
Finding Your Match: Techniques for Improving

Sequence Alignment in DNA and RNA

Ofer Hirsch Gill

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

May 2006

Bud Bhubaneswar

Mishra

c© Ofer Hirsch Gill

All Rights Reserved, 2006

“You cannot determine peoples’ destinies, they find it out for themselves.”

- Kevin Sorbo

Dedicated to my family and friends, who never stopped believing

in me.

v

Acknowledgements

I would like to thank my advisor, Bud Bhubaneswar Mishra, for his continuous

patience during my studies, as well as my thesis review board members Laxmi

Parida, Narendra Ramakrishnan, and Avi Goldstein, for their comments and

advice. Further thanks go to fellow labmates Toto Paxia, Raoul Sam-Daruwalla,

Yi Joey Zhou, Bing Sun, and Venkatesh Mysore for their help and collaboration

throughout the research process. I would not have been able to carry out this

research without all of you.

vi

Abstract

In Bioinformatics, finding correlations between species allows us the better un-

derstand the important biological functions of those species and trace its evolu-

tion. This thesis considers sequence alignment, a method for obtaining these cor-

relations. We improve upon similar sequence alignment tools with Plains, an

algorithm than uses piecewise-linear gap functions and parameter-optimization

to obtain correlations in remotely-related species pairs such as human and fugu

using reasonable amounts of memory and space on an ordinary computer. We

also explore SEPA, a tool that uses p-value estimation based on exhaustive em-

pirical data to better emphasize key results from an alignment with a measure of

reliability. Using SEPA to measure the quality of an alignment, we proceed to

compare Plains against similar alignment tools, emphaisizing the interesting

correlations caught in the process.

vii

Contents

Dedication v

Acknowledgements vi

Abstract vii

List of Figures x

List of Tables xv

List of Appendices xvi

1 Introduction 1

2 Literature Survey 5

2.1 Alignment Overview . 5

2.2 p-Value Methods . 13

3 Overview 15

4 Plains 16

4.1 The Plains Alignment Method 16

4.2 Plains Log Approximation and Parameter Optimization 20

viii

5 SEPA 24

5.1 Obtaining High-Scoring Strips from an Alignment 26

5.2 Methods: Analyzing Segment Pairs 28

6 Colorgrid and DNA Results 34

6.1 The Plains ColorGrid Method 34

6.2 Empirical Results . 35

7 Conclusions and Open Problems 42

Appendices 44

A.1 Proof for the O(np) Space Bound 45

A.2 Details for the Maximum Criterion Selection 47

B.1 Segment Pair Analysis in Further Detail 51

B.2 Sequence Details . 57

Bibliography 59

ix

List of Figures

4.1 The Piecewise-Linear Gap Functions that Plains came up with

in optimizing the score for different species pairs, along with the

rescaled gap-paramters the other tools use. Note that the LA-

GAN gap paramters shown here are its default paramters. LA-

GAN uses a number of unspecified gap parameters in aligning on

a species by species basis. 23

5.1 Shown above are the mean length-to-score ratio and mean seg-

ment scores observed in the strips from aligning randomly gener-

ated DNA sequences. In the plots shown above, a unique line is

plotted corresponding to each value of n in the thousand lengths

ranging from 1000 to 8000. For these plots, x represents the

m value divided by 1000, and y represents the mean observed

for that particular m and n, and the left plots illustrate mean

length-to-score ratio for the segment pairs, while the right plots

illustrate mean segment pair scores. 30

x

5.2 Shown here is a plot of segment scores to frequency for randomly

generated sequences using our assumption that segment score is

length-independent. The x axis represents segment score, and

the y axis represents frequency. The tail of this plot is an expo-

nential distribution of form P (S = x) = Ke−λx, where we have

approximated K = 8.69×10−2 and λ = 3.26×10−2. This curve is

at its highest when x = 30, and by emprical observation, we have

noticed that strips scoring less than 30 are generally unimportant

portions of an alignment. 31

5.3 From our alignments over the randomly generated sequences, af-

ter adjusting the number of segments r and the total score t for

length-dependent average and deviation behavior, we chose to

plot the frequency of observing certain r and t values. The figure

shown here is a surface plot of this, where lighter spots indi-

cate higher frequencies. From it, we observe that the majority of

the data is concentrated in one area. This area approximates to

ece−atT 2+btT+cte−arR2+brR+cr , where c = −183.90, at = 10.1, bt =

9070, ct = −2.04 × 106, ar = 0.241, br = 4.71, cr = −27.5. 33

xi

6.1 In this figure, we observe the unadjusted r and t values produced

by Plains, LAGAN, and EMBOSS from the human-mouse.3

– 9 experiment where we vary the ρ variable used to filter our

segment pairs. On each curve, we observed the t and r values

of each tool when varying ρ over various values from 0.1 till 0.9.

Recall from table 6.1 that Plains performed poorly in terms of

ζ ′ values for ρ = 0.5 for the human-mouse.3 – 9 experiments.

However, note from this plot that for any fixed r where Plains

is comparable to a different tool, Plains receives the highest t

value, and therefore if we designed SEPA using a fixed r value

over all alignment tools, then Plains would have the highest t

value, and hence the highest ζ ′ value (i.e., the best result). Many

other experiments from table 6.1 have a similar plot to this one. 38

6.2 Match Ratio Color Lines in the HFOrtho2 test for Plains and

EMBOSS. Here, the Human and Fugu sequence used have six

exon regions that correspond to each other (though not necessar-

ily in order, as exon region 2 in the Fugu sequence corresponds

to exon region 3 in Human sequences for example). Here, both

Plains and EMBOSS correctly identify the correlation of exon

region 2 in Fugu with exon region 3 in Human, but only Plains

identifies the correlation of exon region 5 in Fugu with exon re-

gion 5 in Human. 40

xii

6.3 Match Ratio Color Lines in the HumanPseudo5 test for Plains

and LAGAN. Here, the Human sequence has 8 exon regions that

are similar to areas of the pseudosequence used, and alignments of

Plains and LAGAN for these cases are similar, even by eyeglance

of the ColorGrids. Note that although Plains and LAGAN catch

most of these regions in their alignments, we’re only counting the

exon regions that participated in “good” segments according to

SEPA. With this in mind, Plains and LAGAN both identify

exon region 4 as important, but Plains also deems exon regions

6 and 7 in the Human sequence as important, which LAGAN

misses. 41

B.1 Shown above are the mean and variance plots for the segment

pair length-to-score ratio from aligning randomly generated DNA

sequences. A unique line is plotted corresponding to each value

of n in the thousand lengths ranging from 1000 to 8000. For these

figures, and others that follow, x represents the m value divided

by 1000, and y represents the mean or variance value obtained

for that particular m and n. 53

B.2 Shown here are the mean and variance plots for segment scores

from aligning randomly generated DNA sequences. 54

B.3 Shown here are the mean and variance plots for r, the number of

segment pairs obtained from aligning randomly generated DNA

sequences. 55

xiii

B.4 The plots shown here are the mean and deviation plots for t, the

total score of all segment pairs from aligning randomly generated

DNA sequences. Because the variance plot was difficult to quan-

tify in terms of m and n, we instead model the deviation for total

score in terns of d and i, where i = min (m, n) and d = ‖m− n‖.

The lower figure shows the deviation plot, with each curve cor-

responding to a unique d value, and the x-axis reprsenting i in

units of thousands. 56

xiv

List of Tables

6.1 Shown here for Plains, EMBOSS, and LAGAN are the r, t,

and ζ ′ values obtained from aligning genomic DNA sequences of

lengths between 0.5 Kb and 12 Kb within human, mouse, dog,

and fugu, where the pairs are biologically related and mainly non-

coding DNA with expected large gaps and low homology regions. 36

B.1 Sequence Details for the Biologically Related Alignments Ran.

All the sequences are retrieved from ENSEMBL database [www.ensembl.org]. 58

xv

List of Appendices

Appendix A

Proofs for Non-Trivial Portions of PLAINS

44

Appendix B

SEPA Details

51

xvi

Chapter 1

Introduction

Since biological sequences like DNA, RNA, and amino acid sequences, did not

arise ab initio, but share a common ancestry and similar selection constraints,

a key focus in bioinformatics has been to enhance our ability to compare large

number of these sequences against each other. An effort of this kind can ulti-

mately catalogue elements that are conserved, motifs that are repeated, regions

that are hyper-mutated or deleted, and segments that are inserted and reinserted

over and over. This process starts with aligning two or more sequences with an

algorithm that optimizes an alignment score, and often ends with organizing a

set of sequences in a global tree structure where the tree-distances roughly cor-

respond to the evolutionary distances. Both the score and distance functions are

determined by the underlying stochastic processes modeling genome evolution,

and must be represented in a flexible manner in order to be faithful to biol-

ogy. But this sort of generality often implies a loss of computational efficiency.

This dilemma is resolved through reliance on simple algorithms, quasi-local cost

functions (e.g., linear gap penalty), and by applying these algorithms only on

short subsequences after most unlikely candidates have been discarded.

1

To a rough approximation, DNA sequence alignment problem differs marginally

from protein sequence alignment problem. (For instance, at a superficial level,

one may note that DNA alignment is over an alphabet of 4 letters whereas pro-

tein alignment is over an alphabet of 20 letters). However, two key differences

are that (1) there are 3 bp DNA code per amino acid, and that (2) genes in

DNA sequences that ultimately get transcripted and translated into proteins

can be separated by intergenic regions of few thousands of base pairs that do

not get expressed, and perhaps, are subject to strikingly different (or no) se-

lection constraints. Thus these intergenic regions typically vary to a greater

extent in one species compared to another. Therefore, we may expect the gap

lengths in DNA alignments to be larger, more variable, and have specie-specific

distributions. Moreover, these distributions characterizing the gap-lengths may

not be memory-less (i.e., exponential distributions). There have been sugges-

tions that power-law distributions may be more appropriate. The evolutionary

processes governing the genomes of species, and the log-likelihood of certain

indel gaps occurring when comparing one species against another suggest that

a logarithmic gap function is more appropriate for DNA sequences. Because of

this, the traditional affine (or linear) gap functions used for aligning proteins are

unsatisfactory for DNA sequences, as the ultimate results may be biologically

misleading.

In order to exploit the fidelity of general non-linear gap functions for DNA

sequences, without suffering performance penalites associated with them, we

have chosen to use piecewise-linear gap functions modeled to approximate the

gap functions in a dynamic programming approach. Here, we present an im-

plementation of an alignment algorithm, Plains, that uses reasonable amount

of memory, avoids a major shortcoming associated with generalized gap penal-

2

ties, and only demands a loss of constant factor (of ≤ 5.6) in time complexity

compared to the best algorithm using an affine-gap model. There have been

other algorithms that also proposed piece-wise linear gap model (see Miller-

Myers [13]), but Plains presents several additional theoretical innovations in

terms of worst-case upper-bound memory usage, alignment optimization, and

visualization of data. We have Plains available in a powerful bioinformatic

environment, called Valis. Our algorithm uses an innovative learning-heuristic

to determine the best score function and near-optimal gap-penalty model.

In addition, to draw our attention very quickly to the most pertinent similar

subsequences, it is necessary to compare the important areas of alignments and

rank them in order of their relevance. For instance, by comparing alignments

in related sequences to those of unrelated sequences with no common biological

function, we may derive, for any alignment, the probability that its important

areas occur by mere coincidence. This probability measure is also known as a

p-value, and low p-values relate to high relevance rank.

Many p-value estimation techniques have been suggested and examined pre-

viously, for instance, Karlin-Altschul [9] and Siegmund-Yakir [21], but none have

proven completely satisfactory. Hence, we discuss SEPA (Segment Evaluator

for Pairwise Alignments), which focuses on using empirical results in its p-value

approximation. We will emphasize alignments typically dealt with in Plains,

which is those of noncoding nucleotide sequences of lengths varying from .5 Kb

to 12 Kb, with expected large gaps and low similarities.

We will demonstrate how SEPA selects and scores important segments pairs.

Furthermore, for random sequences, we also empirically characterize how var-

ious alignment statistics, such as the segment pair lengths, scores, and mag-

nitudes, distribute as a function of sequence lengths. From this analysis, the

3

parameters for a p-value approximation are estimated, and used to demonstrate

the method of sensitivity in distinguishing important homologies from unim-

portant chance occurrences of subalignments within sequences. Furthermore,

SEPA is non-subjective, since it can easily be applied to any alignment tool.

We will illustrate this advantage by using it to compare the results of Plains

with LAGAN, EMBOSS. Because of these strengths and despite its empirical

foundation, SEPA fulfills a practical computational need by speeding up the

core search processes in comparative genomics.

As we hope to demonstrate here by an extensive set of experimental results,

Plains works satisfactorily for DNA sequences, and can better reveal the under-

lying biological significances than other existing algorithms (e.g., needle, swat,

emboss, etc.). As a concrete example, we present our alignment results for the

genomic sequences of a pair of orthologous genes in Human and Fugu. While

all the alternative alignment algorithms either fail by mis-aligning the exons

in the Fugu sequence, or by not identifying important correlations, PLAINS is

able to recover the orthologous relation between exons in the Fugu and Human

sequences with good reliability. (See Fig. 6.2)

4

Chapter 2

Literature Survey

2.1 Alignment Overview

2.1.1 Dynamic Programming Intro

Suppose there are two strings to be aligned denoted as X and Y , and their

respective lengths are m and n with m ≥ n. We can generate an alignment

for X and Y by maximizing V (m, n), where V (·, ·) is a two-dimensional scoring

function such that V (i, j) denotes the best score for aligning X[1 : i] with Y [1 : j]

(i.e., characters 1 thru i in X, and characters 1 thru j in Y). For now, we will

assume we score ma for each match, ms for each mismatch, and wc for each

gapped character (corresponding to an insertion or deletion in transforming X

to Y), where ma is a reward and everything else is a penalty. Also, suppose

s(c, d) yields ma when c = d, and −ms when c 6= d.

We hence compute V (m, n) as follows:

V (0, 0) = 0

5

V (i, 0) = wc · i

V (0, j) = wc · j

V (i, j) = max{V (i − 1, j − 1) + s(X[i], Y [j]), V (i − 1, j) − wc, V (i, j − 1) − wc}

The V (i, 0) case corresponds to X[1 : i] being aligned against a gap. The

V (0, j) case corresponds to Y [1 : j] being aligned against a gap. In the V (i, j)

recursion, the V (i− 1, j − 1) + s(X[i], Y [j]) case corresponds to X[i] aligned to

Y [j], V (i − 1, j) − wc corresponds to X[i] being aligned to a gap, and V (i, j −

1) − wc corresponds to Y [j] being aligned to a gap. Computing V (m, n) takes

O(mn) time, and requires O(mn) space. We can then backtrace from V (m, n)

to obtain the alignment.

2.1.2 Smith-Watermann Formula

The Smith-Waterman formula is similar to the previous formula, except that

instead of representing a gap of length i with penalty wc ·i, we’d like to represent

it with penalty wo +wc · i. That is, we wish to include a wo penalty for opening

a gap, which is typically much larger than the wc penalty for extending a gap.

This encourages fewer gaps, but allows for a gap to be more easily extended

once it already exists.

To assist the computation of V (·, ·), we will use functions E(·, ·), F (·, ·), and

G(·, ·), where E(i, j) is the score for aligning X[1 : i] with Y [1 : j] when we end

with the “solid” character at the end of Y ’s suffix aligned against a gap, F (i, j)

is the score for aligning X[1 : i] against Y [1 : j] when we end with the “solid”

character at the end of X’s suffix aligned against a gap, and G(i, j) is the score

for aligning X[1 : i] against Y [1 : j] when we end with the “solid” characters at

6

the end of the suffixes of X and Y aligned against each other (and they can be

matched or mismatched). Then:

V (0, 0) = 0

V (i, 0) = E(i, 0) = −wo − i · wc

V (0, j) = F (0, j) = −wo − j · wc

V (i, j) = max{E(i, j), F (i, j), G(i, j)}

G(i, j) = V (i − 1, j − 1) + s(X[i], Y [j])

E(i, j) = max{E(i, j − 1) − wc, V (i, j − 1) − wc − wo}

F (i, j) = max{F (i − 1, j) − wc, V (i − 1, j) − wc − wo}

For E(i, j), we get two cases. The E(i, j − 1)−wc case corresponds to con-

tinuing a gap that is already existing. The V (i, j−1)−wc−wo case corresponds

to opening up a brand new gap. A similar idea goes for the cases in F (i, j).

Computing V (m, n) and our overall alignments takes O(mn) time and O(mn)

space.

2.1.3 Hirschberg Table Space Reduction

This Hirschberg space-optimal approach, in addition to using X and Y to com-

pute tables V , E, F , and G, also uses Xr and Y r (the reversed strings of X and

Y) to compute tables V r, Gr, Er, and F r.1 We save only the t most recently

1Here, V r(i, j) denotes the score for the first i entries of Xr and the first j entries of

Y r—in other words, the last i entries of X and the last j entries of Y . And, Er(i, j), F r(i, j),

and Gr(i, j) behave similar to E(i, j), F (i, j), and G(i, j) over the first i entries of Xr and

the first j entries of Y r.

7

computed columns of V , E, F , G, V r, Er, F r, and Gr, where t is some fixed

constant.

In this manner by computing V , E, F , G for X[1..m/2] and Y [1..n], and V r,

Er, F r, Gr for Xr[1..m/2] and Y r[1..n] (which are really X[(m/2) + 1...m] and

Y [1..n]), we can use a “maximum criteria” to obtain a “middle” subalignment

from the saved portions of V , E, F , G, and V r, Er, F r, Gr. Let gr(k) denote

V (m/2, k) + V r(m/2, n − k). Note that V (m, n) = maxk[gr(k)], so our “max-

imum criteria” is to select a k such that gr(k) is maximized. We then trace

the V (m/2, k) solution t columns until V (m/2 − t, l); where l ≤ k, saving the

alignment portion Ml obtained thus far. We also trace the V r(m/2, n−k) table

t columns until V r(m/2− t, r), where r ≤ n− k, saving the reversed alignment

portion Mr obtain thus far. We glue Ml and Mr to make our middle alignment

M . We proceed recursively to align X[1 : m/2−t] with Y [1 : l] to obtain the left

alignment L, and recursively over X[m/2 + t : m] and Y [n − r : n] to right the

right alignment R. We then glue together L and M and R to get our alignment

A of X[1 : m] with Y [1 : n].

If T (m, n) represents the runtime being performed by the Hirschberg process,

then we can quantify it as:

T (1, 1) = 1

T (m,n) = O(mn) + T (m/2, n − k) + T (m/2, k)

Where k may or may not be constant. From this, we see that T (m, n) =

O(mn). Hence, this Hirschberg method of using O(n) space for the tables to get

an alignment increases overall runtime by at most a constant factor compared to

8

the intuitive O(mn) space method of saving all columns of all tables. Hence, the

overall runtime for Smith-Waterman in creating an alignment with Hirschberg

reduction is O(mn), but the space used is reduced from O(mn) to O(n).

2.1.4 Needleman-Wunsch Formula

Next, suppose that we wish to assign a gap of length i a penalty w(i), where

w(·) is some arbitrary mathematical function (hence, w(i) need not necessarily

be wo + i · wc). The Needleman-Wunsch formula answers this issue as follows:

V (0, 0) = 0;

V (i, 0) = E(i, 0) = −w(i),

V (0, j) = F (0, j) = −w(j);

V (i, j) = max{E(i, j), F (i, j)G(i, j)},

G(i, j) = V (i − 1, j − 1) + s(X[i], Y [j]),

E(i, j) = max
0≤k≤j−1

[V (i, k) − w(j − k)],

F (i, j) = max
0≤k≤i−1

[V (k, j) − w(i − k)].

Because the slope of increase for gap penalty from w(i) to w(i + 1) is not

contsant in Needleman-Wunsch like it was with Smith-Watermann, computing

E(i, j) requires us to inspect V (i, k) for all k < j in order to fairly compute

the best alignment for X and Y , and similarly for F (i, j). This means at each

cell in our tables, we make O(m + n) lookups to previously computed values.

Therefore, computing V (m, n) takes O(mn·(m+n)) = O(m2n) time, and O(mn)

space2. Needleman-Wunsch has the flexibility to model any gap function, but

2The O(m + n) lookups to previous rows and columns implies we can’t take advantage

9

the runtime and memory usage is too large.

2.1.5 Miller-Meyers Linked-List Assistance

Miller and Myers [13] uses the same formula as Needleman-Wunsch, but they

assume w(·) is convex (meaning that is has a negative double-derivative). This

lets them take advantage of a Linked-List Assistance technique to cut down on

runtime. This technique involves considering possible solutions for the E(·, ·)

and F (·, ·) entries before we explicitly compute them. To gain an intuition into

this technique, first suppose that j is fixed in order to keep the discussion simple

for the moment. Next, let eval(k, i) = V (k)−w(i− k), and let candk(i) denote

the k′ value, where k′ ≤ k, such that eval(k′, i) is maximized, and let cand(i)

denote the k′ value, where k′ < i, such that eval(k′, i) is maximized. (Note that

candi−1(i) = cand(i).)

Then, on the i′th iteration, with i′ < i, once we figure out what V (i′) is, we

can simply take k′ = candi′−1(i), and compare eval(k′, i) with eval(i′, i), and

whichever of these two values is greater dictates candi′(i). When i′ = i− 1, this

gives us cand(i), and thus on the ith iteration, we know F (i) (and subsequently

V (i)) in O(1) time without needing to look backwards at previous V (·) entries.

Next, note that:

• (S1) If by the kth iteration of our algorithm, we know that, for some a,

b, q and for all i′ in [a, b], q = candk(i
′). Then we can represent this fact

with one data structure, instead of b − a + 1 of them.

• (S2) In all practical cases, our gap function w is convex (meaning that

of the Hirschberg reduction to cut down on space, unless we can make certain assumptions

about the gap function w(·).

10

w(i) increases as i gets larger, but the rate of increase itself decreases

as i gets larger). In this situation, we know that if for some i′ > i,

eval(i, i′) < eval(cand(i′), i′), then for all i′′ > i′, we also know that

eval(i, i′′) < eval(cand(i′′), i′′). Therefore, if at the end of the ith itera-

tion, we were to scan the candi(·) values in the order: candi(i+1), candi(i+

2), . . . , candi(m), then we would see that the candi(·) entries are nonin-

creasing (each next candi(·) entry is either smaller or equal to the previous

one).

From these facts, we can coalesce adjacent indices with the same candi(·)

values into a single group. We can maintain one element per group in a data

structure. Each group can be represented by a single element. This element will

contain the winner = candi(·) value for all indices represented by the group,

as well the value v = V (winner), and the leftmost and rightmost indices of

the group, lwb and upb. The elements will be listed in order from leftmost to

rightmost indices in this list L. Clearly, we will have to add or delete elements

from L to correspond to groups being split off or merged when we go from the

ith iteration to the (i + 1)th iteration. See example below:

-------------- -------------- --------------

| winner = i | | winner = 3 | | winner = 2 |

| v = 56 | | v = 12 | | v = 7 |

| lwb = i+1 |<---->| lwb = x+1 |<---->| lwb = r+1 |

| upb = x | | upb = r | | upb = q |

-------------- -------------- --------------

Furthermore, from (S2), we know that on the ith iteration, if candi(i+1) 6= i,

then for all i′ > i, candi(i
′) 6= i. Supposing that there exists an a such that for

11

all ĩ such that i+1 ≤ ĩ ≤ a, candi(̃i) = i, and candi(a+1) 6= i, then for all i′ > a,

candi(i
′) 6= i. Hence, on the ith iteration, we can proceed on the elements of L

from left to right to find the rightmost value a such that candi(a) = i, delete

any element of previous winner entries, and add in a single leftmost element to

L with i as its winner, and lwb and upb set accordingly.

In the case that on the ith iteration, there is an element in L is such that

candi(lwb) = i, but candi(upb) 6= i and we need to know which index within

the group is the largest a such that candi(a) = i, then, we simply take the

element’s previous winner value of k, its v value, and consider for x the plots

of v − w(x − k) versus V (i) − w(x − i). We seek the point where the first plot

intersects the second one. A binary search over these curves takes O(logm) time

to find the intersection. From this, we get the largest a such that candi(a) = i,

with lwb ≤ a ≤ upb, and then update the elements of L accordingly.

Note that if for some i, we inspect q elements of L, then we must delete the

left q − 1 elements of L. Also, the number of elements in L is O(m). With

this in mind, the number of elements we inspect in L over all iterations of i is

O(m). When we combine this with the binary intersection, we hence use list L

to obtain solutions for F (·) in O(m log m) time.

For now, suppose that we are to return to our two-dimensional computa-

tional model, but use it in the manner outlined here. Plains computes entries

to the V , E, F , and G tables column by column. For each row j, we compute

F (·, j) with the help of a list Lj (so we maintain lists L0, L1, . . . , Ln and each list

is updated in the manner explained earlier), and for each column i, we compute

E(i, ·) using the help of a list R (which gets updated in a manner similar to that

of L for the F entries, except that when we finish computing a column of our

table, we empty R so it can be reused when proceeding to the next column).

12

Clearly, the updates for R and each Lj list are interweaved.

This implies O(mn log m) time complexity, and further implies that all lists

combined take up O(mn) space, since each Lj list uses O(m) space and the R

list uses O(n) space. Hence, the Miller-Meyers Linked-List Assistance uses the

same space as Needleman-Wunsch, but uses up less time.

2.2 p-Value Methods

2.2.1 Karlin-Altschul

The Karlin-Altschul approach in [9] is to p-value Estimation is motivated by

the desire to identify the biological relevance of a generated alignment instead

of just creating an arbitrary alignment with a set of “good” segments. Their

methods provide a way to approximate reliability without requiring excessive

biological information from our two sequences X and Y .

Their method works on gapless local alignments as follows: Suppose for each

letter i that pi is the probability of observing letter i in sequence X, and for

each letter j that p′j is the probability of observing letter j in sequence Y , and

that the score for pairing letter i with j is sij. We may suppose that for a

random pair of sequences, the expected alignment score Σi,jpip
′
jsij is negative;

and nonetheless, it is possible to generate a positive score. Also, suppose each

high-scoring segment is found independently of each other.

Then, for some λ > 0, we have that Σi,jpip
′
je

λsij = 1, and the average strip

score is lnmn
λ

. We also have that for some constant K, the probability of a strip

having score S ′ after adjusting for average score is P (x = S ′) = Ke−λS′

. And

since S ′ = S − lnmn
λ

, we get that P (x = S) = Ke−λS′

= Ke−lambda(S− ln mn
λ

) =

13

Kmne−λS

From this, we can Poisson-approximate P (x ≤ S) as exp(−P (x = S)), and

hence, our p-value of P (x ≥ S), which is the probability of finding one or more

strip of score at least S, becomes:

P (x ≥ S) = 1 − exp(−P (x = S)) = 1 − exp(−Kmne−λS)

2.2.2 Multiple Karlin-Altschul

Building on the previous p-value formula, Karlin-Altschul[10] approximate the

probability of getting r or more strips of score at least S as:

P (xr ≥ S) = 1−exp(−P (x = S))Σr−1
k=0

P (x=S)k

k!
= 1−exp(−Kmne−λS)Σr−1

k=0
Kmne−kλS

k!

Furthermore, if there are r strips, and the ith strip has score Si, then let the

adjusted score S ′
i = λSi − ln (Kmn).

If m and n are large, we can approximate the joint density function for

S ′
1, S

′
2, . . . , s

′
r as:

f(x1, . . . , xr) = exp(−e−xr − σr
k=1xk)

And hence, if Tr = S ′
1 +S ′

2 + . . .+S ′
r, then for large m and n, the probability

density function for Tr approaches:

f(t) = e−t

r!(r−2)!

∫ ∞

0 yr−2exp(−e(y−t)/r)dy

And hence, to find the probability of Tr exceeding some x value becomes:

P (Tr ≥ x) =
∫ ∞

x f(t)dt ≈ e−xxr−1

r!(r−1)!

14

Chapter 3

Overview

The remainder of this paper is structured as follows: Chapter 4 overviews how

Plains aligns, and describes how Plains does its “log function to piecewise-

linear function” approximation and parameter optimization. Chapter 5 de-

scribes how SEPA works over alignments, and how its p-value approximation

is derived. Chapter 6 describes Colorgrid scheme used over alignments, as well

as the empirical results found from comparing Plains to similar algorithms

using SEPA. The final section concludes with a discussion of possible future

extensions. The appendix gives the specific sequences used for the tests ran on

Plains and similar alignment tools, as well as describes the Plains alignment

method in detail, including proofs of its space-bound and correctness. It also

gives further details for the derivation of the p-value scheme used in SEPA.

15

Chapter 4

Plains

We now explain several aspects of Plains: its general notations, its align-

ment method, and how it approximates a log function using a piecewise-linear

function, decides what a “best alignment” is, and optimizes parameters for

alignments.

4.1 The Plains Alignment Method

We will denote a p-part piecewise-linear function as ww(·). This function has a

y-intercept of wo, and the slopes of the linear functions in successive intervals

are wc1, wc2, . . . , wcp, and the x-values at which one interval ends and the next

begins are denoted k1, k2, . . . , kp−1, and ku is the x-value where the uth linear

function of slope wcu ends. Also, assume that k0 = 0, and that the pth function

of slope wcp never ends (i.e., extends off into infinity). Then, for some value i

such that kp̃−1 < i ≤ kp̃, ww(i) is defined as:

ww(i) = wo + [wcp̃(i − kp̃−1)] + Σp̃−1
u=1[wcu(ku − ku−1)].

16

This p-part piecewise-linear function ww(·) can be modeled to emulate any

general gap function w(·). For practical purposes, we will assume wo ≥ wc1 ≥

wc2 ≥ . . . ≥ wcp, which makes ww(·) a convex function. Also, it is sufficient

to set p to be at most 10. With our reward per match ma fixed at 1, and

a mismatch penalty ms, and our piecewise-linear gap penalty function ww(·)

substituted for w(·), Plains generates an alignment similar to Miller-Meyers

[13], which is valid since Plains uses convex piecewise-linear gap functions.

However, because Plains exclusively uses piecewise-linear gap functions, it is

able to run faster and use less memory. It uses O(mnlogp) time and O(np)

space.

4.1.1 Modified Linked-List Assistance

Plains uses the same Linked-List Assistance technique mentioned in Chpa-

ter 2.1.5, except that because it is exclusely using convex piecewise-linear gap

functions, it is able to do two things differently.

First, instead of considering the plots of v−w(x−k) versus V (i)−w(x− i),

we instead consider the plots of v − ww(x− k) versus V (i)− ww(x− i). What

this now means is that we now seek the point where the first plot intersects the

second one, where both plots are p-part piecewise-linear curves. We find this

intersection by binary searching over the lines of these curves, instead of binary

searching over the points on this curve, and this takes O(log p) time instead of

the O(logm) time mentioned in Chapter 2.1.5. This reduces the overall runtime

from O(mn log m) to O(mn log p).

Second, because we’re using p-part piecewise-linear convex functions, each

list L used has O(p) elements in it at any point in time. An explicit proof of this

17

is deferred to appendix A.1. This means all of list our lists combined take up

O(np) space. In Chapter 4.1.2, we show how it is possible to use O(n) space in

the dynamic programming tables and still obtain the correct alignment. Using

these two space reductions together means Plains uses O(np) space.

4.1.2 Table Space Reduction

The Table-Space Reduction technique used in Plains is similar to that of the

Hirschberg reduction mentioned in Chapter 2.1.3, except that the “maximum

criteria” used is different.

In the case of Plains, the use of Linked-Lists of form Lj to assist in

computing F (·) turns out to come in useful for Table-Space reduction. Let

candL
k (i, j) denote the candk(i) derived from list Lj, and let evalj(k, i) denote

V (k, j) − ww(i − k) (essentially, evalj(k, i) is the two-dimensional version of

eval(k, i), and we’re using similar notation to the previous section as well as

Chapter 2.1.5). And let gr(k) denote V (m/2, k) + V r(m/2, n − k). Also, let

er(k, k′) denote V r(m − k′, n − k) + evalk(candL
m/2(k

′, k), k′).

When p is 1, V (m, n) = maxk[gr(k)], as mentioned earlier. Therefore, when

p = 1, it is satisfactory to select our “maximum criteria” to select a k such

that gr(k) is maximized, then use V (m/2, k) and V r(m/2, n− k) to obtain two

subalignments from the saved columns of V and V r based on this. Then, we glue

these subalignments to make a “middle” subalignment (and this is essentially

the subalignment that uses middle bits of X).

When p > 1, each Lj list is computed assuming the indices i can range from

0 to m, not 0 to m/2 (even though that may be all we need for the V table).

Then, by the end of computing the V table, we will use Lj while computing

18

the V r table and the Lr
j lists1 to obtain rc(j) values2 for each j, denoting an

endpoint for X against a gap that uses row j of our tables. If we let er(k, k′)

denote V r(m−k′, n−k)+evalk(candL
m/2(k

′, k), k′), then our “maximum criteria”

becomes to select a k that maximizes

k∗ = arg max
k

{gr(k), er(k, rc(k))}.

For our chosen k, in the event that er(k) is larger, then we know our optimal

alignment uses X against a gap, with this gap starting in the first half of X

and ending in the second half of X, and we have candL
m/2(rc(k), k) and rc(k)

the right and left endpoints to this gap, and we will use this to construct a

subalignment with this gap, and use whatever we saved of V and V r to obtain

any additional subalignment parts for characters left and right of this gap. All

of this combined gives us our “middle” subalignment.

Similarly, for our chosen k, in the event that gr(k) is larger, then we know

our optimal alignment does not involve X against a gap with this gap starting in

the first half of X and ending in the second half of X. Therefore, we can simply

trace the subalignments from the appropriate points in the V and V r tables the

same way we would for the p = 1 case to get our “middle” subalignment.

The proof of correctness for our selection of k in this manner is deferred to

the appendix. With this in mind, saving rc(j) for all j while computing the

tables allows us to align using O(n) space from the tables and O(np) space from

the Linked-Lists, which means we use O(np) space overall.

1Note that while computing V r, we are only going to read entries from Lj , not make any

changes to it.
2Formally, rc(j) is the i value in range [m/2, m] such that er(j, i) is maximized. A deeper

intuition for rc(j) is explained in the next section.

19

4.2 Plains Log Approximation and Parameter

Optimization

Recall our definition for a p-part piecewise-linear gap function ww(·). For a

given piecewise-linear gap function and mismatch penalty, the Plains algo-

rithm does find the best alignment for X and Y . When a user asks Plains

to find the “best set” of gap-mismatch parameters that yield a “best align-

ment,” Plains optimizes over four variables: α, β, d, and ms. The penalty for

each mismatch is denoted ms, as in the previous section. If the gaps follow a

power-law distribution, then the best gap penalty function, determined by the

log-likelihood, follows a log gap function. We have found that such gap functions

give the best alignments. Since piecewise-linear functions can be modeled to re-

semble convex general functions (with some controllable degree of accuracy),

the Plains optimization models piecewise-linear functions to approximate the

continuous logarithmic function. In the extreme case, where p = 1, such a

piecewise-linear function will assume an affine function (corresponding to an

exponential distribution for gap lengths). Hence, it retains the generality for a

wide class of distributions.

More specifically, the log gap penalty function over i is denoted as3: α ln(i+

1) + β. For a given d, α, and β, ww(·) uses k1, . . ., kp values set to d, 2d, ...,

p ∗ d, and for each u from 0 to p, ww(ku) = α log(ku + 1)+ β, and from this, we

can calculate the slope wcu for each uth line4, and wo is set to β.

3Note: ln is loge using base e, and ln(i + 1) is used instead of ln(i), with the result that

the function takes the value = β for i = 0.
4Note that for the pth line, wcp is computed assuming that kp = p ∗ d, even though kp is

later assumed to be infinity, and the pth line of the piecewise-linear function is assumed to

20

Computational exploration reveals that varying any of ms, α, β, and d

results in different alignments. Each alignment is given a score “adaptively”

(i.e., the score given to each alignment is not the same score found in the

dynamic programming table) in a way explained in the chapter 5, and among

this collection of alignments, the one with the highest score is considered “the

best.”

One can envision the gap/match-mismatch parameters (α, β, d, ms) as a

vector v, and its corresponding score as a scalar = f(v), where f maps each

vector to its corresponding ratio score. So, for a given vector v ′, we can find

f(v′) by performing an alignment using parameters specified by v ′. Hence, the

problem Plains works over now becomes one of finding a vector v to maximize

f(v), which is a numerical optimization problem.

At the user’s request, Plains can find the v to optimize f(v) using either

Simulated Annealing or Genetic Algorithm. Both are explained in [6]. Empiri-

cal runs over Plains have shown that Simulated Annealing yields better results,

but Genetic Algorithm explores the space of v more thoroughly. However, all

of this should come of no surprise, since (1) Monte Carlo related methods are

successful in optimizing Hidden Markov Models (which are similar to sequence

alignments), and (2) Genetic Algorithms typically consider subsequent solutions

in a more random manner than Simulated Annealing. Plains is designed so

that any algorithm to optimize gap/match-mismatch parameters can easily be

plugged in instead of these two methods; for instance, one may search param-

eters with a somewhat time consuming MCMC approach, or variants such as

Gibbs sampler or EM.

We have chosen to use SEPA, explained in Chapter 5 to compare the results

continue off into infinity.

21

of Plains against the similar alignment tools LAGAN, EMBOSS, and LALIGN.

We made Plains optimize the approximate best gap/mismatch parameters

based on the pair of species aligned, and the nature of the sequence. This is

resemblant of LAGAN’s techniques to account for the nature of certain species

in performing its alignments.5 In contrast, EMBOSS and LALIGN each use a

fixed set of gap/mismatch parameters for all species. We present a figure 4.2

showing the piecewise-linear gap functions that Plains came up with for each

species pair6. A comparison of the alignment results from Plains and the other

alignment tools can be found in Chapter 6.

Plains can easily align a pair of sequences, each with nucleotides of up

to 8Kb. It can either (1) seek the best gap-mismatch parameters for a given

pair of sequences and align with those parameters, or (2) use a user-specified

set of gap-match parameters to align the pair of sequences. In (1), the runtime

typically ranges from 30 minutes to 2 hours. In (2), the runtime typically ranges

from 10 seconds to 1 minute. Plains can either be used via commandline, or as

part of the Valis tool set.

5LAGAN has special gap-parameters for Human and Mouse, but not Fugu. For the runs

using Human and Fugu sequences, the parameters where LAGAN got the best results was

used.
6Note that all gap parameters are normalized by dividing by the reward-per-match value

of an alignment tool. This is done in order to fairly compare one tool to another. Also, for the

same reason, all scores reported in this paper are also divided by a tool’s reward-per-match

value ma.

22

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

Gap Length (bp)

G
ap

 P
en

al
ty

LALIGN
EMBOSS
LAGAN
Human−Fugu cDNA
Human−Human cDNA
Human−Fugu Genomic
Human Pseudogene

Figure 4.1: The Piecewise-Linear Gap Functions that Plains came up with

in optimizing the score for different species pairs, along with the rescaled gap-

paramters the other tools use. Note that the LAGAN gap paramters shown here

are its default paramters. LAGAN uses a number of unspecified gap parameters

in aligning on a species by species basis.

23

Chapter 5

SEPA

Recalling the notation used in Chapter 4, assume the sequences to be aligned

are X and Y , and their respective lengths are m and n. Let us suppose that

aligning X and Y with some arbitrary alignment tool produces an alignment A

of length a, where m ≤ a ≤ m+n. We will represent an alignment A as follows:

For each i, A[i] denotes the ith position in alignment A, and it is represented as

a pair of index coordinates (u, v) taken from X and Y , and this corresponds to

X[u] and Y [v] being aligned to each other at position i in A if u > 0 and v > 0,

or one of X[u] or Y [v] being aligned against a gap if either v ≤ 0 or u ≤ 0.

Next, let A[i : j] denote the portion of alignment A[i], A[i+1], . . . , A[j]. We

will refer to A[i : j] as a strip or segment from position i to position j.

Reintroducting more notation from Chapter 4, let ww(i) denote the penalty

for a gap of length i. ww(·) can be any arbitrary function, but for this paper, we

will assume it is a p-part piecewise-linear function where each successive slope

is smaller than the previous one. A more specific version of this score-function

is where p = 1, which is the affine function used in the Smith-Watermann

algorithm.

24

With this, let S(i, j) denote the score for strip A[i : j] where the score

is computed by adding following values: ma is a score for each match, ms is

the penalty for each mismatch, and ww(·) is used to penalize the gaps. To

compute S(i, j) from A[i : j], each match and mismatch within it is added or

deducted from the score individually, while each region of X against a gap and

Y against a gap is penalized as a whole using ww(·) based on the length of

that region. Please note that S(i, j) is computed after A[i : j] is already found,

which contrasts the scoring method mentioned in Chapter 4, where a score is

computed in the dynamic table and used to generate an alignment.

Suppose we have a scheme that marks r non-overlapping strips as important.

Suppose that the endpoints for these strips are denoted as (i1, j1), (i2, j2), . . . , (ir, jr).

For each k, we wish to measure in some way how strip A[ik : jk] provides a mean-

ingful correlation between X and Y . One common mathematical approach is

to, given a certain null hypothesis, compute the p-value of Pr(x ≥ s) where

s = S(ik, jk). This p-value is known as the coincidental probability of obtaining

a strip with score at least s. For this paper, we will assume the null-hypothesis

is the behavior of important strips taken from pairwise-aligning randomly gen-

erated DNA sequences. Also, if the total scores of all strips is t = Σr
k=1S(ik, jk),

then ζ = Pr(x ≥ t, y ≤ r), the probability of obtaining at least a total score of

t using at most r strips.

One should note that coincidental probabilities of the segments (both p-

values and ζ) are dictated by the scheme used to determine the segments as

important. One scheme might deem strip A[i : j] as important, but SEPA might

not, and instead SEPA may consider a possibly overlapping strip A[i′ : j ′] as

important. As a result, the formula for the p-values and ζ value could differ from

one scheme to the other. For instance, in the method used to obtain important

25

segments mentioned in Karlin-Altschul [9], Pr(x ≥ s) = 1 − exp(Kmne−λs)

holds. However, as argued later in this paper, for the way SEPA obtains the

segments from an alignment A, we approximate the p-value as Pr(x ≥ s) =

K
λ
e−λs.

5.1 Obtaining High-Scoring Strips from an Align-

ment

Given an alignment A produced from sequences X and Y , we produce important

strips as follows: Given fixed constants W and ω, and ρ (where W is an integer,

and ω and ρ are real numbers in the range [0, 1]), let W denote the window

size to be used, ω denote the value used to prevent portions of A of lowest

match percentage from becoming considered as important strips, and ρ denote

the value used to filter away areas of A that have too low of a p-value. We

obtain our segment pairs in the following steps:

(1) For all i from 1 to a − (W − 1), we compute pa(i), the percentage of

entries in A[i : i + W − 1] where a match has occurred. Let µ and σ denote the

mean and standard deviation of our pa(·) values. Next, for each i, we mark1

pa(i) values as “special” if they exceed a threshold value of µ + ωσ. Hence, we

filter away A[i : i + W − 1] if it fails to meet this threshold value.

(2) For each u and u′ (with u ≤ u′), if pa(u), pa(u + 1), . . ., pa(u
′) are all

marked as “special”, but pa(u − 1) and pa(u
′ + 1) are not, then we consider

the strip A[u : u′ + W − 1] as important (i.e., we consider as important the

1The choice of using µ + ωσ as the cutoff value instead of a fixed constant gives us the

flexibility of catching important regions in the two sequences, regardless of how homologous

they are to each other.

26

strip starting the leftmost entry repsented by pa(u), up till the rightmost entry

represented by pa(u
′)).

(3) For each strip A[i : j] deemed important, we trim it so that it starts and

ends at a position in the alignment where a match occurred. Thus, if i′ is the

smallest value such that i′ ≥ i and A[i′] is a match position, and j ′ is the largest

value such that j ′ ≤ j and A[j ′] is a match position, then we trim strip A[i : j]

into strip A[i′ : j ′].

(4) Next, we merge together any important strips that overlap. Namely, if

we have two strips A[i : j] and A[k : l] such that i ≤ k ≤ j, then we merge these

strips into one larger strip A[i : max (j, l)].

(5) With all strips now representing non-overlapping regions, we then pro-

ceed to give each strip A[i : j] its corresponding score S(i, j), as well as its

p-value. We delete A[i : j] if its p-value exceed ρ, since that indicates that

A[i : j] may be coincidental. We can optionally also collect other information

at this point, such as the length of each strip.

(6) The r strips kept at this step are considered the “good” ones. We now

compute t, the sum of the scores of the these strips. Using this value, we can

compute ζ, coincidental probability for all r strips obtained.

Based on empirical experimentation, setting W = 50, ω = 0.5, and ρ =

0.5 yields segment pairs that are reasonably long, non-coincidental, and have

significantly higher matches than the alignment “background”. We reasoned

that since our method of obtaining segment pairs differs from that of Karlin-

Altschul, then the method for computing p-values for each segment pair cannot

build upon their assumptions.

27

5.2 Methods: Analyzing Segment Pairs

In order to approximate an appropriate p-value estimation for SEPA, we an-

alyzed segment pairs behavior over our assumed null hypothesis of alignments

for randomly generated nucleotide sequences. For length values ranging from

1000 bp to 8000 bp, we generated 25 random sequences. We also generated

25 random sequences of length 500 bp. For each combination of these length

pairs, we ran all 625 possible pairwise alignments using Plains, and analyzed

results using SEPA where ρ = 1 (to avoid filtering any segments out due to low

p-value). The results for mean length-to-score and mean mean segment scores

are shown in Fig. 5.1. These plots indicate that, for small n values, the average

length-to-score ratio and average score decrease with increasing m. However,

asymptotically (for large n) the average length-to-score ratio and average seg-

ment scores stay roughly constant in terms of m (at 3.1 and 45 respectively)

and don’t stray too far. This leads us to infer that length-to-score ratio can be

well-approximated by a constant, and that segment scores are independent of m

and n. From this, we infer that both average length-to-score ratio and average

segment scores are uniform in terms of m and n. In the appendix, Figures B.1

and B.2 elaborate further.

For our random sequences, we also observed the average and variance be-

haviors for r and t in terms of m and n, where r is the number of segment

pairs observed, and t is the total score of all the segment pairs. Further-

more we found that the mean for r, variance for r, and mean for t all scale

roughly to k0 ln (k1mn + k2(m + n) + k3), and the deviation for t scales roughly

to max (k0, k1i · d + k2i + k3d + k4), where i = min (m, n), d = ‖m − n‖, and

28

k0, k1, k2, k3, k4 are constants2. Figures B.3 and B.4 in the appendix illustrate

further how all of this was derived.

Since the average ratio of segment lengths to score is almost uniform in

these plots, it suggests that the gap penalty used to score the strips can be

treated as if it is a differently-weighted mismatch. Also, note that the p-values

computed with the model studied by Siegmund-Yakir[21] differs mildly from

the model using the simplifying assumption that gaps are differently-weighted

mismatches. For this reason, it is common for tools to ignore the effects of gaps

in generating their p-values, much like BLAST3. Thus, we may similarly treat

our piecewise-linear gap penalty ww(·) as differently-weighted mismatches in

approximating the p-value. Fig. 5.2 shows a plot of segment scores to frequency

from which we derive our p-value approximation. Using it, we approximate that

P (x = s) = Ke−λs, with K = 8.69 × 10−2 and λ = 3.26 × 10−2. Our p-value of

P (x ≥ s) is therefore:

P (x ≥ s) =
∫ ∞

s
Ke−λxdx =

K

λ
e−λs

And notice that by this construction, P (x ≥ 30) = K
λ
e−30λ ≈ 1. We have de-

signed our p-value estimation this way since strip scores below 30 are empirically

observed to be unimportant.

Our next natural step, after obtaining p-values for each segment pair, is to

2For average r, k0 = 103, k1 = 7.95 × 10−10, k2 = 1.54 × 10−7, k3 = 1.01. For variance

of r, k0 = 103, k1 = 1.93 × 10−10, k2 = 1.97 × 10−7, k3 = 1.00. For average t, k0 = 105,

k1 = 4.29 × 10−10, k2 = 1.33 × 10−8, and k3 = 1.00. For deviation of t, k0 = 100, k1 =

−5.54× 10−5, k2 = 4.63× 10−1, k3 = 1.04× 10−2, and k4 = −65.01.
3The main reason we did not use BLAST in comparing alignment results is because BLAST

was unable to align most of the sequences mentioned in table 6.1.

29

1 2 3 4 5 6 7 8
2

2.2

2.4

2.6

2.8

3

3.2

n = 500
n = 1000
n = 2000
n = 3000
n = 4000
n = 5000
n = 6000
n = 7000
n = 8000

1 2 3 4 5 6 7 8
20

25

30

35

40

45

50

55

n = 500
n = 1000
n = 2000
n = 3000
n = 4000
n = 5000
n = 6000
n = 7000
n = 8000

Figure 5.1: Shown above are the mean length-to-score ratio and mean segment

scores observed in the strips from aligning randomly generated DNA sequences.

In the plots shown above, a unique line is plotted corresponding to each value

of n in the thousand lengths ranging from 1000 to 8000. For these plots, x

represents the m value divided by 1000, and y represents the mean observed for

that particular m and n, and the left plots illustrate mean length-to-score ratio

for the segment pairs, while the right plots illustrate mean segment pair scores.

30

0 50 100 150 200 250 300 350 400 450 500
0

0.05

0.1

0.15

0.2

0.25

score

fr
eq

ue
nc

y

Figure 5.2: Shown here is a plot of segment scores to frequency for ran-

domly generated sequences using our assumption that segment score is length-

independent. The x axis represents segment score, and the y axis repre-

sents frequency. The tail of this plot is an exponential distribution of form

P (S = x) = Ke−λx, where we have approximated K = 8.69 × 10−2 and

λ = 3.26 × 10−2. This curve is at its highest when x = 30, and by empri-

cal observation, we have noticed that strips scoring less than 30 are generally

unimportant portions of an alignment.

31

provide a p-value estimate ζ for coincidental probability for the whole alignment,

determined by the strips found. As mentioned earlier, we have learned that

both r and t depend on sequence lengths m and n. Hence, if R and T are

supposed to be the number of segment pairs and the total score of the segment

pairs after adjusting for mean and variance based on sequence length, then

the coincidental probability ζ = P (x ≥ T, y ≤ R). More specifically, ζ is the

coincidental probability of seeing a total score of at least T using at most R

segment pairs.

Figure 5.3 shows the distribution of r and t values observed from randomly

generated sequences after adjusting for mean and variance. From it, we approx-

imate for T and R that P (x = T, y = R) = ece−atT 2+btT+cte−arR2+brR+cr , where

c = −183.90, at = 10.1, bt = 9070, ct = −2.04 × 106, ar = 0.241, br = 4.71, cr =

−27.5. This gives us for zeta that4:

ζ = P (x ≥ T, y ≤ R) =

=
∫ ∞

T

∫ R

0
ece−atx2+btx+cte−ary2+bry+crdydx =

=
πe

c+ct+cr+
b2
t

4at
+

b2r
4ar

4
√

atar

(

1 − Erf(
−bt + 2atT

2
√

at

)
)(

Erf(
−br + 2arR

2
√

ar

) − Erf(
−br

2
√

ar

)
)

4Note that Erf(z) = 2√
π

∫ z

0
e−x2

dx

32

0 5 10 15 20 25 30 35 40 45 50
440

450

460

470

480

490

500

number of strips (r)

to
ta

l s
co

re
 (

t)

Figure 5.3: From our alignments over the randomly generated sequences, after

adjusting the number of segments r and the total score t for length-dependent

average and deviation behavior, we chose to plot the frequency of observing

certain r and t values. The figure shown here is a surface plot of this, where

lighter spots indicate higher frequencies. From it, we observe that the ma-

jority of the data is concentrated in one area. This area approximates to

ece−atT 2+btT+cte−arR2+brR+cr , where c = −183.90, at = 10.1, bt = 9070, ct =

−2.04 × 106, ar = 0.241, br = 4.71, cr = −27.5.

33

Chapter 6

Colorgrid and DNA Results

Before describiong the results generated by SEPA and Plains, we will describe

the Colorgrid method used to visualize the results.

6.1 The Plains ColorGrid Method

For visualization of the computed alignments, the Plains program ported in

Valis uses a coloring grid to summarize high and low matched areas for X

found in the alignment. It works as follows: For some M (different from N),

we color in a grid with at most M spots. We set color spot 1 based on the

match percentage found in X[1, . . . , m/M] in the alignment; we set spot 2 to

a color based on the match percentage found in X[m/M + 1, . . . , 2m/M] in

the alignment; we set spot i to a color based on the match percentage found

in X[(i − 1)m/M + 1, . . . , im/M] in the alignment; and so on. The coloring

grid for Y works in a similar way. Figures 6.2 and 6.2 are examples of this,

with bright colors such as red, orange, yellow, and green signifiying high-match

areas, and dark colors such as blue, purple, brown, and black signifying low-

34

match areas. White signifies any nucleotides of X or Y on the left/right sides

that were unaligned.

Notice how here, the number of match percentages found is a fixed size. The

color computations in this way has many advantages, such as how it handles

the limited resolution of the computer screen compared to the sizes of X and

Y .

In addition to visualizing color grids for all of X and Y , users also have the

option to view portions of X or Y by specifying a substring range for either X

or Y , with the Colorgrid of the unspecified sequence automatically resized to

represent the corresponding area in the specified sequence’s substring.

6.2 Empirical Results

Furthermore, table 6.1 shows a comparison of alignments for biologically related

sequences in terms of unadjusted r and t values, and ζ ′ values, all using ρ =

0.5. Note that ζ ′ = − ln (ζ). The conversion from ζ to ζ ′ was carried out

for convenience in comparing lab results, where higher ζ ′ indicates results that

are less coincidental. We chose to use ρ = 0.5 in all data shown in this table

because with it, SEPA successfully filters away all segment pairs when aligning

randomly generated DNA sequences, while retaining important segment pairs

when aligning biologically related noncoding sequences, even when they have

expected high gaps and low similarity regions. Also, please note the loss of

precision involved in reporting ζ ′ values. Hence, if for a paricular alignment,

Plains and LAGAN receive ζ ′ values that differ by less than 1×102, then their

ζ ′ values would “appear” equal in this table. For further information regarding

the sequences used, see Table B.1 in the appendix.

35

Test Name PLAINS LAGAN EMBOSS

t r ζ′ t r ζ′ t r ζ′

HumanPseudo1 356.71 4 7.37 340.32 4 6.00 340.19 4 5.99

HumanPseudo2 285.75 3 3.96 281.84 3 3.94 238.30 3 3.87

HumanPseudo3 2181.50 14 47.18 441.58 6 22.98 1708.51 10 18.49

HumanPseudo4 511.99 7 3.85 2172.40 14 -Inf 296.84 4 4.59

HumanPseudo5 792.64 7 7.29 775.74 7 7.29 176.73 1 13.04

MousePseudo1 389.84 4 13.97 386.88 4 13.40 388.88 4 13.78

MousePseudo2 461.68 6 8.88 453.64 6 7.77 206.02 2 5.56

MousePseudo3 72.19 1 6.75 72.19 1 6.75 83.34 1 6.75

fugu2r 534.14 5 11.15 360.22 3 13.05 151.39 2 14.07

HFortho1 734.82 7 10.94 349.33 4 14.18 374.35 5 13.05

HFortho2 600.22 4 16.78 555.61 4 16.78 327.91 1 20.18

HFortho3 637.52 7 14.53 259.44 3 19.05 409.99 5 16.71

HFortho4 1004.97 10 21.74 529.16 5 -0.00 367.86 4 -0.00

HFortho5 739.71 7 11.07 450.93 5 13.07 453.61 5 13.07

human_mouse.1_1 676.29 10 8.46 52.36 1 18.29 186.98 2 17.00

human_mouse.1_3 552.55 6 15.14 406.79 6 15.14 429.51 6 15.14

human_mouse.3_9 1260.69 15 15.47 432.25 7 24.23 801.15 12 18.44

human_mouse.3_16 218.47 3 5.71 x x x 180.05 2 6.77

human_mouse.4_3 262.19 3 15.44 74.91 1 17.79 176.83 2 16.59

human_mouse.4_5 421.71 6 7.35 221.57 3 10.47 401.71 5 8.32

human_mouse.6_17 986.89 12 23.00 240.10 3 -0.00 260.66 4 -0.00

human_mouse.7_11 594.32 8 9.06 164.10 2 15.44 476.71 7 9.99

human_mouse.17_11 608.75 7 13.93 171.96 3 18.57 451.60 6 15.02

human_mouse.x_x 1302.49 18 17.20 636.82 9 -0.00 568.46 9 -0.00

human_dog.6_1 1239.35 14 18.99 424.59 6 -0.00 688.81 8 26.81

human_dog.6_12 1284.79 14 13.88 548.19 7 21.23 394.04 6 22.44

human_dog.6_34 1488.26 16 -0.00 496.14 6 -0.00 900.73 12 -0.00

human_dog.7_16 1042.19 13 10.45 128.07 2 22.40 309.03 4 19.84

Table 6.1: Shown here for Plains, EMBOSS, and LAGAN are the r, t, and

ζ ′ values obtained from aligning genomic DNA sequences of lengths between

0.5 Kb and 12 Kb within human, mouse, dog, and fugu, where the pairs are

biologically related and mainly noncoding DNA with expected large gaps and

low homology regions.

36

Also, Plains does not always yield the results of least coincidental proba-

bility in this table, and this anomaly has a simple explanation. Note that the

nature of Plains is to capture the biology faithfully even when the sequences

have expected large gaps and low similarities. Thus it tries to aggressively align

as many regions as possible, and hence in these situations, it produces r and t

values that tend to be higher than those from other tools, even though its high

r causes its overall result to appear more coincidental in spite of the compensat-

ing higher t. However, it turns out that when we fix r for all the tools, Plains

yields higher t and hence better ζ ′ results. In other words, for any given r, each

of the r segment pairs generated by Plains have smaller individual coincidental

probabilities than the best r segment pairs generated by other tools. Figure 6.1

explains the details further.

Many of the genomic alignments yielded by the four tools have caught exons

in the alignment, but most of these exons caught aren’t included in the “good”

regions of the alignment, because SEPA removed them for having a ρ value

that was too high. Figure 6.2 is an example of this, since here, both Plains

and LAGAN identify most of the exons in the human sequence, but we only

count the exons that the tools identify as lying within the “good” regions.

The MousePseudo (alignments of Mouse genes against corresponding pseu-

dogenes), and humanHomol (alignment of Human genes against homologous

Mouse genes) runs were, for the most part, a relatively close competition be-

tween the four alignment tools, in terms of the actual alignments obtained,

especially between Plains and LAGAN. This shows either the difference of lin-

ear gap functions over piecewise-linear gap functions, or the difference of using

general-case gap parameters over using customized gap parameters per species,

or possibly both.

37

0 5 10 15 20 25
0

200

400

600

800

1000

1200

1400

1600

1800

number of segment pairs(r)

to
ta

l s
co

re
 (

t)

PLAINS
LAGAN
EMBOSS
LALIGN

Figure 6.1: In this figure, we observe the unadjusted r and t values produced

by Plains, LAGAN, and EMBOSS from the human-mouse.3 – 9 experiment

where we vary the ρ variable used to filter our segment pairs. On each curve,

we observed the t and r values of each tool when varying ρ over various values

from 0.1 till 0.9. Recall from table 6.1 that Plains performed poorly in terms

of ζ ′ values for ρ = 0.5 for the human-mouse.3 – 9 experiments. However, note

from this plot that for any fixed r where Plains is comparable to a different

tool, Plains receives the highest t value, and therefore if we designed SEPA

using a fixed r value over all alignment tools, then Plains would have the

highest t value, and hence the highest ζ ′ value (i.e., the best result). Many

other experiments from table 6.1 have a similar plot to this one.

38

For most of the HumanPseudo (alignments of Human genes against cor-

responding pseudogenes) runs, Plains and LAGAN yielded alignments with

many similar correlations, but more exons were caught by Plains. One illus-

tration of this is figure 6.2, which compares the results of Plains to LAGAN

for HumanPseudo5 in further detail.

However, the most interesting results obtained were in the HFugu2r and

HFortho runs, the runs involving genomic Human and Fugu sequences. Since

the evolutionary distance between the human and fugu species is significantly

long, one expects even the most conserved exon regions of the orthologous gene

in the two genomes to have diverged quite a lot (despite the protein sequences

still sharing high homology). Futhermore, the two genomes have very different

gene structures — the genes in the Fugu genome have very short introns, while

the introns in the Human genome are usually very long. Hence, the results

caught by the alignment tools here is no small matter.

For HFortho2, not only is the ζ ′ value for Plains better than that of EM-

BOSS, but Plains also caught more common exons between the two related

genomic sequences. Therefore, as Plains currently stands, it holds promise

of becoming a tool of choice for aligning several thousand nucleotide DNA se-

quences, and possibly also for identifying exons between two genomes as di-

verged as human and fugu. Figure 6.2 shows more details.

Each run of Plains to optimize gap/mismatch parameters on a pair of

species took 30 minutes to 2 hours. The relatively long time taken by Plains

is due to its need for computing several hundred alignments under various

gap/mismatch parameters before deciding which gap/mismatch parameters are

the most optimal. When ran using fixed-set gap-mismatch parameters, Plains

ran in just under a minute, a constant factor of at most 5.6 times slower than

39

Figure 6.2: Match Ratio Color Lines in the HFOrtho2 test for Plains and

EMBOSS. Here, the Human and Fugu sequence used have six exon regions

that correspond to each other (though not necessarily in order, as exon region

2 in the Fugu sequence corresponds to exon region 3 in Human sequences for

example). Here, both Plains and EMBOSS correctly identify the correlation of

exon region 2 in Fugu with exon region 3 in Human, but only Plains identifies

the correlation of exon region 5 in Fugu with exon region 5 in Human.

EMBOSS. The reason for this slowdown is manifold: (1) Plains uses a linear

space table instead of the quadratic space typical of dynamic programming,

and (2) there is constant extra overhead in using Linked-List Assistance (men-

tioned earlier) to help create an alignment.

40

Figure 6.3: Match Ratio Color Lines in the HumanPseudo5 test for Plains

and LAGAN. Here, the Human sequence has 8 exon regions that are similar to

areas of the pseudosequence used, and alignments of Plains and LAGAN for

these cases are similar, even by eyeglance of the ColorGrids. Note that although

Plains and LAGAN catch most of these regions in their alignments, we’re only

counting the exon regions that participated in “good” segments according to

SEPA. With this in mind, Plains and LAGAN both identify exon region 4 as

important, but Plains also deems exon regions 6 and 7 in the Human sequence

as important, which LAGAN misses.

41

Chapter 7

Conclusions and Open Problems

Plains is able to catch more important correlations than its competition, es-

pecially in sequences of distant relation like Human and Fugu. And, the SEPA

filtering is capable of distinguishing unimportant regions from important ones.

In addition, our empirical analysis leads us to the conclusion that the SEPA-

based p-value technique models coincidental probabilities quite accurately. Fur-

thermore, we note that aggressively incorporating too many segment pairs into

an alignment can corrupt the overall result with false positives, in spite of an

apparent improvement in the total score or in identified exon regions caught,

as illustrated by Plains. However, SEPA can modify the overall alignment to

select only the best r segments from an alignment while keeping the confidence

in the final result high. It is here that the strength of Plains becomes obvious,

since its r segments are less coincidental than its competition, and have higher

scores, and hence better ζ ′ values.

It has become apparent that some upwards scaling is essential if Plains

is to be run over sequences with more than 8000 nucleotides. Plains, as it

stands, essentially performs localized alignment (since it discards leftmost and

42

rightmost nucleotides that would be aligned against gaps), and therefore, it is

only fit for sequences of up to 8000 nucleotides.

Possible future extensions include scaling Plains to search large sequences (of

mega bases of nucleotides) for smaller areas where localized alignments can be

performed, and then combining localized alignments to globalized alignments.

Plains could become the ideal tool for aligning EST sequences to a genome.

Another possible extension involves adding a model to learn expected align-

ments over various species, as opposed to just merely approximating the best

gap/mismatch parameters.

We can improve SEPA by using random portions of DNA from Human,

Mouse, and Fugu instead of randomly generated DNA sequences. In that case,

our concern shifts from the coincidental probability of a segment’s score from

aligning random DNA, to the coincidental probability of a segment’s score from

aligning unrelated random regions of organisms under comparison. Further

extension includes development of better statistics that realistically capture the

base-pair and coding/noncoding distributions within the sequences, as well as

the effects of secondary and tertiary structures.

In addition, Plains at the moment assigns a score of ma = 1 to a per-

fect match, and a score ms (specified by user) to any mismatch. It may be

useful to have a scoring matrix to assign different scores to different types of

matches/mismatches. (For example, if aligning a C against a G is more com-

mon than aligning at C against a T , then perhaps we can penalize the C-G

mismatch less than the C-T mismatch when performing an alignment, etc.)

43

Appendix A

Proofs for Non-Trivial Portions

of PLAINS

In creating an alignment from a given set of parameters, there are two features

Plains has that makes it stand out from the literature it derives from. First,

Plains uses O(np) space in the worst-case scenario. Second, under its given

space and runtime bounds, Plains obtains the correct alignment based on the

given piecewise-linear function ww(·).

These two features of Plains also happen to be nontrivial and tedious,

which was why they were not elaborated and proven earlier when we were de-

scribing how Plains creates an alignment. For the second of these two features,

note that proving the correctness of alignment obtained by Plains boils down

to proving the correctness of the “maximum criteria” selection employed by

Plains when using V and V r tables to help create our alignment. We will now

proceed with these nontrivial proofs.

44

A.1 Proof for the O(np) Space Bound

Earlier, we stated that we are using O(np) space worst-case when using p-

part piecewise-linear function ww(·) (and when p � m, as is in Plains, then

this results in a substantial improvement over the quadratic space complexity).

This, in fact, is the main innovation of Plains over the original intuitions of

Miller-Myers.

As explained earlier, Plains uses O(n) space from the tables because it saves

the t most recently computed columns of all tables, and uses recursion to obtain

unknown portions of the alignment. The space taken up by the recursions is

O(log m), however in practice, m and n are assumed to differ from each other

by a constant factor, and hence the O(log m) space used by recursion is less

than the O(n) space used by the tables.

What uses the most space in the Plains algorithm is not the tables, but

the lists of form Lj, Lr
j , R and Rr used to compute the tables. We will now

prove that each list used in Plains uses O(p) space.

Suppose for simplicity that we fix j so that we are dealing for all i with V (i)

and F (i), and we use linked-list L to obtain the much-needed solutions for F

and V . (I.e., V (i) = V (i, j) and F (i) = F (i, j) and L is how we get values for

V and F .)

Claim: For p-part function ww(·), L will always have at most p elements

in it.

Proof: In the beginning, when i = 0, L starts with one element. Later

on, in some ith iteration, after we just finished computing V (i), if we split an

element of L with winner k and value v (where v = V (k)), then this implies that,

for some x, the kth plot of v−ww(x−k) intersects the ith plot of V (i)−ww(x−i)

45

(i.e., V (i) − ww(x − i) = v − ww(x − k) for some x). However, both of these

plots are identical in shape. By translating one horizontally and vertically, this

plot can fit perfectly into the other.

Therefore, in considering the lines from both plots that intersect (assuming

p1th line from the ith plot and the p2th line from the kth plot intersect), since

k < i, the p1th line from the ith plot must have a higher downward slope than

that of the p2th line from the kth plot. Therefore p1 < p2. (So, a given line from

the ith plot intersects a later line from the kth plot.)

Hence, if list L has p elements, this implies having found p− 1 intersections,

each from a different plot. This means that we have cand(·) values taken from

the ur1th line of some q1 plot intersecting the ul2th line of some q2 plot, and

the ur2th line of the q2 plot intersects the ul3th line of the q3 plot, and so on up

to the qp plot, and therefore:

ur1 < ul2 ≤ ur2 < ul3 ≤ ur3 · · ·urp−1 < ulp.

However, all of these plots have exactly p lines. Therefore, in this case, for each

h from 1 to p, ulh = urh must be true. Hence for all h from 1 to p, the ulh

values correspond to all the lines of our ww function (meaning ulh = h for all

h).

Hence in this case, for each element g in L, if g uses the qh plot for some

value h, then only one line from the qh plot, the ulhth line, can give the best

solution for indices from the [gl, gr] interval (gl and gr are the lwb and upb values

for element g in list L).

Therefore, if during the ith iteration, we have p elements in L, then the i

plot of V (i)−ww(x−i) will have lines of the same slopes as those corresponding

to lines ul1 through ulp. Therefore, if the p′th-line of the ith plot intersects some

46

qh′ plot (with h′ ≥ 2), then all elements of L derived from qh plots with ulh ≤ p′

will be discarded (i.e., at least one element of L will definitely get discarded,

and one new element with i as its cand(·) value is created, implying that total

number of elements in L overall in this ith iteration will either stay the same or

decrease). Note that it is impossible for the i-curve’s p′th-line to intersect the

q1 plot.

Hence, it is never possible to increase the number of elements in L from p

to p + 1. So L always has O(p) elements in it.

Therefore, in returning to our 2-dimensional model, this argument implies

that our n different linked lists of form Lj and Lr
j each use O(p) space, and

similarly, R and Rr also each use O(p) space. Hence, total space used by all of

the lists is O(np). qed

A.2 Details for the Maximum Criterion Selec-

tion

A.2.1 Definition of rc(j)

Before the next section, where we prove the correctness of the “maximum cri-

teria” selection rule used by Plains, it may help to gain an intuition of the

definition of rc(j).

Suppose for the moment that we fix the index j used by the algorithm in

the V and V r tables so that we flatten to one dimension in order to keep the

arguments simple. Hence, assume V (i) = V (i, j), F (i) = F (i, j), V r(i) =

V r(i, n − j), and F r(i) = F r(i, n − j). We are thus saving the most recently

47

found t entries from V and V r, where t is some constant1at least 1.

During the computations of V and V r, we use a linked list L to maintain

solutions for F , and a linked list Lr to maintain solutions for F r. Next, assume

that we compute all the F and V entries before starting on the F r and V r

entries, and we look at L while computing V r (but we do not modify L while

computing V r).

Suppose also that while computing V , list L maintains cand·(i) for all i from

0 to m, (even though we only need indices of i from 0 through m/2 to complete

computations for F and V), and therefore, when we are done computing V and

L, list L now has the candm/2(i) values for all i from m/2 to m. Hence, after

computing F and V , we know that:

For any i in range [(m/2) + 1, m]: If i′ = candm/2(i), then i′ is the number

in range [0, m/2] such that V (i′) − ww(i′ − i) is maximized.

Note that, during the process of computing the V r entries, one possible best

alignment solution in combining both the V and V r tables could be V (i′) −

ww(i′ − i)) + V r(m − i) (a solution with a gap starting in the first half of X

and ending in the second half of X).

So, now suppose we have some extra variable rc equal to the i in range

[(m/2) + 1, m] such that V (candm/2(i)) − ww(i − candm/2(i))) + V r(m − i) =

eval(candm/2(i), i)+V r(m− i) is maximized. We can figure out the value for rc

while computing the entries for V r using the list L. In considering all possible

alignments that have a gap starting in the first half of X and ending in the

second half of X, we know that rc and candm/2(rc) give us the coordinates in

the right and left halves of X of the gap for the best-scoring alignment of this

1Saving the t most recently computed entries for V (·) and V r(·) corresponds to saving the

t most recently computed columns of V (·, ·) and V r(·, ·) in our two-dimensional model.

48

type.

Switching over to using all rows in computing our F , V , F r, and V r tables,

we will have, for each row j from 0 to n, a value rc(j) which is equal to the i

in range [(m/2) + 1, m] such that V (candL
m/2(i, j), j)−ww(i− candL

m/2(i, j))) +

V r(m−i, n−j) = evalj(candL
m/2(i, j), i)+V r(m−i, n−j) = er(j, i) is maximized.

A.2.2 Proof of Correctness in “Maximum Criteria” Se-

lection

As mentioned earlier, in the Plains computation of the V and V r tables, the

“maximum criteria” selection is used to find a k that maximizes max{gr(k), er(k, rc(k))}.

Below we give a proof for the correctness of this method.

In the alignment of X against Y , two general cases may occur.

1. We may have X aligned against a gap of a type starting in the first half

of X, and ending in the second half of X.

2. We do not see X aligned against a gap of a type starting in the first half

of X, and ending in the second half of X.

When case (2) occurs2, it is feasible to align X[1..m/2] against Y separately

from aligning X[m/2..m] against Y . Furthermore3, there exists a k′ such that

for all i and i′ and j, V (m/2, k′) + V r(m/2, n − k′) > V (i, j) + V r(m − i′, n −

j) − ww(i′ − i).

Hence, we will obtain the correct alignment by selecting a k that maximizes

gr(k). Therefore, selecting a k such that max{gr(k), er(k, rc(k))} is maximized

gives us the correct alignment in this case.

2This is essentially what the V and V r tables do.
3Therefore for this k′ value, gr(k′) > er(k′, rc(k′)).

49

When case (1) occurs, then there exists an i, i′, and j such that for all

k′, V (i, j) + V r(m − i′, n − j) − ww(i′ − i) > V (m/2, k′) + V r(m/2, n − k′).

Furthermore, for a fixed pair of i′ and j, note that i = candL
m/2(i

′, j), the

candm/2(i
′) value from the Lj list, maximizes V (i, j)+V r(m−i′, n−j)−ww(i′−

i). Next, note that if j is fixed, setting i′ = rc(j) and hence i = candL
m/2(i

′, j)

maximizes V (i, j)+V r(m−i′, n−j)−ww(i′−i) = V (candL
m/2(i

′, j), j)−ww(i′−

candL
m/2(i

′, j)))+V r(m−i′, n−j) = evalj(candL
m/2(i

′, j), i′)+V r(m−i′, n−j) =

er(j, i′). Therefore, we obtain the highest scoring alignment by selecting a

k′ that maximizes er(k′, rc(k′)). Therefore, by selecting a k that maximizes

max{gr(k), er(k, rc(k))}, the algorithm computes the correct alignment in this

case.

50

Appendix B

SEPA Details

B.1 Segment Pair Analysis in Further Detail

In order to approximate an appropriate p-value estimation for SEPA, we an-

alyzed segment pairs behavior over our assumed null hypothesis of alignments

for randomly generated nucleotide sequences. For length values ranging from

1000 bp to 8000 bp, we generated 25 random sequences. We also generated

25 random sequences of length 500 bp. For each combination of these length

pairs, we ran all 625 possible pairwise alignments using Plains, and analyzed

results using SEPA where ρ = 1 (to avoid filtering any segments out due to low

p-value), and recorded the results in fig. B.1, B.2, B.3, and B.4.

From fig. B.1, we observe for segment length-to-score ration that, for the

most part, the mean takes a constant value at 3.1, and the variance remains

below 0.4, leading us to infer that length-to-score ratio can be well-approximated

by a constant.

From fig. B.2, we infer that, although for small n values, the average segment

score decreases with increasing m, asymptotically (for large n) the it stays

51

roughly constant in terms of m, while the variance fluctuates wildly around a

constant value. Hence, for our scoring method, we model the segment scores as

independent of m and n.

From fig. B.3, we estimate that the average and variance for r (the num-

ber of segment pairs) scale roughly with Θ(log(mn)). More specifically, we

approximate the mean of r and the variance of r, called ra(m, n) and rv(m, n)

respectively, to scale roughly as k0 ln (k1mn + k2(m + n) + k3) where k0, k1, k2,

and k3 are empirically determined constants. In the case of ra(m, n), we observe

that k0 = 103, k1 = 7.95 × 10−10, k2 = 1.54 × 10−7, k3 = 1.01, and in the case

of rv(m, n), we observe that k0 = 103, k1 = 1.93 × 10−10, k2 = 1.97 × 10−7,

k3 = 1.00.

From fig. B.4, we estimate that the average total segment score scales

roughly with Θ(log(mn)), and the deviation for total segment score scales

roughly with Θ(i · d) (but never declines below 100), where i = min (m, n)

and d = ‖m − n‖. More specifically, we approximate the average total score

ta(m, n) to scale roughly as k0 ln (k1mn + k2(m + n) + k3), and the deviation

for total score tD(m, n) to scale roughly as max (k0, k1i · d + k2i + k3d + k4),

where k0, k1, k2, k3, and k4 are empirically estimated constants (and the vari-

ance tv(m, n) = tD(m, n)2). In the case of ta(m, n), we observe that k0 = 105,

k1 = 4.29 × 10−10, k2 = 1.33× 10−8, and k3 = 1.00, and in the case of tv(m, n),

we observe that k0 = 100, k1 = −5.54×10−5, k2 = 4.63×10−1, k3 = 1.04×10−2,

and k4 = −65.01.

52

1 2 3 4 5 6 7 8
2

2.2

2.4

2.6

2.8

3

3.2

n = 500
n = 1000
n = 2000
n = 3000
n = 4000
n = 5000
n = 6000
n = 7000
n = 8000

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n = 500
n = 1000
n = 2000
n = 3000
n = 4000
n = 5000
n = 6000
n = 7000
n = 8000

Figure B.1: Shown above are the mean and variance plots for the segment

pair length-to-score ratio from aligning randomly generated DNA sequences. A

unique line is plotted corresponding to each value of n in the thousand lengths

ranging from 1000 to 8000. For these figures, and others that follow, x represents

the m value divided by 1000, and y represents the mean or variance value

obtained for that particular m and n.

53

1 2 3 4 5 6 7 8
20

25

30

35

40

45

50

55

n = 500
n = 1000
n = 2000
n = 3000
n = 4000
n = 5000
n = 6000
n = 7000
n = 8000

1 2 3 4 5 6 7 8
0

200

400

600

800

1000

1200

1400

1600

1800

2000

n = 500
n = 1000
n = 2000
n = 3000
n = 4000
n = 5000
n = 6000
n = 7000
n = 8000

Figure B.2: Shown here are the mean and variance plots for segment scores

from aligning randomly generated DNA sequences.

54

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

n = 500
n = 1000
n = 2000
n = 3000
n = 4000
n = 5000
n = 6000
n = 7000
n = 8000

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

18

n = 500
n = 1000
n = 2000
n = 3000
n = 4000
n = 5000
n = 6000
n = 7000
n = 8000

Figure B.3: Shown here are the mean and variance plots for r, the number of

segment pairs obtained from aligning randomly generated DNA sequences.

55

1 2 3 4 5 6 7 8
0

500

1000

1500

2000

2500

n = 500
n = 1000
n = 2000
n = 3000
n = 4000
n = 5000
n = 6000
n = 7000
n = 8000

1 2 3 4 5 6 7 8
0

500

1000

1500

2000

2500

3000

d = 0
d = 1000
d = 2000
d = 3000
d = 4000
d = 5000
d = 6000

Figure B.4: The plots shown here are the mean and deviation plots for t, the

total score of all segment pairs from aligning randomly generated DNA se-

quences. Because the variance plot was difficult to quantify in terms of m and

n, we instead model the deviation for total score in terns of d and i, where

i = min (m, n) and d = ‖m − n‖. The lower figure shows the deviation plot,

with each curve corresponding to a unique d value, and the x-axis reprsenting

i in units of thousands.

56

B.2 Sequence Details

Shown in Table B.1 are further details for the sequences used to compare Plains

against LAGAN, EMBOSS, and LALIGN. Please note that sequences are ex-

pressed in their regular format unless they end with a “:-1” or “-” symbol,

which indicates that they have been reverse-complemented prior to performing

any alignments.

57

Name First Sequence Second Sequence

HumanPseudo1 chr1 8257472 8257969 + NCBI34:19:54160379:54161804:1

HumanPseudo2 chr1 163548408 163549002 + NCBI34:4:174948678:174951482:-1

HumanPseudo3 chr1 212839737 212843396 + NCBI34:19:47480657:47491789:1

HumanPseudo4 chr2 215849936 215850977 − NCBI34:12:52960755:52965297:1

HumanPseudo5 chr3 154761512 154762855 − NCBI34:20:62845714:62856853:-1

MousePseudo1 chr1 6930250 6930693 + NCBIM32:4:116062392:116064688:1

MousePseudo2 chr10 34897773 34898331 + NCBIM32:3:111151293:111157009:1

MousePseudo3 chr1 101195551 101195966 + NCBIM32:19:41974653:41984383:1

fugu2r NCBI34:6:10803176:10817954:1 FUGU2:scaffold 3266:7199:8502:1

HFortho1 NCBI34:22:17268346:17274146:1 FUGU2:scaffold 115:304567:308251:1

HFortho2 NCBI34:22:19452941:19466562:1 FUGU2:scaffold 385:130429:132429:1

HFortho3 NCBI34:21:31952480:31961633:1 FUGU2:scaffold 492:107025:110089:-1

HFortho4 NCBI34:4:78536922:78549607:1 FUGU2:scaffold 1018:38886:42563:-1

HFortho5 NCBI34:1:23574363:23584195:1 FUGU2:scaffold 2020:1332:3570:1

human_mouse.1_1 hg17 chr1:1045045-1049199 mm6 chr1:58087808-58093089 −

human_mouse.1_3 hg17 chr1:109911-115784 mm6 chr3:108302834-108307402 +

human_mouse.3_9 hg17 chr3:920975-927750 mm6 chr9:13034270-13040751 −

human_mouse.3_16 hg17 chr3:40927-45344 mm6 chr16:36425494-36426630 +

human_mouse.4_3 hg17 chr4:1016348-1026634 mm6 chr3:43806778-43808958 +

human_mouse.4_5 hg17 chr4:33206-37263 mm6 chr5:116454347-116457564 −

human_mouse.6_17 hg17 chr6:1515792-1522464 mm6 chr17:5319541-5327318 +

human_mouse.7_11 hg17 chr7:253979-256656 mm6 chr11:47406997-47414401 −

human_mouse.17_11 hg17 chr17:203511-209188 mm6 chr11:46304241-46308929 −

human_mouse.x_x hg17 chrX:928373-936336 mm6 chrX:100457186-100463788 +

human_dog.6_1 hg17 chr6:48183-58637 canFam1 chr1:66683762-66688436 −

human_dog.6_12 hg17 chr6:791946-797744 canFam1 chr1:58385127-58391875 +

human_dog.6_34 hg17 chr6:1248975-1255904 canFam1 chr34:40546832-40556432 −

human_dog.7_16 hg17 chr7:40725-45009 canFam1 chr16:22868000-22875215 +

Table B.1: Sequence Details for the Biologically Related Alignments Ran. All

the sequences are retrieved from ENSEMBL database [www.ensembl.org].

58

Bibliography

[1] Altschul, S.F., Boguski, M.S., Gish, W., and Wooton, J.C., “Issues in

Searching Molecular Sequence Databases.” Nature Genetics, 6:119–128,

1994.

[2] Michael Brudno, Chuong Do, Gregory Cooper, Michael F. Kim, Eugene

Davydov, Eric D. Green, Arend Sidow, Serafim Batzoglou, “LAGAN and

Multi-LAGAN: efficient tools for large-scale multiple alignment of genomic

DNA,” Genome Research, 13(4):721-31, 2003 Apr.

[3] Craig G. Nevill-Manning, Cecil N. Huang, Douglas L. Brut-

lag, “Pairwise protein sequence alignment using Needleman-

Wunsch and Smith-Waterman algorithms,” Personal communication

(http://motif.stanford.edu/alion/), 1997.

[4] Gill, O., Zhou, Y., Mishra, B.: Aligning Sequences with Non-Affine Gap

Penalty: PLAINS Algorithm, a Practical Implementation, and its Biolog-

ical Applications in Comparative Genomics. Series in Mathematical Bi-

ology and Medicine 8 (2005). An unabridged version can be found at:

http://bioinformatics.nyu.edu/~gill/index.shtml

59

[5] Gu X, Li WH., “The size distribution of insertions and deletions in human

and rodent pseudogenes suggests the logarithmic gap penalty for sequence

alignment.” J Mol Evol., 40(4):464-73, 1995 Apr.

[6] Hromkovic J, “Heuristics.” Algorithms for Hard Problems, Second Edition,

6:439-467, 2003.

[7] X. Huang and W. Miller, Advanced Applied Mathematics, 12:373-381, 1991.

[8] Iglehart, D.L.: Extreme Values in the GI/G/1 Queue. The Annals of Math-

ematical Statistics 43 (2) (1972) 627–635

[9] Karlin S, Altschul S.F., “Methods for assessing the statistical significance of

molecular sequence features by using general scoring schemes” Proc. Natl.

Acad. Sci. USA, 87:2264–2268, March 1990.

[10] Karlin S, Altschul S.F., “Applications and statistics for multiple high-

scoring segments in molecular sequences” Proc. Natl. Acad. Sci. USA,

90:5873–5877, June 1993.

[11] Karlin, S., Dembo, A., Kawabata, T.: Statistical Composition of High-

Scoring Segments from Molecular Sequences. The Annals of Statistics 18

(2) (1990) 571–581

[12] Lipman, D.J., Altschul, S.F., and Kececioglu, J.D., “A Tool for Multiple

Sequence Alignment.” Proceedings of the National Academy of Sciences

USA, 86:4412–4415, 1989.

[13] Miller, W., and Myers E.W., “Sequence Comparison with Concave Weight-

ing Functions” Bulletin of Mathematical Biology , 50:97–120, 1988.

60

[14] Miller, W., and Myers E.W., “Optimal Alignments in Linear Space”

CABIOS , 4:11–17, 1988.

[15] Needleman, S.B., and Wunsch, C.D., “A General Method Applicable to

the Search for Similarities in the Amino Acid Sequences of Two Proteins.”

Journal of Molecular Biology , 48: 443–453, 1970.

[16] Ophir R, Graur D., “Patterns and rates of indel evolution in processed

pseudogenes from humans and murids.” Gene., 205(1-2): 191–202, 1997

Dec 31.

[17] Pearson, W.R., “Comparison of Methods for Seqrching Protein Sequence

Databases.” Protein Science, 4:1145–1160, 1995.

[18] Pearson, W.R., “Searching Protein Sequence Libraries: Comparison of the

Sensitivity and Selectivity of the Smith Waterman and FASTA algorithms.”

Genomics, 11: 635–650, 1991.

[19] Press W.H., Flannery B.P., Teukolsky S.A., Vetterling W.T., “Downhill

Simplex Method in Multidimensions.” Numerical Recipes: The Art of Sci-

entific Computing , 10.4: 289–293, 1986.

[20] Rice P, Longden I, Bleasby A., “EMBOSS: the European Molecular Biology

Open Software Suite” Trends Genetics, Jun 16(6):276-7, 2000.

[21] Siegmund, D., Yakir, B.: Approximate p-Values for Local Sequence Align-

ments. The Annals of Statistics 28 (3) (2000) 657–680

[22] Smith, T.F., and Waterman, M.S., “Identification of Common Molecular

Subsequences.” Journal of Molecular Biology , 147: 195–197, 1981.

61

[23] Shpaer, E., Robinson, M., Yee, D., Candlin, J., Mines, R., and Hunkapiller,

T., “Sensitivity and Selectivity in Protein Similarity Searches: A Compar-

ison of Smith-Waterman in Hardware to BLAST and FASTA.” Genomics,

38: 179–191, 1996.

[24] States, D.J., Gish, W., and Altschul, S.F., “Basic Local Alignment Search

Tool.” Journal of Molecular Biology , 215: 403–410, 1990.

[25] Waterman, M.S., and Eggert, M., “A New Algorithm for Best Subsequence

Alignments with Applications to tRNA -rRNA Comparisons.” Journal of

Molecular Biology , 197: 723–728, 1987.

[26] Zhang Z, Gerstein M, “Patterns of nucleotide substitution, insertion and

deletion in the human genome inferred from pseudogenes.” Nucleic Acids

Res., 31(18): 5338-48, 2003 Sep 15.

62

