1
c a+ (1� �)aTQ�1

d
a� aTQ�1

�c+(1��)da

= �
h
uTu+ vTv + vTbcT bcv + 2uTbcvi

+(1� �)
h
uTu+ vTv + vT bdT bdv + 2uT bdvi� uTu� vTv

�vT (�c+ (1� �)d)T(�c+ (1� �)d)v� 2uT (�c+ (1� �)d)v

= (�� �2)vTbcT bcv + ((1� �)� (1� �)2)vT bdT bdv �
2�(1� �)vTbcT bdv

� 0:

The inequality follows from the fact that 2vTbcT bdv � vT bcTbcv + vT bdT bdv:
By replacing a by a=b in the lemma, we obtain the desired result:

Corollary 2.3.3.

r0(�c+ (1� �)d) � �r0(c) + (1� �)r0(d)

and hence the feasible set determined by the set of constraints on c; r is convex.

2.3.6 Uniqueness

Even though the largest ellipsoid E(c; r) is not unique, its volume is. We can show

this by computing the gradient of the function r0
a;b(c) as a function of cx; cy; cz . Let

D(x) = rca
TQ�1

c a
���
x
. Then fx 2 R3 : D(x) = 0g is the set of points c for which

the function r0 has local minima since r0 is convex. Let a = [uT ;vT ]T with v 6= 0 and

u = [u1; u2; u3];v = [v1; v2; v3] 2 R3. Then as before

aTQ�1
c a = uTu+ vTv + vT bcTbcv + 2uTbcv: (2.5)
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Clearly, if v = 0 the above expression and hence the optimal volume is constant over all

c. Assume therefore v 6= 0. Then a simple calculation shows that

D(x) =

0BBB@
v22 + v23 �v1v2 �v1v3
�v1v2 v21 + v23 �v2v3
�v1v3 �v2v3 v21 + v22

1CCCAx �

0BBB@
v3u2 � v2u3

�v3u1 + v1u3

v2u1 � v1u2

1CCCA :

The above matrix has determinant 0, rank 2, and a basis for its null space is v. The

latter is clear from the fact that (c+ tv)� v = c� v for all t 2 R.
The rank can be shown by an elementary calculation. Consider the �rst two rows and

assume that the �rst row is k times the second row, for some k 6= 0, and that v3 6= 0. (If

v3 = 0, the last two rows are clearly linearly independent.) Then from the third column,

v1 = kv2. From the �rst column, we get v22 + v23 = �k2v22. Substituting in the equation

obtained from the second column we get

�kv22 = k3(v22 + v23) = �k5v22;

which implies v22 = 0. But this in turn implies v1 = 0 and v3 = 0, a contradiction to our

hypothesis. The rank of the matrix must therefore be 2.

Hence all the solutions of the system D(x) = 0 di�er by a multiple of v and by the

preceding observation aTQ�1
c a remains constant, and so does ra;b.

2.3.7 Comparison with the Residual Radius Measure

We now have the tools to compare the ellipsoid based measure to the ball based measure.

We show here that if the origin is translated su�ciently far, one can make the ball measure

as small as desired.

Let t > 0 be a real parameter and consider a facet fx : ax � bg. Let a = [uTvT ]T

with u;v 2 R3. To show that ra;b can be made arbitrarily small, by equation (2.3), it is

su�cient to show that aTQ�1
c
a can be made arbitrarily large. We exhibit a direction of

translation which accomplishes this for most facets. Let c = tv � u, and let x = c � v.

Equation (2.5) becomes

aTQ�1
c
a = const + xTx+ 2uTx
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in which the second term is a positive multiple of t2 and

x = t(v � u)� v

= t[(v � v)u� (u � v)v]
) uTx = t[(vTv)(uTu)� (uTv)(uTv)]

= t(v � u)(v� u)

� 0:

And it is easily seem that if u = 0 or v � u 6= 0, limt!1 aTQ�1
c
a ! 1. Otherwise,

if v = 0, the facet is \vertical" and its distance to the wrench space origin una�ected

by changes of the object space origin. However in conv �(G) there must be non-vertical

facets, so we have shown that the ball measure can be made as small as desired.

2.3.8 Computation of the Measure

Using Generalized Linear Programming

The convexity of the constraints implies that we can use the probabilistic algorithm

in [SW92] to compute r� in time linear in the number of facets on conv �(G), given

conv �(G). This number is at most O(jGj3) for objects in 3-space or O(jGj) for planar
objects, as seen previously. The computation of the convex hulls can be done in optimal

time [Cha93], hence the measure can be computed in O(jGj3) expected time for objects

in 3-space or O(jGj log jGj) expected time for planar objects.

Using Semide�nite Programming

Let fw : aTw � bg be a facet of conv �(G) for some point set G � @B, and let

a=b = [uTvT ]T , for some u;v 2 R3, and assume v 6= 0. Now aTQ�1
c a=b2 = uTu +

vTv + vT bcTbcv + 2uTbcv, and let x = bcv = c � v. Then the quadratic constraint

aTQ�1
c a=b2 � r0 � 0 can be written as

xTx + 2uTx � r0 + uTu+ vTv � 0
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which can be transformed into0@ I3 x

xT 2uTx � r0 + uTu+ vTv

1A � 0: (2.6)

For a matrix M , M � 0 means that M is positive semide�nite. This is a standard

transformation in Semide�nite Programming, and follows directly from formulas given

in [VB94].

The above equations, one for each facet of conv �(G) in turn can be written as the

Semide�nite Program:

minimize �r0
subject to equation (2.6) for every facet of conv �(G) :

The above program has dimension 4 and 3N , if N is a the number of constraints. For a

survey of Semide�nite Programming see [VB94]. Since for an n�n matrix, there exists an

algorithm which takesO(
p
nj log �j) time to �nd a solution within � of the optimal [Ali95],

the above optimization takes O(jGj3j log �j) time.
There is a minor problem however: given a solution (x; r0) of the Semide�nite Pro-

gram, we cannot recover c from the equation bcv = x. But from this equation, it follows

that c � x = 0 and

x � x = (c� v) � x = c � (v � x);

and this is a system of two equations in 3 variables. (Note that this problem does not

arise in 3 dimensions for planar objects.) These equations are independent when v 6= 0,

so we have one degree of freedom for c. This corresponds to what has been shown in

Section 2.3.6. For these possible c's, the volume of the ellipsoid remains constant. If

v = 0, the volume is the same for all c, and no optimization is necessary. Thus any

solution to this system provides the optimal value for r0 and for r�.

We have seen that it is possible to compute this metric using existing algorithms,

quite e�ciently. Its practical impact however remains to be studied, as well as extensions

to the case of multiple objects. Also, we have discovered this measure quite recently, and

have not developed algorithms to optimize grasps with respect to it. This would also be

an interesting avenue of research.
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Chapter 3

Computing E�cient Grasps

3.1 Optimization

Ideally, one would like to produce grips that use both small forces and require low friction

coe�cients. These grips should of course be stable and withstand outside forces that

depend on the manipulation task. Some of these con
icting goals have been considered,

mostly in two dimensions.

In the case of three �ngered grasps of planar polygonal objects, Markensko� and

Papadimitriou [MP89] �nd a grasp that minimizes the forces required to balance a force

along the third dimension applied to the center of gravity. This is done using frictional

forces along the third dimension. Frictional forces in the plane are not considered. The

forces are applied perpendicularly to the sides of the polygon and their lines of action

meet at a point. The function minimized is a non-decreasing function of the forces, and

in the presence of re
ex vertices, the angles between their lines of action are minimized.

This is done numerically.

Their procedure must however be repeated O(n) times, where n is the number of

sides of the polygon, to �nd the overall global optimum.

They also de�ne and optimize the following simpli�ed version of form closure. A set

of �ngers achieves form semiclosure of a polygon if any wrench through the center of

gravity can be balanced by positive forces normal to the perimeter. To �nd such a set

of �ngers that minimizes the forces required to balance a unit wrench, they formulate an

60



optimization problem which is then solved using linear programming and binary search.

This optimization procedure must again be applied for all quadruples of sides.

Ji and Roth [JR88] consider three �ngered grasps in three dimensions, but have a

reduction of the problem to two dimensions for most cases. The plane considered is the

one containing the three �nger contact points. They assume that the �ngers are given,

but their angle can vary, subject to the restrictions imposed by the friction cones. These

angles are chosen so that the dependence of the internal forces on friction is minimized.

More recently Ferrari and Canny [FC92] proposed algorithms for computing optimal

grasps for a two and three jaw gripper. The optimality criteria are the variations of rcon

and rmax described in Section 2.1.4. For a two jaw gripper and an n-sided polygonal

object, an optimal grasp is found in O(n) time. No time bound is given for the three

jaw case. The three jaws of the three jaw gripper are at a �xed angle to each other,

and will contact the object at vertices. In contrast, the algorithm given in Section 3.2

places �ngers at interior points of edges. More recently Mirtich and Canny [BM94] study

the case of rounded �nger tips in two and three dimensions. This again allows them to

place �ngers at vertices, which simpli�es the algorithms. They provide O(n logn) time

algorithm for �nding an optimal grasp for the polygonal case, O(n3) in three dimensions.

It is based on �nding a maximal circumscribing prism. The points of contact of this

prism are taken to be the �nger positions.

Kirkpatrick, Mishra and Yap [KMY92] studied the situation for planar and three-

dimensional objects, in fact their algorithms apply in any dimension. Their results trans-

late to the following: for a very large number of �ngers m, and a �nite set B0 � @B

of allowable �nger placements on @B, they can �nd a grasp G with quality rcon(G) �
(1 � 18

�
72
m

�2=5
)rconB0. Of course rconB0 is the best one can do. For planar objects,

the quality is rcon(G) � (1 � 918
m )rconB

0. See Chapter 4 for their result for general di-

mension. In addition, in Chapter 4 we describe a general technique for �nding close to

optimal grasps under various measures of optimality.

In the remainder of this Chapter, we describe an O(n2 logn) algorithm for �nding

three �nger optimal grasps in the plane for a polygonal object with n vertices.
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3.2 Optimal 3 �nger Grasping in the Plane

While the question of analyzing and synthesizing a closure grasp or a �xture is fairly

well-studied, the question of devising e�cient algorithm for synthesizing grasps of good

quality has received relatively less attention. A systematic exploration in this direction

was initiated in the work of Kirkpatrick, Mishra and Yap [KMY92], some of which was

outlined earlier.

In order to better understand the underlying structure as well as to provide practical

solutions in the simpler settings (as more common in manufacturing), we have directed

our attention to the cases where we study lower-dimensional objects (2-D or 21
2-D) and of

simpler geometry (polygonal objects) or simpler robot hands. In this chapter, we explore

this problem for two-dimensional polygonal objects with hands of relatively few �ngers1.

and solve various algorithmic questions regarding the computation of an optimal three

�nger planar grasp. We present a novel O(n2 logn)-time algorithm to compute such an

optimal grasp for an arbitrary simple n-gon. We also discuss several variations on the

problem and some open questions in the area that remain unsolved.

3.2.1 Preliminary

We wish to obtain the best three-�nger grasp of a planar polygonal object assuming

non-frictional contacts. Note that in this case, since it is not possible to guarantee that

the resulting grasp will have the force closure properties, we are willing to sacri�ce the

condition requiring torque-closure. In other words, we wish only to achieve a three-�nger

grasp such that the smallest external force such a grasp can resist is as large as possible.

More formally given a simple n-gon P , we wish to choose three distinct points p1, p2

and p3 on the interior of the edge segments of P such that the following properties hold:

1. The unit inner normals n(p1), n(p2) and n(p3) are concurrent.

2. The unit inner normals n(p1), n(p2) and n(p3) positively spans the two-dimensional

1The material in this section has previously appeared in [MT94].
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force space, i.e.,

(8w 2 R2) (9fi � 0; 1 � i � 3) w =
3X
i=1

fin(pi):

3. The unit normals are \well-balanced" in the sense that

min
n
jwj : w 2 R2;

(9fi � 0; 1 � i � 3) �(f1; f2; f3) = 1

w =
3X

i=1

fin(pi)
o
;

is as large as possible (among all choices of p1, p2 and p3). Here, �(f1; f2; f3)

denotes a �nger force constraint condition on the magnitude of the forces applied

at the points of contact.

Thus the �rst property denotes the trivial torque equilibrium condition; the second

property denotes the force closure condition and the third property measures the goodness

of the grasp. In English, the third property says: under the condition �con, we wish to

maximize the radius of a disk, centered at origin and contained in the triangle formed

by (convex hull of) the points (on the unit circle) corresponding to the vectors n(p1),

n(p2) and n(p3). Similarly, under the condition �max, we wish to maximize the radius

of a disk, centered at origin and contained in the Minkowski sum of the points (on the

unit circle) corresponding to the vectors n(p1), n(p2) and n(p3)|a convex hexagon.

Let the corresponding radii be denoted as �con(p1, p2, p3) and �max(p1, p2, p3),

respectively. Note that, if the angle �i's (1 � i � 3) denote the angles between the inner

normals then �max = max(�1, �2, �3) � 2�=3 completely determines the radii

�con = cos(�max=2); and

�max = sin�max:

Thus both these metrics are monotonically decreasing functions of 2�=3 � �max � �,

and it su�ces to minimize �max. However, for the sake of the ease of exposition, we will
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Figure 3.1: Grasp metrics associated with �con and �max.

use � = �con, and refer to it as the \residual radius" of n(p1), n(p2) and n(p3). The

optimal value of residual radius is denoted by ��.

Note that given an edge e = ab of the polygon P , for every point p 2 ab, n(p) de�nes

a unique point q(e) on the unit circle in R2. Thus we may simply refer to this point on

the unit circle by q(e). Henceforth, let the edges of the n-gon be given as E = fe1, e2,
: : :, eng and the corresponding points on the unit circle be Q = fq1, q2, : : :, qng, where
qi = q(ei) (1 � i � n).

3.3 A Cubic Time Algorithm

We may note at this point that there is a trivial O(n3) time algorithm to �nd an optimal

grasp of a simple n-gon, P , by exhaustively enumerating all edge triples of P and by

examining each triple successively. In order for an edge triple (ei, ej , ek) to produce three

necessary optimal contact points, it must be the case that (qi, qj , qk) form a triangle with

a positive residual radius of ��|a condition that can be checked easily in O(1) time.

However, this is not su�cient|since we must check that there are three points pi 2 ei,

pj 2 ej and pk 2 ek satisfying the torque equilibrium condition; namely, that n(p1),

n(p2) and n(p3) are concurrent meeting at some point c.

We proceed as follows: Consider an edge ab of P . Let HP (a; ab) be the open half

plane containing ab and delimited by a line containing a and normal to ab and similarly,

let HP (b; ab) be the open half plane containing ab and delimited by a line containing b
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and normal to ab. Let

slab(e) = HP (a; ab) \HP (b; ab);

where e = ab.

Then it is easy to see that for a triple of edges (ei, ej , ek) to satisfy the torque

equilibrium condition, it is necessary and su�cient that

slab(ei)\ slab(ej) \ slab(ek) = C 6= ;:

The point of concurrency c 2 C, and the contact points pi, pj and pk are determined by

the normals from c onto the edges ei, ej and ek.

Thus our previous arguments can be summarized to be saying that an edge triple

(ei, ej , ek) de�nes an optimal grasp if slab(ei)\ slab(ej)\ slab(ek) is nonempty and that

the triangle formed by the corresponding points on the unit circle has a positive residual

radius of ��, maximal among all choices of edge triples. These considerations yield an

O(n3)-time algorithm.

3.3.1 Applications to Immobility and Closure Grasps

We wish to note at this point that the placements for the three �ngers found by the

algorithms in this section are also immobilizing sets. This follows from the following

theorem of Czyzowicz, Stojmenovic and Urrutia [CSU90].

Theorem 3.3.1. Three points immobilize a triangle if and only if the normals to the

triangle at these points are concurrent.

The grasps found by our algorithm satisfy the concurency condition by construction, and

the extension of the edges at which grasp points are placed form a triangle since their

normals are positively spanning, again by construction.

Furthermore, if any non zero coe�cient of friction is allowed, these grasps are also

good three �nger closure grasps. This can be seen as follows. Let � be this coe�cient

of friction, and assume � is su�ciently small. Assume also that the origin lies at the

concurrency point of the three forces. Then �(pi) lie on the xy plane in the wrench space

R
3. For a unit vector n in the xy plane in R3, let n? be the unit vector perpendicular
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Figure 3.2: The line arrangement associated with an object.

to n and rotated by �=2 counter-clockwise. Let also ni = n(pi). The two rays bounding

the friction cone at pi are
p
1� �2ni � �n?i , and their image by � is

[
q
1� �2ni � �n?i ;�jpij

�p
1 + �

]:

Letting � be the half angle of the friction cone, the last term follows from the formula of

the cross product which involves the sine function and the fact that � = tan� = sin�
cos� .

Hence the top facet of conv f��(pi) : i = 1; 2; 3gwill be farther from the xy plane (and

from the origin) by a distance of at least minifjpij �p
1+�

g. Similarly for the bottom facet.

Thus when � is su�ciently small so that no other point of conv f��(pi) : i = 1; 2; 3g is
closer to the origin, this quantity will be a lower bound for the quality of the grasp.

3.3.2 An Improved Subcubic Algorithm

Next, we improve upon the trivialO(n3)-time algorithm. Here, we present anO(n2 logn)-

time algorithm for �nding the optimal three �ngered planar grasp for an arbitrary simple

polygon and some simple improvements for convex polygons.

We �rst describe the algorithm assuming that the polygon P is nondegenerate (in the

sense that will be made precise later) and then remark on how the nondegeneracy can be

eliminated by a simple modi�cation to the algorithm.

The algorithm can be described as follows: First we create the two-dimensional line

arrangement formed by a collection of lines consisting of three lines per edge, where the
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triplet of lines associated with an edge ab are: (1) the line containing the edge ab, (2) the

line normal to ab, containing a and (3) the line normal to ab, containing b. Now consider

a nonempty cell C of this arrangement: we say a point q = q(e) on the unit circle is active

for this cell, if slab(e) � C. The subset of points on the unit circle (among the points

q1, q2, : : :, qn of Q) that are active for this cell C, is called its active set and denoted by

active(C) � Q. Now, if we �nd three points qi, qj and qk 2 active(C), whose residual

radius �(C) is as large as possible (and positive), then it is seen that �� is simply the

maximum of all �(C)'s taken over all cells of the arrangement.

Note that there are at most O(n2) cells altogether and as we go from one cell C to

its adjacent cell C 0 then the active(C0) can be computed from the active(C) by adding

or deleting a point on the unit circle, depending on the line containing the C \ C0. Of

course, here we have tacitly assumed that the polygon is nondegenerate, in the sense that

all the lines on the arrangement are distinct, since otherwise C \C0 may belong to more

than one line of the arrangement and thus require addition and deletion of more than one

point of the set Q. Clearly, the active sets for all the cells can be computed in O(n2)

time by visiting the cells of the arrangement, starting from a cell with an empty active

set (such a cell exists su�ciently far away from the polygon P ). However, computing

the �(C) for each cell may still take O(n) time, thus forcing the entire procedure to take

O(n3) time.

We circumvent this problem by the following simple trick: First of all we maintain

the active(C)'s in a clockwise order in a dynamic balanced binary search tree. Since each

update operation on this data structure takesO(logn) time, this increases the complexity

of computing the active sets of all the cells to O(n2 logn)-time.

At any instant, we only remember ~�|the maximal residual radius seen so far. That

is, ~� is simply the maximum of those �(C)'s corresponding to only those cells C that

have been visited so far. We also remember the edge triple associated with the radius

value ~�. When we go from a visited cell C to an adjacent unvisited cell C0, we do one

of two things: If going to the next cell entails deletion of a point, qi, on the unit circle,

then we only have to update the active(C0); the maximal residual radius of C0 cannot

be larger than that of C and thus ~� remains unchanged. If going to the next cell, on
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Figure 3.3: Test involving qi and a possible residual radius value of �k.

the other hand, entails addition of a point, qi on the unit circle, then we have to both

update the active(C0) and check if ~� can be improved. If the maximal residual radius of

C 0, �(C0) > ~�, then the associated triplet from active(C0) must involve the new point qi

and two of the old points. How can we do this operation e�ciently?

First note that residual radii cannot take all possible values but only one of
�n
2

�
values,

each value being determined by a pair of distinct points ql and qm and is equal to the

radius of the circle that is centered at the origin and has the line containing ql and qm as

tangent. All these radii can be sorted in O(n2 logn) time and are denoted by

0 � �1 � �2 � � � � � �i � � � � < 1:

Suppose before visiting the cell C0 the maximal residual radius seen so far is ~� = �i.

When we go to the cell C0 (which requires adding the point qi), we will successively test

if it has a residual radius no smaller than �i+1, �i+2, etc. until we fail for some value �j

(j > i). Each such test can be performed in O(logn) time as explained below.

Let i < k � j, and we wish to test if active(C0) has three points involving qi and of

residual radius� �k. Consider a circle C(�k) of radius �k and centered at the origin. Two

distinct points of active(C0) are said to be mutually visible if the line segment connecting

these two points do not intersect the interior of C(�k). Thus our test succeeds if we
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can �nd a pair of mutually visible distinct points among the active(C0), each of which is

also mutually visible with qi. The following technique was also used in [KMY92]. Let

the leftmost partner of qi be the last mutually visible point of qi encountered, visiting

the points of active(C0) in clockwise order starting from qi. We call this point LP (qi).

Similarly, we de�ne the the rightmost partner of qi by visiting the points of active(C
0) in

anti-clockwise order, and call it RP (qi). Since the active points of C0 are kept in their

sorted order in a balanced search structure, both LP (qi) and RP (qi) can be computed

in O(logn) time. Then it only remains to check that LP (qi) and RP (qi) are mutually

visible, a step that can be accomplished in O(1) time.

Thus, we can keep track of ~� by performing a sequence of tests per each new cell,

each of which takes O(logn) time. Note that while there is no a priori bound on the

number of tests we may need to perform for a new cell, it should be obvious that all but

the last test succeeds and the last test fails. Thus there are at most one test per cell that

fails, and the totality of all such failed tests incur a cost of O(n2 logn). On the other

hand, if we have a successful test involving a radius value �k, then we shall never perform

another successful test involving �k, subsequently. Thus, the total number of successful

tests are bounded by the number possible radii values (
�n
2

�
of those) and altogether they

incur a cost of O(n2 logn). Clearly, when we are done visiting all the cells, we have the

global maximal residual radius �� together with the edge triple, which readily give the

three contact points, and we have spent O(n2 logn) time.

If the polygon P is degenerate then the resulting arrangement may force us to add

and delete many points of Q while going from a cell to its adjacent cell. If we enforce

the discipline that all the deletions are performed before all the additions and each up-

date is performed sequentially then the correctness of the algorithm still holds and the

performance analysis goes through mutatis utandis . In summary, we have

Theorem 3.3.2. Given an arbitrary simple n-gon P , we can compute a three �nger

optimal grasp of P in O(n2 logn) time.

Proof. The complexity analysis follows from the discussion preceding the theorem: The

possible radii values can be computed and sorted in O(n2 logn) time; the cells can all
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be visited with the active sets computation taking O(n2 logn) time; the number of tests

involved in going from cell to cell is no more than the sum of the number of possible radii

values and the number of cells in the arrangement with each test taking O(logn) time

and thus contributing only O(n2 logn) cost to the total cost.

To see the correctness of the algorithm, note that if the computed value at the end is

~� then clearly

~� � ��:

Conversely, consider the set of edge triples that lead to the maximal residual radius ��

and all the cells that are contained in the intersection of three slabs associated with each

such edge triple. Among all such cells consider the one that was visited the earliest, say

C 0. Let the preceding visited cell be denoted C. Let the maximal residual value seen

up to the time C was visited be ~�0. Thus ~�0 � �(C) < �� = �(C0). Thus active(C0)

must have been obtained by addition of a point qi 2 Q. Thus, active(C0) has two other

points qj and qk such that a residual circle of radius �� touches an edge of the triangle

formed by qi, qj and qk. Thus �� is a possible residual radius and the tests at the cell C0

involving possible residual radii values larger than ~�0 will all succeed up to ��. Thus if

the computed value at the end is ~� then

~� � ��:

Hence they must be both equal and our algorithm correctly determines the optimal three

�nger grasp for P .

3.3.3 Variations and Open Questions

There are several open questions related to the problem of �nding optimal planar grasps.

We brie
y discuss these problems.

(1) Consider a variation on the above problem: Suppose we are given a simple polygon

P with certain subset of @P designated as \forbidden" and its complement, \feasible."

Assume that the feasible parts of the polygon consists of at most k segments (the edge

segment ab being allowed to be a point a (a = b), in the degenerate case). We are asked to

�nd an optimal three-�nger grasp of the polygon with none of the �ngers on a forbidden
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region. Using a small variation of the above algorithm, we can solve this problem in

O(k2 log k) time|only modify the line arrangement to consist of the following triple of

lines per feasible edge segment ab � e, where e is an edge of P : (i) the line containing

e, (ii) the line normal to e and containing a, and (iii) the line normal to e and containing

b. If the edge segment is a point a 2 e then the above situation degenerates to two lines,

one containing e and the other normal e at a.

(2) We do not know whether there is a better solution for the above problem with

improved complexity. For instance, it is not even clear whether there are O(n) time

algorithms for objects with simpler geometry, e.g., convex objects.

(3) Is the optimal grasp found also optimal with respect to rcon in the presence of

friction? We suspect that this is the case.

(4) Sometimes, we wish to determine not just one optimal three �nger grasp but all of

them. Then we may use any one of this class of optimal grasps, depending on the task at

hand. Clearly, the brute force O(n3) time algorithm will succeed to do so. Note that the

algorithm of the previous section cannot be easily modi�ed into a two pass algorithm,

since addition of a new point (in the process of going from one cell to an adjacent cell)

may create an O(n) edge triplets of residual radius ��. Here, we describe an O(n2 logn)

algorithm for the special case when the object is convex.

Let P be a convex n-gon and let the possible residual radii (as in the preceding

subsection) be given as

0 � �1 � �2 � � � � � �i � � � � < 1:

We shall �nd the optimal residual radius �� by performing a binary search on the sequence

of possible residual radii. For a given value of �i, we can enumerate all the edge triples

that lead to a residual radius of �i in O(n2) as follows: Corresponding to the possible

radius value �i, there are at most O(n) edge pairs (ei, ej)'s such that the corresponding

points qi and qj 2 Q on the unit circle satisfy the property that the line determined by

qiqj is tangent to a circle C(�i) centered at the origin and of radius �i. Now for each such

edge pair, we need to check in O(n) time if there is another edge ek such that qk 2 Qnfqi,
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qjg is mutually visible (with respect to C(�i)) to both qi and qj and that

slab(ei)\ slab(ej) \ slab(ek) 6= ;:

We can thus enumerate all the ek 's that succeed this test. The binary search only considers

O(logn) di�erent values of �i's and terminates with success with the largest possible value

�� and enumerating all edge triples corresponding to ��. It is then trivial to describe all

possible three �nger optimal planar grasps. Thus the algorithm has a time complexity of

O(n2 logn).

However, the algorithm applied to a nonconvex polygon leads to an O(n3)-time al-

gorithm, as in a pathological case, there may be O(n2) edge pairs to be considered for

a given value of �i. It is noteworthy that this algorithm is rather simple to implement

and may perform well in practice. For instance, if one performs binary search on the

real interval [0; 1] (instead of the possible radii values), then for a random polygon this

algorithm can compute in O(n logn log(1=�)) all three �nger grasps whose corresponding

residual radii lie in the range [�, ��] of size < �, for su�ciently small positive �.
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Chapter 4

A Randomized Algorithm

Suppose we are given a �nite set of points on @B on which we can place �ngers. Further-

more, we assume the frictionless contact model. We would like to obtain grasps of high

e�ciency but with few �ngers. These are two con
icting goals as seen in Section 2.1.1,

so in this chapter we provide algorithms for optimizing one quantity or the other. The

problem of obtaining an optimal grasp with respect to the rcon measure has been studied

Kirkpatrick, Mishra and Yap [KMY92]. They assume a large number of points on @B is

given, and �nd an almost optimal subset of c of them. The number c however must be

quite large: c > 7� 107.

We have already seen how optimal grasp synthesis problem maps into geometric

optimization problems. In this chapter, we present a class of randomized algorithmswhich

provides an approximation to a large class of the optimization problems encountered. For

example, given an object with n points on its boundary where �ngers can be placed, we

give algorithms to select a good grasp with a minimal number c of �ngers (up to a

logarithmic factor) for the rcon and rnasty measures. This grasp is the best among all the

c log c �nger grasps. Along similar lines, given an integer c, we �nd the \best" �c log c

�nger grasp for a small constant �. Depending on the measure, for our application the

algorithms run in expected time O(c2n1+�) or O((nc)1+� + c4 log4 n). Here � is any

positive constant. This setting generalizes to higher dimensions in the context of �nding

sets of �xtures, and we provide randomized approximation algorithms there too.
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Let us describe the setting for the optimization algorithms in full generality. Let �(�)
be some grasp e�ciency measure, generalized to higher dimension (see below). It has an

associated geometric object L containing the origin 0, which can be scaled about 0. We

de�ne

�(U) = maxf� : �L � Ug:

For �(�) = rcon(�), L = B(1) in the appropriate dimension. One class of problems is:

for a desired grasp e�ciency �0, select a set G � @B of smallest possible size with

�(�(G)) � �0. We assume here that the set of possible points on @B out of which

points of G are selected is �nite; let its size be n. This translates to the following purely

geometric problem (valid in any dimension): let U be a set of n points in Rd such that

the origin is contained in the interior of its convex hull.

[MinCover-L]: Given �0, we wish to �nd the smallest set C � U or cover of

size c� with �(conv C) � �0.

We solve a corresponding approximation problem: that of �nding a cover of size c�d log c�.

We will call this a d log c�-approximation of the optimal cover.

The companion problem is: given a maximum number of �ngers c, which grasp G of

size c maximizes �(�(G))? The geometric version of this problem is:

[MaxScale-L]: Given an integer c, �nd the set C � U of size c which maxi-

mizes �(C). Let ��(c) be this maximum.

In the approximation version, for which we provide an algorithm, we ask for a d log c�-

approximation of the best cover C. In the sequel, we will replace L by various convex

sets.

For example, the problem of �nding a good grasp under the rcon measure corresponds

toMinCover-B andMaxScale-B, and for rnasty for polyhedral objects, the corresponding

optimization problems areMinCover-P andMaxScale-P. The polytope P is then �(@B).

We present an algorithmic framework derived from an algorithm by Clarkson [Cla93]

for polytope covering. This framework yields e�cient randomized approximation algo-

rithms for the above problems for various types of the set L | in fact, this approach

74



works for any set L that has a strong violation oracle [GLS88] or half-space emptiness

query [Mat92] can be used for the MinCover-P problem.

Let 
 = 1=bd=2c. The approximation versions of MaxScale-B and MinCover-B

can be solved in expected time O((n1+� + (nc)1=(1+
=(1+�))) + c log(n=c)(c logc)bd=2c)

when d is �xed, using sophisticated data structures. Here c represents the optimal cover

size for MinCover-B and the desired cover size for MaxScale-B. In both cases a cover

of size 4cd logc is returned. For a polytope P of ` vertices, the MinCover-P d log c{

approximation problem was already solved by Clarkson's algorithm in expected time

O(n1+�+c`1+�+c(`c)1=(1+
=(1+�))+(nc)1=(1+
=(1+�))) or O(`c logc+n)c log(n=c) using a

simpler version of the algorithm. In the same time bound, we can solve the approximation

version of MaxScale-P (with c is an input parameter), and MinCover-P (with c the

optimal cover size.)

4.1 Related Results

Exact algorithms for the problems mentioned in the previous section that run in polyno-

mial time seem unlikely. In fact problems similar to these have been shown to be NP-hard

[BMK94] or NP-complete [DJ90]. In [DJ90], it is shown that the problem of �nding a

minimal-facet separating polytope for arbitrary nested polyhedra is NP-hard.

We therefore consider approximation algorithms for the MinCover and MaxScale

problems. The MinCover-P problem arises in a dual form in the context of separating

two nested polyhedra [MS92b, Cla93]. In this problem, we are given two polyhedra L

and U with U � L, and we want to �nd a separating polytope S with U � S � L with

small number of facets. If we ask for the smallest possible number of facets, this problem

is NP-complete [DJ90]. Several approximation algorithms for this problem have been

presented|both deterministic [DJ90, BG94a], and randomized [Cla93]. Consider U as

the intersection of a set of half-planes. In the above-mentioned algorithms, S is found

by eliminating facets (halfplanes) from U , while making sure that the new polytope is

still contained in L. We assume that all polytopes involved contain the origin, and we

apply the point-plane polarity duality transformation, with respect to the unit sphere.

For future reference, call this duality D. This duality maps a hyperplane at distance r
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from the origin and with unit normal n to the point n=r and vice versa. It also maps

B(r) to B(1=r) with an appropriate extension of the de�nition. Applying this duality

transformation, we have again two convex polytopes conv L and conv U , where U is a

set of points. The above separation framework amounts to covering L by the convex hull

of a subset of U and this is exactly what we need.

For the MaxScale-B problem, Kirkpatrick et al. [KMY92] give an algorithm that

�nds a cover C of size c containing a ball of radius

r(C) =

�
1� 3d

�
2d2=c

�2=(d�1)�
r(U);

for n � c � 13dd(d+3)=2 in time O(LP(n; d)c). The radius found is almost optimal for

that cover size. Here LP(n; d) is the time required to solve a linear program of size n

and dimension d. Currently the best deterministic algorithm runs in time O(d7d+o(d)n)

time [CM93] and the best randomized algorithm in time O(d2n+eO(
p
d log d)). See [Gol95]

for this bound and a recent survey.

4.2 The Computational Framework

Consider a set U of n points in Rd, and a convex set L with 0 2 L � conv U . We will use

a routine find cover which, for a given cover size c outputs a cover of size 4cd logc, if

a cover of size c exists, otherwise it fails. Let c� be the size of the smallest cover C � U

for L. If we wish to �nd c� for �xed, un-scaled L, we use optimal cover. The outer

loop �nds an approximation of c� up to a factor of 5=4, and goes as follows.

optimal cover

Input: Set U of potential cover vertices; object to be covered.

Output: Smallest cover, up to a factor of 4d log c.

1. for i = lgd; lgd+ 1; : : :

2. find cover with c = (5
4
)i

if find cover succeeded, stop.

endfoptimal coverg.
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The algorithm find cover is de�ned below. It needs the desired cover size c. It

uses another routine find bad facet which is an implementation of the strong violation

problem, also known as half space emptiness query. That is, given a half space h with

a positive side, determine whether L lies entirely in the positive half-space de�ned by h.

In fact for the MaxScale problems we will need more: given a direction u, we will need

the supporting hyperplane for L with normal u which is the furthest in that direction.

The algorithm goes as follows. We repeatedly take a random sample R, of expected

size s = 4cd logc, and test whether L (or some scaled version of L) is contained in conv R

using find bad facet.

Let k be a constant to be speci�ed later. Call an iteration of the loop in find cover

successful if the weights were doubled, i.e. if w(UF ) � w(U)=(kc). We also require that

jRj � 4cd ln c. Consider the following Cherno� bound.

Theorem 4.2.1 ([MR95, p.68], Theorem 4.1). LetX1; : : : ; Xn be independent Pois-

son trials (coin tosses), X 2 f0; 1g, such that for 1 � i � n, Pr[Xi = 1] = pi, where

0 < pi < 1. Then X =
Pn

i=1Xi, � = E[X ] =
Pn

i=1 pi, and and � > 0,

Pr[X > (1 + �)�] <

"
e�

(1 + �)(1+�)

#�
:

Using the above theorem, we see that jRj is no larger than a factor of 4 of this value with

probability < 0:084cd ln c. We simply take new random samples until the size of R is as

required. This additional requirement does not change the expected asymptotic running

time.

If a cover of size c is not found in the number of iterations speci�ed, find cover

fails; otherwise, it returns a cover of expected size 4cd logc. This number is chosen in

Lemma 4.2.4 to guarantee success if a cover of size c exists.
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find cover

Input: Size c of desired optimal cover; Max number I of iterations.

Output: Cover of size c4d log c.

1. s = c4d lnc, fthe expected size of cover we will �ndg

2. I = 1 + 8c lgn=c, fthe maximum number of iterationsg

3. for all p 2 U , let wp = 1

4. repeat for I successful iterations:

5. Choose R � U at random. (see below)

6. find bad facet F of conv R.

7. if no bad facet, return R.

8. Let UF = points of U seeing F

9. if w(UF ) � w(U )=(kc) then

10. for all p 2 U , let wp = 2wp freweightg

11. else fnot a successful iteration, try againg

endffind coverg.

The random selection of R is done by picking each point p of U independently with

probability

Pr(p) = 1�
�
1� wp

w(U)

�s
� s

wp

w(U)
:

The expected size of R is
P

p2U Pr(p) �
P

p2U s
wp
w(U) = s. Finally the heart of the work

is done in find bad facet whose variations are described in the next section.

The correctness of the general algorithm follows from a series of lemmas. The fol-

lowing lemmas were shown in [Cla93] for L a convex polytope, but the proofs do not use

the fact that L is polyhedral and actually apply to any set L. We state them here for

completeness, and also to bound some constants explicitly.

Lemma 4.2.2. Let L be any convex set not contained in conv R, with a point p 2 L on

the negative side of some facet F of conv R. Let UF be the set of points of U that see F .

Then there is a point of the optimal cover C of L among the points of UF .

Proof. Assume no point of UF is in C, and assume that a cover exists, i.e. that L �
conv U . Then there are no points of C in the closed half-space H delimited by a� F and
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on F 's negative side. Which means conv C � H . But p 2 Rd nH , which contradicts the

assumption that C is a cover.

This lemma is the basis of this algorithm, and its derivatives. It essentially says that

by �nding a set UF , we have gained some information about C since one of its members

must be in the relatively small set UF . We restrict the size of this set to be bounded by

the condition w(UF ) � w(U)=(kc).

We say that a facet F of a polytope P is visible from a point q if for every p 2 F ,

the segment pq does not meet P . Here P will be conv R. Following [Cla93], we de�ne an

L-facet to be a facet visible from of point of L. Then we have the following lemma, which

is a slightly modi�ed version of Clarkson's lemma 2.2. The proof follows his closely.

Lemma 4.2.3. Given that an L-facet F is found, the probability that an iteration of

find cover will be successful (i.e. the set UF satis�es w(UF ) � w(U)=(kc)), is at least

1/2.

Proof. Let F be a potential facet of conv F with w(UF ) >
w(U)
kc . Assume that F has d

vertices. Then F is a facet of conv R exactly when its d vertices are in R and points UF

that see F are not in R. For a give F , this happens with probability

a =
Y

p2vertF

�
1� (1� wp

w(U)
)s
� Y
p2UF

(1� wp

w(U)
)s �

Y
p2vertF

s
wp

w(U)
�
Y
p2UF

e
�s wp

w(U)

�
0@ Y
p2vertF

wp

1A sd

w(U)d
e
�sw(UF )

w(U) :

We sum the �rst term over all potential facets F : all possible d-tuples of points of U .

But the expression

b =
X

potential facet F

Y
p2vertF

wp �
 
n

d

!�
w(U)

n

�d

with the constraint that
P

p2U wp = w(U), is maximized when all wp = w(U)=n. Hence

b � �nd� �w(U)
n

�d
. We then have, using Stirling's approximation for the factorial function,
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that the probability that each facet F of conv R satis�es w(UF ) >
w(U)
kc is less than

X
potential facet F

a �
 
n

d

!�
w(U)

n

�d sd

w(U)d
e
�sw(UF )

w(U)

� sd

nd
(en)d

dd+1=2
e�

s
kc

=

�
er

d

�d e� s
kc
w(U)

p
d

= a0:

We let s = 4cd ln c. Then it is easy to verify that a0 < 1=2 for k = 2, d > 2 and c > 43,

or for k = 1:501, d > 2 and c > 6.

This lower bound on s determines the approximation factor for the cover. This fact

does not use the geometry of the situation at all, and one wonders whether the lower bound

on s could be reduced in our application where the points of U are in (non-strictly) convex

position.

Finally, to obtain a bound on the running time, we need to bound the number of

iterations of the loop in find cover. Again this lemma is a slight variation of Clarkson's.

Lemma 4.2.4. The number of successful iterations of the loop in find cover before a

cover is found is bounded above by 2k
2k�3c lg(n=c) which is 4c lg(n=c) for k = 2, 1501c lg(n=c)

for k = 1:501.

Proof. At each iteration where weights are doubled, w(U) increases by a factor of

1+ 1
kc < e1=kc < 2

3
2kc . After I successful iterations, w(U) < n2

3I
2kc . But by Lemma 4.2.2,

UF contains an element of C whose weight is doubled. Letting tp be the number of times

the weight of p double, after I successful iterations, w(C) �Pp2C 2tp , with
P

p2C tp = I .

But by convexity of the exponential function w(C) � c2I=c. But w(C) � w(U), hence

c2I=c < n2
3I
2kc

) I

�
1

c
� 3

2kc

�
< log

n

c

Letting k = 3=2 + �, we get

I � 2k

2k � 3
c lg(n=c) = 1 +

3

2�
:
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But for k = 2, this implies

I < 4c lg
n

c
;

and for k = 1:501, this implies

I < 1501c lg
n

c
;

as required.

A similar lemma also appears in [BG94a]. This implies together with Lemma 4.2.3

that the expected number of iterations of the loop in find cover is O(c lg(n=c)). It is

interesting to note the tradeo� in the constants between the constant in the running time,

and the constant k, which in turn determines the minimum cover size for which these

lemmas are valid.

These lemmas hold for small values of c, which makes the algorithm useful for small

size covers. Of course c > d, since we cannot have a cover of any smaller size unless the

input is highly degenerate.

We can already mention here the component of the �nal running time incurred by

�nding and reweighting the points of UF . Finding points among the n points of U that are

on one side of a hyperplane can be done in time O(dn) with a trivial algorithm, giving

a bound of O(cdn log(n=c)) for this component of the running time. This is repeated

O(c logn=c) times over the entire algorithm. For �xed d, the whole process can be

done in expected time O(n1+�+(nc)1=(1+
=(1+�))) using sophisticated data structures for

half-plane range queries [Mat92], as described in [Cla93]. Finally, note that the expected

number of oracle calls (half-plane emptiness tests) isO(fc log(n=c)) where f is the number

of facets of conv R. This can be avoided when L is a polytope, as described below.

4.3 Particular Measures

In this section we describe several implementations of find bad facet and give the

corresponding running times of the entire algorithms.

MinCover-B:

We are given a ball B(r) of radius r centered at the origin, and we would like to �nd an
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approximation of its minimal cover among the points of U . To do this, we use optimal

cover, but we de�ne find bad facet to test whether the ball is contained in the convex

hull of the random sample R. This can be done by computing the convex hull of R and

�nding a facet that is at a distance of less than r to the origin. This takes timeO(jRjbd=2c)
for �xed d � 4 (or O(jRj log jRj) if d � 3) [CS89, Cha93]. For variable d, we can use the

algorithm in [AF92], which �nds f facets of the convex hull of n points in dimension d

in time O(ndf).

As mentioned before, lemmas 4.2.2, 4.2.3, and 4.2.4 apply when we replace the poly-

tope L by a ball B(r), and this guarantees correctness of the algorithm.

Since the expected number of iterations is O(c log(n=c)) and the expected size of R

is 4cd ln c, the expected running time of optimal cover for B(r) is:

O
�
n1+� + (nc)1=(1+
=(1+�))+ c log(n=c)(c logc)bd=2c

�
for �xed d, or

O
�
ncd log(n=c) + cd22d log(n=c)(4cd logc)bd=2c+1

�
for any d (and non-degenerate convex hull of the covers) using the result in [AF92] and

the crude bound on the complexity of the convex hull of d2dvb
d
2 c obtained from the upper

bound theorem [MS71, Mul93] as follows. Let f(j) be the number of j-faces of the a

polytope with n vertices, then the Upper Bound Theorem says that

f(j) �
b d2 cX
i=j

 
i

j

! 
v � d+ i� 1

i

!
+

jX
i=b d2c+1

 
i

j

! 
v � i� 1

d� i

!
;

and we need an upper bound on g =
Pd

j=0 f(j). Replacing the second and fourth com-

binations by vb d2c, we get

g � vb d2c
dX

j=0

dX
i=j

 
i

j

!

� vb d2cd2d:

MinCover-P:

Clarkson's original algorithm solves this approximation problem. The geometric object
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to be covered is a �xed polytope P with ` vertices containing the origin. Let the positive

side of a facet of a polytope be the side containing the polytope. We need to �nd a facet

F of conv R such that there is a vertex of P on the side of F not containing the origin,

i.e. on its negative side, if P is not contained in conv R. For each point p of P , we �nd

the facet F of conv R whose intersection point q with the line op maximizes q � p. If p is
on the the negative side of F , we return F . If no such facet exists it is easily seen that

P � conv R.

Each step above can be done in O(LP (jRj; d)) = O(LP (4cd logc; d)) time via linear

programming. This can be done as follows.

Consider a set of points Q, and a query point q. We wish to �nd the facet of conv Q

which is intersected by the ray stemming from the origin
�!
0q . Consider the dual of Q,

which is a set of hyperplanes D(Q). Call D+(Q) the intersection of the half-spaces

containing the origin and delimited by the hyperplanes of D(Q). In the dual, by well

known properties of this duality, moving a point p along the ray
�!
0q from the origin in

the direction of q corresponds to moving a hyperplane D(p) with normal
�!
0q from in�nity

towards the origin 0. When p hits a face F = conv fv1; : : : ; vkg of conv Q, D(p) hits
a face f =

Tk
i=1D(vi). When this happens, let r be the distance of D(p) to the origin,

r = 1=kpk. Points x of f are points of D+(Q) which optimize
�!
0q � x since for these

points x, the hyperplane D(x) is a supporting hyperplane for D+(Q). Now de�ne a linear

program with linear constraints given by the faces of D+(Q). A linear programming

query with optimization direction
�!
0q returns a point v of f , which corresponds to a facet

F in the primal. Hence we can test if q 2 conv Q using linear programming. Furthermore

we also know �Q(q) = maxf� > 0 : �q 2 conv Qg since �Q(q) = 1
rkqk . If �Q(q) > 1, q is

outside conv Q. This will be particularly useful later for the MaxScale-P problem.

Coming back to our original problem, applying this to each vertex q of P and polytope

conv R given as a set of points, we can determine whether P � conv R using ` such linear

programming queries, one for every vertex of P . The expected running time of find

bad facet is then O(`d3c log c+ `eO(
p
d logd)) using the linear programming algorithm
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of [Gol95]. The entire optimal cover algorithm runs in expected time

O
�
ncd log(n=c) + `c2d3 log c log(n=c) + `c log(n=c)eO(

p
d logd)

�
:

For �xed d, we can also use linear programming queries [MS92a]. For any arbitrary

positive �, each query takes time O((n log2d+1 n)=t
) after a preprocessing step taking

O(t1+�) time and space (n � t � nbd=2c). By trading o� preprocessing time with query

time, the queries can be answered [Cla93] in O(`1+�(`c)1=(1+
=(1+�))) time. Since there

are O(c log(n=c)) iterations on average, the entire algorithm then runs in an expected

time of

O
�
n1+� + c log(n=c)`1+� + c log(n=c)(`c)1=(1+
=(1+�))+ (nc)1=(1+
=(1+�))

�
;

which is O(c2n1+�).

An alternative is as follows. For �xed d, we can also use linear programming queries

using the very recent batched version of Chan [Cha95]. For any arbitrary positive �, a

batch of ` queries on a set of m half-spaces takes time

O
�
m log logm+m log `+ (m`)

1� 1
bd=2c+1 + ` log1+dm

�
:

By replacing m by 4cd logc, the expected size of the cover, we get

O
�
c log c log log c+ c log c log `+ (c log c`)

1� 1
bd=2c+1 + ` log1+d(c log c)

�
:

Multiplying by 4c lg(n=c), the expected number of iterations, and adding the time for the

half-space queries, we get an expected time of

O
�
n1+� + (nc)1=(1+
=(1+�))+ c2 logn log c log log c+ c2 logn log c log `+

c logn(c log c`)
1� 1

bd=2c+1 + c logn` log1+d(c log c)
�
:

This is also O(n1+�c2n logn log c).

MaxScale-B:

Let r�(s) be the radius of the largest ball centered at the origin and contained in a cover

of size s. In this problem we are given a desired cover size c, and we would like to �nd
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r�(c). We will not use optimal cover but skip directly to find cover. Here again we

get only an O(d log c) approximation to this cover. The corresponding version of find

bad facet will be to use find bad facet as for the MinCover-B problem, but always

return the facet closest to the origin, i.e. never say that a ball of some radius has been

covered. We should also remember the maximum distance to the origin of the closest

facet at each iteration, and the corresponding cover. Here again we do only 4c lg(n=c)

successful iterations, i.e. O(c log(n=c)) calls to find bad facet. This will guarantee

that the version of find cover for MaxScale-B �nds a cover of size at most 4cd lnc

containing a ball of radius r�(c). This can be seen as follows. By Lemma 4.2.4 we are

certain to �nd a cover if it exists. Hence if B(r�(c)) is the largest ball in covers of size c,

a cover of size 4cd ln c containing B(r�(c)) must be found. The running time is the same

as for the MinCover-B approximation.

MaxScale-P:

The solution to this problem is very similar to the previous case. We use find cover and

modify find bad facet so that it determines the largest possible scaling factor � such

that �P � conv R. This is done by ` linear programming queries as in MinCover-P,

but in addition we compute �conv R(v) for each vertex of P . Taking the minimum of

these over all ` vertices of P gives a value �(R) for this cover. This value along with

the corresponding facet is returned. This value corresponds to the largest scaling P can

undergo while still remaining inside conv R.

After the required number of iterations in find cover is done, we stop and return

the maximum of all scaling factors, ��(c). The running time for this version is the same

as for MinCover-P, and the same correctness argument also applies here.

We summarize both results in

Theorem 4.3.1. The versions of find cover for MaxScale-B (resp. MaxScale-P)

�nd a cover of size at most 4cd ln c containing a ball of radius r�(c) (resp. P scaled by

��(c)) in time identical to their MinCover-B and -P counterparts.

MaxScale-L and MinCover-L:

When L = Bk(1), the scaling factor of Bk(1) in a polytope with f facets is easily com-
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putable in time O(df) = O(kf). For general L and �xed d, if a hyperplane emptiness

query for L can be answered in time h, the total expected running time for theMinCover-

L approximation is

O
�
n1+� + (nc)1=(1+
=(1+�))+ hc log(n=c)(c logc)bd=2c

�
;

and if in addition, given a direction u, the supporting hyperplane for L with normal u

which is the furthest in that direction, can be obtained in time h, the above time bound

is also valid for the MaxScale-L approximation problem.

4.4 An Extension

It is possible to extend the framework to the following case: instead of a set of points

U , we have a set of planar polygons. (An extension to polytopes of higher dimensions

is possible, but the complexity of the algorithm increases, and our application requires

only polygons.)

This corresponds to the situation in grasping where we allow �ngers to be placed

anywhere on @B. For simplicity, consider here d �xed. We have seen in Corollary 1.3.2

that for a face F of @B, �(F ) is a planar polygon in R6. We can assume these polygons

are triangles, since one can triangulate the faces of B in linear time [Cha91], and this

does not increase the asymptotic complexity of B. We now replace the points of U by

the set of triangles Gi corresponding to triangles Ti of facets of @B. Say B has n facets.

If v is a vertex of Ti, �(v) is a vertex of Gi (the normal at v is the normal of Ti.) Now

given a hyperplane h which corresponds to a facet of conv R, we intersect this hyperplane

with each triangle. This creates a planar arrangement on this triangle. Each region in

this arrangement is weighted by its area. Weights of regions on the negative side of h

are doubled, as before. To randomly pick a point for R, we can simply pick a region Gi

according to its new weight w(Gi)area(Gi) as was done with points of U before, then

we select any point of this region, say its centroid. This technique can be used for both

MaxScale-L and MinCover-L problems. It is not clear however how to best select the

point from a region: it might be advantageous to optimize, say the size of the inscribed

ball inside conv R, given that we have already selected each region.
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At each iteration, we have an expected number of at mostO(jRjbd2c) new hyperplanes,

hence over the entire run of the algorithm, the expected number of hyperplanes is at

most O((c logc)bd=2cc log(n=c)). This gives a bound on the total number of regions of

O
�
n[(c log c)bd=2cc log(n=c)]2

�
, since there are O(n) triangles. The running time of all

the variations of the problems mentioned remain the same, with n replaced by the above

number. However we do not know how to analyze the performance of this algorithm in

terms of optimality of cover size, or the size of the inscribed ball, for example.

4.5 Concluding Remarks

A bottleneck in the ball version of the approximation problems is �nding the facet of

conv R closest to the origin. It would be interesting to �nd a faster method. One way

might be to approximate the residual radius using the algorithm of [KMY92].

The algorithm in this chapter treats the frictionless case, or the frictional case, when

the friction cones are approximated as described in Section 2.1.3. It would be interesting

to devise a variation of this algorithm which does not require such an approximation.
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Chapter 5

Reactive Control

Up to now, our approach to grasping has been to assume an accurate model of the object

to be grasped and from such a model, an o�ine geometric algorithm determines a set of

grip points, where the �ngers are then placed. As we have already seen, this approach

has been used in [MSS87, PSS+93] for example. Once the grip points have been deter-

mined, the geometry of the object is deemed irrelevant and the grasp is determined and

maintained by only controlling the magnitudes of the forces at the grip points. However,

such a picture has not proven very useful, as in practice, obtaining such a model might

not be feasible, or the exact location of the object might not be available. The main

success in dexterous manipulation seems to have come from two directions: (1) telema-

nipulation, where a human in the loop uses much more sensory information than what

is assumed theoretically necessary, and (2) simple parallel jaw grippers, where grasping

algorithms can be made immune to lack of any sensory information. For example Gold-

berg [GF93, Gol91] constructed a parallel jaw gripper with the property that friction in

the transversal direction between a jaw of the gripper and the grasped object is removed

(or greatly reduced.) A similar \sensorless" strategy has been used by Rao [Rao93] to

determine the shape of the object being grasped. Here, we take an approach, where

the sensory information is selectively used to determine movement of the robot (\state-

transitions") so that ultimately a grasp will be achieved independent of the quality of

the sensory information or the reliability of the actuator movements. Furthermore, unlike
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Figure 5.1: Parallel jaw gripper with sensors.

Goldberg's algorithm, our algorithms and devices are non-disturbing in the sense that it

does not cause any movement of the objects except for the movements desired and can

grasp objects that are kinematically constrained.

Our \algorithms" are rather di�erent from what is usually understood by algorithms:

the robots (i.e. actuators and sensors) themselves are active components of the algorithm,

performing \computations" much like an analog computer in conjuncts with a digital

computer. For this reason, the \algorithm design" also implies a careful choice of the

participating actuators and sensors and their placement. For this reason, the algorithm

does not separate in any meaningful way phases of \digital planning" interrupted by

\analog actuation and sensing". Thus our reactive algorithms are much smoother in

operation.

5.1 Reactive Parallel Jaw Grasping

In this section we consider a standard parallel jaw gripper and attach to each jaw two

infrared light emitting diodes (IR LEDs) and two infrared detectors as depicted in Fig-

ure 5.1.

This allows us to have in fact 4 light beams which we can test for being interrupted
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or not by alternately illuminating the IR LEDs.

The general scheme will be to close the gripper while constantly checking the status

of the sensors, and performing actions according to that status in a table driven manner.

These algorithms can be used as low level primitives for grasping applications, for

example in automated manufacturing. With minor modi�cations, the algorithms can also

be used for determining the shape of (the convex hull of) a planar part, again without

disturbing the part. In contrast, Rao's scheme takes a multitude of gripping actions for

obtaining information about the shape, and even then, it is not possible to reconstruct

the shape in some cases. This is due to the fact that the object it moved during each

grasping action.

5.1.1 Related Literature

Our work shares some similarities with Goldberg's gripper [Gol91] and is motivated by

the same paradigm as Canny and Goldberg's \RISC" robotics [CG94].

In [Gol91], Ken Goldberg has modi�ed the basic gripper to reduce the friction between

the gripper and the object being grasped. This friction occurs when the gripper is being

closed on an object, and this object is forced to rotate. Several results exist on �nding

grasps for such a parallel jaw gripper, when the object is known [RG94, RG92]. Recent

results consider closing the gripper on an unknown object, and measuring the jaw distance

for various orientations [Rao93]. This permits the determination of the object, but also

subjects it to many motions. Another method involves grasping in random orientations

to distinguish planar parts [Gol91].

In the Computational Geometry literature, there are several results on probing. Prob-

ing using �nger probes [CY87], and line and other probes [DEY86] is considered. The

object is to construct a model of the probed object. We are mainly interested in line

probes: a line is swept (either in parallel or rotating) until the object is hit. The probe

returns the position of the line where it hit the object �rst. Also the method of \rotat-

ing calipers" [Tou83] where a pair of parallel supporting lines rotates around a polygon

has many algorithmic applications in geometry, and is closely related to the algorithm

described here.
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A reactive grasping algorithm for a special type of multi-�ngered hand is given in

[MLH93], but it uses a gripper mounted camera and a vision system. Like ours, their al-

gorithm controls the position of the gripper interactively according to the current sensory

data, but the algorithms are inherently more complex.

We propose to add probing capabilities to a basic parallel jaw gripper and to combine

probing techniques with grasping using light beam sensors and proximity sensors. The

goal is to produce algorithms for obtaining grasps with as little knowledge as possible

about the object, and without touching the object. Recently we have devised reactive

algorithms for 2 and 3 �nger planar grasping using some geometric properties of minimum

area triangles (for 3 �ngers), where the �ngers are equipped with proximity sensors. First,

we present grasping algorithms for the extended parallel jaw gripper equipped with light

beam sensors as described below.

5.1.2 The Parallel Jaw Algorithm

The Diameter Function

Consider a �xed polygonal object P , and de�ne the function d(�) to be the diameter of

P in the direction �. This is de�ned as the length of the projection of P (a line segment)

on a line that forms an angle of � with the x-axis. Antipodal points pairs correspond

to local maxima, and local minima correspond to possible grasps. Figure 5.2 shows a

polygon and its diameter function.

The current con�guration of the gripper consists of

� The gripper orientation,

� The inter-jaw distance, and

� The position of (the center of) the gripper.

The position of each pair of parallel beams can be represented by a point in the graph

of the diameter function. Rotations of the gripper correspond to moving the point parallel

to the � axis (horizontally), and opening and closing of the gripper to moving vertically.

91



0.5 1 1.5 2 2.5 3

16

18

20

θ

d

Figure 5.2: A polygon and its diameter function.

The four pairs of beams can be represented by four points in a `+' con�guration.

This last representation is not precise however since the translational component of the

beam positions is not modeled.

The Algorithm

We assume that the initial orientation of the gripper is at angle 0 (with the x-axis, say),

and that the gripper rotates around its center of symmetry.

Let A1; A2; A3; A4 be the state of the light beams on jaw A, and B1; B2; B3; B4 be the

same for jaw B. In the following, up-ward translation means translation perpendicular to

the gripper jaws and towards jaw A, down is towards jaw B. This also de�nes naturally

left and right translation. Also we have a current direction, which is clockwise initially,

and the initial position is such that the object is somewhere between the gripper jaws.

We need another primitive: Back-up will move the gripper to the position it was

before performing the previous rotation.

The algorithm checks the current state and performs an action according to the table

above, where an `x' indicates that the corresponding beam is interrupted. The action is

performed until the state changes. This is performed in a tight control loop, and hence the

motions are very small. We assume that initially the object being grasped in somewhere

between the parallel jaws.

The algorithm essentially attempts to keep the top of the object boundary between

beams 1 and 2 of one jaw, and the bottom between the corresponding beams of the other
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Algorithm 1

State A2 A1 B1 B2 Action

0 . . . . close the gripper

1 . x . . move up

2 . . x . move down

3 . x x . rotate in current direction

4 x x x . move up (parallel to jaw before previous rotation)

5 . x x x move down (parallel to jaw before previous rotation)

6 x x . . move up

7 . . x x move down

8 x x x x On �rst entry: reverse rotation direction, back-up
Otherwise: stop

jaw (state 3), and rotates the gripper while the diameter decreases.

For example, at the beginning we are in state 0 and the gripper closes until either

state 1 or 2 is reached. Then a small translation occurs and immediately we are back in

state 0. An initial direction of rotation is chosen arbitrarily, which might be reversed in

state 8.

Let D12 be the sum of the distances between beams 1 and 2, for each jaw.

Let � be a local minimum of the diameter function d, and consider the plane containing

the graph of the diameter function. De�ne a valley of height h around � as the set of

points (x; y) that are above the graph of d satisfying:

max(d(x); d(�))� y � d(�) + h

max
x<�

fd(x) � d(�)g � x � min
x>�

fd(x) � d(�)g:

The constraint on x says that the valley stops after d dips below d(�). See Figure 5.3.

Then we have the following

Theorem 5.1.1. For a 
at polygonal object that has signi�cantly smaller diameter than

the length of the jaws, Algorithm 1 will terminate with a gripper orientation which is in
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the valley of height D12 that is closest to the initial orientation, and in the direction of

initial decreasing slope. We say it �nds the closest local minimum up to its resolution.

Proof. At each step, we either close the gripper or translate/rotate so that the gripper

can close further. We can think of this algorithm as tracking the diameter curve using two

vertically positioned test point, at a distance ofD12 apart. The bottom point corresponds

to the inner pair of beams, the top point to the outer pair, and we want to keep the curve

between the two points (state 3). When the bottom point gets above the curve we are

in state 0, and we close (go down in the diameter function graph). When the top point

moves below the curve we are in state 8. States 1,2,4,5,6,7 take care of translating the

gripper. This is not modeled by the diameter graph.

To show that the algorithm converges to a local minimum, we show that at any step

we make progress. In state 0 we advance down in the diameter graph, and in state 3

we advance in the chosen direction. This direction can changes only once, when the

initial direction increases the diameter graph. The other states, except state 8, reduce the

number of interrupted beams by translating the gripper in an appropriate direction and

hence eventually allow us to get to state 0 or 3. States 4 and 5 need some explanation.

These are reached after a rotation. (We assume that the gripper closes with su�cient

precision so that beam 1 is always interrupted before beam 2 and we detect both events

separately.) It can be seen that if we translate parallel to the jaws as they were before

the previous rotation, we bring the object closer to the center of the gripper.

State 0 and 3 may increase the number of interrupted beams but we make progress

by closing the gripper or rotating further, respectively. When state 8 is reached for the

�rst time, it might be because we have chosen a wrong initial direction, and the diameter

increases during that rotation. This is the only case where we rotate with all 4 beams

interrupted. State 8 can only be entered from states 3, 4 and 5. If this is the �rst entry

to state 8, we simply retrace our steps (back-up) to the state just before this state was

entered. We can now perform rotations again, but in the other direction. Step 8 thus

reverses the search direction and continues. Upon second entry to state 8 we are certain

of having crossed a local minimum, and the diameter function increases by at least D12,

and we are done.
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Figure 5.3: Angular error due to distance between beams.

This algorithm will miss any \small" local minima whose height is smaller than D12.

This is the limit of the resolution of the gripper. As we decreaseD12 to zero, the algorithm

misses smaller and smaller local minima, and ultimately tracks the diameter curve with

total precision. This is physically impossible, so we accept a small error.

This error implies however that we don't have any maximum angle error guarantee

since we can overshoot by a large angle if the diameter function increases slowly, see

Figure 5.3. For example for an oval-like polygonal shape, if the di�erence between the

minimum and the maximum diameter is too small, we might miss the minimum.

Improving accuracy

We previously had an alternative algorithm which would allow us to improve accuracy. It

was based on a binary like search. Another algorithm used the crossed beams to control

the rotation direction. This work has been reported in [TM94]. However in the course of

experimentation, we have found that it is possible to obtain a \virtual" pair of parallel

beams using a single LED{detector pair. Furthermore, these can be made as close to

each other as desired, subject to the precision of the analog to digital converters which

are used with the IR detectors to obtain the strength of the IR radiation coming from the

LED. This is done by having various thresholds for the received intensity (see the section

on implementation.) We therefore implemented this algorithm using this virtual pair of

light beams. In this new scheme, accuracy as described does not pose a problem.
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Oscillations

It is conceivable that at some point due to inaccuracies or time delays, the algorithm

would oscillate between a pair of \opposite" states (ex. 1 and 2, or 4 and 5). This could

also happen if the beam distance is exactly the diameter of the polygon in the current

orientation. This can be avoided by checking if no gripper closing has occurred between

those states and then forcing the algorithm to go to state 0 (close).

5.2 The Case of Three Fingers.

In this section we consider the same type of objects as in Section 5.1.2, but we present

a reactive algorithm for a three �nger hand. The sensors used are di�erent however.

Again, we use the local geometry of the object to �nd a set of grip points and we also

solve the local motion planning problem of getting the �ngers to their grasping positions.

We assume in addition that the object is convex and that its boundary is smooth. Our

algorithm is also non-disturbing.

Recently, Mirtich and Canny [BM94] presented algorithms for �nding 2 and 3 �nger

grasps for known objects, optimizing various criteria. It is easy to adapt our ideas to

produce reactive algorithms for generating their planar grasps reactively. Independently,

Erdmann [Erd94] discusses a closely related algorithm for two �nger grasps which uses

sensors similar to ours.

Here however we consider three �ngered grasping and two �ngered grasping.

We consider a gripper that consists of 3 �ngers whose endpoints move in a plane. The

�ngers can move to arbitrary positions within certain bounds, but their order around the

triangle they are forming must remain the same. We search for the gripping points by

following the object boundary in a way that is dictated by the boundary until some

geometric conditions are satis�ed, which will then guarantee a grasp.

Each �nger is equipped with simple sensors, as described in the next section, which

allow the �ngers to follow the contour of the object to be grasped, and locally determine

the angle of the object boundary it is close to.
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Sensors

Each �nger is equipped with the following sensors:

1. An omni-directional distance sensor, which returns the distance of an object in any

(planar) direction. Its range can be very small, only what is required for tracking

the boundary of an object that lies within close proximity to the �nger.

2. An angle sensor. If the �nger is close to an object as de�ned by the previous sensor,

we require the sensor to return the angle of the object boundary at the closest point.

These sensors can be implemented by using for example an array of distance sensors

similar to the optical sensor by Okada [Oka82b] or the sensor of [BSB93]. Preliminary

experiments indicate that it is possible to use a pair of simple IR re
ective sensors,

placed a small distance apart, and measure the di�erence between re
ected light intensity.

However more work is needed.

Primitives

In order to describe our algorithm at a high level we assume that the following primitive

can be called upon. The main basic operation our algorithm will need is the following of

the object boundary by a �nger. This has already been implemented on various robotic

platforms, see for example [Jen92].

5.2.1 The Three Finger Reactive Algorithm

Our algorithm for �nding a three �ngered grasp is based on the paradigm of �nding a

locally minimal area triangle that encloses the object. A geometric algorithm for convex

polygons can be found in [OAMB86].

Theorem 5.2.1 (Klee [Kle86]). If T has a locally minimum area among triangles con-

taining a convex body B, then the midpoint of each side of T touches B.

It can also be shown [OAMB86] that if the midpoint of an edge e of a triangle does not

touch the object, then e can be perturbed such that its midpoint after the perturbation
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Figure 5.4: Forces applied at edge midpoints meet.

lies inside the original triangle, and that this perturbation reduces the triangle area. This

is precisely how the algorithm operates. In essence we minimize a potential function

de�ned by the triangle area, whereas in Section 5.1.2, we minimize the distance between

the two jaws of the parallel jaw gripper.

Given such a triangle, we note that the lines through its edge midpoints and perpen-

dicular to their corresponding edges are concurrent at the point which is the center of

the circle circumscribing the triangle. See Figure 5.4. If we place the three �ngers at the

edge midpoints, we get a planar force closure grasp that does not rely on friction. The

�nger forces will be chosen such that they sum to 0. Planar torque closure is obtained, if

we allow for su�cient friction.

We now describe the algorithm. Let B be the object to be grasped. For simplicity

of exposition, when we say a �nger is at point p of the boundary, it is in fact in close

proximity of the object, and does not touch it. (It is on the boundary of a slightly

enlarged object. The point p will be the closest point to the �nger on the boundary

of the original object.) The tangent to the object at that point is still well de�ned, by

convexity. Note that given three such �nger positions, the sensors at the �ngers indicate

the object tangents, so we know the triangle they form.

Phase 1

In the �rst phase we �nd some triangle that contains the object. We assume the object

lies somewhere \between" the �ngers, such that when we close the �ngers, say along three
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B

Figure 5.5: Steps of the algorithm.

concurrent lines at angles of 120 degrees with each other, each �nger comes in proximity

with the object.

Let f0, f1, f2 be the corresponding points that lie on the boundary of B. Let t0, t1

and t2 be the object tangents at those points. If the tangents form a triangle the �rst

phase is done. Otherwise we pick an unbounded edge and \rotate" it by movings its

�nger along B in the unbounded direction. This procedure must lead to a �nite triangle.

It is also possible to arrive at a triangle with all but one edge midpoints touching, by

keeping the distance of say f1 and f2 to t0 the same.

Phase 2

In the second phase we �nd a locally minimal area triangle enclosing B. The procedure

is simple: since we are looking only for a local minimum in the area, we can use local

methods. Each �nger divides its triangle edge into two segments. Consider the ratios of

the largest segment to the total edge length. This number is between 0 and 1, and is 1=2 if

the �nger is at the edge midpoint. Pick the edge whose �nger is proportionally the furthest

from the midpoint, i.e. whose ratio is furthest to 1=2. Then move the corresponding �nger

along the object boundary, in the direction of the largest segment. This will reduce the

ratio and it also reduces the area of the triangle since the new midpoint moves inside the

old triangle. See Figure 5.5.
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We iterate this step until all �ngers are at their edge midpoints. At this point the

normal lines at the �nger points are concurrent and we found a grasp. Convergence is

guaranteed by the fact that the area of the triangle decreases during every move, so an

in�nite loop does not occur.

5.2.2 Dealing With Uncertainty

After some point the algorithm will reach the limit of the sensor resolution and will

oscillate between various nearby positions close to the local minimum. This can be

solved by accepting a small error in the �nger positions so that they are close to the

edge midpoints. The cases where the algorithm will be the most sensitive to errors will

be when the triangle is very skinny. Then a small motion of a �nger will have larger

consequences on the edge length and its relative position. However, since we assume

some degree of friction, we simply assume that the friction is su�cient to allow for the

forces to be concurrent, irrespective of sensor angular error.

This algorithm does not work for non-convex objects since for such objects the mid-

point of an edge of a locally minimum area triangle does not necessarily lie on the object

boundary. It might still be possible to use it locally, and we plan to investigate this. If

we allow the �ngers to grasp at object vertices, and if we consider that at a vertex all

the possible normals between the normals of the adjacent edges are present, then this

algorithm can be used on polygonal objects.

5.2.3 A Variation

Mirtich and Canny's three �nger algorithm �nds o�ine the largest equilateral triangle

containing the object and the �ngers are placed at the triangle edge contact points. This

optimizes resistance to torques normal to the grip plane. A reactive algorithm for �nding

such three points can be described as follows. Again we start with all three �ngers

somewhere on the boundary. Fix f0, and move the other two �ngers around the boundary

until the tangents form an equilateral triangle. Then rotate all the �ngers around the

boundary, keeping the angles between their normals 120 degrees, until the normal at f0

has made a rotation for 120 degrees. Then move back to the position giving the largest
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Figure 5.6: A few steps of the two �nger algorithm.

area formed by the triangle t0; t1; t2.

5.2.4 Two Finger Algorithm

This section describes a simple reactive algorithm for �nding a two �nger grasp. The

hand model is as follows. The two �ngers slide on an axis that is parallel to the grasping

plane, and let the midpoint of the two �ngers be the center of the gripper. Call the �nger

normal the direction from the �nger to the midpoint. Here we assume similar sensors as

previously but we do not require angle measurement, only the information on whether the

angle formed by the inward pointing normal to the object at the �nger position and the

�nger normal is 0, positive or negative. Again, we assume that the object has a smooth

boundary and is convex.

There must exist a pair of points on the boundary of the object such that the normal

lines at both points are in fact the same line. This can be seen by considering the pair

of supporting lines, one on each side of the object, and rotating this pair until it reaches

a local minimum. Then the contact points satisfy the above requirement.

We �nd such a pair of points as follows (refer to Figure 5.6.)

We assume that initially the object is somewhere between the two �ngers. The �ngers

close until one of the sensors indicate proximity. Call this �nger f0, the other f1. Then

the gripper is rotated until the �nger normal of f0 is normal to the object. Such a rotation

will in absolute value be by less than 90 degrees. If during this rotation f1 becomes close

to B, then it starts to track the boundary of B in the direction away from f0. Otherwise,
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close the �ngers along their axis (translating the center if necessary) until f1 becomes

close to B as indicated by its sensor.

Now to �nd the grasping points as described above, we \rotate" the gripper by fol-

lowing B's boundary using f0, keeping its axis normal to B, and f1 also following B.

Then the grasp is found when f1's normal is also normal to B. This must happen by a

comment above. Note that we don't need to rotate by more than 360 degrees.

In this case also, there is a two �nger reactive algorithm for �nding the optimal grasp

in the sense of Mirtich and Canny [BM94]. We can �nd the pair of points such that the

distance between them is maximized by rotating as above by 180 degrees and noting all

the grasp positions and the distance between the �ngers for each grasp.

5.2.5 Concluding Remarks

It remains to be seen how these algorithms perform in practice. Also many variations are

possible. For example, we can replace the proximity and angle sensors by force sensors,

but we lose the non-disturbing quality.

It would be interesting to �nd algorithms that require less sensory information, for

example require only the sign of the angles at the �ngers instead of the exact angle for the

three �nger case. This would make the algorithm more robust and simplify the sensors.

Generalization of these algorithms to non convex objects would be desirable.

Finally, theorem 5.2.1 is in fact valid in any dimension, (if we replace midpoint by

centroid of a facet). Therefore it seems likely that these techniques can be extended to

three dimensional objects and four �ngers.
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Chapter 6

An Implementation

6.1 The Setup

To verify the practicality of the algorithm for reactive grasping developed in Section 5.1,

we have constructed a prototype of the parallel jaw gripper with sensors used in that

section, and implemented the reactive algorithm. The gripper was mounted in the chuck

of a robotic milling machine, mosaic, developed at New York University [Ash90]. A

picture of the gripper alone and mounted on mosaic can be seen in Figure 6.1.

The mosaic machine is a three-axis, knee-type milling machine with pulse-width

modulation motor drivers. It has a horizontal table which can move horizontally in two

(xy) directions, and a spindle which can move up or down (in the z direction), and rotate

around a vertical axis. Its motion controllers are installed in a VME chassis housing a

68020 CPU. The VxWorks real-time operating system runs on this CPU. The controllers

can also servo the machine tool spindle. This is the special feature of mosaic which

allows us to use it instead of a robot arm, since such an arm was not available. The only

di�erence is that it is the table which moves, instead of the arm.

We augmented the existing software to contain an implementation of the algorithm

of Section 5.1.2. The motion primitives which we used were only absolute and relative

moves, for the table and for the spindle, and an abort command which stopped the

currently executing move command.
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Figure 6.1: Reactive parallel jaw gripper.

6.1.1 The Reactive Gripper

Our gripper consists of three main components. A Motorola mc68332bcc single board

micro-controller with 64Kb of memory and `Time Processor Unit', a custom interface

board between the micro-controller and the gripper hardware, and the gripper hardware

itself. The micro-controller is connected through a 9600bps line to the VME computer.

The gripper itself consists of two platforms or `jaws' which can move independently .

Let's assume that the motion occurs in the xy-plane. This is in contrast with most

existing grippers, and can be used to advantage to reduce the number of interactions

between the gripper micro-controller and the robot. It also allows more precise control

over jaw position relative to the object to be grasped. Figure 6.2 illustrates the design

and shows some of the dimensions.

On each jaw a pair of infrared LED's (Motorola MLED 930) is mounted on one

side, and a pair of infrared photo-transistors (Motorola MRD 300) is mounted on the

other side, as depicted in Figure 6.3(a). This setup allows us to implement four light-

beams, two parallel and two crossed, as depicted in Figure 5.1. We do this by turning on

each LED in sequence and reading the level of infrared radiation arriving at the photo-

transistors. In the current implementation, we do not use the crossed beams, however.
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Figure 6.2: The reactive gripper.
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Figure 6.3: Infrared light beams.

The photo-transistors' output are read through an 8 channel, 12 bit, serial analog to

digital (A/D) converter (Maxim MAX186) connected directly to a serial channel of the

micro-controller. A patent for this gripper and the algorithm is being applied for by

NYU [TM95].

The software running in the micro-controller, which we have written, reads the A/D

outputs periodically, at a frequency of 2kHz in the background, using a periodic interrupt

feature of the Time Processor Unit of the mc68332bcc. The use of an A/D converter

allows us to measure \how much" a beam is broken. The distance along which this can be

done is approximately 1.5mm. In other words, we can detect the presence of an opaque

object between a LED/photo-transistor pair, and measure the distance of this object

to an imaginary line connecting the centers of the LED and the photo-transistor, if this

distance is less than about 0.75mm. The precision of the A/D converter allows us in e�ect

to implement two (or more) parallel light beams, in the xy-plane. This is demonstrated

by a simple experiment. Consider beam A1 �xed, and an opaque object is moving in a

direction perpendicular to A1 and in the xy-plane. The axis of motion goes through the

midpoint between the two sensors of A1. Figure 6.3(b) shows a graphs of A/D readings

for beam A1, as a function of the distance traveled by the object. The region between
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40 and 100 thousands of an inch can be used for implementing the multiple beams.

The platforms are driven by two TEC type SPH-35B-12TBR stepper motors with a

resolution of 1.8 deg/step. The stepper motor shaft is a threaded lead screw which drives

the platforms. The combined axial travel of both �ngers is 87mm. The interface to the

stepper motors and to the A/D is mounted directly on the gripper. The micro-controller

is su�ciently small to be also mounted on the gripper, which would permit a minimal

interconnection between the gripper and the robot: a serial line and power. This is not

currently done however.

The software running on the micro-controller monitors the status of the beams, and

outputs through the serial line any change of status. It can also respond to queries

about the status, and other commands such as open and close jaws, follow object (the

light beams, hence the jaws, constantly track the object boundary), initialize (the jaws

are opened until limit switches activate to zero position counters), and others. Another

command is to close (or open) until a change in the beam status occurs. This is the

command we use to implement the reactive algorithm. When the change occurs, the

beam status is output on the serial line. The software on the VME computer monitors

this information, and follows the table given in Section 5.1.2. For example when a rotate

state is entered, an appropriate rotate command is performed on mosaic. When the light

beams change status, an abort is performed for the rotate command.

The follow object command can be used to obtain the shape of (the convex hull of)

the object, since any change in the jaw position is reported. This information, along

with the current position of the gripper can be combined in a trivial way to obtain an

approximation of the shape. We have not done experiments to determine the precision of

the resulting polygon since this gripper is only a prototype.

6.1.2 The Experiment

In this experiment, the distance between the two light beams on each jaw was quite

large (0.8mm). The main di�culty encountered was a non-trivial amount of jitter in the

spindle axis. This is probably due to the fact that the controller for this axis is optimized

for torque control and not position control. This caused the light beams to constantly
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change states, which is a problem only in state 8. Averaging successive readings and

incorporating hysteresis solved the problem. We kept a log �le which contained, for

each state transition, the x, y coordinates (in inches in the coordinate system of the

machine tool), as well as the orientation of the gripper (in revolutions), and a number

indicating the width of the opening between the jaws (in the number of step-motor steps).

Figure 6.4 shows graphs corresponding to the above parameters, as a function of the

transition number, for one run of the algorithm. The �rst �gure shows the initial position

of the object with respect to the gripper. The initial direction of rotation was clockwise.

We can see that there is an initial approach where the gripper (actually the table) is only

translating (state 1)|this corresponds to the straight horizontal segment in the position

graph. This phase is followed by a set of rotations with some translations, and then state

8 is entered for the �rst time and a reversal occurs, at transition number 159. Finally the

gripper quickly reaches the other side of a valley in the diameter graph when the second

transition (number 215) to state 8 occurs.

Using the follow object command also worked well, as this reduced interaction between

the gripper and the machine.

6.1.3 A simulation

A simulation in Mathematica was also written. This of course performed 
awlessly.

A few representative con�gurations of a sample run are shown in Figure 6.5. The last

picture is a superposition of all the displayed con�gurations. The dot indicates the center

of the gripper, and the lines represent the light beams, with a dashed line when the beam

is broken.
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Figure 6.4: One run of the reactive algorithm.
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Figure 6.5: One run of the simulation.
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Chapter 7

Conclusion and Open Questions

In this dissertation we explore the connections between fundamental facts in discrete ge-

ometry and grasping theory. We have extended|in a natural way, and with justi�cations|

the current grasping theory, including grasp quality measures, to the frictional case, and

pointed out some problems with one such existing extension. A new robust grasp quality

measure which avoids problems with changes in object coordinate system origin was also

introduced, as well as methods for its e�cient computation. This measure does not van-

ish as does the residual radius based measure when the origin of the coordinate system is

translated. Also, scaling of the coordinate system is explored, but more work is required.

In addition, we compare various de�nitions of immobility: �rst-order, second-order, �-

nite immobility and analogous notions in the �eld of graph rigidity. It is hoped that the

analysis given will bring closer together the �eld of computational geometry, and that of

robotics. We have attempted to make the exposition readable for readers in both areas.

We have devised a simple algorithm for computing three �nger optimal grasps using

a restricted version of the rcon measure. We allow �ngers to be placed anywhere on

the boundary of the object. The resulting grips are force closure and immobilizing in a

geometric sense. They are also torque closure if we allow friction, no matter how small.

We believe a similar algorithm for four �nger grasps might be possible using the full rcon

measure.

Existing algorithms for �nding almost optimal grasps [KMY92] requires an unreal-
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istically large number of �ngers. We propose a randomized algorithm which allows one

to use a substantially smaller number of �ngers. The algorithm is in fact a purely geo-

metric algorithm for set covering. We can �nd the almost-optimal cover of a convex set

e�ciently, as well as determine the almost-optimal scaling of this set, such that it is still

inside the cover of a given size.

On the implementation side, we have attempted to meet J. Hollerbach's challenge:

to actually implement a grasping algorithm. The goal was to devise a robust algorithm

which uses little sensory input, i.e. no camera to detect the object's shape, and little

knowledge of the object. Our inspiration came from the probing literature in computa-

tional geometry. Initially in fact, our ideas centered around probing algorithms of the

type used in computational geometry for determining a polygon's shape. We use line

probes, which are implemented as simple infrared light beams. This approach led us to

design a reactive paradigm for the control of a parallel jaw gripper and multi-�nger hand.

We have designed and built a parallel jaw gripper which embodies this paradigm.

Many open questions remain, both in the theoretical domain and in the practical

domain. We mention some of them below.

� The complexity of �nding optimal grasps is still not well understood. This in-

cludes �nding an optimal m �nger frictionless grasp, given a �nite set of allowable

points on the object, and a fortiori when this set is in�nite, such as when �n-

gers can be placed anywhere on the object. It is believed that this problem is

intractable [KMY92], even in the �nite case. However, approximation algorithms

do exist, both deterministic [KMY92], and randomized, such as the one given in

chapter 4.

� Although our grasp e�ciency measure can be used in the presence of friction, as we

have shown, there is another parameter which can be considered for grasp quality:

the coe�cient of friction itself. The goals of optimizing the residual radius|a lower

bound on how large forces can be resisted, and minimizing the coe�cient of friction

needed to achieve a given grasp quality, are contradictory. It is not clear how to

balance the two goals.
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� We have ignored the issue of planning the motion of the multi-�nger hand from

its initial con�guration to the grasping con�guration, which is not unique in gen-

eral. The integration of motion planning algorithms with grasp synthesis algorithms

remains largely unexplored.

� During the course of a complex manipulation it is likely that regrasping is necessary.

We have addressed only the issue of �nding a new placement for one �nger. However

�nding an entire �nger gait: a sequence of �nger con�gurations such that the hand

can go from one to another, while satisfying closure conditions is still to be studied.

� On the geometric side, we believe that the randomized framework given still has

potential for more applications and generalizations. A good candidate for example

would be the addition of friction.
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Appendix A

Some Terminology

A.1 Geometry

A d-dimensional space, Rd, equipped with the standard linear operations, is said to be a

linear space.

If equipped with the Euclidean distance function, denoted by k � k2 or k � k, it is a
Euclidean space. In a Euclidean space, we denote by Bd the full dimensional ball centered
at the origin, and by Sd�1 the boundary of Bd.

1. A linear combination of vectors x1, : : :, xn from Rd is a vector of the form

�1x1 + � � �+ �nxn;

where �1, : : :, �n are in R.

2. An a�ne combination of vectors x1, : : :, xn from Rd is a vector of the form

�1x1 + � � �+ �nxn;

where �1, : : :, �n are in R, with �1 + � � �+ �n = 1:

3. A positive (linear) combination of vectors x1, : : :, xn from R
d is a vector of the

form

�1x1 + � � �+ �nxn;

where �1, : : :, �n are in R�0.
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4. A convex combination of vectors x1, : : :, xn from Rd is a vector of the form

�1x1 + � � �+ �nxn;

where �1, : : :, �n are in R�0 with �1 + � � �+ �n = 1:

By convention, we allow the empty linear combination (with n = 0) to take the value

0. We also assume that the empty linear combination is neither an a�ne combination

nor a convex combination.

Note that a�ne, positive and convex combinations are all linear combinations, and a

convex combination is both a�ne and positive combinations.

A nonempty subset L � Rd is said to be a

1. linear subspace: if it is closed under linear combinations;

2. a�ne subspace (or, 
at): if it is closed under a�ne combinations;

3. positive set (or, cone): if it is closed under positive combinations; and

4. convex set : if it is closed under convex combinations.

The intersection of any family of linear subspaces of Rd is again a linear subspace of

R
d. For any subset M of Rd, the intersection of all linear subspaces containing M (i.e.

the smallest linear subspace containing M) is called the linear hull of M (or, the linear

subspace spanned by M), and is denoted by lin M .

Similarly, the intersection of any family of a�ne subspaces, or positive sets or convex

sets of Rd is again, respectively, an a�ne subspace or positive set or convex set. Thus

for any subset M of Rd, we can de�ne

1. the a�ne hull (denoted by a� M) to be the smallest a�ne subspace containingM ,

2. the positive hull (denoted by pos M) to be the smallest positive set containing M ,

and

3. the convex hull (denoted by convM) to be the smallest convex set containing M .
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They are also called, respectively, the a�ne subspace, positive set and convex set spanned

by M .

Equivalently, the linear hull lin M can be de�ned to be the set of all linear combina-

tions of vectors from M . Similarly, the a�ne hull a� M (respectively, the positive hull

pos M , the convex hull conv M) can be de�ned to be the set of all a�ne (respectively,

positive, convex) combinations of vectors from M .

A set x1, : : :, xn of n vectors from Rd is said to be linearly independent if a linear

combination

�1x1 + � � �+ �nxn

can only have the value 0, when �1 = � � � = �n = 0; otherwise, the set is said to be

linearly dependent .

A set x1, : : :, xn of n vectors from Rd is said to be a�nely independent if a linear

combination

�1x1 + � � �+ �nxn with �1 + � � �+ �n = 0

can only have the value 0, when �1 = � � � = �n = 0; otherwise, the set is said to be

a�nely dependent .

A linear basis of a linear subspace L of Rd is a set M of linearly independent vectors

fromL such thatL = lin M: The dimension dimL of a linear subspace L is the cardinality

of any of its linear basis.

An a�ne basis of an a�ne subspace A ofRd is a setM of a�nely independent vectors

from L such that A = a� M: The dimension dimA of an a�ne subspace A is one less

than the cardinality of any of its a�ne basis.

Let C be any convex set. Then by d-interior of C, denoted intd C, we mean the set

of points p such that, for some d-dimensional a�ne subspace, A, p is interior to C \ A

relative to A. If c is the dim a� C, then by an abuse of notation, we write int C to mean

intc C.

For subsets A and B of Rd and � real de�ne the (Minkowski) sum of A and B by

A+ B = fa+ b : a 2 A; b 2 Bg;
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and let �A be

�A = f�a : a 2 Ag:

We shall write A�B instead of A+B if A and B are contained in subspaces of Rd for

which the usual direct sum exists: A�B is then called the direct sum of A and B. Call

C directly irreducible if there is no representation of C of the form A� B where both A

and B are di�erent from the origin. By a decomposition theorem of Gruber, we have the

result that each convex body C can be represented in the form C1� � � ��Cm where C1,

: : :, Cm are directly irreducible. Such a representation is unique modulo the order of the

summands.

A.1.1 Polytopes

A hyperplane h in Rd is a d � 1 dimensional a�ne subspace. It can be written as

h = fx 2 Rd : aTx = bg, where a 2 Rd, a 6= 0 and b 2 R. The vector a is called the

normal of h. A half-space is the set of points on one side of a hyperplane h. It is s

closed half-space if it includes h, open otherwise. An example of a closed half-space is

h+ = fx 2 Rd : aTx � bg. Hyperplane h supports a convex set S, if it intersects S and

if aT s � b or aT s � b for every point s of S. A (convex) polytope is an intersection of

closed half-spaces.

For 0 � k � d, a k-
at is the a�ne hull of k + 1 a�nely independent points and has

dimension k. A k-
at is also the intersection of d�k hyperplanes. Thus a 1-
at is a line,

a 2-
at is a plane, and a d� 1 
at is a hyperplane.

The intersection of a polytope with a supporting hyperplane is a k-face if the a�ne

hull of this intersection has dimension k. A 0-face is a vertex, a 1-face is an edge, and a

d� 1 face is a facet. Two points of a polytope P are antipodal if there are two distinct

supporting hyperplanes of P with the same normal such that each contains its respective

point.
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A.2 Screw Theory

A screw is de�ned by a straight line in three-dimensional Euclidean space, called, its

screw-axis and an associated pitch, p. A screw is represented by a six-dimensional vector,

s = (S1, S2, S3, S4, S5, S6), known as the screw coordinates . The screw coordinates are

interpreted in terms of the Pl�ucker line coordinates , (L, M , N , P , Q, R), of the screw

axis, as follows:

L = S1;

M = S2;

N = S3;

P = S4 � pS1;

Q = S5 � pS2;

R = S6 � pS3;

where L, M and N are proportional to the direction cosines of the screw axis, and P , Q

and R are proportional to the moment of the screw axis about the origin of the reference

frame (i.e. the cross product of a vector from the origin to a point on the axis and a unit

vector, directed along the screw axis). The pitch of the screw is then given by

p =
S1S4 + S2S5 + S3S6

S2
1 + S2

2 + S2
3

;

and the magnitude of the screw is given by

jsj =

8>>><>>>:
q
S2
1 + S2

2 + S2
3 ; if p <1;

q
S2
4 + S2

5 + S2
6 ; if p =1.

A unit screw is a screw with unit magnitude. Scalar multiplication and vector addi-

tion are valid for in�nitesimal screws, and the screws are closed under these operations.

Thus the six-dimensional space of in�nitesimal screws forms a vector space. See for

example [Sal82].
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Sometimes, we simply consider the 2-norms of a screw (as a six-dimensional vector),

disregarding its pitch:

jsj2 =
vuut 6X

i=1

S2
i :

Given two screws s0 = (S01, S02, S03, S04, S05, s06) and s00 = (S001 , S002 , S003 , S004 , S005 , S 006), we

de�ne their virtual coe�cient as

s0 � s00 = S01S
00
4 + S02S

00
5 + S03S

00
6 + S04S

00
1 + S05S

00
2 + S06S

00
3 :

Note that the operation `�' is a commutative operation from R6�R6 into R.

Two screws s0 and s00 are said to be

1. reciprocal : if their virtual coe�cient is zero, �.e. s0 � s00 = 0,

2. repelling : if their virtual coe�cient is strictly positive, �.e. s0 � s00 > 0, and

3. contrary : if their virtual coe�cient is strictly negative, �.e. s0 � s00 < 0.

An ensemble of screws is known as a screw system, and is de�ned by a set of n � 6

independent basis screws . The order of a screw system is equal to the number of basis

screws required to de�ne it; such a system is also called an n-system. The order of a

screw system reciprocal to an n-system is (6� n).

With an in�nitesimal rigid motion of an object in three-dimensional Euclidean space

there is an associated screw called twist such that the body rotates about and translates

along its screw axis. The screw coordinates of a twist are given by t = (T1, T2, T3,

T4, T5, T6), where the �rst three components T1, T2 and T3 correspond to the angular

displacement (or angular velocity), !, of the body and the last three components T4, T5

and T6 correspond to the translational displacement (or translational velocity), v, of a

point �xed in the body and lying at the origin of the coordinate system. The pitch of the

twist is given by

p =
! � v
! � ! :

The pitch of the twist is the ratio of the magnitude of the velocity of a point on the twist

axis to the magnitude of the angular velocity about the twist axis. If the pitch of a twist
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is zero then the twist corresponds to a pure rotation, and if the pitch of a twist is in�nite

then the twist corresponds to a pure translation. The magnitude of the twist is given by

jtj =

8><>:
k!k2; if p <1;

kvk2; if p =1.

Similarly, with any system of forces and torques acting on a rigid object in three-dim-

ensional Euclidean space there is an associated screw called wrench such that the system

of forces and torques can be replaced by an equivalent system of single force along the

wrench axis and a torque about the same wrench axis. The screw coordinates of a wrench

are given by w = (W1, W2, W3, W4, W5, W6), where the �rst three componentsW1, W2

and W3 correspond to the resultant force, f , acting on the body along the wrench axis

and the last three components W4, W5 and W6 correspond to the resultant torque, � ,

acting on the body about the wrench axis. The pitch of the wrench is given by

p =
f � �
f � f :

The pitch of the wrench is the ratio of magnitude of the torque acting about a point on

the axis to the magnitude of the force acting along the axis. If the pitch of a wrench is

zero then the wrench corresponds to a pure force, and if the pitch of a wrench is in�nite

then the wrench corresponds to a pure moment. The magnitude of the wrench is given

by

jwj =

8>><>>:
kfk2; if p <1;

k�k2; if p =1.

Note that the virtual coe�cient of a twist t = (!, v) and a wrench w = (f , �) is

w � t = f � v + � � !;

the rate of change of work done by the wrench w on a body moving with the twist t.

If a twist t is reciprocal to a wrench w, then the wrench does no work when the body

is displaced in�nitesimally by the twist. Thus for two reciprocal screws, a twist about
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one of the screws is possible while the body is being constrained about the other screw.

Similarly, if t is repelling to w, then positive work is done by the constraining wrench

when the body is displaced in�nitesimally by the twist. This implies that the twist can

be accomplished, but then the contact of the wrench will be de�nitely broken. Lastly,

if t is contrary to w, then negative (virtual) work must be done by the constraining

wrench when the body is displaced in�nitesimally by the twist. This implies that such a

displacement is impossible, if we assume that the objects being considered are all rigid.

For a given wrench system acting on a body, we say that the body has total freedom,

if the body can undergo all possible twists, without breaking the contacts associated with

the wrenches; we also say that the body has total constraint , if the body cannot undergo

any twist, without breaking the contacts; otherwise, we say that the body has partial

constraint .
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