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Abstr act 

Bioinformatics is a challenging area for computer science, since the 

underlying computational formalisms span database systems, numerical 

methods, geometric modeling and visualization, imaging and image analysis, 

combinatorial algorithms, data analysis and mining, statistical approaches, and 

reasoning under uncertainty. 

This thesis describes the VALIS environment for rapid application prototyping 

in bioinformatics. The core components of the VALIS system are the 

underlying database structure and the algorithmic development platform. 

This thesis presents a novel set of data structures that have marked advantages 

when dealing with unstructured and unbounded data that are common in 

scientific fields and bioinformatics. 

Bioinformatics problems rarely have a one-language, one-platform solution. 

The VALIS environment allows seamless integration between scripts written 

in different programming languages and includes tools to rapidly prototype 

graphical user interfaces. 

To date the speed of computation of most whole genome analysis tools have 

stood in the way of developing fast interactive programs that may be used as 

exploratory tools. This thesis presents the basic algorithms and widgets that 

permit rapid prototyping of whole genomic scale real-time applications within 

VALIS.   
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Chapter  1 

1 Introduction 

 

1.1 Software Requirements for Bioinformatics 

 

During the last decade the various genome sequencing projects and related 

research have led to an unprecedented increase in the size, complexity and 

diversity of databases of biological data. One of the few pieces of equipment 

that is now ubiquitous in modern biology is the computer. 

According to a National Institutes of Health definition, bioinformatics is 

“research, development, or application of computational tools and approaches 

for expanding the use of biological, medical, behavioral or health data, 

including those to acquire, store, organize, analyze, or visualize such data”, 

and is one of biology's fastest-growing technologies. 

Biologists need easy-to-use software tools to form hypotheses, design 

experiments, analyze their experimental results, integrate their results into the 

growing body of biological knowledge, and help them to plan future 

experiments. They need easy interfaces that allow them to search databases, 

and compare their data with those of others. 

Researchers analyzing whole genomes, and drug-discovery companies mining 

the genome for drug targets need high-throughput analysis tools to accelerate 

genome annotation and extract information from databases in more efficient 

and sophisticated ways. 
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Computer scientists play a crucial role in the emerging new discipline of 

bioinformatics. The underlying computational formalisms span a broad 

spectrum of computer science, including database systems, numerical 

methods, geometric modeling and visualization, imaging and image analysis, 

combinatorial algorithms, data analysis and mining, statistical approaches, and 

reasoning under uncertainty. 

While the common “academic” approach for designing an environment for 

application prototyping would begin by surveying all the systems available, 

analyzing their weak points, and then proposing a novel synthesis and a 

perfect new programming language that would magically solve all the 

problems the biologists have, in this thesis we have taken a different road. 

Too much effort has already been invested in developing with the tools 

currently available, and we cannot expect to displace them overnight. The 

approach we have taken is to come up with novel solutions whenever the 

current systems have proven deficiencies, like data storage and graphical user 

interfaces, but at the same time we have tried to reuse and integrate as much 

code as possible, when satisfactory solutions existed. 

 

1.2 The importance of Scr ipting Languages 

 

It is not surprising that many of the most successful systems and tools in 

bioinformatics have been written using scripting languages instead of system 

programming languages. 

Scripting languages such as Perl [18], Python [19], Rexx [21], Tcl [20], Setl 
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[22], Visual Basic [91], and the Unix shells represent a very different style of 

programming from system programming languages like C and C++. Scripting 

languages are not intended for writing applications from scratch; they are 

intended primarily for plugging components together. For example, Tcl and 

Visual Basic can be used to arrange collections of user interface controls on 

the screen, and Unix shell scripts are used to assemble filter programs into 

pipelines. Scripting languages are often used to extend the features of 

components, but they are rarely used to implement complex algorithms and 

data structures; such features are usually provided by components written in 

lower-level languages. Scripting languages are sometimes referred to as glue 

languages or system integration languages. 

In bioinformatics, scripting languages are very effective tools for the 

construction of customized analysis pipelines or workflows from existing 

building blocks and public domain database services. A characteristic of 

software applications in bioinformatics is that sometimes a program will be 

used only a few times to test a hypothesis and there will be no additional 

development after a prototype has been built. It is advantageous to develop 

such throw-away applications using a scripting language instead of a full-

fledged system programming language, as industrial strength robustness of the 

application is not required.  

 

1.3 Factors affecting the success of Scr ipting Languages 

 

Ousterhout [8] is correct in suggesting that the success of scripting languages 

stems from the availability of faster computers, the increasing importance of 

graphical user interfaces, the advantages of weak typing when prototyping and 
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the design of better high level languages. But he fails to point out the reason 

why certain scripting languages succeed while others are not widely adopted.  

It can be argued that the success of a scripting language depends less on its 

design and its speed than: 1) the set of components it makes available; 2) the 

ease of development of new components; 3) the ability to interface easily and 

seamlessly with lower level languages. 

These features are important for two reasons: 1) they make it possible to reuse 

the vast amount of public domain code and libraries available on the Internet; 

2) particularly critical routines can be brought to high efficiency by coding 

them in native code. Once a set of useful components is made available to the 

users of a scripting language, higher-level code can be developed quickly. 

With a bit of luck, the language can become a de-facto standard for an 

application domain. 

One can certainly claim that PERL and TCL are inelegant languages, but 

nevertheless, they are widely used. Why? PERL provides a good set of regular 

expression libraries combined with a syntax slightly less cryptic than AWK. 

TCL makes powerful graphical functionalities available. TCL became 

successful when the only alternative to develop a portable graphical user 

interface for a UNIX program was to use X directly, and when there were no 

cross-platform (Windows, UNIX and Mac) GUI toolkits for use. Python 

quickly became one of the most successful scripting languages because new 

libraries and types can easily be added to the core system, and the language 

itself can readily be integrated in other systems. Examination of the Python 

2.3.2 sources shows that the core language consists of about 95,000 lines of 

“C” code, while the external native packages are more than 140,000 lines. 

Finally (and we will comment on this point later) there are about 270,000 lines 
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of Python source code that are part of the Python Standard Library. 

 

1.4 Integrating external code librar ies 

 

Currently it can be difficult to gain access to high performance native libraries 

from scripting languages. This would be easier to accomplish if the libraries 

were written with a specific language in mind. Even systems like SWIG 

(Simplified Wrapper and Interface Generator)[24], that can generate the glue 

code required to link a library to many different scripting languages, cannot 

deal well with libraries that operate with objects other than simple data types, 

as we will see later.  Hence reuse of important native code is often surrounded 

by difficulties, which require much glue code to be written before a scripting 

language can be used effectively. 

 

1.5 Efficiency and quality problems which ar ise when high level 

librar ies are used 

 

High-level code libraries developed for bioinformatics applications are 

sometimes of uneven quality, and can be plagued by efficiency problems. 

To illustrate this point, let us look at the Bioperl [2][3] library for 

bioinformatics applications. This system is regarded as one of the most 

successful open source, community developed efforts in bioinformatics. As of 

February 2003 Bioperl was being developed by 45 major contributors, had 551 

modules and  about 80K lines of code. But, even one [25] of the “major 



 6 
 

contributors” complained that Bioperl was far from perfect. He noted that the 

average module length was only 144 lines of code, that many modules were 

untested or dead, and that there were multiple representations of a sequence, 

the basic data type for this kind of systems. His observations suggest a loose 

integration between the modules. Moreover the performance of the system was 

sometimes very poor, since a simple sequence creation and manipulation test, 

using the eight (!) different sequence classes available in Bioperl (which range 

from native Perl strings to LargeSeq objects), yielded results that vary in 

performance by three orders of magnitude. 

This example suggests that for serious bioinformatics use the scripting 

languages must assume that there already exists a collection of useful end 

efficient components written in a lower level language. 

Note that in some bioinformatics applications efficiency considerations can be 

paramount: dealing with and visualizing sequences of hundreds of megabytes 

and working with gene expression data for thousands of genes in hundreds of 

experiments are tasks requiring a completely different level of code efficiency 

than putting together a quick and dirty script to manage the files and 

directories in a filesystem (as in PERL or TCL/Tk). 

 

1.6 The importance of inter-language communication 

 

Another important but neglected area is reuse of existing higher-level code 

already available in a variety of scripting languages. Such reuse can be critical 

to rapid prototyping of bioinformatics applications. The Bioperl developers 

recognized this and still claim in their position paper that “ Interoperation with 
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modules written in Python and Java is supported through the evolving 

BioCORBA bridge”. (However the BioCorba bridge has been dead since the 

beginning of 2003, and has never been productively used by the Bioperl 

developers.) 

 

1.7 A summary of the thesis 

 

This thesis addresses the problems outlined above by describing a coherent, 

language-independent framework for rapid and efficient application 

prototyping in bioinformatics. We call our system VALIS, (Vast Active 

Living Intelligent System), inspired by Philip Dick’s 1981 science fiction 

novel. The thesis is organized as follows:  

We first present an architecture that supports the sharing of both native and 

higher level code between multiple scripting languages. Then, descending to a 

lower level of detail, we describe the way in which various scripting languages 

support native code classes and we describe the most successful efforts to 

design native classes for use by multiple scripting languages.  

Once this basic material has been presented we move to consider the important 

problem of bioinformatics data storage. Though relational databases have been 

very successful, they have clear shortcomings. This was made apparent a 

decade ago, when object database designers claimed to be presenting an 

important new paradigm. Handling the diverse data types encountered in 

bioinformatics requires powerful means for efficiently storing and retrieving 

general kinds of programming language objects without having to translate 

them into the limited set of formats supported by relational databases. We will 
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describe a system, originally developed for the SETL language, but then 

implemented in C and made available in VALIS, that can cope efficiently with 

unstructured data and very large objects. This system offers facilities which go 

beyond those familiar to users of standard relational databases. 

Chapter 4 then considers Graphical User Interfaces. The TCL Advocacy Page 

[26] suggests that TCL and Visual Basic are currently the only presently 

available scripting languages that directly support the rapid development of 

GUIs, since Python supports them by embedding TCL. In Chapter 4 we 

present a novel system which allows GUIs to be put together graphically, as in 

Visual Basic, but allows customization code and events for an application to 

be written in multiple scripting languages. 

Having described these fundamental components of our environment in our 

initial chapters, we move on to show VALIS in action. We show how a few 

high performance components can be used to build a genome browser and a 

whole-genome comparison tool. Our system allows such tasks to be 

accomplished in any scripting language using only a few hundred lines of 

code. As a second example we show how we reimplemented Simpathica 

[27][82] inside VALIS. Simpathica is a set of tools for simulating and 

analyzing biological pathways, and was originally written in four different 

programming languages (Java, Lisp, Octave and C++). Here we show that we 

can maximize code reuse by selecting the best language for each required 

subsystem, and that we can link everything together seamlessly using the 

VALIS multi-language scripting interface. 

Our last chapter compares the present effort with competing systems, e.g., 

Microsoft .NET, and describes some of the shortcomings of these other 

programming environments.  
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The VALIS system has been developed largely under Microsoft Windows, but 

we also show here how it can be ported to other platforms. 

The VALIS system and examples described in this thesis are available for 

download at the VALIS website [1]. 
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Chapter  2 

2 Multi-language Scr ipting Capability 

 

2.1 A VALIS mini manual 

 

Users prototype applications in the VALIS Studio development environment 

pictured below. 

2.1.1. The programming environment 

 

Figure 1. The VALIS Studio environment 
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VALIS organizes applications as ‘Projects’ . A VALIS Project consists of a 

collection of forms and script files. Each script file can be written in a different 

language, but all can communicate within a common environment. VALIS can 

work with any scripting engine supporting the ActiveX scripting interfaces. 

Note that PERL, Python and Ruby, all support these interfaces.  

As soon as a new scripting engine is installed, it will appear in the list of 

available languages in the Options menu available within VALIS: 

 

Figure 2. The VALIS 'Language options' 
dialog 

Once a set of languages has been selected for use in a VALIS project, the 

project workspace will show a folder for each language selected, as seen at the 

upper left of Figure 1. Script files can then be created by editing either in the 

VALIS Studio environment, or using another editor.  

The VALIS Studio editing facilities offer language-specific syntax 

highlighting, auto completion (typing the initial part of a function recalls all 

the available functions with that prefix) and are integrated with the VALIS 

Form system (for auto completion of Form objects and method names). 
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Once scripts are saved to disk (as text files), they can be added to the VALIS 

workspace by dropping their file icons into the appropriate language folder. In 

the following picture, a file named ‘3.js’  has been added to the Jscript 

language folder. Other files have been added to the VBScript and PerlScript 

folders.  

 

Figure 3. The language folders 

VALIS then knows that ‘3.js’  is a Javascript script file. (These associations 

between script files and languages are necessary for VALIS to select the 

correct interpreter for parsing and execution.) Any number of script files can 

be added to each language folder, and any number of language folders can be 

used within a single workspace. 

2.1.2. The VALIS namespace; application startup and termination 

In VALIS all the scripts that are part of the same project workspace share a 

common inter-language communication namespace. Any function defined as 

‘public’  in a script file will be accessible not only from other script files within 

the same programming language, but also from scripts written in other 

programming languages. These function names must be unique within the 

project. 
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When the VALIS application is started, execution ordinarily commences from 

the function whose name is ‘valismain’ , which must be supplied within the 

project. (This name can be changed from the VALIS Studio Preferences 

menu.) Since in VALIS all scripting languages share a common namespace, 

this function can be defined in any programming language.  

A VALIS run ends when the ‘valismain’  function returns, provided that no 

forms have been opened. This convention allows us to write two different 

kinds of VALIS applications: simple scripts, and scripts that manage a 

Graphical User Interface. Simple scripts do all their processing in the special 

main function ‘valismain’  (but can call other functions in any other of the 

programming languages available). VALIS graphical applications are also 

executed starting with the ‘valismain’  function, but in such an application this 

function will prepare and display at least one VALIS graphical form. 

VALIS keeps track of the number of forms being displayed, and the 

application stops when the last form is closed. VALIS GUI applications, like 

other such applications, are driven by graphical events originating from the 

forms and their widgets. 

2.1.3. Built-in VALIS library functions 

VALIS provides all the scripting engines available in it with mechanisms for 

invoking and manipulating external objects. In particular all the scripts that are 

part of a VALIS application can communicate with the VALIS environment. 

This communication is realized using certain special predefined objects, 

described below.  

When the execution of a VALIS application begins, VALIS creates and 

initializes all the scripting engines made available to it. Then the basic VALIS 

communication objects are linked to the engine environments. The most 
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important such external object is the “Valis”  object. 

This object offers the following methods: 

CreateObject(string program_id) Locates the registry entry for and 

creates an external Microsoft COM 

object whose name is ‘program_id’  

and returns a reference to it 

Clear() Clears the VALIS Studio output 

window 

RGB(int R, int G, int B) Macro returning the Color object with 

the specified Red, Green and Blue 

components 

Alert(string message) Displays the specified message and 

waits for user input 

Print(string message) Prints a string onto the VALIS Studio 

output window 

Table 1. Methods of the built-in 'Valis' 
object 

This single ‘Valis’  object is all we need to support the manipulation of 

components from all supported engines.  

The most important method of the ‘Valis’  object is its CreateObject method.  

Since in the Microsoft environment, on which we focus, scripting engines 
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were originally designed for Web development inside Internet Explorer, some 

of the scripting languages, in which we are interested (notably Jscript and 

VBScript), do not support creation of new components owing to security 

considerations. Hence we must create new components outside the scripting 

engines environments, and we do it in VALIS using the CreateObject method. 

CreateObject returns a Microsoft COM IDispatch object reference. This 

standard communication interface is central to the way in which we share 

objects between different scripting engines and is described in some detail in 

section 2.4.1 below. 

Any ActiveX component or library available on the machine executing VALIS 

can be used within an application being prototyped by calling the CreateObject 

function. Objects created by using this method can also be one of a number of 

built-in VALIS object types. Among the high performance internal native 

components which VALIS installs and registers are: 

Valis.DB The free format database described in 

a later chapter of the present thesis 

Valis.Table A flexible spreadsheet-like multi 

dimensional array data structure 

Valis.DNASeq A general object used for DNA 

sequence I/O and manipulation 

Valis.Sarray An efficient library for building and 

manipulating suffix arrays 

Valis.Merclient A library for high performance exact 

and inexact matching using suffix 
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arrays 

Valis.Seqdb A specialized sequence database 

based on Berkeley DB 

Valis.Sqlpack A library to gain access to local and 

remote relational databases 

Table 2. VALIS built-in objects 

This library of built-in objects can be extended by integrating additional native 

code packages.  

Other built-in VALIS controls, described in our next chapters, are available to 

aid in the construction of graphical user interfaces. 

 The following example (written in JavaScript) shows how CreateObject is 

typically used inside VALIS applications: 

seqdb=CreateObject("Valis.Seqdb"); 
seq=CreateObject("Valis.DNASeq"); 
seq.Input("spam.fasta"); 
seq.SelectSequence(1); 
l=seq.Length(); 
seqdb.ImportSeq("spam.db", "seq1"); 
Print("Fasta sequence imported"); 
 

Figure 4. Creating a BerkeleyDB style 
database object within VALIS 

This example uses a Sequence object to read in and parse a FASTA file and 

store it in the local BerkeleyDB based database ‘spam.db’  with a ‘seq1’ key. 
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This small example illustrates a few important points: the VALIS environment 

provides various efficient components, like Valis.Seqdb and Valis.DNASeq in 

the example. As remarked above, the library of native components is 

extensible. The scripting engines of course know nothing about these objects, 

but can create the new components using the CreateObject method of the 

predefined “Valis”  object.  

2.1.4. Parameter passing and Object sharing 

As seen above a user prototyping applications in VALIS can read in a 

sequence from a FASTA file in just one statement knowing only that a 

sequence object is named Valis.DNASeq and that it has a method called Input 

that will open, read and parse a standard sequence file. The user is otherwise 

free to use the programming language of his choice to build the application. 

Once components like the Valis.DNASeq sequence object have been created, 

they can be controlled by multiple scripting engines. The only requirement is 

that the engine can call the methods of an IDispatch object reference (and this 

capability is supported by all the engines available to us at this time). 

Since functions defined in any programming languages can be freely called 

from any other language, objects can be passed between programming 

languages for processing. While simple data types (integers, longs, strings, 

etc.) are passed by value, objects are passed by reference. Since some scripting 

engines may have no type information available at runtime (as these engine are 

disparate), and complex objects cannot be automatically converted (for the 

reasons outlined at the beginning of this chapter), the object references passed 

between languages must be considered “opaque” pointers. When a parameter 

passed across programming languages contains an object reference, the 

programming language called can use that reference and call any method that 
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the object provides. This applies to both complex objects created by the 

VALIS libraries (as tables, databases, sequences) and to objects defined by 

any of the scripting engines used in an application. 

2.1.5. What VALIS achieves 

The VALIS approach improves on what can be achieved by the simple native 

package use supported by many scripting languages. Of course the VALIS 

components are standard ActiveX components, and they have to be written 

according to certain standards and include an IDL description file, but this is 

easier than having to generate the glue code for multiple languages manually 

(or automatically with a tool like SWIG). We will discuss this in more detail in 

sections 2.2 and 2.3 below. 

Moreover, when a component is improved or updated, it only needs to be 

reinstalled and registered once to become available to all the scripting engines 

supported in VALIS; with standard native packages, at minimum the SWIG 

generated glue code must be updated and all the packages must be recompiled. 

In addition, all high-level code manipulating VALIS native libraries can be 

called directly from any programming language through this multi-language 

scripting interface. 

2.1.6. Project storage and VALIS Executables 

VALIS Studio uses various internal data structures to maintain the association 

between script files and the correct engines for the Application we are 

prototyping. Projects can be saved to disk and read back into the VALIS 

environment. 

 The VALIS project descriptors are stored as simple XML files: 
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<?xml  ver s i on=" 1. 0"  encodi ng=" UTF- 8" ?> 
<XMLConf i gSet t i ngs> 
  <f i l es> 
    <f i l ei nf o> 
      <f i l ename>si mpat hi ca. vf r </ f i l ename> 
      <name>For m1</ name> 
      <t ype>FORM</ t ype> 
    </ f i l ei nf o> 
    <f i l ei nf o> 
      <f i l ename>si mpat hi ca. j s</ f i l ename> 
      <name></ name> 
      <t ype>JScr i pt </ t ype> 
    </ f i l ei nf o> 
    <f i l ei nf o> 
      <f i l ename>xssys. l i sp</ f i l ename> 
      <name></ name> 
      <t ype>CLAXS. 1</ t ype> 
    </ f i l ei nf o> 
    <f i l ei nf o> 
      <f i l ename>gener at e. j s</ f i l ename> 
      <name></ name> 
      <t ype>JScr i pt </ t ype> 
    </ f i l ei nf o> 
    <f i l ei nf o> 
      <f i l ename>si mpat hi ca. py</ f i l ename> 
      <name></ name> 
      <t ype>Pyt hon. AXScr i pt . 2</ t ype> 
    </ f i l ei nf o> 
  </ f i l es> 
  <r ef er ences> 
    <r ef i nf o> 
      <t ypename></ t ypename> 
      <cl s i d>{ CDCDCDCD- CDCD- CDCD- CDCD- CDCDCDCDCDCD} </ c l s i d> 
    </ r ef i nf o> 
  </ r ef er ences> 
</ XMLConf i gSet t i ngs> 

Figure 5. A VALIS project descriptor 

The project file contains a list of all the script and form files that have been 

added to the project, and a list of the project type libraries used (in the 

<references> section); see below. 

VALIS applications can be distributed without the VALIS Studio environment 

being needed by converting them to self-standing executable programs using 

the “make executable” function, which VALIS supplies. This function reads 
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all the scripts and form files of a project and produces an extended version of 

the project file, which it embeds into a VALIS run-time executable. The result 

is a stand-alone program which does not require the VALIS Studio 

environment. However, all the interpreters for the scripting languages used in 

the project must be present on the machine on which the application will be 

executed. Moreover, all the graphical user interface components that are used 

by the project must be registered with the operating system. The environment 

setup required for this can readily be handled by building a custom installation 

program (which includes all the components needed) for the VALIS 

application. 

2.1.7. Project type libraries 

One of the problems with native code libraries is that numerous constants 

and special values are usually needed to control the operation of the code. As 

it is infeasible to add the definitions of these constants manually to each 

scripting language, special “ type libraries”  can be made part of the 

environment of each VALIS application. The definitions available in these 

libraries are typically values such as color codes, special values and 

enumerations. The libraries can also contain function signatures that are used 

to improve the “auto complete”  facility of the VALIS editing system. 

 

2.2 Technical issues and design choices in extending scr ipting languages 

 

We now turn to discuss some of the many technical issues which arise in 

constructing a system of the kind described in section 2.1 above. 

The author’s experience with the problem of integrating external, especially 

native software packages into a scripting language began with such an 
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integration effort for the SETL language. 

 During this development, which involved the addition of several native 

packages to this high-level language, a few important lessons about extending 

scripting languages were learned: 

i) Calling an external procedure written in a lower level language from a 

scripting language requires development of a substantial amount of 

interface code that depends on the scripting language used. 

ii) The “C” language header files generally available with major C or C++ 

libraries do not convey enough information to generate the necessary 

glue code automatically. 

iii) Often a considerable amount of high level code must be added to make 

the library usable, even after its functions are made callable. 

As an example of the issues that arise in interfacing scripting languages to 

code libraries written in C or C++, let us consider the problem of 

implementing the following simple extension to the Python interpreter. 

Suppose that, in a UNIX environment, we want to call the “system” function, 

to execute a UNIX command from Python. 

The C-written native functions available in the Python extensions usually have 

a standard signature that is designed to permit passing of a variable number of 

arguments. To be called from Python, arguments of such functions must be 

type checked, extracted, and then converted to standard “C” data types. The 

library function corresponding to the native function is then called, and its 

result packaged into a format suitable to the Python interpreter. We show a 

schematic version of the ‘glue’  code needed to accomplish just this much. 
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st at i c PyObj ect  *  
spam_syst em( PyObj ect  * sel f ,  PyObj ect  * ar gs)  
{  
    char  * command;  
    i nt  st s;  
 
    i f  ( ! PyAr g_Par seTupl e( ar gs,  " s" ,  &command) )  
        r et ur n NULL;  
    st s = syst em( command) ;  
    r et ur n Py_Bui l dVal ue( " i " ,  st s) ;  
}  

 

Figure 6. A typical 'glue code' fragment 

This new Python native function, complete with glue code like that seen 

above, must be somehow registered with the interpreter. The conventions that 

apply to this depend on the scripting language used. However, although 

precise implementation details vary widely between different languages, the 

requirement for some kind of ‘ registration’  is common to most of the 

interpreters. 

 

2.3 Existing tools for integrating native packages 

 

The interface code required for native library linkage can be generated either 

by custom code generators, or using more generic systems like SWIG[24]. The 

SWIG tool parses “C” header files and generates the ‘glue’  code described 

above automatically, also generating the makefiles necessary to build loadable 

modules. Packages generated by SWIG can therefore be adapted to many 

different scripting languages. For each scripting language, one simply needs to 

write a SWIG driver that will generate the proper glue code. 
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Although SWIG is a very useful tool, and the author was aware of it when he 

developed a large but otherwise typical native code interface (namely the 

SETL native package for the “Numerical Recipes in C” library[32]), SWIG 

could not used because of a simple but typical interfacing problem: there is not 

enough information in a C declaration to properly map C pointers to all the 

higher level constructs that such pointers can represent. For example, a “C”  

pointer declared as i nt  *  could be an array of integers, but it could also be an 

output parameter of the routine in whose header it appears. How do we 

distinguish between the two cases? And there is also an efficiency issue: Even 

if we could identify the C value pointed to correctly as an array, this could be 

so large that mapping it to some default scripting language structure, for 

example a list, would be a bad idea.  

In the SETL native code interface described above, this problem was solved 

by writing a SETL code generator that read a custom designed template file 

containing an extended “C” signature language and output the necessary glue 

code (complete with type and size checking) and the higher level (SETL) 

source code needed to deal with the lower level code.  

Of course this process can be made more general by providing all native 

libraries with an extended interface written in a specialized Interface 

Definition Language, which is exactly what CORBA [34] and Microsoft’s 

COM [33] do. But even if such extended interface description were 

systematically available, there is another major problem with SWIG’s 

approach. To understand this issue, consider the problems that need to be 

faced if one wants to embed the TCL programming language from another 

scripting language (both Python and SETL have packages that allow them to 

call TCL freely and use all of TCL’s many interactive graphical widgets). 
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In this important case, since TCL is itself a string interpreter, one can create a 

complete communication interface simply by writing glue code for seven 

functions to pass strings back and forth between TCL and another scripting 

language. This is a simple enough task. But if one just provides these seven 

routines, without adding higher level glue code, the users of the language will 

be compelled to write TCL code inside the scripting language which hosts it. 

To solve this problem, both Python and SETL provide higher level interfaces 

that generate all needed TCL code automatically via scripting language widget 

classes. Developing such an interface library for your favorite scripting 

language can be a substantial task, with which code generators like SWIG help 

hardly at all. 

Another example is furnished by SETL’s interface to the Numerical Recipes 

library. This provides several distinct classes for matrices, for example 

diagonal, tridiagonal, sparse matrices etc. A good high level interface should 

hide the complexity of its low level library from the user, and automatically 

select the best low level representation for the data. That is why SWIG or 

similar systems, even systems based on interface definition languages, will 

never be able to automatically generate fully acceptable glue code. 

The VALIS solution to this problem is to allow one high level language to call 

directly procedures written in another such language. Then once the high level 

glue code has been developed for one scripting language, other languages can 

call the resulting high level procedures directly. One can thereby ignore 

whatever ugliness there are in the lower-level libraries or languages that 

ultimately provide the functionalities made available. This is potentially a very 

advantageous approach for bioinformatics applications. For example, one only 

needs a few functions to implement a socket interface library for a scripting 
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language, but a “service”  looking up genes in Genbank requires a fair amount 

of scripting code. One can hope to achieve near-optimal low level 

representations for biological data and select the most appropriate algorithm 

for processing it, all using a fairly high level API. If this can be achieved, even 

biologists confounded by computer details could develop high performance 

code. 

Another reason for which high-level code reuse is desirable is that there is a 

very substantial amount of native code available via widely used scripting 

languages. We do not need to rewrite all such native packages as VALIS 

components at once; this can take place gradually, as required. 

 

2.4 Combining scr ipting engines; Technical issues and design choices 

 

The germ of our VALIS design is implicit in an often-overlooked capability of 

Microsoft’s Internet Explorer browser. Internet Explorer supports use of 

multiple languages inside a web page and allows the developers to choose a 

language using the HTML <SCRIPT> tag. By using the windows ‘registry’  

and some standard COM primitives, Internet Explorer can identify the correct 

scripting engine component from the name appearing in the above-described 

tag. Many developers have overlooked the significance of this feature, since 

there are no clear advantages in using multiple languages in a simple web 

page. Since, to incorporate this feature, one must also make sure that the 

scripting engines are correctly installed into the user’s machine, this apparently 

esoteric feature has not seemed to be worth the work needed to exploit it. Also, 

Microsoft only guarantees that Jscript and VBScript are installed with Internet 

Explorer, there seems to be little reason for a user to download a potentially 
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very large scripting engine like PERL or Python to view a web page. 

The situation is different if we think not of Web pages, but of rapid 

prototyping in bioinformatics. In this context we can exploit the ActiveX 

scripting technology to allow multiple scripting engines to share high level 

code in a rapid prototyping environment. In this usage, the requirement that a 

scripting engine be installed is minor. Nevertheless, even though the extension 

of scripting languages using external libraries has attracted the interest of 

many developers, leading to the diffusion of tools like SWIG, little work has 

been done on welding multiple scripting engines together. Note that many 

public domain and commercial applications support an integrated scripting 

language, for example this is done in many terminal emulation programs, also 

in AutoCad, GNU Emacs and GNU Gimp. But there has been insufficient 

effort, especially by developers of public domain software, to agree on 

standard interfaces for embedding scripting languages in applications. Such 

interfaces would of course be very advantageous, as one could simply replace 

the application’s predefined macro language with a language of one’s choice. 

The only system with the integration capability considered above that we 

could find, apart from Microsoft’s ActiveX scripting technology (which, since 

it is basic to VALIS, we will look into in detail below), is the Minotaur [35] 

system. But this is just a proof of concept system, which requires its author to 

deal with numerous different interfaces to embed the supported scripting 

languages. Moreover some of the languages that Minotaur tries to support 

were not written to be called by a “C” main program.  

A few years ago the author encountered this same difficulty while trying to 

embed a SETL interpreter inside Netscape Navigator, the leading browser at 

the time, as a way to develop GUIs for SETL programs quickly, and  to 
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replace Javascript with SETL as scripting language for HTML pages. The 

project eventually succeeded, and we were able to run SETL code inside the 

browser, call Java and Javascript from SETL and vice-versa. But a sizable 

amount of code was needed to link together the compiler and interpreter, 

which were designed originally as stand-alone programs. 

The situation is dramatically different if one uses the ActiveX Scripting 

technology of Microsoft’s Windows operating system. The development of 

this technology started at the end of 1995 and the technology was first released 

in July 1996 with Internet Explorer 3.0. The idea behind ActiveX scripting is 

very simple: the interface between applications (called by Microsoft Scripting 

Hosts) and Scripting Engines (in Microsoft jargon) or Macro languages is 

carefully standardized. Then by implementing only the appropriate Host 

interfaces in applications we are able to support a wide variety of different 

languages within a single application. 

 These powerful interfacing conventions allow even a version of Internet 

Explorer, such as 3.0, to handle scripts written in languages that did not even 

exist in 1996. Moreover Microsoft has used Scripting Engines written 

following these conventions in many host applications. For example, the same 

engines are used in Microsoft’s Excel, Word, Powerpoint, Active Server Pages 

and in its browsers. Future improvements in these Engines will automatically 

benefit all these Hosts.  

ActiveX Scripting is based on Microsoft’s Component Object Model (COM), 

and relies heavily on the OLE Automation Interface (IDispatch) to manipulate 

Host objects. It defines two “ interfaces” that the Host and Engine must use to 

be able to communicate with each other. In the following paragraphs we 

summarize the COM conventions relevant to Scripting engine integration in 
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broad outline. 

2.4.1. COM and The IDispatch interface 

COM is a software architecture that allows applications to be built from binary 

components. In COM, software components communicate by means of 

interfaces. An interface is actually a pointer to a table of function addresses, 

organized following a layout very much like that used by a C++ compiler to 

store VTABLEs in physical memory. Interfaces are identified by UUIDs 

(Unique identifiers).  

Since COM is a binary (bit-level) convention, client and server objects using 

COM must agree exactly on the physical layout of the interfaces. This 

requirement yields efficiency advantages if the services offered by an object 

are known in advance and a custom interface can be designed. In the case of 

scripting languages, however, a more flexible mechanism is required when the 

communication of data and commands between components must be handled 

more dynamically. This is the basic functionality supported by the IDispatch 

interface.  

IDispatch provides a ‘GetIDsOfNames’ function that maps method or property 

names to integer DISPID (Dispatch Identifiers). Once such a method identifier 

is obtained, the Invoke function of IDispatch can be used to call the method 

associated with it. The arguments of such calls are passed in so-called 

VARIANTS. These structures are basically “C” unions of different data types, 

each identified by a type tag. By examining this tag, interpreters (and the 

COM infrastructure) can check types and perform simple type conversions.  
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2.4.2. Windows Scripting Architecture 

 

Figure 7. Windows Scripting Architecture 

Many applications can be improved by allowing a savvy user (and not the 

original programmer) to customize and control them by using a scripting or 

macro language. The ActiveX Scripting technology carefully defines a few 

key COM interfaces (IactiveScriptParse and IactiveScriptSite) that can be used 

for the interaction between many Host applications and each of the scripting 

engines which it supports. 

ActiveX Scripting does not specify how the desired scripting engine is 

selected by the Host, but it assumes that the Host has an unambiguous way to 

determine the correct engine to create (step 2 in Figure 7 above).  

Script ‘Loading’  is then handled by IactiveScriptParse (step 3). ‘Loading’  is a 

slightly more general operation than simple parsing. Scripting Engines will 

often have the capability to save their state using the standard ‘ IPersist’  
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interfaces defined by COM. This allows the host to call the script engine's 

IPersist* ::Load method to feed it a script state that was saved at an earlier time 

(If no such saved state is provided, the host uses either the IPersist* ::InitNew 

or IActiveScriptParse::InitNew method to create a null script). A host that 

maintains a script in text form can use IActiveScriptParse::ParseScriptText to 

supply a scripting engine with the text of the script to parse, after calling 

IActiveScriptParse::InitNew to initialize the environment required for parsing.  

Applications are seen by scripting engines as ‘Documents’ . Each such 

Document describes a collection of objects that the Engine can customize or 

control. For example, the Windows Scripting Host tool describes a local 

filesystem in such a Document, thereby allowing the Scripting Engines in 

communication with the host to operate on its files and directories.  

‘Named Items’ are the top-level items of such an object hierarchy. To add a 

new Named Item, the host calls the IActiveScript::AddNamedItem method 

(step 4). (This step is not necessary if top-level named items are already part of 

the persistent state of the script loaded in step 3 (see below).) A host does not 

use IActiveScript::AddNamedItem to add sublevel named items (such as 

controls on an HTML page); rather, each engine obtains sublevel items from 

top-level items indirectly by using other ActiveX interfaces, such as the host's 

ITypeInfo and IDispatch (step 6).  

Whenever a scripting engine needs to associate a symbol it finds in a script 

with a top-level item (which was previously added to the engine environment), 

it calls the IActiveScriptSite::GetItemInfo method, which returns information 

about the given item. This operation can be used repeatedly by the scripting 

engines as new items defined externally are encountered during parsing. As 

the script runs, properties and methods of named objects can be accessed 
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and/or invoked through IDispatch::Invoke or other standard OLE binding 

mechanisms (step 8 in the figure above).  

Finally, mechanisms are defined in IactiveScript to run scripts and to allow 

Host events to trigger script callbacks. 

1. The host causes the appropriate scripting engine to start executing a 

script by setting the SCRIPTSTATE_CONNECTED flag via the 

IActiveScript::SetScriptState method (see below).  

2. Before starting the actual script, the scripting engine connects to the 

events of all the relevant objects through the IConnectionPoint 

interface (steps 7 and 8 in the figure above).  

At any given time, a Windows Scripting engine can be in one of several states.  

• UNITIALIZED. The scripting engine has just been created and 

has not been loaded with a script yet. 

• INITIALIZED. The scripting engine state has been initialized 

(using IActiveScriptParse::InitNew) or a prior state has been 

restored (scripting engine state is restored using either the 

IPersist interface or IPersist* ::InitNew). The script code passed 

using the IActiveScriptParse::ParseScriptText method is 

queued by the engine but not executed yet. 

• STARTED. The transition from the initialized state to the 

started state causes the engine to execute any code that was 

queued in the initialized state. The engine can execute code 

while in the started state, but it is not connected to any events 



 32 
 

added through the IActiveScript::AddNamedItem method. The 

host can execute code by calling the IDispatch interface 

obtained from the IActiveScript::GetScriptDispatch method, or 

by calling IActiveScriptParse::ParseScriptText. 

• CONNECTED. The script is loaded and connected to events 

emanating from host objects. If this is a transition from the 

initialized state, the scripting engine should pass through the 

started state, performing the necessary actions, before entering 

the connected state and connecting to events. 

• DISCONNECTED. A script has been loaded and has a run-time 

state, but is temporarily disconnected from sinking events from 

host objects. 

• CLOSED. The script has been closed. The scripting engine 

halts and returns errors for most methods. 

 

In fact the Microsoft Engines are slightly more complicated, as they also 

support an extended version of the IactiveScript Interface which supports 

debugging. One can use this interface for single step execution, variable 

inspection and so on. But the VALIS system described in this thesis does not 

use the Debugging interfaces yet. This interesting Microsoft feature indicates 

that even the interaction between a debugging tool and a scripting language 

can be standardized. 
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2.5 VALIS Scripting Architecture 

 

The VALIS CScript class is the main class for creating a VALIS application as 

an ActiveX scripting host. It implements the IActiveScriptSite, 

IActiveScriptSiteWindow and IDispatch interfaces. The first two are needed to 

behave as a scripting host; the third is a custom IDispatch interface. 

When we discussed the “Valis”  object above, we noted that the scripting 

engines do not need to know a priori about the methods available in this 

object. When an unknown method of the “Valis”  object is encountered, the 

scripting engines will query the IDispatch interface of the ‘Valis’  object 

requesting information about the method. By implementing a custom 

IDispatch interface, we take advantage of this to implement inter-language 

calls. 

When the GetIDsOfNames method of this custom interface is called to request 

information about a method, it must look up the name and generate the 

corresponding DISPID. (If the method is not found, an error will be 

generated.) This function first checks to see if the method is part of the CValis 

predefined IDispatch interface. For example, this object exports the predefined 

methods CreateObject, Print, etc., as listed in Table 1 above. A map between 

method names and method location is accessed and a DISPID is generated. If 

the method is not predefined, the function will instead search in the 

namespaces of all the scripting engines, using their IDispatch interfaces. 

A function whose name is ‘x’  defined in Jscript could have DISPID ‘ i’  in the 

Jscript engine. When Valis.x is called from another engine, for example Perl, a 
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new DISPID ‘ j’  will be generated by the custom IDispatch in VALIS and the 

mapping will associate DISPID ‘ j’  for PERL with DISPID ‘ i’  in Jscript. 

The lookup is only done once because our custom IDispatch caches them. 

Finally, when a scripting engine calls the method, using the IDispatch::Invoke 

function call, our custom IDispatch::Invoke is called, and this will just route 

the call to the correct IDispatch::Invoke method of the scripting engine where 

the name had been found. 

 

2.6 Summary 

 

In this chapter we examined how different scripting languages deal with native 

methods. A fair amount of glue code is required to integrate simple libraries in 

different scripting languages. Using tools like SWIG is not always a 

satisfactory solution. Embedding scripting languages in applications is even 

more problematic, and it sometimes requires major rewriting of their 

interpreters. Use of the carefully crafted interfaces provided in Microsoft’s 

ActiveX scripting is potentially a better way to interface scripting languages 

and their environments and has major advantages compared with an ad-hoc 

solution. We have exploited these interfaces in VALIS to implement language-

neutral components, inter-language calls, and hence high level code reuse. 
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Chapter  3 

3 Free Format Databases 

 

Powerful and flexible data storage systems are another basic building block 

needed to prototype bioinformatics applications effectively. 

In bioinformatics, as in many other scientific computing fields, one must deal 

with large amounts of unstructured or semistructured data. The common 

approach to this has been to store most of the data in flat files, and metadata in 

relational database systems. Sometimes the bulk of the data is stored in 

BLOBs (Binary Large Objects) within relational databases. But flat files and 

BLOBs cannot be searched effectively using the facilities available in typical 

relational databases. 

During our revision of the SETL programming language [31] we added a 

powerful database facility, which can deal effectively with unstructured data 

and potentially very large objects, like DNA sequences, microarray data and 

annotations, and which promises to be very effective especially at the 

prototyping stage.  

SETL now includes a powerful facility for database design and 

implementation. (Associated with this is an extended facility for prototyping 

and implementing complex commercial applications, based on the notion of 

hibernating transactions, which can be resident for long periods of time in the 

database itself.) These facilities are fully transactional, in the sense explained 

below, and also facilitate prototyping of and implementation of large 
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distributed databases. We decided to adopt SETL’s database system as the 

preferred data storage facility in VALIS. 

SETL databases provide an alternative to standard SQL databases. Each SETL 

database object is a potentially very large (up to hundreds of gigabytes) 

abstract object stored on disk. Each such database object resembles a map 

(function) from a set of system generated 4- or 5-byte record identifiers to the 

records which the database stores. Each of  such records is a fully general 

object of the SETL language, which is itself not excessively large (e.g. no 

more than a few dozen megabytes.) The database records are systematically 

indexed for efficient access, using the technique described below in abstract 

terms. Once a record of a SETL database has been accessed, all the operations 

of the SETL language can be applied to it. Conversely, any standard SETL 

object can be stored as a database record.  

The operations specific to SETL databases (other than standard SETL 

operations applicable to individual records) are as follows:  

x := db(id); Find a database record given its 

identifier 

db(id) := x; Store x as a database record 

associating it with the specified 

identifier 

db with x Create a new record and put x into it. 

A pair of the form  

[modified_db,id_of_new_record] is 

returned. 
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db.to_string; Database-associated mapping of 

records to reduced string variants 

('summary strings') used for indexing; 

see below 

db.contains(wd) Creates and returns a database iterator 

object, which iterates over all records 

whose summary string (see section 

3.2) contains the given word 

Table 3. Free format database operations 

Iterations 'x in iter_obj' over the iterator objects return the ordered sequence of 

keys of all records containing the specified word (in a standard key-collating 

order). These iteration objects support the following operations:  

#iter_obj Number of keys in an iteration group 

arb(iter_obj) First item in the iteration group, or 

OM (the SETL NULL value) if none 

iter_obj + iter_obj Iterate over union. 

iter_obj *  iter_obj Iterate over intersection 

iter_obj - iter_obj Iterate over difference 

Table 4. Iterator object operations 

Internally, the database 'records' are represented by long string sections, 
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separated by special marks representing each record's identifier. The detailed 

layout of the 'id-and-record' file used to store this information is described later 

in this chapter.  

 

3.1 Comparison of SETL databases with standard relational databases 

 

The database approach described in this chapter may have significant 

advantages over the currently pervasive SQL view of databases. To begin to 

see how these two approaches compare, note that the SQL database records 

are ordinarily shown with multiple fields, as in the following example. 

 

Name Age Department Salary Employed Position. 

John Peter Doe 43 063 21000 6/7/79 Clerk 

Mary M. Smith 25 063 45000 9/1/91 Mgr. 

 

In the SETL version of simple databases of this kind, indices associated with 

the SQL records are handled as special ‘ index’  strings (these are used only for 

searching in the SETL version of the same database). These index strings can 

have forms like 

"John Peter Doe 43 D:063 $21000 6/7/79 Clerk" 

"Mary Smith 25 D:063 $45000 9/1/91 Mgr." 

Note that these strings can contain words not present in the original records. 
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For example, the department column is indexed by the string ‘D:’  followed by 

the department number. The database iteration operations listed above then 

allow the crucial core of database searches, e.g. a search for the manager of the 

employee John Doe, to be written in SETL as follows:  

{ name(y): x in contains("Doe"), y in contains(department(x)) 

| position(y) = "Mgr." & "John" in words_of(string_of(x))} . 

This expression returns all the managers in any department containing an 

employee called John Doe. (Along with whatever 'accidental' data may 

occasionally result from unexpected combinations of John and Doe, as in a 

conceivable department that manufactured Doe Skin gloves and had an 

employee named Wallace John, or John Johnson. But this sort of thing should 

be quite rare, and can in any case be detected by forming and filtering or 

displaying the set of pairs  

{ [x,y]: x in contains("Doe"), y in contains(department(x)) | 

position(y) = "Mgr." & "John" in words_of(string_of(x))} . 

in an appropriate format).  

This example shows the potential advantage of the approach proposed: (a) it 

separates the optimization of database queries cleanly from their abstract 

definition; (b) no additional description of the fields to be indexed is required; 

(c) arbitrary strings can appear in fields, and the system is prepared to search 

using concordances of the words in these fields, which is often an effective 

search technique. (E.g. we can just as well find the manager of "Peter Doe", or 

"J. Peter Doe", a task which might well vex an SQL database.)  
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3.2 Indexing in SETL databases 

 

As illustrated by the simple example given above, each SETL database has an 

administrator-defined 'to_string(record)' method which applies to each of its 

records and which yields a 'record summary string' defining those aspects of 

the record which are to be indexed to improve the efficiency of searches over 

the database. By cutting these summary strings into words (simply by breaking 

these strings at all included whitespaces) the system generates an associated 

internal word_list(record). These word lists are automatically used to build a 

'word index' associated with the database. Iterations over the db.contains(wd) 

iterator objects described above exploit this index.  

 

3.3 Transaction handling in SETL databases 

 

SETL databases, like all other SETL objects, have value semantics. For 

example, if db is a database object, then the sequence of statements  

db2 : = db;   

db : = db wi t h new_r ecor d;  

changes db by adding a new record, but leaves db2 unchanged since no new 

assignment has been made to it. The SETL database implementation creates 

the required 'logical copies' in an efficient way, whose cost is only weakly 

dependent of the size of the database objects involved.  



 41 
 

This gives an easy way of obtaining transaction-like effects. To begin a 

transaction, which may have to be aborted, simply write  

db_copy : = db;   

Then edit db as desired. To 'commit' the transaction, simply erase the copy by 

writing db_copy := OM. To back out of the transaction instead, simply write 

db := db_copy; this will restore db to its original state.  

  

3.4 Value-semantics of SETL Databases 

 

The following short program illustrates several other significant properties of 

SETL databases, specifically:  

a) As already mentioned, they obey value-semantics rather than pointer 

semantics rules;  

b) Records in these databases need not have any fixed structure; 

c) These databases behave like ordinary SETL objects, i.e. can be put into 

tuples and/or sets, can be passed as parameters to subroutines;etc.  

The program is:  

program test;  -- test program for SETL database class 
use SETL_database;  -- use the free format database class 
use string_utility_pak;  -- we need breakup & join functions 
 
 -- create an empty database 
db := SETL_database(tuple_to_stg,”spam.db"); 
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 -- Add first protein sequence 
 [db,first_protein]:= db with ["CAE85316", 
   "manklflvcatfalcflltnasiyrtvvefdeddasnpmgprqkcqkefqqracqk” ,  
   "Arabidopsis thaliana"]; 
 
-- Add second protein sequence 
[db,second_protein]:=db with ["CAC80708", 
    "anyggdkqygretrqtgdyenpihstggqyeqdvrqtdeygnpvrrtdey",”  Helianthus niveus” ]; 
                 
-- Add third protein sequence 
[db,third_protein]:=db with ["AAL69565", 

   "msccngkcgcgmypdvevsattvmivdgvapkqmfaegsegsfvaeg", 
   ”Helianthus tuberosus“]; 

 
db_save := db;  -- save the original database 
  
db(first_protein) with :=  
 "Eukaryota; Viridiplantae; Streptophyta; Embryophyta;”+ 
 “Tracheophyta; Spermatophyta; Magnoliophyta; eudicotyledons;”+ 
 “core eudicots; rosids; eurosids II; Brassicales; “+ 
 “Brassicaceae; Arabidopsis"; 
 
db(second_protein) with := 
 "Eukaryota; Viridiplantae; Streptophyta; Embryophyta; “+ 
 “Tracheophyta;Spermatophyta; Magnoliophyta; eudicotyledons;”+ 
 “core eudicots;asterids; campanulids; Asterales; Asteraceae;”+ 
 “Asteroideae;Heliantheae; Helianthus"; 
 
-- Add ‘L:’  prefix to search the ‘ locus’  tuple element  
pr int("Edited Database"); 
for  key in  
  (db.contains("L:CAE85316")+ db.contains("L:CAC80708") +      
   db.contains("L:AAL69565")) loop  
      pr int(db(key));  
end loop; 
 
pr int("Saved Database"); 
for  key in  
  (db_save.contains("L:CAE85316")+  
   db_save.contains("L:CAC80708") +      
   db_save.contains("L:AAL69565")) loop  
      pr int(db_save(key));  
end loop; 
 
pr int("\nComparison of records in the two databases"); 
pr int("db_save(first_protein): ",db_save(first_protein));  
pr int("db(first_protein): ",db(first_protein));  
 
-- make a tuple of databases 
database_list := [db,db_save]; 
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pr int("\nQuery from a list of databases"); 
for  database in database_list loop 
    for  key in database.contains("K:rosids") loop 
       pr int(database(key)); 
    end loop; 
end loop; 
-- convert [locus,seq,organism,keywords] tuple 
-- to index string. Words appearing in the 4th element of the 
-- tuple are prefixed with ‘K:’ . Similar prefixes are added to 
-- the other elements of the tuple.  
procedure tuple_to_stg(p);   
    [locus,-,org,kw] := p;  
    x:=" L:"+locus+" "+ 
 join([" O:"+k:k in breakup(org?"",";.,/*  ")],"")+ 
 join([" K:"+k:k in breakup(kw?"",";.,/*  ")],""); 
    return x; 
 
end tuple_to_stg; 
end test; 

 
 

 
The preceding program produces the following output.  

Edited Database 
["CAE85316", "manklflvcatfalcflltnasiyrtvvefdeddasnpmgprqkcqkefqqracqk", 
"Arabidopsis thaliana", "Eukaryota; Viridiplantae; Streptophyta; 
Embryophyta;Tracheophyta; Spermatophyta; Magnoliophyta; eudicotyledons;core 
eudicots; rosids; eurosids II; Brassicales; Brassicaceae; Arabidopsis"] 
["CAC80708", "anyggdkqygretrqtgdyenpihstggqyeqdvrqtdeygnpvrrtdey", " Helianthus 
niveus", "Eukaryota; Viridiplantae; Streptophyta; Embryophyta; 
Tracheophyta;Spermatophyta; Magnoliophyta; eudicotyledons;core eudicots;asterids; 
campanulids; Asterales; Asteraceae;Asteroideae;Heliantheae; Helianthus"] 
["AAL69565", "msccngkcgcgmypdvevsattvmivdgvapkqmfaegsegsfvaeg", "Helianthus 
tuberosus"] 
Saved Database 
["CAE85316", "manklflvcatfalcflltnasiyrtvvefdeddasnpmgprqkcqkefqqracqk", 
"Arabidopsis thaliana"] 
["CAC80708", "anyggdkqygretrqtgdyenpihstggqyeqdvrqtdeygnpvrrtdey", " Helianthus 
niveus"] 
["AAL69565", "msccngkcgcgmypdvevsattvmivdgvapkqmfaegsegsfvaeg", "Helianthus 
tuberosus"] 
 
Comparison of records in the two databases 
db_save(first_protein): ["CAE85316", 
"manklflvcatfalcflltnasiyrtvvefdeddasnpmgprqkcqkefqqracqk", "Arabidopsis thaliana"] 
db(first_protein): ["CAE85316", 
"manklflvcatfalcflltnasiyrtvvefdeddasnpmgprqkcqkefqqracqk", "Arabidopsis thaliana", 
"Eukaryota; Viridiplantae; Streptophyta; Embryophyta;Tracheophyta; Spermatophyta; 
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Magnoliophyta; eudicotyledons;core eudicots; rosids; eurosids II; Brassicales; 
Brassicaceae; Arabidopsis"] 
 
Query from a list of databases 
["CAE85316", "manklflvcatfalcflltnasiyrtvvefdeddasnpmgprqkcqkefqqracqk", 
"Arabidopsis thaliana", "Eukaryota; Viridiplantae; Streptophyta; 
Embryophyta;Tracheophyta; Spermatophyta; Magnoliophyta; eudicotyledons;core 
eudicots; rosids; eurosids II; Brassicales; Brassicaceae; Arabidopsis"] 

 
 

The program seen above creates a database and inserts three records, each a 

simple pair, into it. The database is then copied to a second variable 'db_save', 

and the original database is modified by editing its first two records, to which 

additional string components are freely added. (The simplicity of this 

operation, which is a bit clumsy in a standard SQL database since it changes 

the number of SQL 'columns', illustrates one of the advantages of SETL 

databases: since records in them are entirely free-form, additional elements of 

any kind can be added to records in a completely dynamic way.) The edited 

records are retrieved from the edited database using an iterator, but then also 

from the saved database, which is seen to contain the original records, 

unchanged. This illustrates a second advantage of SETL databases, their value 

semantics, on which a 'transactional' capability can be built in the manner 

noted above. Finally we include the databases in a tuple, from which the 

databases are then recovered and used. This example illustrates the fact that 

databases behave like ordinary SETL objects, and so can be put into tuples 

and/or sets, passed as parameters to subroutines, etc.  

 

3.5 Implementing SETL Databases 

 

The underlying structure used to realize the large objects supported by SETL 

(and most other databases) is the B-tree. This famous structure can be thought 
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of as a way of maintaining large tuples in a form that allows fast execution of 

all the standard tuple operations, i.e., component access, component change, 

component insertion, slicing, and slice assignment. B-trees can be thought of 

as arising by recursive elaboration of the simple idea of dividing very long 

tuples T (e.g. tuples of length 1 million) into sections of some smaller length, 

e.g., length approximately 1000. If this recursive division is done, then a tuple 

of length 1 million will be represented by a tuple R of tuples, each of length 

roughly 1000, the whole list R also being of length approximately 1000. To 

make an insertion into the middle of such a structure (regarded as a 

representation of the large tuple T that would be obtained by concatenating all 

the components of R) is then much faster than it would be in a flat 

representation of T. Insertion in the middle of a flat representation might 

require all following components to be moved, so if T is of length one million, 

500,000 of its components might have to be moved. But in the alternate 

representation suggested above the insertion is made in a sub-tuple of R 

having length roughly 1000 that is easily located, and so should require no 

more than 500 components to be moved. This gives a speedup that can be as 

high as 1000.  

As already stated, the B-tree structure arises by recursive elaboration of the 

idea just described. Rather than arbitrarily dividing long tuples like T into 

some fixed number of pieces in the two-level way sketched above, we divide it 

into a tuple of tuples of tuples ..., down to as many levels as needed, limiting 

each of the tuples ('nodes') that appear at each level of this nested tree structure 

to some convenient maximum length. It turns out to be most convenient to 

insist that (with the one exception of the tree root) each 'node', (i.e., tuple) 

occurring in the data structure have a length lying between some integer n and 

(2n – 1). This ensures that insertions remain very fast while at the same time 

limiting the number of tree levels that must be searched to locate a given 
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component of the large tuple T that the tree structure R represents. 

Specifically, this number of levels can be no more than log n L where L is the 

length of the tuple represented.  

The process of insertion of a new component into the large tuple represented 

by the recursive tree structure R will force insertion of a component at the 

bottom tree level, and this may cause the tree node into which the insertion is 

made to overflow the maximum length (2n – 1) to which it is supposed to be 

limited. But when this happens we can simply divide that node into two nodes 

of length n, inserting one of these at the next level up in the tree. Even though 

the process of recursive insertion thereby triggered may propagate all the way 

up the tree to its root, it remains orderly at each recursive level, as the more 

detailed code shown below makes plain.  

3.5.1. Value semantics for large B-trees 

For our intended database application, the crucial advantage of the recursive 

B-tree structure is that it allows value semantics to be implemented efficiently 

for large tuples. If, for example, we copy a tuple t1 into a tuple t2 by writing t2 

:= t1, and then change a designated component of t1 by writing t1(i) := x, we 

only need to copy and modify those tree nodes of the changed tree t1 which lie 

on the tree path down to the point at which the modification occurs. All other 

tree nodes can simply be shared between the two trees t1 and t2. Thus the 

amount of node copying and modification required by the rules of value 

semantics is the product of O(n log L), where L is the length of the tuple 

represented, and (2n – 1) is the maximum allowed node size.  

The following generic B-tree code reflects these considerations, some stated 

explicitly and others implicitly. The database native classes, described at the 

end of this chapter, have been derived from a prototype SETL class 'Btup', 
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containing two vectors 'cum' and 'tup'. 

 
class btup;    -- B-tree class 
 class var  debug := false; 
 
 procedure create();  -- create blank btup 
 procedure set(t);  -- set btup object from standard SETL tuple 
 
 procedure check_consistency();  -- check consistency of tree 
 
end btup; 
 
class body btup;    -- B-tree class 
 const minw := 5, maxw := 2 *  minw - 1;    
   -- minimum number of descendants, except at top 
  
 var  h := 1,cum := [],tup := [];   -- height, cumulant tuple, top-level tuple; 
  -- Note that B-trees have value semantics, but with sharing of sub-trees. 
  -- The cumulant records the number of descendants of each node,  
  -- plus those of all siblings to its left. 
   
 var  iter_ptr,compno;      -- iteration pointer and count 
  
 procedure create();  -- create empty B-tree top from tuple 
  iter_ptr := newat(); compno := newat();    
   -- set up iteration stack pointer and compno pointer 
  return self; 
 end create; 

 

 The 'tup' instance variable held in each tree node stores the list of child nodes 

of that node, or, in the case of nodes of height 1, stores the components of the 

represented tuple that come under it. The j'th component of the 'cum' instance 

variable, whose value is a tuple identical in length to 'tup', stores the total 

number of leaves that come under any of the nodes tup(1)...tup(j). These 'cum' 

vectors allow a fast binary-search like process to search down the tree for a 

twig of given index i within the large tuple T that the tree represents . This 

recursive search structure is seen in the procedure self(i) that appears in the 

following code, which is programmed recursively, as a single line. The same is 

true for the component change operation seen in the procedure self(i) := x that 
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follows. It is worth thinking through the action of this latter routine in detail to 

understand how much node copying it implies when a component is changed, 

and where these copies occur in the code.  

procedure self(i);  -- component extraction;  
   -- descend iteratively to desired leaf using cumulant to find child containing it 
  return if h = 1 then tup(i) elseif i <= cum(1) then tup(1)(i) 
    elseif exists c = cum(j) | i <= c then tup(j)(i - cum(j - 1)) 
     else OM end if; 
 end; 
 
 procedure self(i) := x;  -- component change 
   -- descend iteratively to desired leaf using cumulant to find child containing it 
   -- then change the value at this node. Note that the cumulant need not be changed  
   -- in this case, since here it represents the number of leaves beneath each node, 
   -- which this operation does not change. 
  if h = 1 then tup(i) := x; elseif i <= cum(1) then tup(1)(i) := x; 
    elseif exists c = cum(j) | i <= c then tup(c)(i - cum(j - 1)) := x;  
     else abor t("index " + str (i) + " is out of range"); end if; 
 end; 

 

3.5.2. Single and multiple cumulants 

The 'cum' vector illustrates the important idea of storing 'cumulant' quantities, 

derived by some addition-like operation from the children of a node, at each of 

the nodes of a B-tree. This idea generalizes readily. Multiple such 'cumulants' 

can be stored in each node. Each such cumulant supports a corresponding form 

of fast binary search in the tree. This idea is explored more fully in the next 

section.  

Since all of the twigs in a B-tree are required to have the same height, that is, 

to lie at the same distance from the tree root, it follows that every tree node lies 

at the same distance from all of the twigs that come under it. This height is 

third item of value data stored in each node.  

With respect to all of these node data items, particularly 'cum' and 'tup', node 

objects have value semantics. In other words, change of any component of 
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these two tuple-valued instance variables causes a copy of the changed object 

to be made in such a way as to guarantee that no other object referenced 

directly or indirectly by an independent variable is affected. It should be clear 

that this copy mechanism implies that the large tuples represented by our 

system of tree nodes also have value semantics.  

3.5.3. Constructing SETL Databases out of B-trees 

The B-tree object class 'btup' implemented by the SETL class code just 

described and further detailed in section 3.8 below is logically ancestral to 

most of the other codes needed to realize the database facility at which we aim. 

Thus, most of the actual codes used are derived from this initial prototype by 

working additional functionality and feature into it, without really changing its 

basic structure very much. We shall see that such 'conservative reworking' 

allows us to define not only various useful kinds of large string and large tuple 

objects, but also all of the large maps used for indexing SETL databases in the 

manner described at the start of this Chapter. Another essential feature, which 

can be worked into the same basic B-tree structure is the reference counting 

mechanism used to give B-trees the value semantics whose importance we 

have already explained. The fact that this latter mechanism allows us to 

implement database modifications using only very limited numbers of tree 

node changes is essential both to the efficiency of the whole database system, 

and also to the crash-recovery capabilities.  

We begin our account of this chain of generalizations by explaining one of the 

simplest of them, the use of additional cumulants to realize other important 

data structures by generalized B-trees.  

3.5.4. B-trees Incorporating More General Cumulants.  

The B-tree data structure seen in the preceding code can be adapted to realize 
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other data objects than tuples. For example, we can also represent very large 

strings, e.g., strings of several gigabytes in length, by similar B-tree structures, 

simply by replacing the initial cumulant 'cum' stored in the tree nodes by one 

which cumulates number of characters rather than number of nodes. The idea 

here is to store very large strings by breaking them up into pieces, say of a few 

hundred characters each, which are referenced by an overlying B-tree (of a 

few million nodes). In this B-tree the cumulant stored represents the number of 

characters in all the leaves, which fall below some particular tree node and its 

left siblings. A variation on this idea would be to maintain strings divided into 

words by the occurrence of non-alphabetic characters, and into lines by the 

occurrence of end-of-line characters, in such a way as to allow very rapid 

access either to a particular character position, or to a particular word by its 

numerical position in the sequence of all words, or to a particular line by line 

number. For this, we could simply maintain three auxiliary cumulants, one for 

total number of characters, the second for total number of word breaks, the 

third for total number of line-end characters. It should be clear that the code 

seen above can be adapted to handle all such cases, and that it can retain all the 

advantages seen above. That is, all supported accesses and edit operations can 

be executed in time proportional to the logarithm of data object size, and value 

semantics, with the advantages that we have noted above, can be maintained in 

the presence of active edit operations.  

The cumulants described in the preceding section all are count-like, in that 

they are calculated for parent nodes by summing the corresponding values for 

their children. However, the same cumulant technique will work even if 

operation used to calculate the cumulant of a parent node from those of its 

children is an associative operation different from simple summation. Only 

associativity, not even commutativity, is required. This observation opens 

many possibilities. For example, the maximum and minimum operations in 
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any ordered set are associative. Hence, if the leaves of a B-tree store elements 

(such as strings or integers) belonging to such a set, we can keep a cumulant 

derived from the maximum or minimum of children at each of the B-tree's 

nodes, and keep these cumulants updated as the tree is edited, in much the way 

seen in the code displayed above, without losing the logarithmic efficiency of 

the operations which this code implements. Suppose then that we aim to keep 

the tree leaves in sorted order. The availability of a cumulant representing the 

maximum of all the leaves coming under or to the left of any of our tree nodes 

makes it possible to find the largest leaf smaller than a new leaf to be inserted 

in logarithmic time. Hence we can insert this new leaf at its proper position in 

logarithmic time, thus always keeping the sequence of leaves in their desired 

order.  

Here is another, more sophisticated but less generally useful variant of this 

same idea. Suppose that we wish to store very long parenthesized strings in a 

manner allowing the closing parenthesis matching a given open parenthesis to 

be located rapidly, even though these two parentheses may be separated by 

millions of characters and many nested pairs of matching parentheses. This 

can be done as follows. In each node we keep two cumulants, one 

'free_opens_in' representing the total number of open-parentheses coming 

under the node which are not matched by any close-parenthesis coming to 

their right, the second 'free_closes_in' representing the total number of close-

parentheses coming under the node which are not matched by any open-

parenthesis lying to their left. To combine these quantities as calculated for 

two strings when the two strings are concatenated we can use the following 

formula.  
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  if (foi1 := free_opens_in(stg1)) >= (fci2 :=  
  free_closes_in(stg2)) then  
 free_opens_in(stg1 + stg2) := foi1 - fci2 + 
  free_opens_in(stg2);  
 free_closes_in(stg1 + stg2) := free_closes_in(stg1); 
  else 
 free_opens_in(stg1 + stg2) := free_opens_in(stg2);  
 free_closes_in(stg1 + stg2) := free_closes_in(stg2) +  
  (fci2 - foi1); 
  end if; 

 

This algorithm can be thought of as implementing an operation on pairs 

[num_free_opens_in,num_free_closes_in] which, because of its relationship to 

the obviously associative string-concatenation operation, is also associative. 

Hence these quantities can be kept together as cumulants in the nodes of a B-

tree representing strings. It is not hard to see that, with these quantities 

available, the parenthesis which matches a give open- or close-parenthesis can 

be found by a logarithmically efficient recursive search.  

 

3.6 Low level implementation of the SETL database facility 

 

A prototype of the SETL database system described above has been 

implemented as a set of high performance specialized native “C” B-tree 

packages for most of the structures needed to support the top level code. The 

SETL specification of these native packages is available in the ‘setldb.stl’  file 

of the SETL distribution [12]. But before we can discuss the low-level 

architecture of the system, we need to examine what is involved in this 

transformation. 
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For the reasons outlined in the first section of this chapter, we want to manage 

large objects represented by B-trees and stored on disk, be these simple strings 

or full databases, and we want them to have value semantics. The initial 

in_RAM prototypes of these objects, realized by the codes described earlier in 

this chapter, are implemented entirely by SETL objects, and so inherit their 

value semantics from that of their underlying SETL objects. In this setting the 

SETL interpreter supplies the implicit reference count management needed to 

support value semantics. For objects stored on disk this is no longer the case, 

and so the reference count management needed to give these objects their 

desired value semantics must be programmed explicitly.  

3.6.1. Reference-count management.  

We separate reference-count management into two parts:  

• A first or 'bottom' part having to do with the counting references to 

disk records as these are set up and removed by the codes internal to 

the packages of routines (those described in the following section) 

which implement operations on disk-stored strings (and other similar 

objects) represented by B-trees, and 

•  A second or 'top' part relating to the handling of reference counts in 

procedures, which operate more at the application level, by using  

these lower-level routines. Note that routines of this second class are 

unaware of the very existence of internal B-tree nodes, and so never 

reference them directly. However, they do reference the root nodes of 

such objects, and so may modify the reference counts of such root 

nodes.  

Reference counting can be implemented by making each disk record (for an 
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object of interest) store a field that keeps track of the total current number of 

references to the record, either from variables in a program manipulating such 

records, or from other records. First consider reference-count management for 

(the limited family of) 'bottom' level routines, i.e. those that manipulate 

internal tree nodes. Whenever such a record, referenced by a variable obj, is 

about to be modified (e.g. by an operation like obj.set_cum(i,x) or 

obj.set_tup(i,x) which modifies a field within it), we check the refcount of the 

record. If this is 1, we can be sure that 'obj' is the only reference to the object, 

and so we can simply proceed with the change. However, if the refcount is > 1, 

then there are other references to the same record, and the rules of value 

semantics forbid the edit about to be performed from affecting the data value 

seen by these other references. To avoid this conflict, we first copy the record 

that we are about to edit (thereby replacing it with a brand new record whose 

reference count is certainly 1), and then modify the new record. When this 

copy operation is done the number of references to the old copy of the record 

diminishes by 1. The check-and-replace operation needed for this process can 

be thought of as an assignment  

obj := obj.maycopy(); 

inserted at the start of edit operations like obj.set_cum(i,x). The operation 

'maycopy' just returns 'obj' if its count is 1, but otherwise returns a fresh copy 

and decrements the refcount of the old copy by 1.  

Creation of the new record copy increments the number of references to all of 

the records to which the copied record refers. The operation 'maycopy' can 

handle this supplementary action also.  

This is all that we need do in the case of edit operations like obj.set_cum(i,x) 

which simply modify a numerical value. An additional step is required for 
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operations like 'obj.set_tup(i,x)' which modifies a value which points to 

another record. This step must decrement the number of references to the 

object 'obj.tup(i)' which was originally referenced by the field being modified 

(unless this field was initially unused). In addition, this step must also 

increment the number of references to the object x (unless x is undefined). 

This action can be thought of as an operation  

note_replace_ref(obj.tup(i),x); 

inserted at the start of the 'obj.set_tup(i,x)' procedure but not at the start of 

operations like 'obj.set_cum(i,x)'. Similarly any statement x := obj.tup(i); 

decrements the number of references to the record value of x (if any) and 

increments the number of references to obj.tup(i). Hence a call 

note_replace_ref(x,obj.tup(i)) should be attached to each such operation.  

To create the new records required for some of the operations just described, 

we need a way of allocating the disk pages, which will hold them. If disk 

space is not to be consumed progressively until no more remains, pages 

allocated to records that are no longer in use must be reclaimed. A record falls 

out of use whenever its reference count falls to zero, as may, for example, 

happen to the record referenced by 'obj.tup(i)' when we execute the operation 

'obj.set_tup(i,x)'. The simplest (but not the most efficient) way of managing 

page reclamation is to maintain a free pages list, to the front of which records 

are linked when they are freed, and from which recycled pages can be 

recovered by delinking them as needed. This is a simple one-way list. Records 

put on the free list can retain any references to whatever other records they 

initially contain. However, when a record is delinked from the free-list in 

preparation for re-use, it implicitly loses all these references, so each of the 

other records that it references must have their refcount decremented by 1, 
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perhaps causing them to be added to the free-list themselves. (Alternatively, all 

the children of a record being freed can be processed immediately to 

decrement their reference counts and free them recursively if these counts fall 

to zero.)  

Whenever a simple assignment x := y; is used to replace the value of one 

variable by that of another, the record referenced by x (if any) loses one 

reference, and that referenced by y (if any) gains one. These actions can be 

implemented by a call adjust_counts(x,  y);  

To complete our account of the bottom-level reference-count manipulations 

needed to implement value semantics for disk-stored structures, it only 

remains to consider the treatment of procedure calls and returns. A call 

f(expn1,...,expnn) can be viewed as a group of assignments  

param1 := expn1; ... paramn := expnn 

of the call arguments to the parameter values of f, which are originally OM . 

Hence calls simply increment the reference-count values of those of their 

arguments which have references as values. This set of assignments is 

followed by a jump, which has no effect on reference counts. All variables 

other than the parameter variables of called procedures should be given the 

value OM ; recursive calls should be considered to introduce wholly new sets 

of parameter and internal variables.  

The operation  

return expn; 

can be viewed as an assignment  
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retvar := expn; 

of 'expn' to the return variable of the function call, followed by a jump which 

has no effect on reference counts. The return also deallocates all the internal 

and parameter variables of the procedure being returned from. This implicitly 

sets all these values to OM , and so should decrement the reference count of 

every variable whose immediate pre-return value is a record. This can be 

done by inserting a call  

cleanup([v1,...,vm]); 

immediately before each return statement, which should however first be 

rewritten in the form  

retval := expn; return retval; 

The 'retval := expn;' statement will have its normal effect on reference counts; 

the 'return retval;' statement which follows it will have none. Function calls, 

which ignore their returned values, should be treated as if they read  

retval := f(expn1,...,expnn); retval := OM; 

The 'cleanup' routine seen above simply examines each component of its 

argument tuple and decrements the number of references of each such 

component, which is a record.  

3.6.2. Buffered Disk Records. 

All the SETL database native packages call a basic record and storage 

management component (routines starting with ‘DR_’), which handle record 

allocation and deallocation, management of the free list, buffered read-record 

and write-record operations, record copying and record reference-counting 
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operations. This same family of routines also provides a series of diagnostic 

calls for assessing memory usage, and a group of auxiliary debug-oriented 

procedures designed for tracking down memory leaks. 

This package must know the structure of all the possible record types, for 

example compound records or leaves, and all the different kinds of B-trees 

used to construct the overall database facility, as their layout differs 

substantially. The current implementation recognizes six different record 

variants, identified by a different record tag.  

We use the following protocol for reference count manipulation: reference 

counts are maintained for objects of all relevant types by inserting ‘ incref’  

and ‘xfref’  calls. The use of these routines reflects the consideration laid out 

in the preceding section. 

The ‘ incref(x,n)’  routine has a null action on objects of all other types. 

Whenever we create an object of one of these types, it is given a refcount of 

1.  

Whenever an assignment x := y is made to a variable whose value before or 

value after the assignments may be one of these types, we execute the routine 

‘xfref(x, y)’  which decrements the reference count of the object y (if it has 

one of the relevant object types) and increments that of y. Assignments f(z) 

:= y have a like action, namely xfref(f(z),y). Operations like s with x, which 

put x into a composite, increment the reference count of y, as do operations 

like z := arb(s) and y := f(z) which extract it from a composite. 

Whenever quantities x, y etc. are passed to a procedure their reference counts 

are incremented; whenever a procedure is exited, the refcount of each of its 

arguments and local variables must be decremented. Before any modifying 
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assignments to f or s, like f(z) := y, s with y, or f.component := n, we check 

the refcount of f (or s); if this is greater than 1, we replace f by a copy cf of f 

(and we must increment the refcount of each element of f by 1, but 

decrement the refcount of the original version of f by 1); the change is then 

made to the fresh copy of f. 

If the reference count of f falls to zero when decremented, f is added to the 

free list, and the reference count of each object it references is also 

decremented by 1; this may cause these objects to be added to the free list in 

turn. 

Each object obj for which we manage refcounts explicitly must therefore 

provide a method obj.increment_refs(n) which iterates over all the objects 

which it references and adds n to their reference counts; and also a method 

obj.increment_ref(n) which calls the standard incref(x,n). 

3.6.3. Large String Management with reference Counting. 

A SETL package of routines called ‘B_tree_for_bigstring’   and the underlying  

native routines (all the methods starting with ‘BNR_’) provide basic B-tree 

manipulation, as adapted for trees whose leaves contain strings, and in 

particular handles most of cumulant and reference count maintenance. This 

package is largely a reworking, as a partly native package, of the generic B-

tree class described previously. Its routines use string length as a cumulant. 

They differ from the generic B-tree routines presented above and in section 3.8 

below principally by the addition of reference count maintenance instructions 

and by modifications of the recursive leaf search sequences seen in the generic 

code needed to handle character positions rather than leaf numbers.  

The 'bi g_st r i ng_pak ’  and the corresponding ‘big_string’  class superimpose 

a string-like syntax on the underlying B-tree capabilities which 
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‘B_tree_for_bigstring’  provides, and also handle most leaf-level character 

manipulation. 

3.6.4. The full Database design 

Once we have the ability to store efficiently arbitrarily large SETL strings, we 

can proceed to design SETL databases of the type described in the first section 

of this chapter. These are implemented using underlying objects of two types 

(ignoring those other structures needed for crash recovery). These are the 

logical record list and the word index. The logical record list can be thought of 

as an ordered list of strings, each consisting of the binstr version of a SETL 

object (the 'record'), prefixed by a 4- (possibly 5-) byte identifier field (the 

'record id', generated to be unique). This list is kept in lexicographic order of 

the record id fields within it.  

In abstract logical terms, the word index is an ordered tuple of pairs [h,id], 

where h is the hash h = Hash_function(w) of a word w, and id is the index of a 

database record R whose string summary contains a (blank-delimited) word 

having the hash h. Since the (system) hash function used makes it unlikely that 

two distinct words drawn from the collection appearing in such a string have 

the same hash, almost all pairs [h,id] in the word index will correspond to 

cases in which a desired word w appears in R's string summary. Abstractly 

speaking, the word index is kept in lexicographic order of the pairs [h,id] in it. 

However, since this can be expected to create long runs of pairs with identical 

first components, efficiency is improved by suppressing the first component of 

every pair in such a run, except for the very first pair in the run. This results in 

a tuple of elements  

h, id1, id2, ..,idn, h',id'1, id'2, .., id'n', , h'',id''1, id''2, .., id''n''... 

where the elements h appear in increasing order, and the elements id appear in 
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increasing order between any two successive elements h but not overall. The 

cumulants kept for this tuple record represent both the number of components 

descending from each node N in its representing B-tree and the largest hash h 

descending from N and any of its left siblings. This data structure gives us fast 

access to the last tuple component of type h satisfying any specified inequality 

h <= H, and the next tuple component of type h' following h. In this way, we 

find the run id1, id2, ..,idn of components of type id which appears between h 

and h', and so we have what we need to implement database iterator objects 

and db.contains(wd), and the further iterator objects  

  iter_obj + iter_obj (union iteration) 

  iter_obj *  iter_obj (iterate over intersection), 

  iter_obj - iter_obj (iterate over difference) 

deriving from them.  

Logical record list object and word index objects must, like the bigstring 

objects described earlier and the SETL database objects which record list and 

word index objects serve to implement, have value semantics. Since they are 

stored on disk, they must be supplied with the internal reference-count 

facilities needed to implement value semantics for very large, disk-stored 

objects.  

Two objects are used to access the records stored in two ‘bigstring’  objects. 

The first, described in the previous section, stores the list of records as a large 

string. The second big_stg_for_wdoc_pak, which is based on 

B_tree_for_wdocstring and the ‘WO_* ‘   native routines, is a specialized 

‘bigstring’  optimized for storing strings of record numbers. 
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The code needed to implement the logical record list described above is 

supplied in a package called B_tree_for_dbix and the corresponding 

‘DBIX_* ’  native routines. These implement a specialized B-tree with two 

cumulants: one for the record size, the second for the last record id. This 

structure is used to index the records stored in a large string B-tree. 

Finally, words used for indexed search in the database are indexed using a 

package called B_tree_for_wdix package and its associated ‘WIX_* ’  native 

routines. This B-tree also comes with two cumulants: the first cumulant is 

used for the total number of occurrences, the second cumulant indicates the 

last index word. This last structure indexes the records stored in the 

specialized bigstring for word occurrences. 

The following simple database dump, from the program of section 3.4 shows 

the internal structure of the database (before its records are edited): 

DATABASE RECORDS: 
record 1: [1..116] ["CAE85316", 
"manklflvcatfalcflltnasiyrtvvefdeddasnpmgprqkcqkefqqracqk", 
"Arabidopsis thaliana"] 
record 2: [117..224] ["CAC80708", 
"anyggdkqygretrqtgdyenpihstggqyeqdvrqtdeygnpvrrtdey", " Helianthus 
niveus"] 
record 3: [225..331] ["AAL69565", 
"msccngkcgcgmypdvevsattvmivdgvapkqmfaegsegsfvaeg", "Helianthus 
tuberosus"] 
INDEXED WORDS AND WORD OCCURENCES: 
O:: (1..1 )[2] 
O:niveus: (2..2 )[2] 
L:AAL69565: (3..3 )[3] 
L:CAC80708: (4..4 )[2] 
L:CAE85316: (5..5 )[1] 
O:Arabidopsis: (6..6 )[1] 
O:Helianthus: (7..8 )[2, 3] 
O:thaliana: (9..9 )[1] 
O:tuberosus: (10..10 )[3] 
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The database consists of a large string of 331 characters. Using the 

B_tree_for_dbix index, we can locate each record in the bigstring. The 

corresponding ‘word occurrences bigstring’  has 10 records indexed with the 

B_tree_for_wdix B-tree. 

Since all needed B-tree operations, can be implemented within the logical 

record list and word index classes provided, little remains to be done in the 

top-level database class. This toplevel code simply needs to coordinate the 

logical record list and word index objects that it contains, and to give database 

operations their intended syntax. The iterations on 'contains' objects are 

provided by an auxiliary iterator object class.  

3.6.5. Generalized Databases 

Since database objects themselves are so simple, we can readily create 

specialized new kinds of databases by modifying the code seen above to 

extend its functionality. For example, one can create databases, which store 

other  databases within records, even hierarchically. Also the records held in 

generalized databases need not be SETL objects small enough to be held in 

RAM, but can include very large strings and tuples held on disk and edited 

only piecemeal. The B-trees used to realize these strings and/or tuples can 

support additional cumulants of the kind described earlier, so that they can be 

kept in some sorted order whenever insertions are made in them, or can 

support various kinds of dynamic summation or specialized access. The codes 

described in this chapter are not hard to extend to support such features if 

desired.  

Various other cumulants allow representation of other kinds of disk-storable 

objects. One such example is the 'large tuple of long strings'. This can have 

billions of components, and individual components can be billions of bytes 
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long. The crucial operations linking such objects to the SETL environment can 

be represented as  

stg := obj(n..[j,k]);     and      obj(n..[j,k]) := stg; 

The first of these operations extracts characters j through k from the n'th 

component of the vector of strings and returns it as a standard SETL string 

(which should be no more than a few megabytes in length). The second 

assigns a standard SETL string to this same range of characters. We also have  

obj(n..m) := tup;     and     obj(n..m) := OM ; 

where tup is a standard SETL tuple of strings. The first of these inserts a 

vector of strings into the stated range of the 'large tuple of long strings'; the 

second deletes a range of components.  

To represent these objects we need only introduce a family of B-trees with two 

cumulants: total number of characters in a node's descendant leaves and total 

number of breaks between vector components in a node's descendant leaves.  

Another important case is that of string-to-string mappings, which in abstract 

terms are sets of pairs of strings [key, val], the key being of no more than 

standard SETL size, but the string value being possibly very large. The 

abstract mapping from 'key' to 'val' can be many-to-many, but for simplicity in 

the present remarks we shall suppose that it is single-valued. Here the main 

operations can be represented as  

stg := obj(key..[j,k]);         and          obj(key..[j,k]) := stg; 

The first of these operations extracts characters i through j from the val string 

located by the key 'key'. The second assigns a standard SETL string to this 
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same range of characters. We also have  

obj(key) := stg;          and         obj(key) := OM ; 

where stg is a standard SETL string. The first of these inserts a new [key,val] 

pair; the second deletes the pair with the stated key.  

To represent these objects we can introduce a family of B-trees with two 

cumulants: total number of characters in a node's descendant leaves and largest 

key-hash in a node's descendant leaves. Here each record is assumed to consist 

of four abutting fields  

hash_of_key, length_of_key, key, val 

Here it should be understood that hash_of_key is a hash of a record's 'key' 

value. The key itself can be of an arbitrary length, given by the 4-byte 

length_of_key field. Records are stored in order of their hash_of_key field. 

Keys with identical hash_of_key values should occur only very rarely; but 

when they do, they will be stored successively, in random order. Search for the 

record with a given key then proceeds by binary search on the key's hash, 

followed by key verification at the bottom level. In the rare case in which 

several keys have the same hash, a slightly more elaborate serial search at the 

bottom level is required.  

 

3.7 Comparison with similar database librar ies 

 

Objects and operations much like those described in the final paragraphs of the 

preceding section are central to the Berkeley database management 

library[53]. This popular system is widely used both directly and as the basic 
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data management component for many public domain and commercial 

database engines.  

Berkeley DB is a very solid embedded database system that can be used in 

applications requiring high-performance concurrent storage and retrieval of 

key/value pairs. However, during our experiments with it for storing very large 

genomics objects we found that the DB->put operation in 

DB_DBT_PARTIAL mode, which is equivalent to the  

obj(key..[j,k]) := stg; 

described above, reads the entire value portion of the record. Since Berkeley 

DB uses a simple architecture to store large data portions in overflow pages, 

updates in the middle of a large data section involve rewriting all the 

subsequent chunks. A similar architecture is used in Postgres SQL [75] to 

store large fields.  We note that the extended B-tree structure described in this 

chapter solves this problem.  

The other work on efficient storage for large objects described in [14][15][16] 

is based on trees, but does not exploit their internal semantics. The system 

proposed here can easily be extended, supports fast incremental updates, and is 

thus a perfect addition tool for VALIS.  
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3.8 Details of the other pr incipal B-tree operations 

 

The two basic routines in the ‘Btup’  class code are those for the operations 

'self(i)' and 'self(i) := x', presented above. After these two most essential 

routines, the next most crucial is the following concatenation routine.  

 procedure self + x;  -- concatenation 
 
  if is_tuple(xx := x) then x := btup(); x := x.set(xx); end if;   
 -- force second argument to btuple 
  if #cum = 0 then return x; end if;  
  if #x.cum = 0 then return self; end if;  -- null cases 
 
  new := btup();   -- create an empty B-tuple 
 
  if x.h = h then   -- concatenated btup has same height 
 
   new.tup := tup + x.tup; new.h := h;  -- perform a top-level concatenation 
 
   c1l := cum(#cum); new.cum := cum + [c + c1l: c in x.cum]; 
       -- get cumulant of concatenation, adjusting second part 
   return new.ifsplit();   -- split if necessary  
 
  elseif x.h < h then  -- concatenated btup is shorter 
 
   new.tup := tup; new.cum := cum; new.h := h;    
    -- copy the top node of this tree 
 
   end_elt := tup(nt := #tup);  -- the final descendant of this tree's root 
   end_elt := end_elt + x;  -- recursively catenate x, 1 level down 
 
   if end_elt.h < h then    -- the subconcatenation has not split 
    (new.tup)(nt) := end_elt;   -- just install 
    new.cum(nt) := new.cum(nt) + x.cum(#x.cum);   
     -- adjust the cumulant to reflect the added descendants 
 
    return new;  -- return the new tree 
   end if; 
 
     -- Otherwise the subconcatenation has grown taller, i.e. has split. 
     -- The descendants of the new top level root  
     -- replace the prior last node at this level 
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     -- (which is the node to which x was concatenated) 
   new.tup(nt..nt) := end_elt.tup; new.h := h; 
       -- replace the last child of the original tree  
       -- with the children of the new split sub-tree 
  
   c1ml := if nt = 1 then 0 else cum(nt - 1) end if;   
    -- get cumulant prior to last node of original tree  
   new.cum(nt..nt) := [c + c1ml: c in end_elt.cum];   
    -- add this to all subsequent cumulants 
 
   return new.ifsplit();   -- split if necessary  
    
  else  -- otherwise concatenated element is taller 
 
   new.tup := x.tup; new.cum := xc := x.cum; new.h := xh := x.h;   
    -- copy the top node of x 
   first_x_elt := x.tup(1);  -- the first element of x 
   tot_cum := cum(#cum);   -- total cumulant of original tree 
    
   first_x_elt := self + first_x_elt;   
    -- recursively catenate this tree to first child of x 
   if first_x_elt.h < xh then  -- the subconcatenation has not split 
    (new.tup)(1) := first_x_elt;   -- it becomes first child of the new tree 
    for  j in [1..#xc] loop  
     new.cum(j) +:= tot_cum;   -- adjust the later cumulants 
    end loop; 
    return new;  -- return the new tree 
   end if; 
 
     -- otherwise the subconcatenation has grown taller, i.e. has split 
     -- the descendants of the new top level root replace  
     -- the prior first node at this level 
     -- (which is the node of x to which our original tree was concatenated) 
   new.tup(1..1) := first_x_elt.tup;   
       -- replace the first child of the original tree  
       -- with the children of the new split sub-tree 
 
   new.cum(1..1) := first_x_elt.cum;   
    -- likewise replace the cumulant of the first child of the original tree 
   for  j in [3..#xc + 1] loop   -- adjust all later cumulants 
    new.cum(j) +:= tot_cum;  
   end loop; 
    
   return new.ifsplit();   -- split if necessary  
  
  end if; 
 
 end; 
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Concatenation is most easily understood in the special case that the two trees 

being concatenated are of the same height. In this case, it should be clear that 

they can be concatenated simply by concatenating their top-most nodes. If this 

generates a top node whose length is less than the limit 2n, on which we insist, 

we have only to set the cumulant vector correctly; otherwise we split the 

children of the over-fat top node that results into two parts, making each of 

them the child of a separate parent, and introducing a new top node having 

these nodes as its children. But if the two nodes being concatenated are not of 

the same height, then either the first or the second will be taller than the other. 

Suppose, to begin with, that the first tree t1 is taller than the second tree t2. 

Then we descend to the rightmost child t'1 of the first tree, and recursively 

concatenate t'1 with the second tree. If the resulting tree c'1 is of the same 

height as t'1, then it replaces t'1 as the final child of t1, thereby defining a new 

B-tree r1 whose internally stored cumulant we simply need to adjust. But if c'1 

is taller than t'1 it will have two children, each of the same height as t'1. In this 

case these two children replace the single child t'1 of t1, resulting in a new B-

tree r1. If this r1 does not have too many children, its stored cumulant is simply 

adjusted and it becomes the concatenation result. But if r1 has too many 

children, we spit these children evenly among two new parent nodes, which 

then become the two children of a result tree one level higher than the original 

t1, and so forth iteratively. This conditional splitting operation, like all others 

in the code which follows, is performed by the utility routine 'ifsplit()' seen 

here. 

procedure ifsplit();  -- split into 2 nodes if overpopulated 
 
  if (nt := #tup) <= maxw then return self; end if; 
 
      -- needn't split if not above length limit 
  t1 := tup(1..nto2 := nt/2); t2 := tup(nto2 + 1..); -- split the top node in half 
  c1 := cum(1..nto2); c2 := cum(nto2 + 1..);   -- split its cumulant in half 
  cum1 := cum(nto2); cum2 := cum(nt);     
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   -- get cumulants for the two new nodes that will be formed 
   
    -- form a new root with just two descendants 
  new1 := btup(); new1.h := h; new1.tup := t1; new1.cum := c1;   
   -- initialize first child and its cumulant 
  new2 := btup(); new2.h := h; new2.tup := t2;  
  new2.cum := [c - cum1: c in c2]; -- initialize second child and its cumulant 
  
  newtop := btup();  -- create a new empty node 
  newtop.tup := [new1,new2];  
  newtop.cum := [cum1,cum2]; newtop.h := h + 1;  
   -- attach children, cumulant, and set height 
  return newtop; 
end ifsplit; 

  

The case of concatenations in which t2 is taller than t1 is handled 

symmetrically to the case just described.  

The concatenation procedure we have just described is used as a subroutine by 

various other important procedures in the set seen below, including end-slice 

extraction, general slice extraction, and slice assignment.  

procedure self(i..);  -- end slice extraction 
 
  if i > (cncp1 := cum(nc := #cum) + 1) or  i < 1 then  
 abor t("end slice index out of range: " + str (i)); end if; 
  if i = cncp1 then return btup(); end if;  -- empty result 
  if i = 1 then return self; end if;    -- the whole shebang 
   
  if h = 1 then    -- minimal height case; slice the tuple 
   new := btup(); new.h := 1; new.tup := tup(i..); new.cum := [1..nc - i + 1];  
   return new; 
  end if; 
 
  must := exists c = cum(j) | c >= i;  
   -- find the child position to which the slice propagates 
  cumbef := if j = 1 then 0 else cum(j - 1) end if;   
    -- get the cumulant prior to position of the sliced child 
  tj := tup(j);    -- get the child to which the slice propagates 
   
  if j = nc then return tj(i - cumbef..); end if;   
   -- just return slice of the child if this is last 
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  tail := btup(); tail.h := h; tail.tup := tup(j + 1..);   
   -- otherwise get siblings following the sliced child  
  cj := cum(j); tail.cum := [c - cj: c in cum(j + 1..)];   
   -- adjust cumulant for this isolated 'tail' group of siblings 
  
  return tj(i - cumbef..) + tail;   
   -- catenate the 'tail' to the sliced child, and return 
 
 end; 

 

End-slice extraction, which is written as t(i..) where t is a B-tree object and i an 

integer, is performed as follows. We first locate that child t' of the top node of t 

whose associated subtree contains the leaf with index i. Let c be the total 

number of leaves in children of t which precede t'. Then we form the B-tree t2 

whose children are those children of t which follow t', form t'(i - c..) 

recursively, and concatenate t'(i - c..) and t2 + t to get the desired result. It 

should be clear that a prefix-slice extraction t(1..i) could be performed in a 

manner symmetrical to the procedure just described, and that a general slice 

extraction t(1..i) can be viewed as a combination of a prefix-slice and an end-

slice operation. The detailed code for general slice extraction seen in what 

follows does essentially this, but in a slightly optimized way, which we leave 

to the reader for further examination.  

  procedure self(i..j) := x;    -- slice assignment 
 
    if is_tuple(xx := x) then       -- force x to btup if it is a tuple 
      x := btup(); x := x.set(xx); 
    elseif type(x) /= "BTUP" then    -- otherwise x must already be a btup 
      abort("illegal slice-assignment right-hand side: " + str (x)); 
    end if; 
     
      -- check that first index is in range 
    if i > (cncp1 := (cnc := if (nc := #cum) = 0 then 0 else cum(nc) end if) + 1)  
  or  i < 1 then 
      abort("first slice-assignment index out of range: " + str (i));  
    end if; 
     
         -- check that second index is in range 



 72 
 

    if j < i - 1 or  j > cnc then  
     abor t("second slice-assignment index out of range: " + str (i));  
 end if; 
 
    if i = 1 then       -- the over-written part of this tree is a prefix 
 
      if j = cnc then  -- the whole initial tree is over-written; just copy x to self 
        h := x.h; tup := x.tup; cum := x.cum; return x;     
         -- modify this btup; return right-hand side 
      end if;  
 
            -- otherwise only a prefix of the initial tree is over-written 
      tail := self(j + 1..);        
       -- extract the trailing B-tup section that is not over-written  
      new := btup(); new.h := x.h; new.tup := x.tup; new.cum := x.cum;      
       -- make a copy of x 
 
      new := new + tail;      -- catenate the assigned part plus the retained part 
      h := new.h; tup := new.tup; cum := new.cum;    -- modify this btup 
      return x;                      -- return right-hand side 
       
    end if; 
            -- in this final case, a middle portion of the original tree is over-written  
    pref := self(1..i - 1);       -- get the retained prefix 
    new := btup();  
    new.h := x.h; new.tup := x.tup; new.cum := x.cum;      
     -- the assigned part 
     
    if j = cnc then    -- over-written part is suffix 
      new := pref + new;      -- catenate the retained part plus the assigned part  
    else         -- over-written part is middle 
      tail := self(j + 1..); new2 := btup();  
      new2.h := x.h; new2.tup := x.tup; new2.cum := x.cum;  
      new := pref + new + tail;       
       -- catenate the retained part plus the two assigned parts  
    end if;  
 
    h := new.h; tup := new.tup; cum := new.cum;      -- modify this btup 
    return x;                      -- return right-hand side 
 
  end; 
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Slice assignment t(i..j) := t* is performed as if the result to be formed had been 

written as t(1..i - 1) + t* + t(j + 1..). The remaining B-tree operations in the 

‘Btup’  class code all have easy expressions in terms of the basic operations we 

have just described.  

The prototype ‘Btup’  code [31] reflects all of the foregoing design 

considerations, which it expands in detail.  

Next we show templates for some of the key procedures used to manage the 

iterator objects associated with our btup objects, and to handle iterations over 

these and their Boolean combinations. 

 
  procedure iterator_start;     -- initialize simple iteration over btup 
      -- sets up iterator stack as value referenced by iter_ptr.  
      -- This is a stack of pairs [tup,posn] 
    stack := [];    -- to be built 
 
    node := self; 
    for  j in [1..h] loop 
      stack with:= [notup := node.tup,if j = h then 0 else 1 end if]; node := notup(1);  
    end loop; 
 
    ^iter_ptr := stack;      -- attach stack to iteration pointer 
 
  end iterator_start; 
   
  procedure set_iterator_start;      
   -- initialize second-form iteration over btup (similar to iterator_start) 
   -- sets up iterator stack as value referenced by iter_ptr 
    stack := [];    -- to be built 
    ^compno := 0; 
     
    node := self; 
    for  j in [1..h] loop 
      stack with:= [notup := node.tup,if j = h then 0 else 1 end if]; node := notup(1);  
    end loop; 
 
    ^iter_ptr := stack;      -- attach stack to iteration pointer 
  end set_iterator_start; 
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The family of routines for iterating over B-trees works by maintaining a stack 

of tree nodes representing the sequence of ancestors leading to the leaf x 

currently reached by an iteration. Each stack entry stores a tree node t, along 

with the position i of the next lower node in the chain among the children of t. 

If the leaf x is not the last child of the bottom-most node t' in this chain, the 

iteration is advanced simply by moving on from x to the next child of t'. 

Otherwise we must locate the bottom-most node t* in the sequence whose final 

child has not yet been reached by the iteration, advance to the next child t2 of 

t*, and then rebuild the part of the stack following this t2 by appending the 

chain of children leading to the first node in the subtree headed by t2. Details 

of the code just outlined are found in the 'iterator_next()' routine seen below. 

  procedure iterator_next();     -- step simple iteration over btup 
      -- returns value as singleton tuple  whose value  is a pair, or OM if terminating 
      -- advances iterator stack referenced by iter_ptr 
    stack := ^iter_ptr;    -- retrieve the iterator stack 
 
    height := 1; 
     
    for  j in [ns := #stack,ns - 1..1] loop 
      if (sj := stack(j))(2) = #sj(1) then  
        height +:= 1; removed frome stack;    -- remove any exhausted element 
      else 
        exit; 
      end if; 
    end loop; 
     
    if height = 1 then  
      removed frome stack;  -- pop the top element; then advance it 
      [tup,loc] := removed;  
      result := tup(loc +:= 1); stack(ns) := [tup,loc]; 
      ^iter_ptr := stack; return [result];     
       -- return singleton tuple built from leaf element 
    end if; 
     
    if stack = [] then return OM; end if;     
     -- iteration is exhausted 
 
    removed frome stack;   
     -- pop the top element, then advance it and use to rebuild rest of stack 
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    [tup,loc] := removed; node := tup(loc +:= 1); stack with:= [tup,loc]; 
 
    for  j in [1..hm1 := height - 1] loop       
     -- rebuild the stack, starting with the node that was advanced  
      stack with:=  
       [notup := node.tup,if j = hm1 then 0 else 1 end if];  
   node := notup(1);  
    end loop; 
 
    removed frome stack;  -- pop the top element; then advance it 
    [tup,loc] := removed; result := tup(loc +:= 1); stack(ns) := [tup,loc]; 
    ^iter_ptr := stack; return [result];     
     -- return singleton tuple built from leaf element 
     
  end iterator_next; 

   
The closely related 'set_iterator_next()' routine adapts this same idea to realize 

iterations of the modified form 'for y = t(i) loop..."  

  procedure set_iterator_next();     -- step second-form iteration over btup 
    -- returns value as singleton, or OM if terminating 
    -- advances iterator stack referenced by iter_ptr 
    stack := ^iter_ptr;    -- retrieve the iterator stack 
    ^compno := cno := ^compno + 1;    -- advance the component number 
     
    height := 1; 
     
    for  j in [ns := #stack,ns - 1..1] loop 
      if (sj := stack(j))(2) = #sj(1) then  
        height +:= 1; removed frome stack;    -- remove any exhausted element 
      else 
        exit; 
      end if; 
    end loop; 
     
    if height = 1 then  
      removed frome stack;  -- pop the top element; then advance it 
      [tup,loc] := removed;  
      result := tup(loc +:= 1); stack(ns) := [tup,loc]; 
      ^iter_ptr := stack; return [[cno,result]];     
       -- return singleton tuple built from leaf element 
    end if; 
     
    if stack = [] then return OM; end if;    -- iteration is exhausted 
 
    removed frome stack;   
     -- pop the top element, then advance it and use to rebuild rest of stack 
    [tup,loc] := removed; node := tup(loc +:= 1); stack with:= [tup,loc]; 
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    for  j in [1..hm1 := height - 1] loop       
     -- rebuild the stack, starting with the node that was advanced  
      stack with:= [notup := node.tup,if j = hm1 then 0 else 1 end if]; node := notup(1);  
    end loop; 
 
    removed frome stack;  -- pop the top element; then advance it 
    [tup,loc] := removed; result := tup(loc +:= 1); stack(ns) := [tup,loc]; 
    ^iter_ptr := stack; return [[cno,result]];     
     -- return singleton tuple built from leaf element 
 
  end set_iterator_next; 

 

3.9 Histor ical notes 

 

In his 1973 book[54] Knuth suggested (as an exercise) using B-trees 

augmented with what we call a “count cumulant”  to access elements of large 

lists efficiently. For many years these “Ranked B-trees” were used almost 

exclusively for sampling in databases, although acceptance/rejection (A/R) 

sampling methods were usually preferred as they could be applied to standard 

B-trees. 

Unfortunately these ranked B-trees dropped largely out of use until Srivastasa 

[55] rediscovered them in 1988 and used them to implement statistical 

databases. He called his augmented B-trees TBSAM trees and used them to 

compute averages, sums, standard deviations, and higher order statistics 

efficiently. 

In 1995 Hellerstein proposed the Generalized Search Tree (GiST), a template 

indexing structure that allows domain experts to customize database system 

indices, but his project ended in 1999 and only recently [73] has the GiST 

library finally been used to store Russian-Doll trees [74] in Postgres. 

The idea of storing chunks of large objects in B-tree leaves probably appeared 
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first in the Exodus [15] system in 1986. Notwithstanding the advantages of 

this approach, these data structures were then ignored for many years. As we 

have seen above, many research and commercial databases still use inferior 

techniques. Amazingly, even Microsoft has shipped many versions of its Sql 

Server with a BLOB architecture based on linked lists of blocks, and has only 

recently (2000) replaced this crude structure with a structure similar to the one 

used in Exodus. 

More recently, ideas similar to those presented in this chapter have been used 

in the Bento and Quilt data storage facility of the OpenDoc [17] compound 

document architecture. This project, started by Apple in 1992, moved to CI 

labs, a consortium of Apple, IBM, Microsoft and others, but was terminated in 

1997. 

The implementation details of Quilt and Bento are not in the public domain, 

but from an application point of view each Quilt file contains 

and organizes an arbitrary number of efficient random access streams 

and/or B+tree dictionaries that are interleaved in varying formats that 

are named and typed so that all content is tagged with meta-information 

that clarifies the purpose of each stream or dictionary. In 1997 the main 

designer of Quilt/Bento proposed a system called IronDoc[56], which is 

supposed to be the public domain successor of Quilt, but at the time of this 

writing it remains an unimplemented design. 

 

3.10 Summary 

 

The databases described in this chapter have distinct advantages over 
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relational databases for bioinformatics data storage. Current databases for 

biological data usually store only metadata, and leave the bulk of the data in 

flat files or BLOBs. Extending the basic B-tree data structure with multiple 

‘cumulants’  allows us to store unstructured or semi-structured data such as 

experiment results or genome annotations efficiently. 
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Chapter  4 

4 GUIs in a multi-language environment 

4.1 Issues in GUI design 

 

As noted in the introduction to this thesis, Graphical User Interfaces play a 

very important role in bioinformatics.  Many of the most widely used 

applications, such as the UCSC genome browser [41] and Genbank [40] are 

Web Browser based. GUIs are essential parts of tools to analyze microarrays, 

for example Spotfire[42][43], also of programs and tools for assembling and 

finishing DNA sequences, of various phylogeny tree generators, and many 

other applications. 

Many toolkits, libraries, frameworks and environments are available to make 

the complex task of building the GUI interfaces of applications easier. The 

GUI Toolkit Framework Page [7] lists hundreds of them. 

GUI development frameworks can be divided (very roughly) into two major 

classes: code-based and RAD (Rapid Application Development) 

environments. In code-based environments the developer builds the GUI in 

code using the programming language of his choice. In RAD environments, 

GUIs are built by placing graphical widgets directly on a model of the 

interface and then customizing them.  

Early RAD tools like MENULAY [89] (1982) offered automatic conversion to 

C programs of graphically described user interfaces. Macromedia Director 

(introduced as Micromind Director in 1988) is a quintessential representative 



 80 
 

of a RAD development system, as it allows most application development 

(including animation design) to be done graphically, code being added only as 

needed. (Director, in spite of some clumsiness in its internal scripting 

language, LINGO, is still unsurpassed for the development of multimedia 

presentations). Visual Basic  (of which version 1.0 was released in 1991) is the 

most widely used RAD system. 

In RAD frameworks, the environment hides the complexity of the underlying 

libraries and allows the user to place GUI components and set their (initial) 

properties without writing a single line of code. This makes it much easier to 

prototype many applications in Visual Basic or Director than in other 

environments. To make bioinformatics application development and 

customization accessible to biologists, we have to provide something similar. 

 

4.2 Building GUIs with VALIS 

 

4.2.1. VALIS Forms and widgets 

To facilitate rapid development of GUIs for bioinformatics applications, 

VALIS Studio provides facilities to build them graphically. New graphical 

‘ forms’ can be created using the VALIS Studio main menu, as seen in Figure 8 

below. 
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Figure 8. A newly created form in VALIS 
Studio 

The figure shows the ‘Control Toolbox’  widget, which contains the set of 

standard graphical widgets (Buttons, Lists, Labels, etc.) available to the user. 

Any widget seen in the toolbox can be placed onto a VALIS form by dragging 

its icon onto the developing form.  
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4.2.2. VALIS Components 

Of course this system would be completely useless for bioinformatics if we 

could not add custom components going beyond the standard controls 

available. In fact, the user can expand the collection of widgets available in the 

Toolbox. Additional components are added by right-clicking in the Toolbox 

widget. This operation recalls a list of all the Widgets that have been 

‘ registered’  on the machine (see the figure below).  

 

 

Figure 9. Customizing the Control Toolbox 

These additional widgets, which the system user can either acquire or build, 

will behave exactly like the standard widgets.  

Selecting additional widgets places their icons in the Toolbox and makes them 
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available to the user. In the next chapter we will describe some of the high 

performance controls we implemented to develop some interesting VALIS 

applications. 

4.2.3. Design time customization 

Once widgets are placed on VALIS forms, the user can customize them by 

accessing and modifying a set of ‘Properties’  on which their visual appearance 

is based. Both design time and run-time customization are possible. At run-

time (as we will see later) customization can be performed by VALIS scripts. 

At design time the user can select any widget and recall its property collection 

with a right-click, as shown in the following figure: 

 

Figure 10. Editing the properties of a widget 

A window listing all the widget properties appears and the user can change 
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them. A similar mechanism is available to modify the properties of form 

objects themselves. Some widget properties, notably position and size, can 

also be modified graphically by moving and resizing the widget directly on the 

form being designed.  

Complex hierarchies of widgets can be constructed (as in the Simpathica 

example given in a later chapter) by placing widgets on special ‘container’  

widgets which behave like form objects. (An example of this class of widgets 

it the Tab Strip.) 

4.2.4. Adding forms to a VALIS project 

Once the graphical construction of the forms to be used in a project is 

complete, these objects (and all their design-time properties) can be saved to 

disk and then added to a special ‘Forms folder’  available in the VALIS studio 

workspace (see figure below). 

 

Figure 11. The Forms folder 

Forms (and the widgets contained in them) added to this folder are then made 

available to the VALIS scripts by using the ‘Named Item’ mechanism 

described in Chapter 2. (This will be detailed in section 4.4 below.) At run-
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time each scripting language available in the VALIS environment can further 

modify all properties of all the forms and widgets. 

4.2.5. Widget properties and event handling 

In the simple example given below, a Button widget has been added to Form1. 

Such button widgets can generate the events listed in the following table 

(events generated by other widgets are similar). 

BeforeDragOver Triggers event when a dragged object reaches the drop target 

BeforeDropOrPaste Triggers event when an object is about to be dropped or pasted into a 

control 

Click Triggers event when a control is clicked with the mouse; also when the 

user selects a value in a multi-value control, such as the list box 

DblClick Triggers event when a control is double-clicked with the mouse 

KeyDown Triggers event when a user presses a control, navigation or function key 

KeyPress Triggers event when the user presses a key.  

KeyUp Triggers event when the user releases a control, navigation, or function 

key 

MouseDown Triggers event when the user presses a mouse button 

MouseUp Triggers event when the user moves the mouse 

MouseMove Triggers event when the user releases a mouse button 

Error Triggers event when an error is encountered 

Table 5.Events generated by 
CommandButtons 
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To illustrate the way in which events are handled in VALIS, note that (as seen 

in the table above) any button widget can generate events named “Click”. 

Such events are handled in VBScript by writing a ‘callback routine’  and giving 

it the name and structure illustrated by  

 Sub For m1_CommandBut t on1_Cl i ck( )  
  Pr i nt ( " Cl i ck f r om VB" )  
 End Sub 
 

In JavaScript such a handler would be written as  

 f unct i on For m1_CommandBut t on1: : Cl i ck( )  
 {  
     / /  Cl ose anot her  pr evi ousl y opened f or m 
     For m2. Hi de( ) ;   
 }  
 

using the (undocumented) Javascript “ ::”  syntax. A Perl callback would be 

written as 

 sub For m1_CommandBut t on1_Cl i ck {  
  $Val i s- >Pr i nt ( " Val i s  cal l  f r om PL" ) ;  
 }  
 

The same handler would be coded in Python as 

 def  For m1_CommandBut t on1_Cl i ck( ) :  
  Val i s . Pr i nt ( " her e i s  t he pyt hon cal l back" )  

 

Events are always handled by such callback routines, whose names associate 

widget names with event names. As seen in these examples, the precise syntax 

used to support event handling differs slightly among various scripting 

languages. But each scripting language allowed has such a mechanism.  

VALIS handles widget property access using syntax like that used in Visual 

Basic. In VB one would refer to a ButtonY object inside a form ‘X’  as 
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‘FormX.CommandButtonY’. We support exactly the same syntax in VALIS. 

Note however that in the example code above we refer to a button object as 

‘Form1_CommandButton1’. These two alternate syntactic styles are both 

allowed. The VB style of access is available because CommandButtonY is a 

property of FormX. The other style (preferred in VALIS) is available since 

FormX_CommandButtonY is added as a COM ‘Named Item’. (Addition of 

such items is needed to process incoming events. This mechanism will be 

described in some detail in section 4.4 below.)  

 

4.2.6. Run-time customization 

Widget properties can be modified at run-time by operations written using 

syntax like 

JScript Form1_CommandButton3.caption="JScript"; 

VBScript Form1_CommandButton3.caption="VBScript" 

Python Form1_CommandButton3.caption="Python" 

Perl $Form1_CommandButton3->{caption} ="Perl"; 

Table 6. Accessing widget properties in 
different languages 

In addition to properties, forms and widgets can have public methods that can 

be called by the scripts (see section 4.2.7 for an example). 

VALIS graphical applications are projects that show at least one form, and in 

which execution is driven by form and widget events. Such applications end 
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when all their forms revert to hidden state. 

Note that forms are created before the ‘valismain’  startup function is called, 

but that VALIS commences execution with all the forms in hidden state. 

Forms can then be shown or hidden using the Show() or Hide() methods. 

The following very simple example shows how useful this architecture is. In 

the example, the ‘valismain’  function is written in Python, and subroutines and 

event callback functions can be implemented in other languages as shown 

above. 

 # VALI S mai n f unct i on def i ned i n Pyt hon 
 # For m1 becomes aut omat i cal l y  avai l abl e t o t he 
 # scr i pt s af t er  bei ng added t o t he VALI S f or ms f ol der  
 # but  i s  i n hi dden st at e 
 
 def  val i smai n( ) :  
  
  # Set  t he backgr ound col or  pr oper t y of   
  # For m1 t o gr een 
  For m1. Backcol or =Val i s . RGB( 0, 255, 0)  
 
  # Set  t he capt i on of  t he but t on named 
  # CommandBut t on3 of  f or m ‘ For m1’  
 
  For m1_CommandBut t on3. capt i on=" JS" ;  
  
  # Updat e t he t i t l e of  f or m ‘ For m1’  
  For m1. Capt i on=" SPAM"  
 
  # Show t he f or m on scr een 
  For m1. Show( )  
 
 
 
 / /  Cl i ck event  handl e f or  CommandBut t on1 i n VBScr i pt  
 
 Sub For m1_CommandBut t on1_Cl i ck( )  
  For m1. Backcol or =Val i s . RGB( 0, 255, 0)  
 End Sub 
 
   
 

As seen here, the “Backcolor”  property of object Form1 is set by this simple 
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routine to some value (Green), the ‘Caption’  of the window to “SPAM” and 

the form is then displayed on the screen (see Figure 12 below).  

(This code snippet also illustrates a significant difference in coding style 

between Visual Basic and VALIS. In Visual Basic customization code is 

always linked to a specific form (although one can access properties of other 

forms by supplying another form name as a prefix), so one can refer directly to 

the “Backcolor”  property, without having to add the form qualifier. This 

syntactic decision was made because we have to work with multiple 

languages, and otherwise would have ended up with a multitude of files, 

difficult to organize.)  

 

Figure 12. Simple VALIS graphical 
application. 
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4.2.7. Run-time construction of GUIs 

Some of the design-time capabilities of the VALIS form designer (in particular 

widget placement and resizing) are also available to scripts at runtime. 

Container widgets such as the form designer and the MultiPage widget 

maintain an internal list of the widgets that have been added to them. Access to 

this list is available at run-time using methods provided by a container’s 

Controls property. The list of widgets can be augmented using the Add method 

of this Controls property. 

 The following code snippet shows how a list of Label and TextBox widgets 

can be added to a MultiPage widget. (A similar mechanism is available for the 

form designer object.) 

  / /  Her e we ar e addi ng maxl  l abel s and cont r ol s t o f or m1 
 
  f or  ( i =0;  i <maxl +1;  i ++)  {  
 
   / /  Add a new ‘ l abel ’  cont r ol  t o t he cur r ent l y  
   / /  sel ect ed pane of  t he Mul t i page2 cont r ol  of  For m1 
   / /  Save a r ef er ence i n t he l abel Cont r ol s ar r ay 

  l abel Cont r ol s[ i ]  =  
 For m1_Mul t i Page2. Sel ect edI t em. Cont r ol s. Add(  

  " For ms. Label . 1" ,  " " ,  FALSE) ;  
 
   / /  Cust omi ze t he newl y cr eat ed l abel  
   l abel Cont r ol s[ i ] . Wi dt h = 132;  
   l abel Cont r ol s[ i ] . Text Al i gn = 3;  
 
   / /  Add a new t ext box 
   t ext BoxCont r ol s[ i ]  =    
 For m1_Mul t i Page2. Sel ect edI t em. Cont r ol s. Add(  
 " For ms. Text Box. 1" ,  " " ,  FALSE) ;  
  
  / /  Cust omi ze i t  
   t ext BoxCont r ol s[ i ] . Wi dt h = 132;  
  
  }  
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4.2.8. Widgets of Canvas type 

Various special widgets which behave like Tcl/TK ‘canvas’  objects can be 

added to a VALIS form. One such widget is the Adobe SVG viewer. SVG is a 

language for describing two-dimensional graphics and graphical applications 

in XML. Drawing on SVG involves generating SVG primitives (lines, ovals, 

rectangles, text, etc.) to capture a description of the output at a higher level of 

abstraction. 

This powerful widget can be customized at run-time in the same way as any 

other VALIS widget. The SVG viewer allows event callbacks to be attached to 

SVG graphical elements. In the following example a ‘mouseover’  event on the 

SVG element called ‘ test’  will trigger a callback to the routine called enter 

(defined elsewhere). (The code attaches a similar callback to the ‘click’  event 

of this same element.) 

  / /  Get  a r ef er ence t o t he i nt er nal  obj ect  model  of  t he 
  / /  SVG vi ewer  pr esent  i n For m1  
  SVGDoc=For m1_SVGCt l 1. get SVGDocument ( ) ;     
  / /  I f  t he cont r ol  i s  r eady. .  

  i f  ( For m1_SVGCt l 1. ReadySt at e == 4)  {       
 
   / /  Obt ai n a r ef er ence t o el ement  ‘ t est ’  

  e=SVGDoc. get El ement ByI d( " t est " ) ;       
 
  / /  The l i s t ener  r out i ne wi l l  be cal l ed when 
  / /  el ement  ‘ t est ’  i s  c l i cked 
  e. addEvent Li st ener ( ' c l i ck ' , l i s t ener , f al se) ;  
  / /  The ent er  r out i ne wi l l  be cal l ed when t he 
  / /  mouse moves over  t he same el ement  

    e. addEvent Li st ener ( ' mouseover ' , ent er , f al se) ;      
  }   
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Figure 13. Using SVG as a Canvas-type 
widget 

SVG graphical models can be built using XML tools (like the Microsoft XML 

parser) and then copied to the Adobe Viewer. For an example of this 

construction see the Simpathica example in Chapter 5 of this thesis. 

 

4.3 Building a Multi-language RAD environment; Technical issues and 

design choices 

 

A form based RAD environment must at a minimum provide the following 

features: 

1. Forms must have well-defined design time and run-time 

representations and allow hierarchical assembly of multiple 
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subcomponents. 

2. It must be possible to save all design-time specified layouts and other 

properties of all forms. 

3. It must be possible for scripts to change the properties of both forms 

and the simple and compound objects they contain. 

4. Scripts must have some way of receiving and handling all form-

generated events. 

Any developer proficient with ActiveX technologies will know how to map 

these desiderata into Microsoft COM interfaces. In particular, COM provides 

standard interfaces for defining components, both visible and invisible 

(ActiveX components), constructing compound documents (OLE Compound 

Documents), modifying item properties (OLE Automation and Property 

Pages), generating and receiving events (Connection Points) and saving the 

state of compound documents (COM Structured Storage)[44]. 

 

4.4 Setting up connections between scr ipts, widget properties and event 

streams 

 

Once having built interactive forms using a form designer component with the 

features described in the preceding section, we must make it possible to 

modify and customize forms and widgets from scripts and to route form events 

to callback routines provided in script code. 

Both capabilities are easily obtained by adding a “Named item” to each 



 94 
 

scripting engine for each form and widget used in the project. (This ‘Named 

Item’  mechanism was described in Chapter 2.) 

When any of the languages available within VALIS queries the VALIS 

CScript object (this is the object implementing the ActiveX scripting Host in 

VALIS) by passing a form name to it, the IDispatch interface of that form is 

returned to the script, which can then manipulate its properties. 

A similar mechanism is used for widgets added to the VALIS forms. Once 

their corresponding ‘Named Items’ have been added to a scripting engine 

environment (these objects are marked with a special flag indicating that they 

can generate events), the scripting engine can request the Host to produce an 

IDispatch reference to that object. The VALIS Scripting Host will then obtain 

this reference from the form designer and return it to the scripting engine that 

requested it.  

Once having acquired such a pointer, a list of the names of the events that the 

object can generate can be obtained by a scripting engine directly from the 

widget using standard COM interfaces. The following paragraph summarizes 

these interfaces. 

In the COM world, objects capable of generating events are called 

“Connectable Objects” . To generate events, an object must implement four 

related interfaces: IConnectionPointContainer , IEnumConnectionPoints, 

IConnectionPoint, and IEnumConnections. The existence of the first 

interface (IConnectionPointContainer ) signals that an object has the 

capability of generating events and possesses a set of ‘Connection Point’  sub-

objects. Access to these sub-objects is provided using the 

IEnumConnectionPoints interface. Once having obtained a reference to such 

a sub-object, a client can use the IEnumConnections to obtain a list of all the 
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currently active connections to that particular connection point. Then, using 

the IConnectionPoint::Advise method, a client can register a ‘Sink’  routine 

with the connectable object. Once this is done, then whenever an event is 

generated, this ‘Sink’  routine will be called. These connections are 

summarized in the following figure: 

�

 
Figure 14. The Connection Point interface�

This looks complicated, but luckily the scripting engines available do most of 

the work for us. We just have to make sure that whenever a “Named item” is 

added to an engine, its flag SCRIPTITEM_ISSOURCE is set. Then, to handle 

events from the forms object, we just need to write code like the following (as 

in our CScript class): 

    / /  We ar e consi der i ng al l  t he f or ms pr esent  i n t he  
    / /  VALI S pr oj ect .  pWor kSpaceEl em poi nt s t o t he cur r ent  
    / /  For m i nt er nal  wor kspace st r uct ur e 
 
    / /  Now l oop t r ough each of  t he l anguages pr esent  i n t he 
    / /  VALI S pr oj ect  we want  t o r un 
    f or  ( i nt  l ang=1; l ang<=numLanguages; l ang++)   
      i f  ( Languages[ l ang] . m_pI Act i veScr i pt ! =NULL)  {   
 
 / /  Obt ai n t he name 
 CSt r i ng f or mname=pWor kSpaceEl em- >m_name;  
 / /  Conver t  Cst r i ng t o OLE st r i ng 
 LPCOLESTR pst r I t emName = T2COLE( f or mname) ;  
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 / /  Add t he f or m as a ‘ Named I t em’  t hat  can sour ce 
 / /  event s 
 hr =Languages[ l ang] . m_pI Act i veScr i pt - >AddNamedI t em(  

 pst r I t emName,  
  SCRI PTI TEM_I SVI SI BLE| SCRI PTI TEM_I SSOURCE) ;  

 i f ( FAI LED( hr ) )  
 {  
  xxxxxxxxxxxxxxxxx 
 }  
  

Controls in a form are handled in much the same way. We query the form 

object to find all its controls, and then add “Named Items” having the format 

FormName_ControlName, and capable of sourcing events to the scripting 

engine environments from which these controls may need to be accessed. 

 / /  ‘ cont r ol s ’  poi nt s t o t he CCont r ol s i nt er f ace of  
 / /  t he For m Desi gner  obj ect .  
 / /  The f ol l owi ng l oop i s execut ed f or  each  
 / /  scr i pt i ng l anguage and each f or m pr esent   
 / /  i n t he VALI S pr oj ect  
   
 / /  Loop t r ough t he l i s t  of  t he cont r ol s pr esent  
 f or ( l ong c=0;  c<cont r ol s. Get Count ( ) ;  c++)  
 {  
  
   / /  Get  t he name of  t he cont r ol  
   CSt r i ng St r Cont r ol Name 
  =cont r ol s. _Get I t emByI ndex( c) . Get Name( ) ;  
  

   / /  Add t he f or m cont r ol  t o t he cur r ent  scr i pt i ng  
   / /  engi ne’ s envi r onment ,  desi gnat i ng i t  as  

   / /  For mName _ Cont r ol Name 
 
   LPCOLESTR pst r Cont r ol Name;  
   CSt r i ng cname=f or mname+" _" +st r Cont r ol Name;  
   / /  Conver t  Cst r i ng t o OLE st r i ng 
   pst r Cont r ol Name = T2COLE( cname) ;  
  
   / /  They ar e al so capabl e of  sour ci ng event s 
   hr =Languages[ l ang] . m_pI Act i veScr i pt - >AddNamedI t em(  
  pst r Cont r ol Name,  
  SCRI PTI TEM_I SVI SI BLE| SCRI PTI TEM_I SSOURCE) ;   
  i f ( FAI LED( hr ) )  
  {  
   xxxxxxxxxxxxxxxxxx 
  }  
 }  
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(This code shows why we can also refer to Button1 in our earlier example 

using the syntax “Form1_CommandButton1”, rather than as an attribute of the 

“Form” object.) 

It is responsibility of the scripting engines to set-up the Connection Point 

interfaces described above. Each engine has a different syntax to implement 

Connection Point ‘Sinks’ . (As has been illustrated in the introductory section 

of this chapter.) As an example of how events are routed once the connection 

point interfaces has been set up correctly, we describe the handling of a mouse 

click on a form button: 

• The Windows operating system sends a message to the active window. 

(In the VALIS forms case, these messages go to the form designer 

component.) 

• The form designer component then routes the message to the correct 

widget (the widget hierarchy, visibility and Z-order properties are used 

to determine this widget).  

• The widget then routes the event to all connected scripting hosts using 

the Connection Points interface. 
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The interfaces that we have described allow events to be handled in all the 

supported languages. The only counterintuitive result of adding the same item 

simultaneously to different engines, is that if each engine has a Sink for a 

certain event, they will all be called, in some undefined order when the event 

occurs. This follows from the semantics of the Microsoft Connection Point 

interface. 

 

4.5 Minimizing the VALIS GUI  implementation effort by exploiting 

Microsoft’s form designer technology 

 

The technologies that Microsoft uses in their RAD products, for example 

Visual Basic, Access, Office Forms and Visual Foxpro, have been extremely 

successful. Like the Microsoft Scripting Interfaces considered earlier, 

Microsoft’s carefully standardized GUI interfaces improve the quality of 

Microsoft’s software and the productivity of programmers developing it. 

For this reason we have restricted our attention to the Microsoft technologies 

to implement the form designer subsystem in VALIS. (But in chapter 6 we 

will see what would be needed to build a cross platform environment.)  

However, although well defined and documented, these technologies are not 

always easy to apply. During the development of VALIS, we were able to 

short-circuit involvement in the many details of these interfaces by realizing 

that since Microsoft is using similar form designers in many applications, it 

must have defined standard interfaces even for these form designers. Source 

code for such form designers is not available. Nevertheless binary versions of 

the Microsoft form design component could be used as the basis for the 



 99 
 

VALIS Studio environment once a complete description of the relevant 

interfaces was obtained. 

4.5.1. Microsoft’s ActiveX Form Designers 

The Visual Basic 6.0 manual states that form designers other than those 

provided by Microsoft can be used if developed using the “ActiveX designer 

SDK”. The source for this SDK and a description of the Microsoft ActiveX 

designer interfaces is available in the January 2000 Microsoft Developer 

Network CD. 

As noted above, many Microsoft Products provide form designers these are 

generally implemented as COM components developed in conformity with the 

interfaces described in the ActiveX designer SDK. One can experiment with 

any of these form designers within Visual Basic. Using the interfaces 

documented in this SDK, developers can also integrate form designer 

components into their applications.  

There is also a free downloadable Microsoft application (the ActiveX Control 

Pad[45] shown in Figure 15 below) that contains a complete form designer 

COM component which follows the specifications of the ActiveX designer 

SDK. This application was originally released to support point and click 

design of Internet Explorer web pages which contain ActiveX controls and 

make use of scripts written in Jscript and VBScript. Source for this application 

is note available, but once the application is installed, we can gain access to its 

form design component without having to buy a Microsoft product containing 

one.  
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Figure 15. The Microsoft ActiveX Control 
PAD 

In the following sections we refer to the form designer component installed by 

the ActiveX Control Pad application simply as “ form designer” . Integration of 

this form designer object into VALIS is accomplished as follows: 

1. The form designer object is embedded in our application using its 

standard COM/OLE interfaces. These interfaces are applicable to any 

ActiveX control and to ActiveX compound documents and provide 

mechanisms needed to save and restore compound documents. 

2. The object model of the form designer must be extended to support 

properties and methods required by VALIS but not available initially 

in the binary component. The COM ‘aggregation’  technique used to 

accomplish this, given that the source code is not available, is 

explained below. 
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3. The form designer must be made accessible to the scripting engines. 

(This is done using the ‘Named Items’ mechanism described in 

Chapter 2 and the Connectable Objects interfaces described in section 

4.4.) 

4.5.2. Embedding the Form Designer 

We embed the form designer object in which we are interested by defining a 

special compound document in which the form designer appears as the sole 

‘ item’ (embedded object). This document is created in the normal way using 

the COleDocument MFC (Microsoft Foundation Classes) class, and then 

adding the form designer object, which is an instance of the COleClientItem 

MFC class. (Any object of this class can be part of a COleDocument as an 

‘ item’ .) In our code the COleClientItem class is specialized to a subclass 

named CContainerItem. 

The implementation of the CContainerItem object is not straightforward. Not 

only must this object implement the numerous interfaces required for OLE 

embedding and the special IActiveDesignerRuntimeSite interface (required by 

the ActiveX designer specifications), but it also has to supply Ambient 

Properties (described next) and potentially extend the object model of the 

designer (as described in the following section). 

Ambient Properties are used by OLE containers to make certain of their 

properties available to the controls they contain. They allow controls to adapt 

themselves to the environment in which they are running. In the form designer 

case, an example of an ambient property is the path to the project directory, 

but there are many others. Ambient properties are implemented by 

programming a special IDispatch interface of the CContainerItem object. 

Form designer controls use the IDispatch::Invoke method to get the value of 



 102 
 

the property corresponding to a particular numerical DISPID. The form 

designer controls must be notified whenever an ambient property is changed. 

4.5.3. Extending the Form Designer object model by COM ‘aggregation’  

Since it meets the standard ActiveX control specifications, the designer object 

supports OLE automation, so we can use its IDispatch interface to Get and Set 

properties and invoke functions. In particular, as we have seen in section 4.4 

above, we can add the form designer to the scripting engines object models as 

a “Named Item”, just as we did before with the predefined “Valis”  object.  

But some properties and methods specific to the host application containing 

the form, and not to the designer itself, need to be supported. For example, the 

window containing the form designer can be shown or hidden from the user 

and it must have a ‘Caption’  property. 

Although these properties and methods are actually handled by the VALIS 

application, it is advantageous to refer to them from VALIS scripts as if they 

were predefined properties and functions of the form designer object. For 

example, if this is done and a VALIS project uses a form named ‘FormX’, we 

can then refer to the title of the window containing this form directly  (in 

Jscript) as ‘FormX.Caption’ . 

The COM feature is called “aggregation” can be used to implement this 

feature even for components for which source code is not available. (The form 

designer component provided by the ActiveX Control Pad supports 

aggregation.) COM does not support inheritance, but instead achieves code 

reuse through Containment and Aggregation. Containment works as follows. 

Suppose, for example, that we have an object A implementing interface IA. If 

we want to build an object B supporting interfaces IB and IA, we can do so by 

creating in B an internal copy of the object A and then routing the calls to IA 
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to the internal object A. Doing this we need expose directly the interface IA 

from A to the clients.  

 

Figure 16. COM Aggregation 

Aggregation works instead by exposing directly the inner component’s 

interfaces to the clients. Using this technique, whenever interface IA is 

requested from object B by passing a globally unique numerical identifier for 

such an interface to B, the internal object’s interface is returned directly to the 

client. (See figure Figure 16 above.) Aggregation can be implemented using 

the techniques described in [33]. 

We use this technique to extend the form designer’s IDispatch interface 

(compiled in the form designer component) with a custom version. That is 

how we can add custom properties, e.g., the form name, or methods, like 

Show() and Hide() to the form designer provided by the ActiveX Control Pad.  
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4.5.4. Additional features of the ActiveX Form Designers 

In addition to the standard OLE Compound document interfaces, the ActiveX 

Designers can implement certain COM interfaces specifically designed for 

them. 

In particular, interfaces exist for the host to manipulate the widget toolbox and 

supply an alternative implementation. This would greatly improve the usability 

of the form designer interface, although we have not used it in VALIS. 

Another useful service is the ability of the designer to supply type information 

for the object (in our case the form) dynamically, as the object is edited. This 

is useful if one wants to implement nifty features like AutoCompletion while 

writing script code. 

Finally, provisions exist to support code navigation from the designer. For 

example, clicking on a button during form editing could take directly to the 

corresponding event handler defined in the scripts. 

All these additional features are described in detail in the SDK[46], and we 

refer to that document for more information. 

 

4.6 A survey of other   GUI building  tools available  

 

Since in VALIS we support many scripting languages, we could build GUIs 

by direct use of the libraries and tools offered by these languages. To assess 

this possibility, we start by considering the most commonly used 

bioinformatics scripting languages, Python and Perl. First consider Python, 

which provides many toolkits for building GUIs [6]. At the time of this 
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writing, the most realistic Python-based tool choices are essentially four: 

TKinter, PyQT, PyGTK and wxPython.  

Tkinter, which is the default Python GUI, builds on TCL. As noted in a 

previous chapter, TKInter simply uses a native package providing a few basic 

functions which allow communication between Python scripts and TK 

essentially through the TCL programming language. This solution has 

certainly the advantage of being cross-platform, but it has many weaknesses: 

a) One has to deal directly with the intricacies of TCL/TK. 

b) There are no RAD environments for this toolkit, which probably 

reflects the difficulty of synchronizing graphical views of forms 

directly with the Python code that generates them.  

c) The interface is slow, since all the property changes and events 

responses must go through the TCL interpreter.  

d) Finally, and this is a major drawback of most of the toolkits available, 

it is difficult to expand the widget set. 

 Another open source option is wxPython, which is based on the wxWindows 

[48] cross platform widget set. This is a C++ library accessed by a Python 

native package. This library is not fast either, but seems to perform better than 

TCL/TK.  

However, there are major drawbacks to using this and similar native graphics 

libraries. wxWindows makes no special provision for custom widgets.  

Moreover wxWindows and other libraries require binary compatibility 

between the Python native packages and the C++ library, so that fixes and 

improvements on the wxWindows library sometimes force the recompilation 
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of these native packages. 

 BOAConstructor[49] is a RAD application based on wxPython with features 

comparable to Microsoft’s Visual Studio and other RAD environments. But a 

simple inspection of the BOAConstructor code shows some of the 

shortcomings of this toolkit. For example, the list of properties of the widgets 

and their types cannot be dynamically determined, and all of them are hard-

coded in the GUI design application.  

In the last few months, there has been a push to adopt some kind of GUI 

description language based on XML, but again the lack of standards for 

designing components makes this effort almost useless. 

Probably the only group that has focused closely on these issues is the team 

behind the KDE desktop[50]. This group has mimicked Microsoft’s OLE 

architecture, calling it Open Parts. In fact, their Microsoft Office clone, 

Koffice, is one of the best public domain programs available, as is their Web 

browser called Konqueror; but both of these lack scripting and macro 

capabilities, offering instead a primitive scripting protocol called DCOP[51]. 

Cross-language integration in KDE (as in GNOME) is achieved by using 

CORBA. The KDE developers have made the mistake of replacing COM with 

a component architecture based on CORBA. This is a reasonable solution for 

integrating out-of-process external components, but for in-process components 

(provided in shared libraries or windows DLLs) CORBA users must pay an 

unacceptable marshalling penalty (especially when dealing with graphical user 

interfaces).  

The company behind the QT widget set, Trolltech, has released a product 

QSA[10], the QT Scripting Architecture, providing a JavaScript interpreter 

that can use scripts to control C++ programs derived from Trolltech’s QObject 
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class. These programs must be compiled with Trolltech’s Meta Object 

Compiler, which extends C++ with “Signal”  and “Slots” primitives to handle 

widget events, and also adds some Run Time Type Information. If one uses 

C++ as a principal tool for application development, this is an interesting and 

elegant approach, although one lacking the simplicity and language neutrality 

of COM based technologies. 

A similar open source project, called KJSEMBED[52], was started in 

September 2003, but paradoxically Microsoft’s ActiveX Scripting is an open 

technology, while Trolltech’s is proprietary and only available to holders of 

their “Qt Enterprise Edition” license.  

In conclusion, although in last few months there has been an interest in 

scripting technologies in relation to GUI design, the lack of a standard 

component and scripting architecture has had a punishing effect on most of the 

open source efforts. 

 

4.7 Summary 

 

Graphical User Interfaces are very important in bioinformatics prototyping. 

We have built on the multi language scripting engine previously described and 

developed an architecture, based on well known but complex Microsoft 

technologies. 

Exploiting an obscure application, Microsoft’s ActiveX Control Pad, we were 

able to build a RAD environment having features similar to Visual Basic, but 

supporting multiple scripting languages simultaneously. 
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We believe that this environment is potentially superior to competing efforts 

by both companies and large open source development teams. 



 109 
 

Chapter  5 

5 VALIS in Action 

Having now described the foundations of our architecture, it is time to show 

how it can be used to develop useful genomics applications. Our multi-

language scripting architecture gives us immediate access to a vast library of 

high level and native code and many language interpreters. Besides JavaScript 

and Visual Basic script, which come with Windows machines, ActiveX 

scripting compliant engines exist for Perl[47], Python[47], Haskell [23]and 

Ruby[57]. Moreover, we developed a scripting engine for SETL, and members 

of the NYU/Courant Bioinformatics group (Dr. M. Antoniotti and Mr. V. 

Mysore) have collaborated to develop engines for Common Lisp [39] and 

R[38] that are now available within VALIS. (The R project [37] is an open 

source alternative to the S programming language and environment developed 

at the Bell Laboratories and the S-PLUS commercial product based on it.) R 

provides a wide variety of statistical (linear and non-linear modeling, classical 

statistical tests, time-series analysis, classification and clustering), and 

graphical primitives. 

In the course of work in this thesis we have developed additional high-

performance components for data analysis and visualization. These include 

components for the GSL (Gnu Scientific Library) numerical library [58] and 

visualization tools for genomic maps, sequences and graphs (based on 

Adobe’s SVG viewer[59]). 
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5.1 Application Example 1. A Whole Genome browser 

 

The increasing number of whole genome sequence data sets available gives 

researchers an opportunity to explore genetic relationships both between 

species and within individual species. To exploit this opportunity fully, new 

tools for rapid analysis of whole genomes are required. 

The goal of whole genome comparison is to point exact and approximate inter-

genome matches and to characterize the features of the other large and small 

regions of interest (i.e. single point mutations, insertions, deletions, 

transpositions, tandem repeats etc.). Standard dynamic programming 

alignment algorithms do not work well in this setting because of the enormous 

data sets involved. 

 Many tools have been developed to study the features common to multiple 

genomes. Among them, the best known are MUMmer[60], which uses suffix 

trees [61] for pairwise alignment of whole genomes, and REPuter [62]  which 

is also based on the use of suffix trees. Other tools, like SequeX[63], which is 

based on suffix arrays [66] and an extension of the String B-tree[64], try to 

compute and visualize k-mer statistics of genomes, computed from all k-mers 

(i.e. all substrings of length k occurring in a genome). Finally tools like 

QUASAR [65] use a moving average of k-mer statistics as an index of 

similarity.  

The problem with most of these tools is that it is difficult to select the 

parameters that will best reveal genome features and also to visualize the 

results generated. The biologist who wants to experiment with multiple 

parameters and find patterns and test strategies to select important regions 

rapidly will not willingly wait for the time consuming analysis and 
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preprocessing programs that such tools require. (As an amusing sign of this 

impatience, biologists have even invented a system [13] that assigns pitches to 

the four DNA bases according to their thermal stability, and found that 

converting the DNA sequences to music helped (some of them, at least) intuit 

the meaning of specific sequences, and also made memorizing and recognizing 

specific DNA patterns easier.) 

In this section we show how easily we can create interactive whole genome 

browsing and comparison tools for large datasets within VALIS. In particular, 

we can easily imitate and extend tools like the UCSC (University of California 

at Santa Cruz) genome browser. These allow navigation of various genomes 

annotated with fixed “ tracks” of pre-computed data. 

5.1.1. The VALIS Bander Object 

We begin our account of applications by describing the ‘Bander’  display 

widget which VALIS provides. This is a visualization tool useful for analyzing 

very large genomes. It displays a set of “bands” which show positional 

information about genomes. Each band can be thought of as a one-dimensional 

object representing a map from genome positions to scalar values representing 

local genome attributes in the vicinity of that genome position. For instance, a 

band representing the repeat structure of a genome shows regions belonging to 

known and/or dynamically identified repeats. Similarly, an “energy”  band 

shows the Gibb’s free energy, entropy and enthalpy of a short word starting at 

each genome location. Since, especially for very large genomes, we cannot 

expect to compute all the information we need beforehand the bands must 

sometimes be computed on the fly.  

The VALIS Bander object is programmed (in a model/view style) as follows: 

a) Individual data bands are created. Each band handled by the Bander 
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object must have a type and a name and will represent an array of data. 

b) The data bands are connected to their data sources. The data to be 

loaded into a band can be fetched from flat files, from the VALIS free 

format database, from a remote database or computed dynamically.  

c) New bands can be computed from other bands using an extensive 

repertoire of unary and binary operations, moving averages, 

thresholding operations, filters, or using remote servers, an example of 

which would be the suffix array engine described in the following 

section.  

d) Band views are created. The Bander control displays a set of “graphs”  

that show the data present in one or more bands. Graphs can be line 

graphs, histograms, scatter plots, annotations etc. 

e) Finally, the graphs must be connected to the data bands. (Each band 

can be connected to multiple graphs.) 

The Bander object is programmed in a multithreaded fashion, involving a 

loader thread and a compute thread. When a band region is selected 

dynamically for display, the loader makes sure that all the data associated with 

this region is fetched from the local and remote databases. Once all the data 

dependencies are resolved, a compute thread sweeps the bands and computes 

values to be shown. While the Bander object is idle, the loader thread fetches 

more data regions for the area being analyzed to improve the response time 

when the user scrolls along in the display 

Bander customization and the addition or deletion of bands can take place at 

run time. 
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5.1.2. Using VALIS to build a genome browser 

To implement the display portion of a genome browser within VALIS we 

could easily design a simple form that includes a Bander object along with a 

few scrollbars and buttons to navigate along the chromosomes for which data 

is to be displayed. 

 

Figure 17. Form containing the VALIS 
Bander object 

We show the required steps of construction in JavaScript. A typical genome-

browser utility based on the VALIS Bander object would start by customizing 

a few basic Widgets: 

 
var   
 posi t i on=0,   / /  Wi l l  keep t he f i r st  posi t i on bei ng di spl ayed 
 seql en=0,     / /  The maxi mum sequence l engt h 
 j umpSi ze=0,   / /  Used t o cust omi ze t he ‘ j ump’  but t ons at  t he  

/ /  l ef t  and r i ght  of  t he scr ol l bar  
 mer Band=0,    / /  Gl obal  var i abl e t o save t he ‘ mer ’  band number  
 avgBand=0,    / /  Same f or  a movi ng aver age 
 wi ndowSi ze=50,   / /  I ni t i al  wi ndow si ze f or  t he movi ng aver age 
 mer Si ze=14;      / /  I ni t i al  mer  si ze 
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f unct i on val i smai n( )  {  
 
 Cl ear ( ) ;  / /  Cl ear  VALI S St udi o out put  wi ndow 
 / /  Change t he wi ndow capt i on and t he bander  backgr ound 
 For m1. Capt i on = " Val i s Q. U. A. S. A. R.  t est " ;  
 For m1_Bander 1. Set Backgr ound( RGB( 255, 255, 255) ) ;  

 

The first “band” to be added to our assumed display is a sequence band 

fetched from a free-format database (described in Chapter 3): 

   / /  Fet ch Human chr omosome 1 f r om t he dat abase 
 
 b1=For m1_Bander 1. AddBand( " char " , " Seq" ) ;  
 For m1_Bander 1. DBBand( b1, " hg15. db" , " CHR1" ) ;  
 

We could then add a few markers to signal genome regions not fully 

sequenced yet (‘N’  regions) and AT rich regions: 

/ /  Mar k r egi ons not  sequenced yet  
 
 / /  Add a gr aph and a band named ‘ N’  
 / /  The gr aph name wi l l  be di spl ayed i n t he bander  
 g1=For m1_Bander 1. AddGr aph( " bool " , " N" ) ;   
 bn=For m1_Bander 1. AddBand( " bool " , " N" ) ;  
 
 / /  Per f or m oper at i on ‘ Char Band’  on band b1 and out put  t he  
 / /  r esul t  on band bn.  The r esul t  i s TRUE when t he i nput  
 / /  char act er  i s i ncl uded i n t he st r i ng passed as t he t hi r d  
 / /  par amet er  ( i n t hi s case n or  N 
 For m1_Bander 1. Char Band( b1, bn, " Nn" ) ;  
 / /  Connect  band bn t o gr aph g1 and set  t he band ver t i cal  s i ze 
 For m1_Bander 1. Connect Gr aph( g1, bn) ;  
 For m1_Bander 1. Set Si ze( g1, 10) ;   
 
 / /  Mar k AT r egi ons wi t h si mi l ar  oper at i ons 
 g2=For m1_Bander 1. AddGr aph( " bool " , " AT" ) ;   
 ba=For m1_Bander 1. AddBand( " bool " , " AT" ) ;  
 For m1_Bander 1. Char Band( b1, ba, " AaTt " ) ;  
 / /  Set  t he f or egr ound col or  of  t he band 
 For m1_Bander 1. Set Col or ( ba, RGB( 30,  175,  133) ) ;  
 For m1_Bander 1. Connect Gr aph( g2, ba) ;  
 For m1_Bander 1. Set Si ze( g2, 10) ;  

 

Next we can fetch annotations like the repeat masker regions and the coding 

sequences from the database: 
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   / /  Add r epeat  masker  bl ocks f r om t he ‘ gol denpat h ‘  genome dat abase 
   / /  The dat abase has been l oaded i n a f r ee- f or mat  dat abase 
   / /  Thi s band wi l l  cont ai n a l i st  of  ‘ bl ocks’  or  genome r egi ons 
   g6=For m1_Bander 1. AddGr aph( " bl ock" , " RM" ) ;     
   b6=For m1_Bander 1. AddBand( " bl ock" , " RM" ) ;    
   / /  Fet ch,  f r om t he dat abase,  t he r egi ons mar ked by t he 
   / /  r epeat masker  pr ogr am f or  chr omosome 1  
   For m1_Bander 1. DBBand( b6, " hg15. db" , " MASK1" ) ;    
   For m1_Bander 1. Set Col or ( b6, RGB( 0, 200, 0) ) ;    
   For m1_Bander 1. Connect Gr aph( g6, b6) ;  
 
 
   / /  Add codi ng sequences f r om t he same dat abase  
   g5=For m1_Bander 1. AddGr aph( " bl ock" , " CDs" ) ;     
   b5=For m1_Bander 1. AddBand( " bl ock" , " CDs" ) ;    
   / /  Thi s t i me t he key i s ‘ MRNA1’  
   For m1_Bander 1. DBBand( b5, " hg15. db" , " MRNA1" ) ;    
   For m1_Bander 1. Set Col or ( b5, RGB( 153,  204,  255) ) ;    
   For m1_Bander 1. Connect Gr aph( g5, b5) ;    

 

Given a “mer” engine running on one of our servers, we can compute the 

number of times each “merSize”-mer is repeated in some other genome, in this 

case the fruit fly, and show it as a histogram: 

/ /  Add an i nt eger  band t hat  wi l l  cont ai n t he mer  f r equenci es 
 mer Band=For m1_Bander 1. AddBand( " i nt " , " Fr eq" ) ;    
 
/ /  Set  t he dat a sour ce t o t he mer  ser ver  r unni ng on t he cl ust er  
/ /  The ser ver  t ype i s ‘ mer ser ver ’  and t he host  and por t  number s 
/ /  ar e i ndi cat ed.  The out put  wi l l  be st or ed i n t he ‘ mer Band’  band 
/ /  cr eat ed above.   For m1_Bander 1. Ser ver Band( mer Band, " mer ser ver " ,  

" mast er . val i s. nyu. edu: 2001" ) ;  
/ /  Send a command t o t he ser ver .  ( sel ect  t he f r ui t  f l y genome. )  
For m1_Bander 1. Send( mer Band, " sel ect _f l y" ) ;  
For m1_Bander 1. Set Col or ( mer Band, RGB( 95,  95,  95) ) ;  
For m1_Bander 1. Enabl e( mer Band) ;  
 
 
/ /  Show i t  as an hi st ogr am ( t ype ‘ hi st ’ )  and name t he gr aph ‘ Fr eq’  
g8=For m1_Bander 1. AddGr aph( " hi st " , " Fr eq" ) ;   
/ /  Connect  t he gr aphi cal  v i ew wi t h t he dat a band 
For m1_Bander 1. Connect Gr aph( g8, mer Band) ;  

  

Finally, we can add a moving average of this mer frequency band and show it 

as a line graph: 

/ /  Cr eat e t he band f or  t he movi ng aver age 
 / /  The band t ype i s i nt eger  and t he i nt er nal  name Q1 
 avgBand=For m1_Bander 1. AddBand( " i nt " , " Ql " ) ;   
 / /  The gr aph wi l l  be di spl ayed as a l i ne gr aph and t he band 
 / /  name wi l l  be QUASAR 
 g9=For m1_Bander 1. AddGr aph( " l i ne" , " QUASAR" ) ;   
 
 / /  Set  t he col or  of  t he newl y cr eat ed band 
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 For m1_Bander 1. Set Col or ( avgBand, RGB( 255,  0,  0) ) ;    
 / /  The avgband oper at i on comput es on t he f l y a movi ng 
 / /  aver age of  l engt h wi ndowSi ze of  t he mer Band band 
 / /  st or i ng t he r esul t  i n band avgBand 
 For m1_Bander 1. AvgBand( mer Band, avgBand, wi ndowSi ze) ;    
 For m1_Bander 1. Connect Gr aph( g9, avgBand) ;  
 For m1_Bander 1. Set Si ze( g9, 200) ;  

 

The rest of our code just completes the initialization of the widgets just 

described, and updates the mer size and window size displayed: 

  updat emer si ze( ) ;   / /  Updat e t he mer si ze par amet er  di spl ayed  
  / /  i n t he f or m 

 updat ewsi ze( ) ;    / /  The same f or  t he Wi ndow si ze par amet er  
       
 
 / /  Get  t he chr omosome l engt h  
 seql en = For m1_Bander 1. Get Maxr ows( ) ;  
 posi t i on=0;     / /  St ar t i ng posi t i on 
 j umpSi ze=700;   / /  Posi t i ons t o ski p when cl i cki ng on one of  t he t wo 
               / /  j ump but t ons 
 / /  The scr ol l bar  mi n and max val ues ar e assi gned.  
 For m1_Scr ol l Bar 1. Mi n=0;  
 For m1_Scr ol l Bar 1. Max=seql en;  
 / /  Smal l change i s t he amount  a scr ol l bar  val ue wi l l  be i ncr eased 
 / /  or  decr eased when cl i cki ng on t he scr ol l bar  ar r ows.  
 For m1_Scr ol l Bar 1. Smal l Change=300;  
 / /  Lar gechange i s t he used when cl i cki ng bet ween t he scr ol l bar   
 / /  cur r ent  posi t i on and one of  t he ar r ows.  
 For m1_Scr ol l Bar 1. Lar geChange=100000;  
   
 For m1. Show( ) ;  / /  Di spl ay t he f or m 
}  

 

To add interactive controls, for example navigational controls, we just have to 

provide a few simple callbacks: 

/ /  Event  cal l back cal l ed when t he val ue of  scr ol l bar 1 changes 
f unct i on For m1_Scr ol l Bar 1: : Change( )  {  
 posi t i on=For m1_Scr ol l Bar 1. Val ue;  
 / /  Move t he st ar t i ng posi t i on of  t he bander  obj ect  
 For m1_Bander 1. Set St ar t ( posi t i on) ;  
}  
 
/ /  Absol ut e j ump.  Cal l ed when but t on ‘ Jump’  has been cl i cked 
f unct i on For m1_Jump: : Cl i ck( )  {  
 / /  Obt ai n t he absol ut e posi t i on f r om t he t ext  f i el d above 
 / /  t he j ump but t on 
 posi t i on=Posi t i on. Text ;   
 For m1_Bander 1. Set St ar t ( posi t i on) ;  / /  Jump t o t hat  val ue 
 For m1_Scr ol l Bar 1. Val ue=posi t i on;   / /  Updat e t he scr ol l bar  
}  
 
/ /  Handl e t he event s f r om t wo smal l  j ump but t ons appear i ng 
/ /  at  t he l ef t  and r i ght  of  t he scr ol l bar  
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/ /  When j umpi ng l ef t … 
f unct i on For m1_JumpLef t : : Cl i ck( )  {  
 / /  comput e t he new posi t i on 
 posi t i on=posi t i on- j umpSi ze;  
 i f  ( posi t i on<0)  posi t i on=0;  
 / /  Updat e t he bander  obj ect ’ s st ar i ng posi t i on   
 For m1_Bander 1. Set St ar t ( posi t i on) ;  
}  
 
/ /  A si mi l ar  cal l back handl es t he r i ght  j ump but t on cl i ck event  
f unct i on For m1_JumpRi ght : : Cl i ck( )  {  
 posi t i on=posi t i on+j umpSi ze 
 i f  ( posi t i on>( seql en- j umpSi ze) )  posi t i on=maxr ows- j umpSi ze;  
 For m1_Bander 1. Set St ar t ( posi t i on) ;  

}  

 

The following final section of the code handles changes in the parameters we 

use to browse the chromosome (mersize and moving average length): 

/ /  Cal l back f or  event  ‘ Cl i ck’  of  t he Set Mer  but t on 
f unct i on For m1_Set Mer : : Cl i ck( )  {  
 / /  Get  t he new mer si ze f r om t he t ext  f i el d above t he but t on 
 m=Mat h. r ound( For m1_Mer si ze. t ext ) ;  
 / /  Check f or  val i d mer si ze 
 i f  ( ( m>5)  && ( m<1001) )  {  
  mer Si ze=m;  
  / /  Updat e t he mer si ze on t he f or m and send a new mer si ze t o 
  / /  t he ser ver  
  updat emer si ze( ) ;   
 }  el se {  
   / /  r ol l back t o t he pr evi ous val ue 
  For m1_Mer si ze. t ext =mer Si ze;  
 }  
  
}  
 
/ /  Handl e ‘ Cl i ck’  event  f or  but t on Set W ( set   
/ /  movi ng aver age wi ndow l engt h)  
f unct i on For m1_Set W: : Cl i ck( )  {  
 w=Mat h. r ound( For m1_Wsi ze. t ext ) ;  
 i f  ( ( w>10)  && ( w<1001) )  {  
  wi ndowSi ze=w;  
  updat ewsi ze( ) ;  / /  Updat e t he movi ng aver age oper at i on 
 }  el se {  
   / /  I nval i d val ue.  Rol l back t o pr evi ousl y saved l engt h 
  For m1_Wsi ze. t ext =wi ndowSi ze;  
 }  
  
}  
 
/ /  Ut i l i t y f unct i ons 
 
/ /  Cal l ed when t he mer si ze par amet er  changes 
f unct i on updat emer si ze( )  {  
 / /  Updat e t he mer si ze f i el d on t he f or m 
 For m1_Mer si ze. t ext =mer Si ze;  
 / /  Send t he new mer si ze val ue t o t he ser ver  
 For m1_Bander 1. Send( mer Band, " mer si ze_" +mer Si ze) ;  
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  / /  Tr i gger  r ecal cul at i on 
 For m1_Bander 1. Set St ar t ( posi t i on) ;  
}  
 
 
 
 
 
/ /  Cal l ed when t he movi ng aver age wi ndow l engt h changes 
 
f unct i on updat ewsi ze( )  {  
 / /  Updat e t he f i el d on t he f or m 
 For m1_Wsi ze. t ext =wi ndowSi ze;  
 / /  Change t he wi ndowSi ze par amet er  f or  t he AvgBand 
 / /  oper at i on.  The ol d oper at i on used t o comput e avgBand 
 / /  i s r epl aced by t he new one 
   For m1_Bander 1. AvgBand( mer Band, avgBand, wi ndowSi ze) ;  
 / /  The bander  obj ect  aut omat i cal l y r ecomput es t he new bands 
  / /  and r equest s a f or m r ef r esh  
 }  
 

 

The end result of the simple code presented above is the interactive application 

shown in the following picture: 

 

Figure 18. A VALIS genome viewer 
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5.1.3. Suffix array tools available within VALIS 

To compare multiple genomes, and even to study the statistics of words 

occurring in a single genome (as in the above example), VALIS makes tools 

based on suffix arrays available. 

 A suffix array is basically a sorted list of all the suffixes of a string. If a suffix 

array is coupled with information about the longest common prefixes (LCP) of 

adjacent elements, exact substring match searches can be performed in O(P + 

log N) time, where P is the length of the substring to be found and N is the 

length of the query string. 

Suffix arrays can obviously be constructed from suffix trees in linear time, but 

only a direct space-saving construction is of practical interest. Three 

[68][69][70] direct linear time construction algorithms have been described 

recently, but their space requirements for full-genome applications are also 

large. To find something suitable for such applications we have tested most of 

the O(N log N)-time algorithms. These can be divided in two classes: standard 

string sorting algorithms applied to all the suffixes of a string, whose best 

representative is the one due to Bentley and Sedgewick[76], and specialized 

construction algorithms, like the one proposed by Manber and Myers [66] and 

optimized by McIlroy[77], Sadakane[78],  Larsson and Sadakane [80]; and 

finally the “Deep Shallow” algorithm proposed by Ferragina and Manzini[81] 

and the external memory construction by Gonnet and Baeza Yates [79] and 

Sadakane[78]. 

In our experiments with the largest human chromosomes (taken from the 

Golden Path genome database, freeze hg15), the Deep Shallow algorithm 

performed best, and so was adopted as our basic small to medium size suffix 

array construction tool.  
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We aim to deal with very large genomes, for example the human genome, and 

we aim to compare multiple large genomes even though the Deep Shallow 

algorithm cannot handle some of these desired datasets. To accomplish this 

level of performance we use a suffix array merge algorithm and distribute 

multiple chromosomes and genomes on a computer cluster. Each node of this 

cluster can keep suffix array data for a few full chromosomes in memory. 

Queries can be implemented in a parallel fashion using the MPI [92] library to 

provide real-time response to the exact match queries generated by our Bander 

object. 

5.1.4. A historical survey of suffix tree and suffix array algorithms 

Manber and Myers invented the suffix-array data structure as an alternative 

representation of suffix trees with lower space requirements. While suffix trees 

can be constructed in linear time and are ideal for the kind of string queries 

useful to genomics, they are unlikely to be used for searching strings larger 

than bacterial genomes. 

Abouelhoda and others [67][71] have also proposed an extended 

representation of the suffix array for achieving bounds similar to suffix trees 

for supermaximal, maximal and tandem repeats of genomic strings. 

To our surprise, we found that both Gonnet’s and Sadakane’s suffix array 

merge algorithms, very well known in the field, are actually incorrect. The 

suffix merge step used in this algorithm aims to build the suffix array for a 

very large string T of length n, by dividing it into sections of length n/m, and 

incrementally merging large suffix arrays and a smaller suffix array 

corresponding to a new section of the input string. The merge step deals with 

suffix arrays for two strings TD and TM of length n and m respectively to 

obtain the suffix array of the concatenated string TD TM.  



 121 
 

The problem with this algorithm is the following: suppose that two suffixes of 

TD, Si and Sj appear in the large suffix array in a certain lexicographic order, 

say Si < Sj; this order will be conserved by the merge step, but this could be 

incorrect, since the concatenation of TM with Si and Sj  can potentially change 

the lexicographic order. A simple example would be with the two suffixes 

“AT” and “ATC” of TD, and TM starting with ‘T’ . 

Sadakane’s algorithm is very similar, but the counting phase is performed by 

traversing all the suffixes of TM instead of TD. 

A simple solution to correct the errors in Gonnet’s algorithm is to compute a 

suffix array of the last k characters of TD concatenated with TM instead of 

simply computing the suffix array of TM, before applying the merge. In the 

counting stage, we can just ignore the last k characters of TD. Finally in the 

merge step, we discharge all the suffixes of length k or less. A similar fix can 

be applied to Sadakane’s version. 

Of course the resulting suffix array can guarantee the accuracy of the 

lexicographic order only up to length k. But, for practical cases, k can be 

safely set to a few thousands. The extra work needed during the construction 

of the suffix array of a new section is negligible due to the O(m log m) 

complexity. 

 
 

5.2 Application Example 2. Simpathica 

 

Our second example shows how multiple scripting languages can be very 

useful in rapid construction of tools for bioinformatics and computational 

biology. To this end, we consider the Simpathica system developed by the 
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NYU Bioinformatics group as part of its DARPA Biocomp project[83]. 

The Simpathica/XSSYS system serves to construct, simulate and analyze the 

behavior of metabolic and regulatory networks. Analysis of pathways is done 

by formulating queries about their temporal evolution in an appropriate logic 

language. The system is logically divided into a front end and a simulation 

system, i.e. Simpathica proper and its analysis back-end XSSYS. 

Biochemical pathways can be entered into the system either via the main 

Simpathica user interface or in a XML format. The system will then simulate 

the pathways entered and will produce trace objects. The XSSYS backend, 

written in Common Lisp, manipulates these traces (or traces produced by other 

simulation software or experiments) and evaluates Temporal Logic queries 

over them. 

The Simpathica front end takes as input descriptions of metabolic and 

regulatory pathways constructed from a set of standard building blocks, which 

describe a repertoire of biochemical reactions, and can display these pathways 

in a graphical representation. 

Simpathica then transforms this graph into an internal XML representation that 

can be also used for data exchange purposes. This internal representation 

consists of a set of Ordinary Differential Equations (ODEs) along with initial 

conditions. These ODEs are then translated into Octave (or Matlab) code, 

which performs the actual simulation by integrating the set of equations. The 

result of such a simulation is the trace object to be input into the XSSYS trace 

analysis system. 

The output of the Simpathica front end consists of an XML model and a trace 

object produced indirectly by the chosen ODEs integrator (Octave in our case). 
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Once these are available, the XSSYS system takes the trace object and a 

temporal logic query and evaluates the truth-value of the query. If the query 

turns out to be false over the trace, XSSYS will also return a counterexample 

(in the form of a time index indicating a point where the trace falsifies the 

query). 

The modules produced for the BIOCOMP project initially used the OOA 

Agent Architecture[84], to facilitate integration between modules written in 

different languages and produced by different groups. However the OAA 

architecture initially selected to speed up prototyping of the BIOCOMP system 

has many shortcomings: 

1) In this architecture, each agent must register with “ facilitator”  written 

in Prolog. Agents cannot be started automatically when they are 

needed. 

2) The facilitator serves to solve queries written in an “ Interagent 

Communication Language” (ICL) that must be built by the clients. 

Writing clients and servers is not straightforward. 

3) Performance issues arise for in-process calls; limits are imposed on 

message sizes; parameters of the ICL queries are mangled by the OAA 

infrastructure. 

In VALIS we can do better. Once having assembled all the underlying 

building blocks needed, e.g. the XML parsers, graph viewers, ODE 

integrators, the XSSYS subsystem, it is possible to prototype in VALIS a 

system like Simpathica/XSSYS in a few days. 
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Figure 19. GUI design for Simpathica 

A basic graphical user interface can be put together graphically in a VALIS 

form in a few minutes, since most of the widgets needed are standard controls 

of the form designer. The interface can be organized using multiple ‘Tab’  

container widgets and using different tabs for I/O, the model editing widgets, 

the simulation pane, the graphical results of the simulation and the interface 

with the XSSYS subsystem. The figure seen above shows the tabs and the 

‘model editing’  pane. 

The only two graphical elements needed that are a bit unusual are a viewer for 

showing a graphical representation of the pathways, and a Graph component 

for presenting the simulation traces. For the first of these widgets, we use the 

Adobe SVG viewer. This is a standard ActiveX control and can render models 

written in the SVG language with zooming capabilities. To visualize traces we 
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can use a simple Microsoft Chart control. 

Since most of the internal data structures with which Simpathica/XSSYS 

works are based on XML, it is appropriate to use the versatile XML parser 

[93] from Microsoft to handle them. In VALIS this can be made available 

using just one code line: 

xml par ser =Cr eat eObj ect ( " Msxml 2. DOMDocument . 4. 0" ) ;  
 
 

A model of a pathway can be easily stored into XML files and retrieved using 

functionalities provided by the XML parser object. Once loaded and parsed 

this model is used to update the internal data structures (namely the 

‘compounds’ and ‘ reactions’  lists) and the corresponding graphical widgets. 

We construct a graphical representation of the model from the internal XML 

representation and feed it to the SVG widget. We use the DOT language [94] 

(a general graph description language) as an intermediate language for this 

graphical representation.  The DOT code is produced by applying a style sheet 

to the XML model. For example, a Repressilator model [97] will yield the 

following DOT code: 

di gr aph G {   x0 [  l abel =" pTet R" ] ;   x1 [  l abel =" pLambdaCI " ] ;    
x2 [  l abel =" pLacI " ] ;   x3 [  l abel =" mt et R" ,  st y l e=f i l l ed] ;    
x4 [  l abel =" ml ambdacI " ,  st y l e=f i l l ed] ;   x5 [  l abel =" ml acI " ,  
st y l e=f i l l ed] ;    
y6 [  shape=poi nt ]  ;   y7 [  shape=poi nt ]  ;   y8 [  shape=poi nt ]  ;    
y9 [  shape=poi nt ]  ;   y10 [  shape=poi nt ]  ;   y11 [  shape=poi nt ]  ;   
x3 - > y6 [ wei ght =10,  l abel =" SI MPLE1" ,  ar r owhead=none]  ;   
y6 - > x0 [ wei ght =10]  ;  x2 - > y6 [ st y l e=dot t ed]  ;   
x4 - > y7 [ wei ght =10,  l abel =" SI MPLE2" ,  ar r owhead=none]  ;   
y7 - > x1 [ wei ght =10]  ;  x0 - > y7 [ st y l e=dot t ed]  ;   
x5 - > y8 [ wei ght =10,  l abel =" SI MPLE3" ,  ar r owhead=none]  ;   
y8 - > x2 [ wei ght =10]  ;  x1 - > y8 [ st y l e=dot t ed]  ;   
x0 - > y9 [ wei ght =10,  l abel =" OUT4" ]  ;   
x1 - > y10 [ wei ght =10,  l abel =" OUT5" ]  ;   
x2 - > y11 [ wei ght =10,  l abel =" OUT6" ]  ;   }  

 

In this representation x0 trough x5 and y6 trough y11 are nodes (each one with 
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certain properties, i.e. label, style etc.); a list of the edges follows. 

The Graphviz system [94] can produce a variety of other graphical 

representations (among them SVG) once provided with models described in 

the DOT language. We reworked this system into an ActiveX control, which is 

then made available to VALIS. 

/ /  gr aph i s t he DOT descr i pt i on of  t he model .  
/ /  Use t he gr aphvi z cont r ol  t o obt ai n SVG code.  
t hexml =gr aphvi z. Dot ToSvg( gr aph) ;  
 
/ /  i gnor e ever yt hi ng bef or e <svg> 
i =t hexml . i ndexOf ( " <svg" ) ;  
i f  ( i >=0)  t hexml =t hexml . sl i ce( i ) ;  
 
/ /  Par se t he SVG model  wi t h t he XML par ser   
xml par ser . l oadXML( t hexml ) ;  
 
/ /  Copy i t  node- by- node t o t he Adobe SVG vi ewer  
/ /  usi ng a scr i pt  by Chr i s Bayes 
/ /  ht t p: / / www. bayes. co. uk/ xml / i ndex. xml ?/ xml / ut i l s/ domt odom. xml  
domt odom( xml par ser ) ;  
 
 

This program fragment yields the graph: 

 

Figure 20. The SVG viewer embedded in a 
VALIS form 
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The SVG viewer allows the user to navigate through this graph. 

The internal model used to produce the graph representation can be 

transformed into an intermediate representation suitable for the generation of a 

set of ODEs. This intermediate representation is obtained with the application 

of another XML style sheet: 

 / /  Bui l d 
 xml map = bui l dXML( ) ;  
 / /  Appl y t he xsl map st yl e sheet .  Resul t  i n xml gr aph 
 xml map. t r ansf or mNodeToObj ect ( xsl map,  xml gr aph) ;  
 
 / / val i dat e t he xml gr aph agai nst  t he gr aph schema 
 er r or  = xml gr aph. val i dat e( ) ;  
 i f  ( er r or  ! = 0)  {  
  al er t ( " Er r or  i n t he par se of  t he gr aph f i l e: \ n"  + 
xml gr aph. par seEr r or . r eason) ;  
  r et ur n;  
 }  
 / /  Obt ai n t he pyt hon ODE def i ni t i on 
  
 scr i pt  = xml 2py( xml gr aph) ;  
 

 

Without much difficulty, we can then dynamically produce some Python code 

(in  the xml2py function above) with the step function for the integrator: 

def  pat hway( X, t ) :  
 xdot  = [ ]  
 xdot . append( +1* ( +1* X[ 3] * * ( 1) * X[ 2] * * ( - 1) ) - 1* ( +1* X[ 0] * * ( 0. 5) )  )  
 xdot . append( +1* ( +1* X[ 4] * * ( 1) * X[ 0] * * ( - 1) ) - 1* ( +1* X[ 1] * * ( 0. 578151) )  )  
 xdot . append( +1* ( +1* X[ 5] * * ( 1) * X[ 1] * * ( - 1) ) - 1* ( +1* X[ 2] * * ( 0. 5) )  )  
 xdot . append( 0 )  
 xdot . append( 0 )  
 xdot . append( 0 )  
 r et ur n xdot  
 
i ni t i al  = [ 0. 01, 0. 2, 0. 01, 0. 2, 0. 2, 0. 2]   

 

A Python ODE integrator (based on Numeric Python[95]) will integrate the 

ODEs generated as above. 

f r om sci py i mpor t  *  
f r om sci py. i nt egr at e i mpor t  *  
f r om Numer i c i mpor t  *  
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t i me=0 
i nt Resul t =0 
 
def  i nt egr at e( equat i ons, si mt i me, si mst eps) :  
 gl obal  t i me, i nt Resul t  
 f r omTi me = 0 
 t oTi me=si mt i me 
 st eps=si mst eps 
 pr eci si on = ( t oTi me -  f r omTi me)  /  f l oat ( st eps)  
 t i me = ar ange ( f r omTi me,  t oTi me,  pr eci si on)  
 i nt Resul t  = 0 
 
 exec( " gl obal  i nt Resul t , t i me\ n" + 

equat i ons+" \ ni nt Resul t  = odei nt ( pat hway,  i ni t i al ,  t i me) " )  

 

This Python function is called directly from Javascript once the simulation is 

started: 

/ /  Cal l  t he Pyt hon i nt egr at or .  Pass t he equat i ons and t he si mul at i on 
/ /  par amet er s 
i nt egr at e( scr i pt , s i mt i me, si mst eps) ;   
 

 

The ‘ integrate’  Python function shown above continues by updating the 

Microsoft Chart control (see Figure 21) which has been added to the 

Simpathica form. The traces are then saved to a temporary file 

  col s=i nt Resul t . shape[ 1]  
 r ows=i nt Resul t . shape[ 0]   
 
 # Set  char  t ype t o l i ne pl ot   
 For m1_Char t . char t Type=3 
 # Cust omi ze t he gr i d 
 For m1_Char t . Pl ot . Axi s( 0) . Axi sGr i d. Maj or Pen. St yl e=0 
 For m1_Char t . Pl ot . Axi s( 1) . Axi sGr i d. Maj or Pen. St yl e=0 
 For m1_Char t . Pl ot . Axi s( 2) . Axi sGr i d. Maj or Pen. St yl e=0 
 For m1_Char t . Pl ot . Axi s( 0) . Cat egor yScal e. Di vi s i onsPer Label =r ows/ 10 
 For m1_Char t . Pl ot . Axi s( 0) . Cat egor yScal e. Di vi s i onsPer Ti ck=r ows/ 10 
 
 For m1_Char t . Col umnCount =col s 
 For m1_Char t . RowCount =r ows 
 f or  col  i n xr ange( 0,  col s) :  
  For m1_Char t . Col umn=col +1 
  f or  r ow i n xr ange( 0, r ows) :  
   For m1_Char t . Row=r ow+1 
   For m1_Char t . Dat a=i nt Resul t [ r ow, col ]  
 
 f or  r ow i n xr ange( 0, r ows) :  
   For m1_Char t . Row=r ow+1 
 gl obal  t i me, i nt Resul t  
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Figure 21. Simulation of a repressilator 

The XSSYS query event (generated by the button in the ‘XSSYS Query’  pane 

shown in Figure 22) can be handled by some JavaScript: 

 f unct i on For m1_RunXSSys: : Cl i ck( )   
{  
    
 Cl ear ( ) ;  
 / /  Cl ear  t he r esul t  t ext  wi dget  
 For m1_TLResul t . t ext =" " ;  
 / /  Get  t he t empor al  l ogi c quer y st r i ng 
 quer y=For m1_TLQuer y. t ext ;  
 / /  Cal l  t he LI SP subsyst em 
 r esul t = xssysquer y (  t empf i l e,  quer y) ;  
     
   swi t ch ( r esul t )  {  
  case - 1:  
   r esul t =" Er r or  ( most  l i kel y a synt ax er r or ) ! " ;  
   br eak;  
  case 0:  
   r esul t =" The For mul a i s FALSE over  t he t r ace" ;  
   br eak;  
  case 1:  
   r esul t =" The For mul a i s TRUE over  t he t r ace" ;  
   br eak;  
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  case 2:  
   r esul t =" The For mul a i s al ways TRUE" ;  
   br eak;  
  case 3:  
   r esul t =" The For mul a i s somet i mes TRUE" ;  
   br eak;  
  }  
 / /  Di spl ay t he r esul t  
 For m1_TLResul t . t ext =r esul t ;  
}  

 

 

Figure 22. The XSSYS Query pane 

That will in turn call the front end to the XSSYS system in Common Lisp: 

 
 ( def un xssysquer y ( a b)  
 ( l oad- t r ace a)  
   ( anal yze- t hi s b)  
   )  
    
    
 ( def un l oad- t r ace ( f i l ename)  
  ( i f  ( pr obe- f i l e f i l ename)  
        ( pr ogn 
          ( set f  xssys: : * t he- cur r ent - t r ace*  
                ( xssys: l oad- t r ace f i l ename : def aul t ) )  
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          xssys: : * t he- cur r ent - t r ace* )  
        - 1) )  

 

Finally, the code that handles events from the Forms and customizes the 

interface can readily be written in JavaScript. 

 

5.3 Summary 

 

In this chapter we have shown two sample VALIS applications designed to let 

biologists explore complex genomes and biochemical pathways. VALIS 

allows these applications to be constructed rapidly and connected together 

seamlessly. Our Simpathica implementation illustrates the technique of 

multiple language prototyping. The availability of many powerful scripting 

languages and numerous public domain libraries and components within 

VALIS support a substantially improved rapid prototyping capability for 

computational and systems biology. 
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Chapter  6 

6 Conclusion 

Bioinformatics is a challenging application area for computer science, and in 

particular for programming language designers. We have seen that scripting 

languages, graphical user interfaces and database systems play a major role in 

prototyping and developing applications in bioinformatics.  

In this thesis we have presented a novel system that allows seamless 

integration between scripts written in different programming languages, 

without the use of IDL descriptions or Object broker wrappers and that works 

with today’s languages and compilers. We have described a new data storage 

system that has marked advantages when dealing with unstructured and 

unbounded data, common in scientific fields and bioinformatics. This new 

programming language design environment gives us the ability to prototype 

systems with full graphical user interfaces rapidly, using standard ActiveX 

controls. We have also described a battery of widgets and algorithms, which 

permit rapid prototyping of large-scale interactive genomic applications within 

VALIS 

 

6.1 Other systems comparable to VALIS 

 

The high degree of standardization defined by Microsoft .NET (and the public 

domain MONO effort) lays out a path to the future of large-scale software 

which all language designers will have to deal with in the coming period. To 
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reach this future will take some time, because it will take many years to 

convert the great mix of native code currently existent to managed c++ code 

conforming to standards like that defined by the Microsoft CLR (Common 

Language Runtime). Moreover, early attempts by Microsoft and ActiveState 

developers to target the CLR from Python and Perl have failed[85], suggesting 

that the CLR it is not yet fully adequate to support Python and other 

programming languages having similar semantics. To address this issue, 

Microsoft is currently considering a revision of the CLR. 

 

6.2 Porting VALIS to other platforms 

 

We have successfully run VALIS (both its non-GUI and the GUI portions) 

under WINE in the Linux operating system (using an Intel processor). This 

demonstrates the feasibility of supporting ActiveX designers and controls by 

API emulation in non-windows environments (see also the crossover plugin 

[87]). This is definitely not the best solution, since in environments such as the 

Apple MacOSX operating system an Intel processor would have to be 

emulated. 

Most of the interpreters used in our Windows-based version of VALIS are 

already supported in other environments and operating systems. Therefore, by 

providing a few COM libraries, we can hope to port the non-GUI parts of 

VALIS to other environments by a simple recompilation. All the COM 

libraries needed to implement this much are already available within the public 

domain WINE project[86]. (The Winelib component of WINE already offers a 

cross-platform version of these libraries.) Moreover, cross-platform 

alternatives to COM, like XPCOM [96] developed by Netscape, already exist.  
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We have seen in section 4.6 that most cross-platform GUI design toolkits 

currently available lack the scripting capabilities of ActiveX controls (OLE 

Automation) and that many do not support the creation of non-standard widget 

sets. The GUI building capabilities and the graphical widgets of VALIS would 

then need to be supported by a cross-platform GUI component architecture 

with characteristics similar to that offered by ActiveX controls.  

A possible solution would be to use a cross-platform widget set like QT or 

GTK for rendering and to define interfaces similar to OLE and OLE 

Automation that VALIS graphical widget developers must use. (The KDE 

component architecture could be extended to offer such interfaces.) 

Another approach would be to use Mozilla XUL (XML based Used interface 

Language [98]) to design cross platform graphical user interfaces in VALIS. 

Rapid application development using Mozilla seems promising (see [98]), but 

currently offers no RAD environments and only JavaScript (or C++) is 

available to code application logic. But Mozilla might be extended to support 

interfaces similar to ActiveX scripting instead of XPCONNECT to gain access 

to other scripting engines.  
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