
Scoring-and-Unfolding Trimmed Tree Assembler:

Algorithms for Assembling Genome Sequences

Accurately and Efficiently

by

Giuseppe Narzisi

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

Courant Institute of Mathematical Sciences

New York University

May 2011

Bud Mishra — Advisor

c© Giuseppe Narzisi

All Rights Reserved, 2011

To Valentina

&

My family

iii

Acknowledgements

The work presented in this dissertation would not have been possible without the

contribution of many great people.

My advisor, Professor Bud Mishra, has definitely played the most important

role during my studies and research at New York University. It has been a

great privilege to work with him for so many years, since I first entered the

Ph.D. program at NYU. He has been a scientific mentor, a human guide and an

enormous source of ideas thanks to his extraordinary and deep proficiency in many

different fields. In a time when sequence assembly was assumed to be an almost

solved puzzle, he encouraged me to rethink again about the problem without

being biased by the currently developed models and helped me to overcome the

many obstacles that I faced as I was making progress in my studies. He has

certainly made the major contribution to shape the scientific research presented

in this thesis.

I was fortunate to have a very diverse thesis committee which has provided

many important insights during the preparation of the dissertation. In particular

I am grateful to Professor Ernest Davis for taking the time to read and review

my thesis with so much care. By raising many fundamental questions, he has al-

iv

lowed me to clarify several important aspects of the thesis for the general reader.

I thank Professor Michael Schatz for making sure that the theoretical framework

presented in the dissertation was correctly presented and related to the relevant

prior art extensively. I also express my thanks to Professor Alan Siegel for im-

proving the presentation and stile of the thesis. He has been not just a scientific

mentor but also a tutoring figure in virtue of his high commitment to the value of

education. Finally, I would like to thank Professor Raul Rabadan for suggesting

many areas of application of the tools developed in this thesis.

One of the contributions of the dissertation (TotalReCaller) is the result of

the joint work with Fabian Menges. I am particularly grateful to him for such

collaboration as well as for all the valuable and energetic discussions that we

had on many of the topics presented in this thesis. I also would like to thank

all the members of the NYU Bioinformatics Group for creating a unique and

exciting research environment during my work and study at NYU. In particular

I would like to thank: Salvatore Paxia, Fabian Menges, Matthias Heymann, An-

dreas Witzel, Andrew Sundstrom, Samantha Kleinberg, Antonina Mitrofanova,

Iuliana Ionita, Venkatesh P. Mysore, Marco Antoniotti, Bing Sun, Ofer Gill, Josh

Mincer, Seongho Ryu, Shaila Musharoff, Fang Cheng, Raoul-Sam Daruwala, Yi

(Joey) Zhou, Peyman Faratin, Pierre Franquin, Athena Shilin, and Thomas S.

Anantharaman.

Five years of studies have been a long journey with many ups and downs but,

even during the most difficult times, there was always a constant figure in my life:

my love and wife Valentina. She has been an extraordinary source of love and

v

stability in my life, thanks to her continuous support and trust. She has clearly

played an important role for the successful completion of this thesis.

Finally, I thank my whole family, my parent and my younger brother, for

being always very supportive even when I decided to embrace the American

dream. Despite the big ocean dividing our lives, they have always been caring as

I have never left them.

vi

Abstract

The recent advances in DNA sequencing technology and their many potential

applications to Biology and Medicine have rekindled enormous interest in sev-

eral classical algorithmic problems at the core of Genomics and Computational

Biology: primarily, the whole-genome sequence assembly problem (WGSA). Two

decades back, in the context of the Human Genome Project, the problem had

received unprecedented scientific prominence: its computational complexity and

intractability were thought to have been well understood; various competitive

heuristics, thoroughly explored and the necessary software, properly implemented

and validated. However, several recent studies, focusing on the experimental val-

idation of de novo assemblies, have highlighted several limitations of the current

assemblers.

Intrigued by these negative results, this dissertation reinvestigates the algo-

rithmic techniques required to correctly and efficiently assemble genomes. Mired

by its connection to a well-known NP-complete combinatorial optimization prob-

lem, historically, WGSA has been assumed to be amenable only to greedy and

heuristic methods. By placing efficiency as their priority, these methods opted

to rely on local searches, and are thus inherently approximate, ambiguous or

vii

error-prone. This dissertation presents a novel sequence assembler, SUTTA,

that dispenses with the idea of limiting the solutions to just the approximated

ones, and instead favors an approach that could potentially lead to an exhaustive

(exponential-time) search of all possible layouts but tames the complexity through

constrained search (Branch-and-Bound) and quick identification and pruning of

implausible solutions.

Complementary to this problem is the task of validating the generated as-

semblies. Unfortunately, no commonly accepted method exists yet and widely

used metrics to compare the assembled sequences emphasize only size, poorly

capturing quality and accuracy. This dissertation also addresses these concerns

by developing a more comprehensive metric, the Feature-Response Curve, that,

using ideas from classical ROC (receiver-operating characteristic) curve, more

faithfully captures the trade-off between contiguity and quality.

Finally, this dissertation demonstrates the advantages of a complete pipeline

integrating base-calling (TotalReCaller) with assembly (SUTTA) in a Bayesian

manner.

viii

Contents

Dedication iii

Acknowledgements iv

Abstract vii

List of Figures xxi

List of Tables xxiii

List of Appendices xxiv

Introduction 1

1 Genome Sequencing and Assembly 9

1.1 Introduction . 9

1.2 DNA: Deoxyribonucleic acid . 10

1.3 Shotgun Sequencing . 12

ix

1.4 Next Generation Sequencing and their

challenges . 14

1.5 Lander-Waterman statistics . 15

1.6 Trade-off in sequencing technology 20

1.7 Assembly Pipeline . 21

1.8 History of the assembly of the

Human Genome . 27

2 Sequence Assembly: Problem and Complexity 32

2.1 Introduction . 32

2.2 The dovetail-path framework . 33

2.2.1 Basic definitions: reads, overlaps and layouts 33

2.2.2 Min-length reconstruction theorem 37

2.3 Shortest Superstring Problem (SSP) 39

2.4 Graph-Theoretic formulation . 41

2.4.1 Strings, Overlaps and Overlap Graph 41

2.4.2 String Graph . 43

2.4.3 De Bruijn graph . 47

2.5 Probability of unique reconstruction 51

x

2.6 Sequence Assembly as a Constrained

Optimization Problem . 54

2.6.1 Modeling sequencing errors 55

2.6.2 A new formulation of SAP 55

2.6.3 Relation to the prior art 58

3 Sequence Assemblers and Assembly Paradigms 60

3.1 Introduction . 60

3.2 A Historical Perspective on Sequence Assembly 61

3.3 Assembly Paradigms . 64

3.3.1 Greedy . 64

3.3.2 Graph-based . 66

3.3.3 Seed-and-Extend . 69

4 SUTTA: Scoring-and-Unfolding Trimmed Tree Assembler 71

4.1 Introduction . 71

4.2 History and Motivation . 72

4.3 SUTTA Algorithm . 73

4.4 Overlap Score (Weighted transitivity) 77

4.5 Node expansion . 80

xi

4.6 Search Strategy . 84

4.7 Pruning the Tree . 85

4.8 Lookahead . 87

4.9 Implementation details . 92

4.10 Short-Read Overlapper . 93

5 Feature-Response Curve 95

5.1 Introduction . 95

5.2 Assembly Comparison and Validation 96

5.3 Feature-Response Curve . 98

5.4 Implementation details . 101

6 Experimental Comparison of De Novo Genome Assembly 102

6.1 Introduction . 102

6.2 Experimental Protocol . 104

6.2.1 Benchmarks . 104

6.2.2 Assemblers . 109

6.3 Long reads results . 110

6.4 Short reads results . 120

6.5 Parametric complexity experiments 124

xii

6.5.1 Overlap graph complexity 125

6.5.2 Trade-off between N50 and Overlap size k 127

6.5.3 Feature-Response curve dynamics 128

6.6 Computational performance . 128

7 Integrating Base-Calling, Error Correction and Assembly 131

7.1 Introduction . 131

7.2 Base-Calling Challanges . 132

7.3 Source of Errors in Illumina Raw Sequencing Data 135

7.4 TotalReCaller . 138

7.4.1 Linear error model and filter 139

7.4.2 Base-by-base sequence alignment 142

7.4.3 Beam search read extension 144

7.4.4 Score functions . 146

7.5 Base-Calling Results . 147

7.5.1 Error rates . 147

7.5.2 Alignment rate and base-calling speed 151

7.5.3 SNPs specificity and sensitivity 151

7.6 Error Correction during Base-Calling 153

xiii

7.6.1 Assembly results . 155

Conclusion 160

Appendices 166

Bibliography 193

xiv

List of Figures

1.1 The double-helix structure of the DNA. 11

1.2 Shotgun sequencing. 13

1.3 Read coverage illustration. 16

1.4 Expected number of contigs and their average length as a function

of coverage for different values of the minimum detectable overlap θ. 18

1.5 Trade-off between read length and coverage. 21

2.1 Two possible overlaps (illustration): left overlap is normal (both

reads pointing to the same forward direction) right overlap is innie

(the second read B is reverse complemented and is pointing in

the backward direction); The suffix predicate for the left (normal)

overlap is s.t. suffixπ(A) = true and suffixπ(B) = false. 34

2.2 Overlap taxonomy. 35

2.3 Example of layout for a set of reads F = {A, B, C, D, E, F, G}

with overlaps πN
(A,B), π

I
(B,C), π

N
(C,D), π

I
(D,E), π

N
(E,F), π

N
(F,G). 37

2.4 Example of compression due to a repeat. 40

2.5 Example of mis-assembly using a string graph. 46

xv

2.6 De Bruijn graph with parameter k = 2 for the list of strings L =

{AAA, AAC, ACA, CAC, CAA, CGC, GCG}. 49

2.7 Plot of function f(λ) = (1 − λ)e−λ in the range [0, 10]. 53

3.1 Example of greedily merging three fragments (the numbers repre-

sent the overlap sizes). 65

3.2 Example of layout representation and transformations in the OLC

framework. 67

4.1 Example of transitivity relation: the overlap regions between reads

AB and BC share an intersection. 78

4.2 Contig construction: (i) the D-tree is constructed by generating

LEFT and RIGHT trees for the root node; (ii) best left and right

paths are selected and joined together; (iii) the reads layout is

computed for the set of reads in the full path. 82

4.3 Example of transitivity pruning: expanding nodes B2, . . . , Bn can

be delayed because their overlap with read A is enforced by read B1. 86

4.4 Lookahead: the repeat boundary between reads B and C is re-

solved looking ahead in the subtree of B and C, and checking how

many and how well the mate-pair constrains are satisfied. 88

4.5 Dead-end: short branches of overlaps that extend only for very few

steps. They typically associated with base errors located close to

the read ends. 92

xvi

4.6 Bubble: false branches that reconnect to a single path after a small

number of steps. They are typically caused by single nucleotide

difference carried by a small subset of reads. 92

4.7 Overlap computation using the trie data structure. 94

6.1 Feature-Response curve comparison for S. epidermidis and Chro-

mosome Y (3Mbp of p11.2 region) genomes when no mate-pairs

information is used in the assembly. 113

6.2 Feature-Response curve comparison for S. epidermidis and Chro-

mosome Y (3Mbp of p11.2 region) genomes when mate-pairs in-

formation is used in the assembly. 116

6.3 Dot plots for the Staphylococcus epidermidis. Assemblies produced

by ARACHNE, CABOG, Euler, PCAP, SUTTA and TIGR. . . . 118

6.4 Separate FR-curve comparison for each feature type for the S.

epidermidis genome using mate-pairs. 119

6.5 Feature-Response curve comparison for the E. coli genome using

mate-pair short read data. 124

6.6 Overlap and read count distribution for E. coli. 126

6.7 Relation between the min overlap parameter k and the N50 contig

size for S. aureus and E. coli. 127

6.8 Feature-Response curve dynamics as a function of the minimum

overlap parameter k for E. coli using mate pair data. 129

7.1 Block diagrams for re-sequencing pipelines: (a) open-loop (no feed-

back) and (b) closed-loop with feedback. 135

xvii

7.2 Statistics for high and low intensity levels depicted with their

means and standard deviations for four channels. 137

7.3 Filtered intensity channels and separation. Crosstalk and lagging

are corrected using a linear filter, developed here. The high and

low intensity levels are now cleanly separated for the first 60 cycles.141

7.4 Sequence read error rates per cycle for each of the three datasets

(see table 7.3) . 149

7.5 SNP specificity (SPC) and sensitivity (SNS) for E. coli. Effect of

the alignment on base-calling, as the weights walign are varied. . . 153

7.6 Dot plots for the E.coli assemblies produced by SUTTA, Velvet,

SOAPdenovo and ABySS. The horizontal lines indicate the bound-

ary between assembled contigs represented on the y axis. 157

7.7 Feature-Response curve comparison for SUTTA and Velvet on the

100X E.coli data set. 158

8 Feature-Response curves by feature type for Brucella suis without

mate-pair constraints. 174

9 Dot plots for Brucella suis (no mate-pairs). Assemblies produced

by Minimus, PHRAP, Euler, PCAP, SUTTA and TIGR. The hor-

izontal lines indicate the boundary between assembled contigs rep-

resented on the y axis. 175

10 Feature-Response curves by feature type for Staphylococcus epi-

dermidis without mate-pair constraints. 176

xviii

11 Dot plots for Staphylococcus epidermidis (no mate-pairs). Assem-

blies produced by Minimus, PHRAP, Euler, PCAP, SUTTA and

TIGR. The horizontal lines indicate the boundary between assem-

bled contigs represented on the y axis. 177

12 Feature-Response curves by feature type for Wolbachia sp. without

mate-pair constraints. 178

13 Dot plots for Wolbachia sp. (no mate-pairs). Assemblies produced

by Minimus, PHRAP, Euler, PCAP, SUTTA and TIGR. The hor-

izontal lines indicate the boundary between assembled contigs rep-

resented on the y axis. 179

14 Feature-Response curves by feature type for Chromosome Y with-

out mate-pair constraints. 180

15 Dot plots for Chromosome Y 3Mbs region (no mate-pairs). As-

semblies produced by Minimus, PHRAP, Euler, PCAP, SUTTA

and TIGR. The horizontal lines indicate the boundary between

assembled contigs represented on the y axis. 181

16 Feature-Response curves by feature type for Brucella suis with

mate-pair constraints. 182

17 Dot plots for Brucella suis (with mate-pairs). Assemblies produced

by ARACHNE, CABOG, Euler, PCAP, SUTTA and TIGR. The

horizontal lines indicate the boundary between assembled contigs

represented on the y axis. 183

xix

18 Feature-Response curves by feature type for Staphylococcus epi-

dermidis with mate-pair constraints. 184

19 Dot plots for Staphylococcus epidermidis (with mate-pairs). As-

semblies produced by ARACHNE, CABOG, Euler, PCAP, SUTTA

and TIGR. The horizontal lines indicate the boundary between as-

sembled contigs represented on the y axis. 185

20 Feature-Response curves by feature type for Wolbachia sp. with

mate-pair constraints. 186

21 Dot plots for Wolbachia sp (with mate-pairs). Assemblies pro-

duced by ARACHNE, CABOG, Euler, PCAP, SUTTA and TIGR.

The horizontal lines indicate the boundary between assembled con-

tigs represented on the y axis. 187

22 Feature-Response curves by feature type for Chromosome Y with

mate-pair constraints. 188

23 Dot plots for Chromosome Y 3Mbps region (with mate-pairs). As-

semblies produced by ARACHNE, CABOG, Euler, PCAP, SUTTA

and TIGR. The horizontal lines indicate the boundary between as-

sembled contigs represented on the y axis. 189

24 Feature-Response curves by feature type for Escherichia coli with

mate-pair constraints. 190

xx

25 Dot plots for E. coli (with mate-pairs). Assemblies produced by

Velvet, ABySS, Taipan, SOAPdenovo, SUTTA and Edena. The

horizontal lines indicate the boundary between assembled contigs

represented on the y axis. 191

xxi

List of Tables

3.1 List of sequence assemblers. 62

6.1 Benchmark data. 106

6.2 Long reads assembly comparison without mate-pair information

(clone sizes and forward-reverse constraints). 111

6.3 Long reads assembly comparison using mate-pair information. . . 115

6.4 Short reads assembly comparison without mate-pair information. . 121

6.5 Short reads assembly comparison using mate-pair information. . . 123

6.6 Assemblers computational performance for Staphylococcus aureus

strain MW2. Time and memory requirements reported here in-

clude both overlapping and assembly steps. 130

7.1 Probabilities from FM search for each base preceded by “ACGAC”.143

7.2 List of available Base-callers for Illumina sequencing technology

including TotalreCaller. 147

7.3 Data sets used to evaluate and compare TotalReCaller’s perfor-

mance to its peers: phiX, E. coli and poplar. 148

7.4 Basecalling speed and alignment comparison. 150

xxii

7.5 Alignment rate for Bustard and TotalReCaller. 155

7.6 Assembly results (contigs) for E. coli dataset (100X 125bp reads

from one lane of Genome Analyzer II). 156

7 Short Read Assemblers parameter setting. 192

xxiii

List of Appendices

Appendix A 166

Appendix B 172

xxiv

Introduction

This dissertation addresses the problem of assembling the genome sequence of an

organism using the available sequencing technologies and long-range information.

Producing a complete and high-quality assembly of a genome has fundamental

implications in Biology and Medicine; however such a task is particularly chal-

lenging for large, repeat-rich genomes such as those of mammals. For this reason

new assembly tools, cautious experimental design, and novel metric for assembly

validation must be developed if there is any hope to successfully and correctly

assembly any genome. In this introductory chapter I will describe the major

questions and grand challenges that must be faced in this field while explaining

how the thesis contributes to address these problems.

Motivation

Probably there is no better way to describe my motivation for working on genome

sequence assembly than considering how to answer the following general ques-

tions. The answers also highlight the reasons why this problem has received

so much consideration by both the computer science and computational biology

1

community in the last 30 years.

Why is genome sequencing so important? Knowing the full sequence of

a genome (in particular Human) has many important and direct applications to

Biology and Medicine. Following is a (not exhaustive) list of such applications:

• Understand evolution: compare genomes of near-by species.

• Understand traits and diseases: compare genomes of wild-types vs. mutants,

normals vs. patients, normals vs. tumor, etc.

• Find genes, regulatory regions, exon-intron-boundaries, splicing sites, etc.

computationally (hence, more cheaply and quickly).

• Understand how the genome as a whole works: how genes work together

to direct the growth, development and maintenance of an entire organism.

Especially, the motifs and patterns in intergenic regions (containing so-

called “junk” DNA).

If, by developing a successful technology for genome assembly, it will be possible

to solve at least one of such challenges in Medicine and Biology, then we will have

made an invaluable contribution to these fields.

Why is genome sequencing so difficult? In a more general framework,

computer science researchers first formalized the shotgun sequence assembly prob-

lem as an “approximation” to finding the shortest common superstring of a set

of sequences. Because of its natural connection to a well known NP-complete

2

combinatorial optimization problem (Shortest Superstring Problem), in these so-

lutions, accuracy is inevitably traded for computational efficiency with greedy

and heuristic methods being the preferred choice. However these approaches

have their foundations on the following argument: if the DNA was totally ran-

dom then the overlap information between the sequences would be sufficient to

reassemble the full sequence and greedy strategies would always have satisfac-

tory performance. Unfortunately this assumption is not true for real biological

problem. In fact genomes (especially Eukaryotic ones) are characterized by non-

random structures (e.g., repeated regions, rearrangements, segmental duplications

etc.) which complicate the assembly problem and make greedy strategies fail in-

variably. In addition, the sequence reads generated by the sequencing machines

are not error-free and the error profiles change quickly over time in response to

the changes in sequencing technology. This makes the assembly problem also

sequencing-technology dependent and the algorithms must change to accommo-

date changes to read-length, errors profiles, and nature and availability of long

range information.

How well have we done so far? The initial “draft” sequence of the human

genome [38] has been revised several times, since its first publication, each revi-

sion eliminating various classes of errors through successive heuristic advances;

nevertheless, genome sequencing continues to be viewed as an inexact craft and

inadequate in controlling the number of errors, which in the draft genomes are

estimated to be up to hundreds or even thousands [86]. So ten years after the

publication of the first draft of the human genome (2001), there is still need for

3

error-free and efficient methods to further improve the quality of the assemblies.

What is missing? Despite extensive usage of these methods and documenta-

tion in the literature for almost 20 years, there still exists no rigorous characteri-

zation of these methods, i.e., (i) no complete analysis of their performance in the

context of varying genomic structures, (ii) no comparative study on the accuracy

and efficiency of each of their heuristics, (iii) no guiding principles on how to

choose and adapt the heuristics to changing DNA sequencing technologies, and

finally, (iv) no flexibility in exploiting the long range information to decipher

structural variation or achieve haplotypic disambiguation. Last but not least,

lacking such an extensive understanding, no prescriptive framework has resulted

for designing the next generation of assemblers that aim to be more accurate,

adaptively efficient and extensible to deal with possible future technologies.

The Sense of the Approximation

Although the process of assembling a genome is often described as solving a com-

plex jigsaw puzzle, in reality there are even further complications. This is mostly

due to the fact that we still do not completely understand the global structure of

the human genome (as well as of many other species). How the genome is modeled

has strong implications not only in the way the problem is formulated but also

in the accuracy of the methods used to tackle it. To understand this point it is

helpful to observe that the sequence assembly problem is unfortunately a “wicked

problem” [83]. This is a term used to describe a problem that is difficult or im-

4

possible to solve because of incomplete, contradictory, and changing requirements

that are often difficult to recognize. Moreover, because of complex interdependen-

cies, the effort to solve one aspect of a wicked problem may reveal or create other

problems. In the context of genome assembly, the incomplete, contradictory, and

changing requirements correspond to the underline genome structure. Since its

discovery in 1953 by James D. Watson and Francis Crick, scientists have made

a lot of progress in understanding the DNA chemical structure, but only more

recently, after the first draft of the human genome was assembled, we know more

about its base-by-base structure. Real genomes (especially Eukaryotic ones) con-

tain non-random structures (e.g., repeated regions, rearrangements, segmental

duplications etc.) which complicate the assembly problem and any mathematical

formulation will never be complete and correct until these structures are fully

characterized. As a consequence, in the presence of various unmodeled genome

structure, an assembly method must make a choice among quality, quantity and

nature of the input data, computational complexity, false discovery rate (chimeric

contigs) and false negative rates (gaps in the assembly). We have chosen to em-

phasize a lower false discovery rate (fdr). Though it is difficult to have a sense

of the approximation of the sequence to the true sequence while they are being

assembled, it is possible to analyze the accuracy of an assembler using simulated

genomes (of varying complexities) and feature-response-curves with features that

are highly indicative of certain kinds of errors. Nonetheless, the approach pre-

sented in this dissertation is not yet immune to these criticisms, but it contributes

a new framework that has potential to be more faithful to biology.

5

Thesis Contributions

This dissertation contributes three ways to the field of Sequence Assembly and

Genomics in general:

1. A novel DNA sequence assembler, called Scoring-and-Unfolding Trimmed

Tree Assembler (SUTTA). Despite the negative theoretical results of the

complexity of the assembly problem (NP-hard), SUTTA dispenses with

the idea of using greedy and heuristic methods (standardly used by all the

current state-of-the-art sequence assemblers) in favor of a brute-force ap-

proach whose complexity is carefully tamed with constrained search method

(branch-and-bound). To achieve this goal SUTTA relies on flexible designed

score functions that can combine data from different technologies.

2. A new assembly metric, named Feature-Response Curve (FRC). Widely

used metrics to compare the assembled sequences up to now emphasize

only size, while scant attention has been paid to evaluate quality and accu-

racy. To address this problem the FRC has been designed using ideas from

the classical ROC (receiver-operating characteristic) curve, to capture the

trade-offs between quality and sequence size into a single metric.

3. A new Base-Caller, called TotalReCaller. By improving the quality of the

input DNA sequences, base-calling and error correction tools play a signif-

icant role to enable more accurate sequence assemblies. TotalReCaller is a

novel tool that combines base-calling and alignment into a unified frame-

work that concurrently performs base-calling, alignment, and error correc-

6

tion. Like SUTTA, TotalReCaller also relies on global optimization search

methods (branch-and-bound and beam-search) to optimize a Bayesian score

function that takes into accounts both intensity signals and alignments to

a reference genome.

Thesis Outline

The dissertation is organized as follows. Chapter 1 covers the fundamental back-

ground in genome sequencing and sequence assembly. Chapter 2 investigates the

major complexity results in sequence assembly, in particular highlighting the in-

consistencies in the early formulations. Chapter 3 reviews the different assembly

paradigms that have been designed over the years to adapt to various sequenc-

ing projects and technologies. Chapter 4 presents a detailed description of the

first contribution of this dissertation: the Scoring-and-Unfolding Trimmed Tree

Assembler (SUTTA). SUTTA is based on a different formulation of the sequence

assembly problem (as constrained optimization) and uses the branch-and-bound

method to quickly identify and prune implausible overlays. Chapter 5 introduces

and describes the second contribution of the dissertation: the Feature-Response

curve (FRC). This new metric more satisfactorily captures the trade-offs between

quality and size of the assembled sequences. Chapter 6 presents an extensive

set of experimental results to compare SUTTAs performance relative to many

state-of-the-art assembly algorithms in the literature. The analysis is performed

under both standard metrics (N50, coverage, contig sizes, etc.) as well as the

Feature-Response Curves introduced in 5. Finally, chapter 7 presents the third

7

contribution of this dissertation: the TotalReCaller base-caller, which combines

base-calling and alignment into a new re-sequencing framework. This final chap-

ter also demonstrates the advantages of a complete de novo assembly pipeline

integrating TotalReCaller (for base-calling) with SUTTA (for sequence assem-

bly) in a Bayesian manner.

8

Chapter 1

Genome Sequencing and

Assembly

1.1 Introduction

A combination of tremendous advances in sequencing technologies, chemistry and

computer science has revolutionized biological research by allowing scientists to

decode the genomes of many organisms and in particular the human genome [38].

Moreover, the following advent of high-throughput next- and subsequent gener-

ations of sequencing technologies (Gen-1, Gen-2 and Gen-3, respectively) now

promise to considerably reduce the genome sequencing cost in what now seems

to be a personal genomics revolution. This chapter covers the fundamental back-

ground required to understand the research in genome sequencing and assembly

which is at the core of this revolution. Specifically the chapter is organized as

follows: a quick introduction to DNA is first given; next, the traditional shotgun

9

sequencing technology is presented; then next-generation sequencing technologies

are discussed especially in light of various challenges that they introduce; next,

the standard assembly pipeline for large genome projects is described; finally, the

assembly of the first draft of the human genome is reviewed from a historical

perspective.

1.2 DNA: Deoxyribonucleic acid

Deoxyribonucleic acid (DNA) is a double-stranded polymer that contains all the

fundamental building blocks for an individual’s entire genetic makeup, and it is

a component of virtually every cell in the human body. Specifically, it contains

the genetic instructions used in the development and functioning of all known

living organisms as well as the hereditary information that gets transmitted from

organism to organism. DNA has a unique structure composed of two long poly-

mers (Watson and Crick strands) of simple units called nucleotides (A,T,C,G)

that run in opposite directions to each other (anti-parallel). The two polymers

are held tightly together forming a double-helix shape (see figure 1.1). In the nu-

cleus of each cell, the DNA molecule is packaged into thread-like structures called

chromosomes. Each chromosome consists of a single piece of coiled DNA contain-

ing many genes, regulatory elements and other nucleotide sequences. In humans,

each cell normally contains 23 pairs of chromosomes, where each chromosome has

two homologous copies, one from the mother and one from the father (except for

the sex chromosomes X and Y: females have two copies of the X chromosome,

while males have one X and one Y chromosome). Because of this dual represen-

10

Figure 1.1: The double-helix structure of the DNA.

tation of each chromosomes, DNA is said to have an haplotypic structure. Note

however that the current sequencing technologies do not distinguish between the

two strands and the two homologous copies. So when DNA is assembled the

two homologous copies are merged into a single sequence. Another important

observation from the point of view of the assembly process is the following: al-

11

though the two strands are simply the complement of each other, because of

the double-strand “antiparallel” structure of the DNA, when the fragments are

sampled (using the available technology) from the DNA molecule two cases can

happen: (1) if the fragment is sampled from Watson’s strand it is read in the

forward direction; (2) if it is sampled form Crick’s strand it is read in reverse

direction, and because of the complementarity rule (A-T,C-G) this fragment is

in fact reverse-complemented. This properties has implications in the way the

overlap between the fragments are computed (in section 2.2.1).

1.3 Shotgun Sequencing

For more than three decades, starting with the pioneering DNA sequencing work

of Frederick Sanger in 1975 based on the Sanger chemistry, which is still univer-

sally used [87], every large-scale sequencing project has been organized around

one single goal of overcoming the following obstacle: How can one generate the

sequence of gigabases of genome as one uninterrupted string, if from the genome

of an organism, it is only possible to obtain short sequence reads, limited to

about 1000bp, which carry no contextual (chromosomal location or haplotypic

disambiguation) information? Since the short read-lengths place a critical barrier

against direct reading of long genomes, one requires an algorithmic solution to

indirectly derive the full-genome sequence from an overly redundant set of read

data. Thus, most sequencing projects have adopted a shotgun sequencing strat-

egy [49], which, as currently practiced in many genome projects, is organized in

several steps: namely, first genomic DNA of multiple copies of a target DNA

12

Figure 1.2: Shotgun sequencing.

molecule of an organism is sheared into a very large number of small fragments

(typically 8–10 × coverage), each of whose ends are sequenced (≈ 500–1000 bp);

next the resulting sequence reads are fed to a computer program, called a se-

quence assembler, whose purpose is to reconstruct a full genome sequence that

can consistently and correctly explain the sequence read data (see figure 1.2).

Intuitively, the assumption is that if two sequence reads (two strings of letters

produced by the sequencing machine) share a common overlapping substring

of letters, then it is because they are likely to have originated from the same

chromosomal location in the genome. The basic assumption can be made more

precise by additionally taking into account the facts that the sequence reads could

come from either Watson or Crick strand, and that if two strings are part of a

mate-pair1 then the estimated distance between the reads and their orientation

imposes additional constraints, not to be violated. Once such overlap structures

between the sequence reads are detected, then the sequence assembler places

the reads in a lay-out and combines the reads together to create a consensus

sequence—not unlike how one solves a complex jigsaw puzzle. In addition this

assembly process is complicated by the presence of non-random structures (e.g.,

1Reads sequenced from the ends of the same clone.

13

repeated regions, rearrangements, segmental duplications) in the genome that

affect the correctness of the overlaps by producing many false-positives.

1.4 Next Generation Sequencing and their

challenges

Although quite reliable and considerably optimized, the Sanger process is quite

expensive in cost and time. For example, the monetary cost necessary to assemble

mammalian genomes was estimated to be about $12 million dollars in 2005 [63].

Since the final goal still remains personalized medicine, it remains fundamental

to significantly reduce the sequencing cost (ultimately below $1000 dollars) in

order to have an affordable technology for mass application.

In response to these requirements, recent advances in sequencing technology

have produced a new class of massively parallel Next-Generation Sequencing

(NGS) platforms such as: Illumina2 Inc. Genome Analyzer, Applied Biosystems

SOLiD3 System, 4544 Life Sciences (Roche) GS FLX, and Helicos5 Heliscope

Sequencer. Although they have significantly reduced the production cost and

have orders of magnitude higher throughput per single run (200x coverage and

higher) than older Sanger technology, the reads produced by these machines are

typically shorter (35 - 500 bps). As a result they have introduced a succession

of new computational challenges, for instance, the need to assemble millions of

2http://www.illumina.com/
3http://www.appliedbiosystems.com/
4http://www.454.com/
5http://www.helicosbio.com/

14

reads even for bacterial genomes [82]. The short read length complicates the

assembly problem since repeat regions are now harder to disambiguate and so

higher coverage depth is generally required. Furthermore, the assembly tools

originally developed for Sanger sequencing data cannot be directly applied to

NGS technologies for different reasons:

1. because of specific algorithmic choices that rely on long read lengths avail-

able with older Sanger reads;

2. because of the specific error profiles of NGS data (e.g. pyrosequencing

technologies are characterized by high error rates in homopolymer regions);

3. because of the computational requirements of the vastly larger number of

reads generated by NGS projects (e.g., 8 times coverage of a 3 Gbp mam-

malian genome requires 30 million Sanger reads but 750 million Illumina

reads);

As a consequence new assembly tools have been designed to specifically deal with

the new features of the data generated by NGS (see chapter 3 for a review of

sequence assemblers). However developing a universal assembler that can handle

multiple types of sequencing data still remains a noteworthy goal.

1.5 Lander-Waterman statistics

The statistical properties of the sequencing process play a critical role on the

performance of an assembler. In fact, even in absence of repeats, the output

15

Reads

1
2

4
5
6

C
ov

er
ag

e

Contig

3

Figure 1.3: Read coverage illustration (inspired by a lecture given by Michael
Schatz in 2006 at the University of Hawaii).

of a sequence assembler may consist of multiple contigs (contiguous sequence of

the genome) if not enough depth of coverage is available. This phenomenon can

be explained with an analogy to the water covering a sidewalk as it starts to

rain: as droplets fall, the sidewalk becomes increasingly wet, though many spots

remain dry for a while. Similarly, as the fragments are being sequenced, the

randomness of the shearing process leads to cover successively more new sections

of the original DNA not yet represented in the collection of reads (see figure 1.3).

If some region of the genome are not covered, the best possible assembly consists

of the collection of contigs with gaps in between representing the location of the

DNA not covered by the reads.

This phenomenon was initially analyzed by Lander and Waterman [55]. Specif-

16

ically they approximate the arrival of N reads of equal length l along a genome

of length G as a Poisson process whose parameters are defined as follows.

Definition 1 (Lander-Waterman parameters). Consider a genome of length G

that has been uniformly randomly sampled to collect N fragments/reads each one

of length l. We can define the following Lander-Waterman parameters:

• c = lN
G

, coverage.

• k, size of the minimum detectable overlap: number of base pairs two frag-

ments must have in common to ensure their overlap (overlap parameter).

• σ = 1− k
l
, fraction of a read not involved in the minimum detectable overlap;

where θ = k
l
.

For example 1× (1 times) coverage of the human genome requires N = cG
l

=

1(3×109)
500

= 6 million reads. However higher coverage (∼ 10× coverage) is typically

used to assembled genomic data, and in that case N = 60 million reads would be

required.

Considering the reads in order of their arrival along the genome (from left

to right), the number of contigs is the same as the number of reads that do not

overlap. The following theorem precisely formalize this intuition.

Theorem 1 (Contigs statistics). If we model the “arrival” of N fragments of

length l along a genome of length G as a Poisson process then the expected number

of non-trivial contigs6 and their sizes are:

6contig composed of two or more reads.

17

 0

 50

 100

 150

 200

 250

 0 2 4 6 8 10

E
xp

ec
te

d
nu

m
be

r
of

 n
on

-t
riv

ia
l c

on
tig

s

Coverage

Number of contigs vs. coverage

θ = 30%
θ = 50%
θ = 70%

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 2 4 6 8 10

A
ve

ra
ge

 c
on

tig
 le

ng
th

Coverage

Contigs length vs. coverage

θ = 30%
θ = 50%
θ = 70%

Figure 1.4: Expected number of contigs and their average length as a function of
coverage for different values of the minimum detectable overlap θ.

E[# non-trivial contigs] = Ne−(cσ) − Ne−(2cσ) (1.1)

E[contig size] = l

[
(e(cσ) − 1)

c
+ (1 − σ)

]

(1.2)

Figure 1.4 shows the relation between the expected number of contigs and

their average length as a function of coverage. As the coverage increases more

and more contigs can be created, however when the coverage reaches a specific

threshold the number of contigs starts to decrease since now the probability that

a new fragment connects two previously created contigs becomes close to 1. As

this process continues the average contigs’ length simply increases monotonically.

Note that decreasing the minimum detectable overlap θ greatly reduces the ex-

pected number of contigs and increases their lengths. However it is important to

emphasize that this is only a mathematical model and in real applications smaller

values of θ must be balanced with the possibility of making erroneous assemblies.

Proof. Presented below is the proof for the expected number of non-trivial contigs

18

(equation 1.1), while a proof for equation 1.2 can be found in [55]. The proof is

based on the following simple observations: a contig stops at the last overlapping

fragment with no following overlapping fragments. Thus computing the number

of contigs is equivalent to counting the number of “stopper” fragments. A stopper

fragment is defined as a read with no further overlaps at any of the first l(1− θ)

positions, where θ = k
l

models the notion of detectable overlap. Now note that

the probability of a fragment starting at any position in the genome is:

Pr[fragment start at position i] =
N

G
(1.3)

so the probability of having a stopper fragment is:

Pr[“stopper” fragment] =

(

1 − N

G

)l(1−θ)

=

[

1 +

(

−N

G

)] 1

−(N
G)

[− lN
G

(1−θ)]

≈ e−
lN
G

(1−θ) = e−(cσ)

(1.4)

The approximation is possible because N
G

≈ 0 for large G. Hence, the expected

number of contigs and singleton contigs are given respectively by the following

equations:

E[# of contigs] = Ne−(cσ), (1.5)

E[# of singleton contigs] = Ne−(2cσ) (1.6)

19

Thereof the expected number of non-trivial contigs is:

E[# non-trivial contigs] = E[# of contigs] − E[# of singleton contigs]

= Ne−(cσ) − Ne−(2cσ)

1.6 Trade-off in sequencing technology

There is a critical trade-off between sequence reads and the number of reads that

can be generated by current sequencing machines (coverage). Ideally we would

like to generate very long reads with high coverage for de novo assembly projects,

but currently no technology generates reads longer then 1Kb in length. Some

technologies, e.g., Life Technologies7 and Pacific BioSystems8, have announced

new single molecule sequencing (SMS) technology that can combine virtually un-

limited continuous long read lengths with unmatched accuracy to deliver targeted

genomic sequence data in a matter of hours. However there is a lot of specula-

tion whether these promises are too optimistic and whether we will see very long

sequence reads (> 10kb) in the near future. On the other side, next-generation

sequencing technologies have been able to significantly increase the throughput

(and therefore the coverage) while paying a high price by generating much shorter

reads. Figure 1.5 depicts the trade-off scenario. However even very high coverage

is not the final solution to the shorter read length and long-range data (mate-

7http://www.lifetechnologies.com/
8http://www.pacificbiosciences.com/

20

with current sequencing technologies

Number of reads

R
ea

d
le

ng
th

High throughput

1 Kbp

Ideal point: impossible to achieve

Figure 1.5: Trade-off between read length and coverage.

pairs, optical maps, etc) is necessary to correctly assemble the most complex

genome structures. Although initially unavailable, paired-end sequencing has

now become a common routine for almost all of the next-generation sequencing

technologies.

1.7 Assembly Pipeline

The process of reconstructing the complete genome sequence given the input

sequence reads and, if available, additional long-range information (mate-pairs,

optical maps, etc.), is typically carried out in multiple steps (sub-problems).

Each sub-problem is tackled using a specific module and all the modules are

21

sequentially performed in a pipeline. Note that in the following we will focus

on describing the modules that involve the use of computational approaches,

while omitting the steps that involve laboratory experiments. All together this

assembly pipeline is the general procedure for Whole-Genome Shotgun (WGS)

Sequencing, but we emphasize that the specific procedure used at the various

genomic centers may differ in details.

1. Fragment Readout or Base-calling - The first step of the assembly

pipeline consists of determining each fragment sequence using automatic

base-calling software. The base-caller task is to interpret the signal in-

tensities generated by the sequencing machines and call a base for each

position in the sequence. In the case of longer Sanger reads, Phred [25]

was the standard base-caller used to analyze the fluorescence “trace” data

generated by the DNA sequencer. New base-callers have been designed for

next-generation sequencers that use sophisticated signal processing meth-

ods such us statistical learning (BayesCall [42]), supervised learning and

support vector machine (Alta-Cyclic [24], Ibis [51]), and model-based clus-

tering and information theory (Rolexa [85]). More recently, we have pro-

posed a novel unified re-sequencing framework, TotalRecaller [62], that has

the ability to concurrently perform base-calling, alignment and SNP detec-

tion. In the last chapter of the thesis, we will demonstrate the advantages of

a complete pipeline integrating Base-Calling (TotalReCaller) with assembly

(SUTTA) in a Bayesian manner.

2. Trimming low-quality sequences - The sequence reads often contain

22

poor quality regions which, if removed, can lead to more accurate sequence

assembly. However this step is optional, for example one may rely on the

overlapper (next step) to filter false overlaps using the quality values.

3. Overlap Detection/Pairing - The specific algorithmic approaches for

this task have evolved throughout the years, as increasingly more complex

sequencing projects were tackled through the shotgun method and next-

generation sequencing machines were developed. The earliest algorithms

involved either iteratively aligning each read to an already generated con-

sensus or comparing all the reads against each other [77]. Most recently

the detection of read overlaps involves sophisticated techniques meant to

reduce the number of pairs of reads being analyzed. For example the UMD

overlapper [84] keeps the number of repeat-induced spurious overlaps small

and it builds the initial overlapping-phase of the algorithm with a reason-

ably small number of k-mers, whose cardinality is optimized by an order of

magnitude through the use of minimizers. Because of the higher through-

put of NSG data the standard approach used for finding overlaps is instead

exact matching which makes use of suffix- and prefix- trees or arrays. These

are data-structures designed to efficiently store all the suffixes or prefixes of

a particular string. In order to identify all reads that overlap a particular

read r, it is sufficient to identify the reads whose suffixes match a prefix of r.

This approach allows one to perform the overlap computation for millions

of reads both in a time and memory efficient manner although sequencing

errors are not tolerated. The output of this module is a set of fragment

23

pairs with associated overlap score.

4. Fragment Assembly - Given the set of fragments/reads and their pair-

wise overlaps (and possible long range information), this step generates a

layout or arrangement of the reads that is consistent with the overlap in-

formation and satisfies the long range information constraints. This is the

most complicated step in the pipeline and requires sophisticated techniques

and heuristics which are the central problems addressed by this thesis. In

particular, this problem can be formulated in graph-theoretic terms and it

can be shown to belong to the class of NP-complete problems (see chapter

2). Several assembly paradigms have been developed to efficiently tackle

the fragment assembly problem (see chapter 3). The output of this step is

a set of assembled layouts (arrangements of the reads) for the contigs.

5. Consensus Generation - Once a layout (or set of layouts) is generated,

the sequence of base pairs nucleotides for each layout is computed using a

consensus program. If overlaps are detected using exact match, then the

consensus generation is a trivial task, however, if dynamic programming

is used for overlap detection, the consensus generation requires solving a

multiple sequence alignment problem [44].

6. Scaffolding - The scaffolding process groups the contigs together into sub-

sets with a known order and orientation. Researchers generally infer the

relationships between contigs from mate-pair information. Similarly to step

4, this problem can be also formulated in graph-theoretic terms where each

24

node in the graph is a contig and a directed link between two contigs ex-

ists if there are mate-pairs bridging the gap between them. The goal is

to find a consistent orientation for all nodes in the graph according to the

mate-pair information. Because of errors in the pairing data and possible

mis-assembly errors in the contigs, this problem can also be shown to be

NP-complete; several greedy and heuristic strategies have been proposed.

Many sequence assemblers include a scaffolding step, however stand-alone

options are also available (e.g., Bambus [81], SSPACE [14]). The output of

this step is a set of ordered contigs and estimated distances between them.

7. Assembly Validation - In practice the assembly problem is never an

error-free process and even the most sophisticated assemblers are affected

by mis-assembly errors. So it is important to include in the pipeline a

validation step that checks the quality of the assembled contigs. Unfortu-

nately no standardized method yet exists and most reported measures of

assembly quality are aggregate measures, such as the number and sizes of

contigs, which do not account for the possibility of misassemblies. Thus

they are only marginally useful. If a reference genome is available, the con-

tigs can be aligned to the reference in order to identify region that have

been mis-assembled. However, if the true layout is unknown, which is com-

mon in de novo sequencing projects, then additional data must be used

to validate the contigs. For example, physical maps provide markers (with

approximate order and/or distance) that can be used to validate large con-

tigs. Similarly, the sequence of a closely related organism can be used to

25

confirm areas where we expect not to find significant discrepancy (or di-

vergence). In the absence of any other types of information, clone mates

(also known as mate-pairs or paired-ends) have been widely used to detect

assembly errors by checking areas of the genome that violate the orienta-

tion and distance constraints imposed by the clone mates. Some tools have

recently appeared that perform automatic validation of contigs [80]. This

thesis contributes many improvements to this step by introducing a novel

metric, which satisfactorily captures the trade-offs between contig’s length

and quality (see chapter 5). The typical output of this step is a quality

value for each contig together with pointers to locations in the contigs that

might be mis-assembled.

8. Finishing - In practice, imperfect coverage, repeats, and sequencing errors

cause the assembler to produce not one but hundreds or even thousands of

contigs. After scaffolding, the contigs are oriented and the sequence gaps

between them now need to be filled with their genomic sequence. The task

of closing the gaps between contigs and obtaining a complete molecule is

called finishing. Although they represent genuine gaps in the sequence,

researchers can retrieve the original clone inserts spanning the gap and use

a straightforward walking technique to fill in the sequence. However, filling

these gaps involves a large amount of manual labor and complex laboratory

techniques, so any improvement in assembly that could reduce the cost of

this step would have significant importance. The output from this final

step is the whole genome sequence.

26

1.8 History of the assembly of the

Human Genome

Among the thousand genomes that have been sequenced and assembled in the

last 20 years, the human genome has a very intriguing history. For obvious

reasons, we have been particularly interested in decoding our own DNA. The

potential discoveries, applications, and the sheer glory of such an achievement

has motivated scientists all over the world to compete fiercely against each other.

Here we briefly outline the major historical events that led to the first draft of

the Human genome.

[1990] The Human Genome Project was launched through funding from the

US National Institutes of Health (NIH) and Department of Energy, whose labs

joined with international collaborators and resolved to sequence 95% of the DNA

in human cells in just 15 years. This joint effort was named the International Hu-

man Genome Sequencing Consortium (IHGSC). Researchers at IHGSC proposed

that a feasible assembly strategy should follow the BAC-by-BAC hierarchical

method where the genome is first broken up into a collection of large overlapping

in-vivo-clonable fragments (between 160 and 200 Kb) – called Bacterial Artifi-

cial Chromosomes or BACs. Each BAC would be independently assembled by

shotgun strategy and then mapped together using restriction-finger-print-based

overlaps. There was also a YAC map but it had too many errors due to chimerisms

in the clones.

27

[1998] A new private venture was launched to sequence the human genome: the

enterprise - named Celera Genomics - aimed to create its own database of human

genomic data, which users would be able to subscribe to for a fee. In contrast to

the IHGSC and despite popular skepticism, the Celera Genomics opted for the

Fred Sanger’s “whole genome shotgun” method, skipping the mapping phase of

the BAC-by-BAC hierarchical process.

[2000] On 26 June 2000 the public and private enterprises both announced that

they had completed their respective draft genome sequences.

[2001] Each effort published an account of its draft human genome sequence:

Celera’s effort appeared in Science [100], and the International Human Genome

Sequencing Consortium’s effort was published in Nature [38].

[2003] Two years ahead of schedule, with contributions from countless scien-

tists from 20 institutions across the globe, the International Human Genome Se-

quencing Consortium announced that they had completed the gold-standard ref-

erence human genome, according to the guidelines of the original Human Genome

Project, with 99.99% accuracy [39].

What about quality? Although it is widely believed that the Herculean task

of the Human Genome project (HGP) was completed in 2003, 13 years after its

initial project announcement, it is legitimate to ask: how well did we do? “Of

particular interest are the relative rates of mis-assembly (sequence assembled in

the wrong order and/or orientation) and the relative coverage achieved by the

28

three protocols” [91]. Unfortunately, prior to 2003, the IHGSC group were alone

in having published assessments of the rate of misassembly in the contigs they

produced (see [40] on subsequent assembly analysis and comparison). Using arti-

ficial data sets, they found that, on average 10 per sent of assembled fragments

were assigned the wrong orientation and 15 per cent of fragments were placed in

wrong order by their protocol [47]. A more recent article, entitled “Revolution

Postponed” in Scientific American [31] asserted, “The Human Genome Project

has failed so far to produce the medical miracles that scientists promised. Biol-

ogists are now divided over what, if anything, went wrong...”. Due to these and

other related recent events, genome assembly is again receiving a lot of attention

from the genomic community. In particular, the central problem is the develop-

ment of new assembly and validation tools that can overcome the limitations of

previous sequence assemblers thus leading to more accurate genome sequences:

this thesis will focus on both aspects of the problem by contributing not just to

a novel sequence assembler but also to a better metric for assembly validation.

Some recent advances. The history of the assembly of the human genome

did not stop with the successful completion of the first draft in 2001. Several

other teams of researchers have continued on a similar journey tackling these and

other massive assembly problems. Below is a list of several such major efforts.

[2007] A team of researchers mostly from the Craig Venter Institute9 published

an updated version of the human genome produced from 32 million random DNA

9http://www.jcvi.org/

29

fragments sequenced using Sanger technology [57]. Similar to the Celera effort,

the whole-genome shotgun sequencing method was used also in this case. In par-

ticular they developed a modified version of the Celera assembler to facilitate the

identification and comparison of alternate alleles within the individual diploid

genome. Comparison of this genome and the National Center for Biotechnol-

ogy Information human reference assembly revealed more than 4.1 million DNA

variants, encompassing 12.3 Mb.

[2008] The first human genome sequenced by next-generation technologies was

published, using massively parallel sequencing in picolitre-size reaction vessels

[102]. This genome belonged to James D. Watson, one of the co-discoverers of

the structure of DNA (with Francis Crick) in 1953. The assembly results seem to

agree well with the previous results published in 2007 by traditional sequencing

methods [57].

[2009] First human genome assembled using next-generation short read data

[92]. Specifically 3.5 billion paired-end reads from the genome of an African male

publicly released by Illumina, Inc. were assembled using a new parallel assembler

based on a distributed representation of a De Bruijn graph. Approximately 2.76

million contigs ≥ 100 base pairs (bp) in length were created with an N50 size of

1499 bp, representing 68% of the reference human genome. Also in this case the

analysis of the assembled sequences revealed polymorphic and novel sequences

not present in the initial human reference assembly.

30

[2010] The second human assembly using next-generation short read data was

published using the assembler ALLPATHS-LG [29]. Using data from the Illumina

GAII and HiSeq sequencers, a team from the Broad Institute10 of MIT created an

assembly of comparable quality to the one previously obtained using capillary-

based sequencing (base accuracy of ≥ 99.95%, N50 contig length of 24 kb, and

N50 scaffold sizes of 11.5 Mbp) and it has been described as the current best

human de novo assembly.

10http://www.broadinstitute.org/

31

Chapter 2

Sequence Assembly:

Problem and Complexity

2.1 Introduction

Because of its natural connection to a well known NP-complete combinatorial

optimization problem (shortest superstring problem), for many years the sequence

assembly problem (SAP) has been investigated using rather simple string and

graph-theoretic formulations. This chapter will address such problems through

the following sequence of steps: (1) the standard formulations of the SAP and

their complexity results; (2) solutions in terms of these formulations which are

infeasible/intractable in the context of biology; (3) a newly proposed formulation

(more faithful to biology) of the problem as a constrained optimization problem

and the complexity issues in this new framework. The chapter also contains a

probabilistic analysis of unique reconstruction for random DNA sequences.

32

2.2 The dovetail-path framework

The first attempt to mathematically formalize the sequence assembly problem is

due to Myers (1995) in his seminal paper [67] where the dovetail path framework

was first introduced. An essential set of definitions from this notational framework

is given below.

2.2.1 Basic definitions: reads, overlaps and layouts

The output of a sequencing project consists of a set of reads (or fragments) F =

{r1, r2, . . . , rN}, where each read ri is a string over the alphabet Σ = {A, C, G, T}.

To each read is associated a pair of integers (si, ei), i ∈ [1, |F |] where si and ei

are respectively the starting and ending points of the read ri in the reconstructed

string R (to be computed by the assembler), such that 1 ≤ si, ei ≤ |R|. The

order of si and ei encodes the orientation of the read (whether ri was sampled

from Watson or Crick strand).

The overlaps (best local alignment) between each pair of reads may be com-

puted using the Smith-Waterman algorithm [94] with match, mismatch and gap

penalty scores dependent on the errors introduced by the sequencing technology.

Exact string matching is instead typically used for short read from next genera-

tion sequencing, since they usually provide high coverage, thus allowing tolerance

for increased false negatives. Note also that by restricting the problem to exact

matches only, the time complexity of the overlap detection procedure is reduced

from a quadratic to a linear function of the input size. The complete description

of an overlap π is given by specifying:

33

A π.sAAπ.e Aπ.e

Bπ.s π.eB Bπ.s π.eB

hangA
B hang

B

hangA
B hang

B

A A

Normal

π
Innie

.s

Figure 2.1: Two possible overlaps (illustration): left overlap is normal (both reads
pointing to the same forward direction) right overlap is innie (the second read B
is reverse complemented and is pointing in the backward direction); The suffix
predicate for the left (normal) overlap is s.t. suffixπ(A) = true and suffixπ(B) =
false.

1. the substrings π.A[π.sA, π.eA] and π.B[π.sB, π.eB] of the two reads that are

involved in the overlap;

2. the offsets from the left-most and right-most positions of the reads π.Ahang

and π.Bhang ;

3. the relative directions of the two reads: Normal (N), Innie (I);

4. a predicate suffixπ(r) on a read r s.t.:

suffixπ(r) =







true iff suffix of r participates in the overlap π

false iff prefix of r participates in the overlap π
(2.1)

Figure 2.1 illustrates two possible overlaps. Note that a right arrow represents

a read in forward orientation, conversely a left arrow represents a read that

is reverse-complemented. Because of the double-stranded nature of the DNA

molecule, each read can be sampled from either the Watson or Crick strands

and they have different orientation. This formulation gives rise to a taxonomy of

34

Regular dovetail

Suffix dovetail

Prefix dovetail

hangA

sA

B hang

eA

B eBs

hangA

sA

B hang

eA

B eBs

hangA

sA

B hang

Containment

eA

s
B

eB

A

B

hangA

sA

B hang

eA

B eBs

A

B

A

B

A

B

Figure 2.2: Overlap taxonomy.

overlaps illustrated in Figure 2.2.

Definition 2 (Layout). A layout L induced by a set of reads F = {r1, r2, . . . , rN}

is defined as:

L = rj1

π1

⇋ rj2

π2

⇋ rj3

π3

⇋ · · ·
πN−1

⇋ rjN
. (2.2)

Informally a layout is simply a sequence of reads connected by overlap rela-

tions. Note that the order of the reads in L is a permutation of the reads in F .

The previous definition assumes that there are no containments1; without any

loss of correctness in the base-pair sequences that can be generated, contained

1Reads that are proper subsequences of another read.

35

reads can be initially removed (in a preprocessing step) and then reintroduced

later after the layout has been created. However, note that their reintroduction is

important to provide additional support for mate-pair constraints (if available).

Out of all the possible layouts (possibly, exponential in the number of reads), it

is imperative to efficiently identify the ones that are consistent according to the

following definition:

Definition 3 (Consistency Property). A layout L is consistent if the following

property holds for i = 2, . . . , N − 1:

πi−1

⇋ rji

πi

⇋ iff suffixπi−1
(rji

) 6= suffixπi
(rji

). (2.3)

The consistency property imposes a directionality to the sequence of reads

in the layout. The directionality of each internal read in the layout must be

preserved. Figure 2.3 shows an example of layout associated to 7 overlapping

reads. The estimated start positions for each read are given by the formula:

sp1 = 1, spi = spi−1 + πi−1.hangrji−1
if i > 1 (2.4)

It should be clear at this point why this framework is called the dovetail-path

framework: layouts consist of a sequence of dovetail overlaps that satisfy the

consistency property with containment overlaps hanging off the main dovetail-

path.

36

B
C

D
E

F
G

A

sp sp sp sp sp spspB C D E F GA

Figure 2.3: Example of layout for a set of reads F = {A, B, C, D, E, F, G} with
overlaps πN

(A,B), π
I
(B,C), π

N
(C,D), π

I
(D,E), π

N
(E,F), π

N
(F,G).

2.2.2 Min-length reconstruction theorem

Appealing to parsimony, we are typically interested in a layout whose length

is minimal (although we will see that this assumption may lead to biologically

incorrect solutions). The following theorem shows the correlation between the

length of a layout and the sizes of its overlaps. Let us define the length of an

overlap to be the average length of the two overlapping substrings:

length(π) =
(|π.sA − π.eA| + |π.sB − π.eB|)

2
. (2.5)

Note that |π.sA − π.eA| and |π.sB − π.eB| can have different values when the

overlaps are computed using the Smith-Waterman alignment algorithm, though

they are the same if exact match is used. Let us define the weight of a layout |L|

37

to be the sum of the lengths of its overlaps:

weight(L) =
∑

π∈L

length(π) (2.6)

then the following theorem holds [97, 98]:

Theorem 2 (Min-length reconstruction). A layout of maximum weight results

in a reconstruction of minimum length.

Proof. First note that:

|L| = spn + |rN | =

N−1∑

i=1

πi.hangri
+ |rN | (2.7)

using the facts that:

1. sp1 = 1, spi = spi−1 + πi−1.hangri−1
, if i > 1,

2. πi.hangri
≈ |ri| − length(πi),

3. length(πi) ≈ |g| when π is a containment edge and g is the contained

fragment,

it follows that:

|L| =
∑

r∈F

|r| −
∑

π

length(π)

︸ ︷︷ ︸

weight(L)

. (2.8)

But since the second sum is the weight of the layout, maximizing weight minimizes

length.

38

2.3 Shortest Superstring Problem (SSP)

Researchers first approximated the shotgun sequence assembly problem as one of

finding the shortest common superstring of a set of sequences. This formulation

was favored because of the results of the previous theorem and the availability of

efficient algorithms to solve the SSP .

Definition 4 (Shortest Superstring Problem). Given a set of strings or sequences

S = {r1, r2, . . . , rn} find the shortest string R (reconstruction) such that ∀i, ri is

a substring of R.

This shortest common superstring (SCS) formulation led to a simple theoret-

ical abstraction, but by being oblivious to how biological sequences are organized

by evolution, it often yielded biologically implausible and incorrect solutions.

Its inability to correctly model the assembly problem is owed to a multitude of

reasons, but primarily because:

1. it does not account for possible errors arising during the process of sequenc-

ing the fragments,

2. it does not model fragment orientation (the sequence source can be one of

the two DNA strands, Watson or Crick), and

3. most importantly, it fails in the presence of repeats, as it encourages repeat-

induced compressions.

To emphasize the last point it is of interest to note Richard Karp’s statement

from 2003 [43]: The shortest superstring problem [is an] an elegant but flawed

39

CA

A

B

M
is

−
as

se
m

bl
y

C
or

re
ct

 A
ss

em
bl

y

rm rm

l rB C

R2R1

rm

1R 2R

l

l l

Figure 2.4: Example of compression: the two copies of repeat (R1 and R2) are
compressed into one leading to a shorter but misassembled sequence.

abstraction: [since it defines assembly problem as finding] a shortest string con-

taining a set of given strings as substrings. Figure 2.4 shows an example of the

kind of errors that such formulation could lead to: since strings contained in-

side a repeat regions cannot be disambiguated, multiple copies of a repeat are

compressed into a single one.

Because of the theoretical computational intractability (NP-completeness

[27]) of the SSP , most of the approaches for genome sequence assembly have

resorted to greedy and heuristic methods that, by definition, restrict themselves

to near-optimal solutions, where the “nearness” may be guaranteed within a mul-

tiplicative competitiveness factor. The best known greedy algorithm for the SSP

has an approximation factor of 22
3

[8].

40

2.4 Graph-Theoretic formulation

Since the SSP formulation was not able to correctly model the sequence assembly

problem, researches opted for more sophisticated graph-theoretics ideas. Specifi-

cally, graph-theoretic approaches convert sequence assembly into solving specific

problems for general graphs constructed using the overlap information of the in-

put set of reads. This mapping has the advantage of allowing us to apply the

large collection of algorithms and heuristics that have been developed in graph

theory for many decades. However, this formulation still suffer from the same

problems and limitations of the SSP model, since it can produce mis-assembly

errors (as shown later). In this section we introduce the two most used graphical

models for the sequence assembly problem: String Graph and De Bruijn graph.

But before formally defining them, we need to give a minimal set of definitions.

2.4.1 Strings, Overlaps and Overlap Graph

Let x and y be two strings over the alphabet Σ. Let us denote the length of x by

|x|. The ith character of x is denoted by x[i]. If 1 ≤ i ≤ j ≤ |x|, we use x[i, j] to

denote the substring of x starting at position i and ending at position j. Given

two strings x and y over the alphabet Σ, we say that there is an overlap between

x and y, and we denote it with x ⇋ y, if there exists a suffix of x that matches2

a prefix of y. Let us denote with o(x, y) the length of the longest such match.

Definition 5 (Overlap Graph). Given a set of strings S = {r1, r2, . . . , rn} and

2The matching does not have to be perfect and it can be approximated allowing up to ǫ

percent error on real data.

41

a minimum overlap threshold value k, the overlap-graph for S is a weighted bidi-

rected graph OGk = (V, E) where:

• V = S = {r1, r2, . . . , rn};

• E = {(ri, rj) : (ri ⇋ rj) ∧ o(ri, rj) ≥ k, ri, rj ∈ V };

• the weight of each edge (ri, rj) is w(ri, rj) = |rj| − o(ri, rj).

The overlap graph represents all the inferable relationships between the strings

in the set S. Note that |rj| − o(ri, rj) is the length of the overhang3 for string rj ,

Since each vertex/string ri has an orientation, every edge has two orientations,

one with respect to each of its endpoints. Because the graph is bidirectional, we

need to describe how to explore the nodes of the graph to generate the set of

valid paths.

Definition 6 (Path validity). A path P = 〈r1

e1

⇋ r2

e2

⇋ r3

e3

⇋ · · ·
em−1

⇋ rm〉 in G is

valid if ∀i, 2 ≤ i ≤ m − 1, ei−1 and ei have opposite directions at ri.

Note that this definition is equivalent to the consistency property for a layout.

In order to traverse a node in the graph we need that the entry edge and the exit

edge have opposite directions at the node. So we are allowed to enter a node x

even if the edge ei is pointing out of the node as long as we use an edge ej with

opposte direction to ei when we exit the node (see figure 2.5 for an example of

overlap graph).

Given any path P in the overlap graph, we associate a path-string to P that

consists of the concatenation of the strings according to the order in the path,

3The size of the read portion that is not involved in the overlap.

42

where only one copy of the overlap is kept. Clearly the weight of a path P is

given by the sum of the weights of its edges:

w(P) =
∑

(ri,rj)∈P

w(ri, rj) =
∑

(ri,rj)∈P

(|rj| − o(ri, rj)) (2.9)

Note that because of the weight function associated to the edges of the graph,

a path of minimum weight defines a path-string of minimum length.

2.4.2 String Graph

The size of the overlap graph can be dramatically reduced by a sequence of

transformations whose goal is to eliminate edges that can be transitively inferred.

Definition 7 (transitively inferable edge). If x
e1

⇋ y
e2

⇋ z and x
e3

⇋ z are “mutu-

ally consistent” overlaps among nodes x, y and z then the edge e3 is said to be

transitively inferable from the sequence of edges e1 and e2.

Informally the overlap between strings x and z is implied by the concatena-

tion of the overlaps between x, y and z. It is important to note the edges must

be mutually consistent: entry edge and the exit edge must have opposite direc-

tions. The string graph is a particular graph where all the contained string and

transitivity inferable edges are removed [68].

Definition 8 (String Graph). Given a set of strings S = (r1, r2, . . . , rn) and a

minimum overlap threshold value k, the string graph SGk for S is obtained from

the overlap graph OGk by removing contained strings (strings that are substrings

of other strings) and transitively inferable edges.

43

Such transformation can be computed in polynomial time using the algorithm

proposed by Myers in [68]. In order to correctly apply the transitivity reduction

step to the graph, it is important to first mark all transitivity edges and then

remove all marked edges. This is because this process is not Church-Rosser [20]

and any arbitrary strategy would fail to remove some of the transitivity edges.

Equipped with the notion of string graph, the sequence assembly problem can

be formulated as follows:

Definition 9 (Sequence Assembly Problem (SAP1)). Given a set of fragments

or reads S = (r1, r2, . . . , rn) and a minimum overlap threshold k, the Sequence

Assembly Problem (SAP) is the problem of finding a Hamiltonian Path in the

string graph SGk for S such that its weight is minimal.

Note that we seek a Hamiltonian Path because we would like all the reads to

be part of the assembly without repetition. The problem is clearly a special case

of the Traveling Salesman Problem (TSP) with the following two differences: (1)

instead of a Hamiltonian cycle we look for a Hamiltonian path; (2) we work with

bi-directed graphs instead of undirected or directed graphs. However, for circular

genomes (such as plasmids and bacterial genomes), the first difference does not

apply anymore as we need to find a Hamiltonian cycle as well.

Note that this formulation differs from the one presented in [70]. Specifically

Nagarajan and Pop define the sequence assembly problem as one of finding a

generalized Hamiltonian path (every node is visited at least once) of minimum

weight in the string graph of the reads. This is in accordance with the solution

proposed in [68] where they seek a cyclic tour. In such a model each edge has

44

assigned to it a selection constraint c that dictates how many times the edge

should appear in the target solution. Specifically, there are three cases:

1. exact edge (c = 1),

2. required edge (c ≥ 1) and

3. optional edge (c ≥ 0).

The argument for allowing an edge to appear multiple times in the solution

is to model the repeated regions of the genome. If an edge belongs to a repeat

then it should be possible to reuse it in when the second (or more) copy of the

repeat are assembled. However, notice that if one assumes uniform coverage of

the genome, it is reasonable to presume that the other copies of the repeat are

covered by a different set of homologous reads. The problem for the assembler is

then how to avoid compressing these reads together into one single copy of the

repeat.

Before analyzing the complexity of this formulation it is important to observe

that this graph-theoretical framework suffers from a similar kind of problem as

the shortest superstring approach. Figure 2.5 shows an example of a string graph

where all the possible Hamiltonian paths create mis-assembly errors due to the

presence of a repeat. The compression error is due to the fact that repeats can

induce false positive transitivity edges. For example consider the reads 3, 7 and 8

in figure 2.5, we have that 7 ⇋ 3, 3 ⇋ 8 and 7 ⇋ 8, so the edge 7 ⇋ 8 is removed

with the negative effect of merging together reads that belong to two different

copies of the repeat R2. In particular, after removal of the transitivity edges, there

45

Layout generation

1 3

A A

R 1

B

2

A

7

6

5

4

8

3

7

4

6

58

2 3

7

4

6

58

2

1

2 4

53

6

A A A A

R 1 R 2

B B

7

8

1 1

Transitivity reduction

Graph construction

String−GraphOverlap−Graph

1

A

2

6

5

4

A A

7

8

M
is−

assem
bly 1

M
is−

assem
bly 2

R

B

1

T
rue layout

3

Figure 2.5: Example of mis-assembly using a string graph: the removal of the
transitivity edges (in red) produces a string graph where every (Hamiltonian)
paths through all nodes creates misassemblies. The layout for two of these paths
are shown at the bottom: the first one with errors due to compression and the
second with both compression and inversion errors.

46

is more then one path that traverses all the nodes and it always produces mis-

assembled layouts. Note that edge 2 ⇋ 6 cannot be removed because, although

there are edges 2 ⇋ 7 and 7 ⇋ 6, the edge directions at node 7 do not match

thus obstructing it from being traversed (the edges are not mutually consistent).

This example also shows another problem inherent to this framework. Even if

it would be possible to efficiently compute the Hamiltonian path, the string graph

might have many different Hamiltonian paths (as in this example) of minimal

length and all these paths represent a possible reconstruction of the genome.

Additional long-range information (e.g., mate-pais, optical maps, etc.) must be

then used to resolve these ambiguities.

The problem of finding a minimal weight Hamiltonian path in a directed or

undirected graph is known to be NP-complete. Since directed graphs are special

types of bidirected graphs, it follows that the Sequence Assembly Problems is

also NP-complete:

Theorem 3. The Sequence Assembly Problem is NP-complete.

2.4.3 De Bruijn graph

A different approach was first developed by Idury and Waterman in 1995 [37] and

later expanded by Pevzner et al. in 2001 [78], which is based on the notion of De

Bruijn graph. In graph theory, an n-dimensional De Bruijn graph of m symbols

is a directed graph representing overlaps between sequences of symbols. It has

mn vertices, consisting of all possible length-n sequences of the given symbols.

For example, given a set of m symbols S = {s1, s2, . . . , sm}, the set of nodes are:

47

V = Sn = {(s1, . . . , s1, s1), (s1, . . . , s1, s2), . . . , (s1, . . . , s1, sm),

(s1, . . . , s2, s1), . . . , (sm, . . . , sm, sm)}

Any two nodes v1 and v2 have a direct edge between them if the n − 1 suffix

v1 is equal to the n − 1 prefix of v2.

Unlike the string graph formulation, in a De Bruijn graph the notions of nodes

and edges are in some sense the dual of the overlap graph. In the context of the

assembly of sequence reads, a De Bruijn graph is formally defined as follows:

Definition 10 (De Bruijn Graph). Given a set of strings S = (r1, r2, . . . , rn) and

a minimum overlap threshold value k, the De Bruijn graph for S is a directed

graph BGk = (V, E) where:

• V = {d ∈ Σk | ∃i s.t. d is a substring of ri ∈ S};

• E = {(di, dj) : if the k − 1 prefix of di is a suffix of dj};

Informally, the set of vertices of BGk is the set of k-mers for the set of strings

S, and the edges correspond to their perfect k − 1 overlap. Clearly every read

ri ∈ S is translated into a path composed of (|ri| − k) nodes. Let us call such

a path a walk and define it w(ri). Also note that the graph is directed (not

bidirected as in the case of the string graph) and there is no weight associated

to the edges (the overlap weight is k − 1 for all the edges and it can be disre-

garded). Figure 2.6 shows an example of De Bruijn graph for the list of strings

L = {AAA, AAC, ACA, CAC, CAA, CGC, GCG} with parameter k = 2. We

48

A
CA

GC

AC

A

C
CG

G

AA

C

AA

A

C

Figure 2.6: De Bruijn graph with parameter k = 2 for the list of strings L =
{AAA, AAC, ACA, CAC, CAA, CGC, GCG}.

create one node for each 2-mer in the set L and a directed edge from node x1

to node x2 if the k − 1(= 1) suffix of x1 is a prefix of x2 and we label the edge

with the rightmost character in x2. Hence, in this graph each edge corresponds

to just one of the k-mers and so the general problem consists of finding a path

that visits all the edges exactly once, an Eulerian path. The string S correspond-

ing to a path in this graph can be reconstructed in the following way: begin

the string S with the label of the first node and then concatenate, in order, all

the labels of the edges in the path. For example, in figure 2.6 one Euler path

is AC
A→ CA

C→ AC
G→ CG

C→ GC
A→ CA

A→ AA
A→ AA

C→ AC and the

reconstructed string associated to the path is S = ACACGCAAAC.

Although Eulerian paths in the De Bruijn framework can be computed in

polynomial time, in reality there are many complications: (i) The De Bruijn

graph might have more than one Eulerian path and, as for the earlier string

graph framework, choosing the correct one is a non trivial task (Kingsford et al.

49

in [50] give a precise formula for the number of possible genomes that can be

constructed from a De Bruijn graph). For example, another possible Eulerian

path for the De Bruijn graph in figure 2.6 is AC
G→ CG

C→ GC
A→ CA

C→ AC
A→

CA
A→ AA

A→ AA
C→ AC and the reconstructed string is S = ACGCACAAAC.

(ii) Errors in the data can introduce many erroneous edges which complicate

the graph structure; (iii) Even when an Eulerian path can be computed and

it represents a possible assembly of the k-mers, it still might not constitute a

correct assembly of the input reads (due to the presence of repeats). However,

as mentioned before, since each read corresponds to a particular walk in the De

Bruijn graph, and any walk that contains all the reads as subwalks represents a

possible assembly of the reads.

Definition 11 (Superwalk). A walk is called a superwalk of BGk if ∀i, w(si) is

a subwalk of it.

In this framework a parsimonious solution corresponds to a superwalk of min-

imum length:

Definition 12 (Superwalk Problem (SAP2)). Given a set of fragments/reads

S = (r1, r2, . . . , rn) find a minimum length superwalk in the De Bruijn graph

BGk of S.

The sequence assembly problem in the De Bruijn graph framework corre-

sponds to Superwalk Problem, and, unsurprisingly this problem is also NP-

complete by reduction from the Shortest Superstring Problem [61]:

Theorem 4. The Superwalk Problem is NP-complete.

50

2.5 Probability of unique reconstruction

The difficulty of assembling any set of reads (even if error-free) both in the

String and De Bruijn graph frameworks is related to the overall structure of

the genome and in particular to the presence/absence of repeats. Repeats can

produce branches and cycles in the graph leading to multiple reconstructions. If

we (incorrectly) assume that the genome has size n and its letters are uniformly

random distributed (the nucleotide at each position is chosen independently and

uniformly with probability p = 1
4
) , then we can ask the following question: What

is the probability that a random genome can be uniquely reconstructed? Here we

give a simple analysis based on the k-mer size in the De Bruijn framework. Since

two k-mers overlap only if they have a prefix-suffix perfect match of size k − 1,

this analysis can be applied also to the special case of the String graph method

with minimum overlap threshold k. Note that although this analysis is quite far

from reality (genomes are not random), it helps to compute an estimate of the

minimum k-mer size that should be used in any real application.

Note that a repeat of size ≥ k will always lead to a non-unique reconstruction,

so we need to calculate the probability that a random DNA sequence of length

n has no repeats of size ≥ k. For very large n (n >> 0), we can define a random

variable X whose values represent the number of times a k-mer occurs in the

DNA sequence. The random variable X follows a binomial distribution with

parameters X ∼ B(n, pk). Therefore:

Pr(X = i) =

(
n

i

)

(pk)i(1 − pk)n−i (2.10)

51

which is the probability of having exactly i repeats of k-mer in the random DNA

sequence. Note that here we assume all the events to be independent. This

assumption is not generally true since strings of size k can overlap in the DNA

sequence, however, for very large genomes (e.g., human), the length n is big

enough to assume these events to be independent with good approximation. If

there are no repeats then for any k-mer only the events for i = 0 and i = 1

can happen, therefore we wish to approach the following equality as closely as

possible.

Pr(X = 0) + Pr(X = 1) = (1 − pk)n + npk(1 − pk)n−1 = 1. (2.11)

For large n (say, n > 105) and for a suitable ǫ, we may wish to find a k such that:

e−npk

+
npk

(1 − pk)
e−npk

> 1 − ǫ. (2.12)

Which follows from the fact that:

lim
n→∞

(

1 − λ

n

)n

= e−λ (2.13)

where λ = npk. Equation 2.12 can be easily rewritten as follows:

1 + npk > enpk

(1 − ǫ)(1 − pk) + pk > enpk

(1 − ǫ∗(k)) (2.14)

for some ǫ∗(k) > ǫ. Note that ǫ∗(k) depends on the choice of k. If we substitute

52

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

P
ro

ba
bi

lit
y

λ

(1-λ)e-λ

Figure 2.7: Plot of function f(λ) = (1 − λ)e−λ in the range [0, 10].

npk = λǫ∗ we obtain:

(1 + λǫ∗)e
−λǫ∗ > (1 − ǫ∗(k)). (2.15)

The function f(λ) = (1− λ)e−λ is plotted in figure 2.7. When n 6= 0, probability

1 can only be approached from below, which means it is never guaranteed that

there are no repeats in the random DNA sequence. However from λǫ∗ = npk it

follows that:

k = log 1

p
(n) + log 1

p

(
1

λǫ∗

)

. (2.16)

For a random sequence of human genome size we have that:

k = log4(3 × 109)
︸ ︷︷ ︸

≈15.7

+1.3 = 17, (2.17)

where p = 1
4
. Then λǫ∗ = 4(−1.3) = .165 and the probability that a human-

53

sized random genome is 17-mer-repeat-free is bigger than (1 − ǫ = .988). This

means that sequences of size k > 17 are already very unlikely to be repeated.

Unfortunately the human genome is not random and contains many longer and

complicated repeat structures than simple repeats of length 17 bps, so it would

be required to use much higher values for k.

2.6 Sequence Assembly as a Constrained

Optimization Problem

All the previously described formulations nicely convert the sequence assembly

problem into well-defined combinatorial optimization problems; however, these

formulations are inherently wrong since the best solution so obtained can be

biologically incorrect (mis-assembled). Moreover, since all these problems are

NP-hard, many of the algorithmic solutions proposed over the last 20 years use

greedy and heuristic methods which are inherently approximate. Thus, before

discussing the various techniques used in sequence assemblers (chapter 3), it is

important to give a new formulation of the sequence assembly problem whose

solutions are more faithful in the context of biology. This formulation obviously

will require the use of long-range information to concurrently validate and resolve

the complex structures present in large genomes.

54

2.6.1 Modeling sequencing errors

So far, we have omitted from the discussion the possibility of errors in the reads.

However, all currently available sequencing technologies are error-prone and these

errors must therefore be modeled in our study of assembly. If there are errors in

the reads then consistent layouts must also satisfy the following property:

Definition 13 (ǫ-valid layout). Let 0 ≤ ǫ < 1 be the maximum error rate of the

sequencing process. A layout L is ǫ-valid if each read ri ∈ L can be aligned to

the reconstructed string R with no more than ǫ|ri| differences.

Note that in practice, the maximum error rate ǫ is used during the overlap

computation to filter only detected overlaps between two reads r1 and r2 whose

number of errors is no more than ǫ(|r1| + |r2|).

2.6.2 A new formulation of SAP

The sequence assembly problem (SAP) can be now formulated as follows:

Definition 14 (Sequence Assembly Problem (SAP3)). Given a collection of frag-

ment reads F = {ri}N
i=1 and a tolerance level (error rate) ǫ, find a reconstruction

R whose layout L = 〈rj1

π1

⇋ rj2

π2

⇋ · · ·
πN−1

⇋ rjN
〉 is ǫ-valid, consistent and such

that the following set of properties (oracles) are satisfied :

• (Overlap-Constraint (O)): The cumulative overlap score O of the layout L

is optimized:

O(L) =
∑

(ri,rj)∈L

π(ri,rj)

SO(ri, rj) (2.18)

55

where SO is the score of the overlap π between the two reads ri and rj.

• (Mate-Pair-Constraint (MP)): The cumulative mate-pair score SMP of the

distance between reads in the layout L is consistent with the mate-pair con-

straints:

MP (L) =
∑

(ri,rj)∈L

(ri↔rj)

SMP (ri, rj) (2.19)

where ri ↔ rj indicates that the two reads ri and rj are oriented according

to the mate library.

• (Optical-Map-Constraint (OM)): The observed distribution of restriction

enzyme sites in the layout L, Cobs = 〈a1, a2, . . . , an〉, is consistent with the

distribution of experimental optical map data Csrc = 〈b1, b2, . . . , bn〉 (ob-

tained by a restriction enzyme digestion process).

This thesis focuses on constraints O(L) and MP (L) for which detailed for-

mulations are given in chapter 4. The details for the Optical-Map-Constraint

(OM) score will be addressed in the future work with suitable modification of the

framework presented here. The general idea would be to use a scoring system

based on the following scoring function:

χ2 =

n∑

k=1

(
ak − bk

σk

)2

(2.20)

where σk is the standard deviation of the observed distribution of restriction

enzyme sites (modeled as normally distributed random variables). In practice,

optical maps are not error-free and the presence of sequencing errors complicates

56

the matching process by introducing false-cuts and missing-cuts that must be

properly accounted for. A possible solution to reduce the effect of these errors is

to employ multiple restriction fragments in order to increase the map resolution.

Another option is to design a Bayesian score function analogous to the validation

approach presented in [6], but this method requires a dynamic programming

implementation which could be too computationally expensive to use during the

assembly process. A similar approach can be used in conjunction with long

range data generated by the Bionanomatrix4 platforms. An efficient and accurate

solution must be designed to somehow combine the best of these two approaches.

Each property in definition 14 plays an important role in resolving problems

that arise when real genomic data is used (e.g., data containing repeat-regions,

rearrangements, segmental duplications, etc.). Note that in absence of additional

information, among all possible layouts, the minimum length layout is typically

preferred (shortest superstring), although, as previously explained, this choice is

difficult to justify. As the genomic sequence deviates further and further from

a random sequence, minimum length layouts typically introduce various mis-

assembly errors (e.g., compression, insertions, rearrangements, etc.). Note that,

traditionally, assemblers have only optimized/approximated one of the properties

(i.e., (O)) listed above, while checking for the others in a post-processing step. If

the formulation were only to contain the overlap-constraint O, then the problem

would correspond to the sequence assembly problem as defined in 9 for the String-

graph. The other two constraints do not reduce the complexity of the problem so

this new formulation still belongs to the class of NP-complete problems. Finally,

4http://www.bionanomatrix.com/

57

note that this list of constraints is not exhaustive, and it will likely change from

year to year as new sequencing technologies become available and new types of

long range information become possible to produce. It is thus important to have

an assembly framework that can dynamically and effortlessly adapt to the new

technologies and constraints.

2.6.3 Relation to the prior art

At this point it is important to relate the new SAP3 formulation to the one

originally presented in Myers’ paper in 1995 [67]. In his seminal paper, Myers

defines the fragment assembly problem as follows:

Definition 15 (Fragment Assembly Problem (FAP)). Given a set of fragments

S = (r1, r2, . . . , rn) and a maximum error rate ǫ ∈ [0, 1], the Fragment Assembly

Problem (FAP) is the problem of finding a reconstruction R and ǫ-valid layout

of the reads whose observed distribution of fragment read start points, Dobs, has

the minimum relative deviation from Dsrc (the source distribution of the sampling

process).

In particular, the goodness-of-fit between the observed distribution and the

hypothesized source distribution is modeled using the density function of the

Kolmogorov-Smironv (KS) test statistic [52, 93], which gives a likelihood function

to optimize (the details of this function can be found in the original paper [67]).

Although this formulation also defines the problem as an optimization problem

(under the KS statistic), it is not general enough to make use of additional long-

range information (used as constraints in the SAP3 formulation). But most

58

importantly, although the problem is modeled as an optimization problem, the

proposed algorithmic solution in [67] does not tackle the whole assembly problem

(with constraints) directly but it proposes a graph-theoretic strategy which is

the core of the overlap-layout-consensus (OLC) paradigm widely used in many

first-generation assemblers (see chapter 3 for a review of assembly paradigms). In

particular, lemma 4 of Myers’ paper proves that the shortest-common-superstring

of the “chunk”5 graph is the shortest-common-superstring (SSP) of the reads

themselves. This means that the set of graph transformation used to create the

chunks is lossless under that model of sequence assembly. However, as we have

shown in section 2.3, the SSP can yield biologically implausible and incorrect

solutions because it is oblivious to how biological sequences are organized by

evolution.

It is also relevant to mention that in [67] Myers proposes to design “algorithms

that are capable of solving a ‘pure’ shotgun problem subject to a collection of

overlap, orientation, and distance constraints that model the additional informa-

tion provided by the directed components of the strategy.” However, he explains

that such a shotgun-with-constraints problem is not addressed in his paper, but it

should be explored “if there is to be any hope of solving these more difficult con-

straint problems” [67]. The formulation of sequence assembly problem presented

in this section covers such theoretical gap and, together with the algorithmic so-

lution presented in chapter 4, it represents a further step toward algorithms that

solve the pure sequence assembly problem.

5Chunks correspond to unitigs (uniquely assembled contigs) in the OLC framework.

59

Chapter 3

Sequence Assemblers and

Assembly Paradigms

3.1 Introduction

The history of sequence assembly can be seen as a sequence of responses to

changes in sequencing technologies, and, as a result, several sequence assemblers

and assembly paradigms have been designed over the last 30 year to accommodate

these changes. This chapter first presents a historical perspective on sequence as-

sembly, then it reviews the major assembly paradigms that have been successfully

applied to large sequencing projects. All of the major sequence assemblers are

categorized according to the assembly paradigm that they adopt.

60

3.2 A Historical Perspective on Sequence As-

sembly

Computational biologists first formalized the shotgun sequence assembly problem

in terms of an approximation to finding the shortest common superstring (SCS)

of a set of sequences [97]. Because of the theoretical computational intractability

(NP-completeness) of exact SCS-problem (SCSP), most of the approaches for

genome sequence assembly have resorted to greedy and heuristic methods that

by definition restrict themselves to near-optimal solutions, where the “nearness”

may be guaranteed within a multiplicative competitiveness factor, e.g., four (see

next section for a review of sequence assembly paradigms). In this context, the

accuracy of the resulting reference genome sequences and their suitability for

biomedical applications play a decisive role, as they additionally depend upon

many parameters of the sequencing platforms: read lengths, base-calling errors,

homo-polymer errors, etc. These parameters continue to change at a faster-and-

faster pace as the platform chemistry and engineering continue to evolve.

To further emphasize this point, we note that there are now several efforts

to develop a relatively cheap (e.g., $1000) genome sequencing technology of ac-

ceptable accuracy (e.g., one base error in 10,000 bps) and high-speed (e.g., a

turn-around time of less than a day). However, it would be more useful to design

assembly algorithms that are independent of the particular technology. Such

a strategy would allow scientists to accommodate changes in technology more

rapidly in the future years.

61

Name Read Type Algorithm Reference
SUTTA long & short B&B (Narzisi and Mishra [74], 2010)
Arachne long OLC (Batzoglou et al. [11], 2002)
CABOG long & short OLC (Miller et al. [64], 2008)
Celera long OLC (Myers et al. [69], 2000)
Edena short OLC (Hernandez et al. [32], 2008)
Minimus (AMOS) long OLC (Sommer et al. [95], 2007)
Newbler long OLC 454/Roche
CAP3 long Greedy (Huang and Madan [34], 1999)
PCAP long Greedy (Huang et al. [35], 2003)
Phrap long Greedy (Green [30], 1996)
Phusion long Greedy (Mullikin and Ning [66], 2003)
TIGR long Greedy (Sutton et al. [96], 1995)
ABySS short SBH (Simpson et al. [92], 2009)
ALLPATHS short SBH (Butler et al. [18], 2008)
ALLPATHS-LG short SBH (Gnerre et al. [29], 2010)
Contrail short SBH (Schatz M. et al., 2010)
Euler long SBH (Pevzner et al. [79], 2001)
Euler-SR short SBH (Chaisson and Pevzner [19], 2008)
Ray long & short SBH (Boisvert et al. [15], 2010)
SOAPdenovo short SBH (Li et al. [60], 2010)
Velvet long & short SBH (Zerbino and Birney [104], 2008)
PE-Assembler short Seed-and-Extend (Nuwantha and Sung [75], 2010)
QSRA short Seed-and-Extend (Bryant et al. [16], 2009)
SHARCGS short Seed-and-Extend (Dohm et al. [22], 2007)
SHORTY short Seed-and-Extend (Hossain et al. [33], 2009)
SSAKE short Seed-and-Extend (Warren et al. [101], 2007)
Taipan short Seed-and-Extend (Schmidt et al. [88], 2009)
VCAKE short Seed-and-Extend (Jeck et al. [41], 2007)

Table 3.1: List of sequence assemblers. Reads are defined as “long” if produced
by Sanger technology and “short” if produced by Illumina technology . Note that
Velvet was designed for micro-reads (e.g. Illumina) but long reads can be given
in input as additional data to resolve repeats in a greedy fashion.

To a first approximation, the history of genome assembly could be read as a

long series of rapidly adapting responses to changes in sequencing paradigms. At

the start of the HGP, the proposed assembly strategy was based on the BAC-by-

BAC (recursive and hierarchical divide-and-conquer) approach. In this approach,

the genome is first broken up into a collection of large overlapping in-vivo-clonable

62

fragments (between 160 and 200 Kb) – called Bacterial Artificial Chromosomes

or BACs. Since the location of the BACs could be mapped through restriction-

finger-print-based overlaps and the resulting tiling-paths (using specialized lab-

oratory protocols), this strategy only required assembly of sequence reads from

each individual BAC, which could be accomplished independently and in par-

allel using the standard shotgun assembly method, e.g., using the Phrap [30]

assembler. In an effort to reduce the assembly cost and time, in the late-90’s

it was proposed instead to tackle directly the full genome assembly problem by

shotgun sequencing. Specialized assemblers, e.g., CELERA [69] and ARACHNE

[11], were then developed to deal with this type of data, often collected from long

eukaryotic genomes.

However, as previously highlighted in chapter 1, when next generation short

read technologies first began to appear, all of the conventional sequence assem-

blers originally developed for longer Sanger reads failed to scale well on the new

data. Consequently, new assemblers needed to be designed and developed ab ini-

tio to handle the features of the new sequencers (short and high coverage reads).

Analogously, since mate-pairs are currently the most common auxiliary informa-

tion used to resolve ambiguities due to repeats, these next-generation (Gen-1)

assemblers have incorporated hard-wired mate-pair-centric heuristics that are

practically useless in dealing with other new and higher quality auxiliary data

(e.g., dilution sequencing, optical maps, etc.).

Historically, all these assemblers – each representing many man-years of effort

– appear to require complete and costly overhauls, with each introduction of a new

63

short-read or long-range technology. Arguably, there is a need for novel assembly

platforms that are flexible enough to handle future sequencing technologies with

minimal changes to their infrastructure.

3.3 Assembly Paradigms

Based on the underlying search strategies, most of the assemblers belong to just

two major categories: greedy and graph-based. Table 3.1 presents a nearly ex-

haustive list of the major sequence assemblers organized by assembly paradigms.

It also contains the sequencing platform(s) that each assembler is capable of han-

dling. Note that for clarity of exposition, SUTTA is also included in this table

but its description is postponed to the next chapter.

3.3.1 Greedy

Because of its assumed computational intractability (NP-completeness of the

related “Shortest Common Superstring Problem”), most of the successful ap-

proaches for genome sequence assembly have resorted to greedy methods. Greedy

algorithms typically construct the solution incrementally using the following ba-

sic steps: (i) pick the highest scoring overlap; (ii) merge the two overlapping

fragments and add the resulting new sequence to the pool of sequences; (iii)

repeat until no more merges can be carried out. Algorithm 1 shows the pseudo

code of a generic greedy assembly strategy, while figure 3.1 illustrates with an

example the greedy marge process.

64

Algorithm 1: GREEDY - pseudo code

Input: Set of reads/fragments
Output: Set of contigs

repeat1

Calculate pairwise alignments of all fragments;2

Choose two fragments with the largest overlap;3

Merge chosen fragments and add the resulting new sequence to the4

pool of sequences;
heuristically correct errors (e.g., using mate-pairs);5

until only one fragment is left ;6

return Set of contigs ;7

35

3)

2)

1)130

75

75

130

130

35

75

A

B

C

D

B

C

A

B

C

D

A

B

C

D

Figure 3.1: Example of greedily merging three fragments (the numbers represent
the overlap sizes).

In addition, after each merge operation, the region of the overlay is heuristi-

cally corrected in some reasonable manner (whenever possible). Regions that fail

to yield to these error-correction heuristics are relinquished as irrecoverable and

shown as gaps. Mate-pairs information is used judiciously during the merging

65

process to further validate the connection between the two sequences. At the

end of this process a single solution (consisting of the set of assembled contigs) is

generated as output. Note that were the genome completely random, the overlap

information could be computed unerringly, and would thus suffice for error-free

reassembly of the target sequence. In this case, greedy algorithms would perform

satisfactorily. As hinted earlier, the problem is complicated by the presence of

non-random structure in genomes (e.g., repeated regions, rearrangements, seg-

mental duplications — which are particularly pervasive in Eukaryotes), and it

makes the greedy strategy invariably fail. Well known assemblers in this cat-

egory include: TIGR [96], PHRAP [30], CAP3 [34], PCAP [35] and Phusion

[66].

3.3.2 Graph-based

Graph-based algorithms start by preprocessing the sequence-reads to determine

the pair-wise overlap information and represent these binary relationships as

edges in a string-graph. The problem of finding a consistent lay-out can then

be formulated in terms of searching a collection of paths in the graph satisfying

certain specific properties. The paths correspond to contigs (contiguous sequences

of the genome, consistently interpreting disjoint subsets of sequence reads). Con-

tingent upon how the overlap relation is represented in these graphs, two domi-

nant assembly paradigms have emerged: Overlap-Layout-Consensus (OLC) and

Sequencing-by-Hybridization (SBH).

66

Overlap-Layout-Consensus. In the OLC approach, the underlying graph

(overlap graph) comprises nodes representing reads and edges representing over-

laps. Ideally, the goal of the algorithm is to determine a simple path traversing

all the nodes — that is, a Hamiltonian path. For a general graph, this problem

is known to lead to an NP-hard optimization problem [61] though polynomial-

time solutions exist for certain specialized graphs (e.g., interval graphs, etc.) [36].

In order to circumvent the theoretical intractability of this problem, a popular

Transitivity

1

2

3 4

5

6

7

1

2

3

4

5

6

7

1

2

3 4

5

6

7

Matep−Pairs

Edges

Figure 3.2: Example of layout representation and transformations in the OLC
framework.

heuristic strategy is typically employed as follows:

1. remove “contained” and “transitivity” edges;

67

2. collapse “unique connector” overlaps (chordal subgraph with no conflicting

edges) to compute the contigs;

3. use mate-pairs to connect and order the contigs.

Hence, the set of computed contigs corresponds to the set of nonintersecting

simple paths in the reduced graph. Figure 3.2 shows an example of OLC graph

and its sequence of transformations. Well known assemblers in this category

include: CELERA [69], Arachne [11], Minimus [95] and Edena [32].

Sequencing-by-Hybridization. In the SBH approach, the underlying graph

encodes overlaps by nodes and the reads containing a specific overlap by edges

incident to the corresponding node (for that overlap). This dual representation

may be described in terms of the following steps:

1. partition the reads into a collection of overlapping n-mers (an n-mer is a

substring of length n);

2. build a DeBruijn graph in which each edge is an n-mer from this collection

and the source and destination nodes are respectively the (n−1)-prefix and

(n − 1)-suffix of the corresponding n-mer.

In this new graph, instead of a Hamiltonian path, one seeks to find an Eulerian

path containing every edge exactly once. Thus the computed genome sequence

provides a consistent explanation for every consecutive n-mers on any sequence

read. More importantly, such a graph is linear in the size of the input and allows

(in theory) the computation of an Eulerian path to be carried out in linear time.

68

Because of the succinct representation it generates, this approach has become the

algorithm of choice for assembling short reads with very high coverage. However,

in practice, many complications arise. First, sequencing errors in the read data

introduce many spurious (false-positive) edges which mislead the algorithm. Sec-

ond, for any reasonable choice of n, the size of the graph is dramatically bigger

than the one in the overlap-layout-consensus strategy. Third, a DeBruijn graph

may not have a unique Eulerian path, and an assembler must find a particu-

lar Eulerian path subject to certain extraneous constraints; thus, it must solve

a somewhat general problem, namely the Eulerian-superpath problem: given an

Eulerian graph and a sequence of paths, find an Eulerian path in the Eulerian

graph that contains all these paths as sub-paths. It is known that finding the

shortest Eulerian superpath is, unfortunately, also an NP-hard problem [61]. As

earlier, the preferred work around is to use a heuristic method that computes

such a superpath by applying a series of transformations to the original Eulerian

graph. Prominent examples of the SBH approach include: Euler [79], Velvet

[104], ABySS [92] and SOAPdenovo [60].

3.3.3 Seed-and-Extend

Recently, there has appeared yet another smaller category of assemblers specif-

ically designed for short reads. They are based on a contig extension heuristic

scheme, which uses a prefix-tree to efficiently look up potential extensions. In this

framework a contig is elongated at either of its ends so long as there exist reads

with a prefix of minimal length, provided that it perfectly matches an end of the

69

contig. Because of their heuristic scheme, these approaches can be categorized

as greedy methods, but for the sake of clear exposition they are presented here

using a separate category. Example of assemblers belonging to this new category

are: PE-Assembler [75], SHARCGS [22], SSAKE [101], QSRA [16] and Taipan

[88].

Finally, all the techniques described earlier need to separately incorporate

mate-pairs information as they play an important role in resolving repeats as

well as in generating longer contigs, thus dramatically reducing the cost of the

assembly-finishing. Note that although mate-pairs are typically expensive and

slow to obtain, prone to statistical errors and frequently incapable of spanning

longer repeat regions, historically, they have played an important role in the

assembly of large genomes as other cheaper and more informative mapping tech-

niques have not been widely available. In addition, they have become essential to

many emerging sequencing technologies (454, Illumina-Solexa, etc.), which can

generate very high coverage short reads data (from 30 bp up to 500 bp).

70

Chapter 4

SUTTA: Scoring-and-Unfolding

Trimmed Tree Assembler

4.1 Introduction

Mired by its connection to a well known NP-complete combinatorial optimization

problem — namely, the Shortest Common Superstring Problem (SCSP) — the

whole-genome sequence assembly (WGSA) problem has been historically assumed

to be amenable only to greedy and heuristic methods. By placing efficiency as

their first priority, these methods opted to rely only on local searches, and are thus

inherently approximate, ambiguous or error-prone, especially, for genomes with

complex structures. Furthermore, since choice of the best heuristics depended

critically on the properties of (e.g., errors in) the input data and the available

long range information, (i.e., base-calling errors in sequencing technology) and

the genome structure, these approaches hindered designing an error free WGSA

71

pipeline.

We dispense with the idea of limiting the solutions to just the approximated

ones, and instead favor an approach that could potentially lead to an exhaustive

(exponential-time) search of all possible layouts. Its computational complexity

thus must be tamed through a constrained search (branch-and-bound) and quick

identification and pruning of implausible overlays. For his purpose, such a method

necessarily relies on a set of score-functions (oracles) that can combine different

structural properties (e.g., transitivity, coverage, physical maps, etc.). In this

chapter we give a detailed description of this novel assembly framework, referred

to as SUTTA (Scoring-and-Unfolding Trimmed Tree Assembler) [74, 71, 72].

4.2 History and Motivation

There is no unanimous agreement, within the computer science community at

least, that the sequence assembly problem has exhausted all reasonable methods

of attack. For example, Richard M. Karp observed “The shortest superstring

problem [is] an elegant but flawed abstraction: [since it defines assembly prob-

lem as finding] a shortest string containing a set of given strings as substrings.

The SCSP problem is NP-hard, and theoretical results focus on constant-factor

approximation algorithms... Should this approach be studied within theoretical

computer science?” [43]. In contrast to the work in computational biology,

there have now emerged examples within computer science, where impressive

progress has been made to solve important NP-hard problems exactly , despite

their worst-case exponential time complexity: e.g., Traveling Salesman Problem

72

(TSP), Satisfiability (SAT), Quadratic Assignment Problem (QAP), etc. For ex-

ample, the work of Applegate et al. [7] demonstrated the feasibility of solving in-

stances of TSP (as large as 85,900 cities) using branch-and-cut, whereas symbolic

techniques in propositional satisfiability (e.g., DPLL SAT solver [21]), employing

systematic backtracking search procedure (in combination with efficient conflict

analysis, clause learning, non-chronological backtracking, “two-watched-literals”

unit propagation, adaptive branching, and random restarts), have exhibited the

capability to handle more than a million variables.

Inspired by these lessons from theoretical computer science, a novel approach,

embodied in SUTTA algorithm, was developed. In the process, several related

issues were addressed: developing better ways to dynamically evaluate and vali-

date layouts, formulating the assembly problem more faithfully, devising superior

and accurate algorithms, taming the complexity of the algorithms, and finally,

developing a theoretical framework for further studies along with practical tools

for future sequencing technologies.

4.3 SUTTA Algorithm

A common view of de novo genome assembly that has been quietly accepted

among the genome sequence community is well expressed by the following quote

[82]: An assembler must either “guess” the correct genome from among a large

number of alternatives (a number that grows exponentially with the number of

repeats in the genome) or restrict itself to assembling only the non-repetitive seg-

ments of the genome, thereby producing a fragmented assembly. Since exponential

73

growth of the time complexity would restrict the analyzable genomes to tiny sizes

with very low coverage data, the preceding argument appears to give only a Hob-

son’s choice: just find an approximated solution and trade off correctness against

the price of exploring potentially exponentially many possible layouts of the reads.

We take exception to this pessimistic view, and develop a new framework that

works by forcefully eliminating incorrect solutions (i.e., implausible layouts).

Traditional graph-based assembly algorithms use either the overlap-layout-

consensus (OLC) or the sequencing-by-hybridization (SBH) paradigm (as de-

scribed previously), in which first the overlap/DeBruijn graph is built and the

contigs are extracted later. SUTTA instead assembles each contig independently

and dynamically one after another using the Branch-and-Bound (B&B) strategy.

Originally developed for linear programming problems [54], B&B algorithms are

well known searching techniques applied to intractable (NP-hard) combinatorial

optimization problems. The basic idea is to search the complete space of solu-

tions. However the caveat is that explicit enumeration is practically impossible

(i.e. has exponential time complexity). The tactics honed by B&B are to limit

the search to a smaller subspace that contains the optimum. This subspace is

determined dynamically through the use of certain well chosen score functions.

B&B has been successfully employed to solve a large collection of complex prob-

lems, whose most prominent members are TSP (traveling-salesman problem),

MAX-SAT (maximal satisfiability) and QAP (quadratic assignment problem).

Note that in the past B&B, was already suggested as a method to use in

the context of the sequence assembly problem. However, those proposed strate-

74

gies are substantially different from the branch-and-bound framework adopted in

SUTTA. For example, Gene Myers, in his seminal paper in 1995 [67], proposed a

general framework to tackle the sequence assembly problem, which consisted of

(1) assembling the fragments into “chunks” using a series of graph transforma-

tions, and (2) use a branch-and-bound procedure to search the space of all chunk

paths. However, this B&B procedure was only proposed in the paper and the

details were not resolved at the time of publication. Another example of B&B in

the context of sequence assembly can be found in the paper by Kececioglu and

Myers of 1995 [44]. Also in this case B&B method is not used to tackle the full

problem but only proposed to solve some of its possible sub-problems, such as

the fragment orientation problem.

At a high level, SUTTA’s framework views the assembly problem simply as

that of constrained optimization (based on definition 14): it relies on a rather

simple and easily verifiable definition of feasible solutions as “consistent layouts.”

It generates potentially all possible consistent layouts, organizing them as paths

in a “double-tree” structure rooted at a randomly selected “seed” read. A path

is progressively evaluated in terms of an optimality criteria, encoded by a set of

score functions based on the set of overlaps along the lay-out. This strategy en-

ables the algorithm to concurrently assemble and check the validity of the layouts

(with respect to various long-range information) through well-chosen constraint-

related penalty functions. Complexity and scalability problems are addressed by

pruning most of the implausible layouts, via a branch-and-bound scheme. Ambi-

guities resulting from repeats or haplotypic dissimilarities may occasionally delay

75

immediate pruning and force the algorithm to lookahead, but in practice, the

computational cost of these events has been low. Because of the generality and

flexibility of the scheme (it only depends on the underlying sequencing technolo-

gies through the choice of score and penalty functions), SUTTA is extensible,

at least in principle, to deal with possible future technologies. It also allows

concurrent assembly and validation of multiple layouts, thus providing a flex-

ible framework that combines short and long range information from different

technologies.

The high level SUTTA pseudocode is shown in Algorithm 2. Here, two im-

portant data structures are maintained: a forest of double-trees (D-tree) B and a

set of contigs C. At each step a new D-tree is initiated from one of the remaining

reads in F . Once the construction of the D-tree is completed, the associated con-

tig is created and stored in the set of contigs C. Next the layout for this contig

is computed and all its reads are removed from the set of all available reads F .

This process continues as long as there are reads left in the set F . Note that for

the sake of a clear exposition, both the forest of D-trees B and the set of contigs C

are kept and updated in the pseudocode; however, after the layout is computed,

there is no particular reason to keep the full D-tree in memory, especially, where

memory requirements are of concern.

Finally, note that the proposed Algorithm 1 is input order dependent. SUTTA

adopts the policy to always select the next unassembled read with highest oc-

currence as the seed for the D-tree (also used by Taipan; [88]). This strategy

minimizes the extension of reads containing sequencing errors. However, em-

76

Algorithm 2: SUTTA - pseudo code

Input: Set of N reads
Output: Set of contigs

B := ⊘; /* Forest of D-trees */1

C := ⊘; /* Set of contigs */2

F :=
⋃N

i {ri}; /* All the available reads/fragments */3

while (F 6= ⊘) do4

r := F .getNextRead();5

if (¬isUsed(r) ∧ ¬isContained(r)) then6

DT := create double tree(r);7

B := B ∪ {DT };8

Contig CT G := create contig(DT);9

C := C ∪ {CT G};10

CT G.layout(); /* Compute contig layout */11

F := F \ {CT G.reads}; /* Remove used reads */

end12

end13

return C;14

pirical observations indicate that changing the order of the reads rarely affects

structure of the solutions, as the relatively longer contigs are not affected. An

explanation for this can be obtained through a probabilistic analysis of the data

and a 0-1 law resulting from such an analysis.

4.4 Overlap Score (Weighted transitivity)

Like any B&B approach, a major component of SUTTA algorithm is the score

function used to evaluate the quality of the candidate solutions that are dynam-

ically constructed using the B&B strategy. SUTTA employs an overlap score

based on the following argument. Large de novo sequencing projects typically

77

sA eA

Bs
B

A

CsC eC

eB

Figure 4.1: Example of transitivity relation: the overlap regions between reads
AB and BC share an intersection.

have coverage higher than three, this implies that frequently two overlapping re-

gions of three consecutive reads in a region of correct layout share intersections.

Events of this type are “witness” to a transitivity relation between the three reads

and they play an important role in identifying true positive1 overlaps with high

probability. Figure 4.1 shows an example of transitivity relation between three

reads A, B and C. During contig layout construction, the overlap score uses the

following basic principle to dynamically compute the score value of a candidate

solution: if read A overlaps read B, and read B overlaps read C, SUTTA will

score those overlaps strongly if in addition A and C also overlap:

if(π(A, B) ∧ π(B, C))then{S(π(A, B, C)) =

S(π(A, B)) + S(π(B, C)) + (π(A, C)?S(π(A, C)) : 0)} (4.1)

The implicit assumption of a coverage of 3 can be further generalized to

higher coverages in an obvious manner. Note that the score of a single overlap

corresponds to the score computed by the Smith-Waterman alignment algorithm

(for long reads) or exact matching (for short reads). Clearly the total score of a

1The two reads correctly originate from the same place in the genome.

78

candidate solution is given by the sum of the scores along the overlaps that join

the set of reads in the layout L plus the score of the transitivity edges (if any):

g(L) =
∑

rj∈L
j∈2,...,N−1

S(π(rj−1, rj , rj+1))

=
∑

πi∈O S(πi(rj1, rj2)) +
∑

πk∈T S(πk(rj1, rj2)), (4.2)

where O and T are respectively the set of overlaps and transitivity edges (the

set of reads is defined by the layout L) and S(π) is the score (Smith-Waterman,

exact match, etc.) for the overlap.

This step in SUTTA resembles superficially to the Unitig (unique regions of

the genome) construction step in overlap-layout-consensus assemblers. Specifi-

cally, in these assemblers, one of the reduction steps applied to the overlap graph

consists of removing all the transitivity edges, as it makes it simpler to find

the unitigs directly from the simple paths in the graph (corresponding to se-

quences of reads connected by transitivity relations). However, unlike SUTTA,

in the overlap-layout-consensus approach the weights of the overlaps are ignored

in meaningfully scoring the paths. Since Unitig construction can be computa-

tionally expensive, large scale assemblers like Celera/CABOG [64] have adopted

a strategy, where Unitigs are computed as chains of adjacent reads with best over-

lap between each other. This technique takes time and space linear in the number

of reads. Although Celera’s approach uses the overlap score during assembly, it

is only applied locally for Unitigs — it neither scores the contigs globally nor

generates multiple Unitigs solutions. Finally, it must be noted that the overlap

scores are insufficient to resolve long repeats or haplotypic variations. The score

79

functions must be augmented with constraints (formulated as reward/penalty

terms) arising from mate-pair distance information or optical map alignments.

4.5 Node expansion

The core component of SUTTA is the branch-and-bound procedure used to build

and expand the D-tree (create double tree() procedure in Algorithm 2). The

high-level description of this procedure is as follows:

1. Start with a random read (it will be the root of a tree; use only the read

that has not been used in a contig yet, or that is not contained).

2. Create RIGHT Tree: start with an unexplored leaf node (a read) with

the best score-value; choose all its non-contained right-overlapping reads

(Extensions() procedure in Algorithm 3); Filter out the set of overlap-

ping reads by pruning unpromising directions (Transitivity(),DeadEnds(),

Bubbles() and MatePairs() procedures in Algorithm 3); expand the re-

maining nodes by making them its children; compute their scores. (Add

the “contained” nodes along the way, while including them in the computed

scores; check that no read occurs repeatedly along any path of the tree).

STOP when the tree cannot be expanded any further.

3. Create LEFT Tree: Symmetric to previous step.

Algorithm 3 presents the pseudocode of the expansion routine (details for each

subroutine are available in the Appendix 7.6.1). In this framework each path

80

constructed using Algorithm 3 corresponds to a possible layout of the reads for

the current contig. Unlike the graph-based approaches (OLC and SBH), multiple

paths/layouts are concurrently expanded and validated. Based on the branching

strategy, two versions of SUTTA are available: if at the end of the pruning process

there are still multiple directions to follow the branching is either terminated

(conservative) or not (aggressive). In the aggressive case, the algorithm choses

the direction to follow with the highest local overlap. Algorithm 3 is applied

twice to generate LEFT and RIGHT trees from the start read. Next, to create

a globally optimal contig, the best LEFT path, the root and the best RIGHT

path are concatenated together. Figure 4.2 illustrates the steps involved in the

construction of a contig.

The amount of exploration and resource consumption is controlled by the two

parameters K and T : K is the max number of candidate solution allowed in

the queue at each time step, while T is the percentage of top ranking solutions

compared to the current optimum score. At each iteration the queue is pruned

such that its size is always ≤ max(K, T |Q|), where |Q| is the current size of

the queue. Note that while K remains fixed at each iteration of Algorithm 3,

the percentage of top ranking solutions dynamically changes over time. As a

consequence, more exploration is performed when many solutions evaluate to

nearly identical scores.

A few additional implementation notes must be mentioned: (i) Checking

right- or left-overlapping properties between two reads is only required while

expanding the root; checking just the consistency relation for the non-root node

81

B
es

t p
at

h
Start node

D
ou

bl
e

tr
ee

R
ea

ds
 la

yo
ut

Figure 4.2: Contig construction: (i) the D-tree is constructed by generating LEFT
and RIGHT trees for the root node; (ii) best left and right paths are selected
and joined together; (iii) the reads layout is computed for the set of reads in the
full path.

suffices. (ii) Caution must be taken in avoiding reads from the best right-path

to be included in any left-path. (iii) Some book-keeping must be done to keep

track of used, explored, overlapping, and contained relationships. Since different

intermediate branches of the tree are kept during the expansion, the algorithm

can potentially generate multiple solutions in its output and rank them in terms

of their scores, etc. However, currently Algorithm 3 only returns in output a

single solution with the maximal score (function g described in section 4.4). Ties

are broken arbitrarily.

82

Algorithm 3: Node expansion

Input: Start read r0, max queue size K, percentage T of top ranking
solutions, dead-end depth Wde, bubble depth Wbb, mate-pair depth
Wmp

Output: Best scoring leaf

V := ⊘; /* Set of leaves */1

L := {(r0, g(r0))}; /* Live nodes (priority queue) */2

while (L 6= ⊘) do3

L := Prune(L, K, T); /* Prune the queue */4

ri := L.popNext(); /* Get the best scoring node */5

E := Extensions(ri); /* Possible extensions */6

E (1) := Transitivity(E , ri); /* Transitivity pruning */7

E (2) := DeadEnds(E (1), r0, Wde); /* Dead-end pruning */8

E (3) := Bubbles(E (2), r0, Wbb); /* Bubble pruning */9

E (4) := MatePairs(E (3), r0, Wmp); /* Mate pruning */10

if (|E (4)| == 0) then11

V := V ∪ {ri}; /* ri is a leaf */12

else13

for (j=1 to |E (4)|) do14

L := L ∪ {(rj, g(rj))};15

end16

end17

end18

return maxri∈V {g(ri)};19

83

4.6 Search Strategy

A critical component of any branch-and-bound approach is the choice of the

search strategy used to explore the next sub-problem in the tree. There are several

variations among strategies (with no single one being universally accepted as

ideal), since these strategies’ computational performance varies with the problem

type. The typical trade-off is between keeping the number of explored nodes

in the search tree low and staying within the memory capacity. The two most

common strategies are Best First Search (BeFS) and Depth First Search (DFS).

BeFS always selects among the live (i.e., yet to be explored) subproblems, the

one with the best score. It has the advantage of being theoretically superior

since whenever a node is chosen for expansion, a best-score path to that node has

been found. However, it suffers from memory usage problems, since it behaves

essentially like a Breadth First Search (BFS). Also checking repeated nodes in

a branch of the tree is computationally expensive (linear time). DFS instead

always selects among the live subproblems the one with largest level (deepest)

in the tree. It does not have the same theoretical guarantees of BeFS but the

memory requirements are now bounded by the product of the maximum depth of

the tree and the branching factor. The other advantage is that checking if a read

occurs repeatedly along a path can be done in constant time by using the depth-

first search interval schemes. For SUTTA we use a combined strategy: using

DFS as overall search strategy, but switching to BeFS, when choice needs to be

made between nodes at the same level. This strategy can be easily implemented

by ordering the set of live nodes L of Algorithm 3 using the following precedence

84

relation between two nodes x and y:

x ≺ y iff







depth(x) > depth(y)

or

depth(x) == depth(y) ∧ score(x) > score(y)

, (4.3)

where depth is the depth of the node in the tree and score is the current score of

the node (defined in section “Overlap Score”). Because BeFS is applied locally

at each level the score is optimized concurrently.

4.7 Pruning the Tree

Transitivity pruning. The potentially exponential size of the D-tree is con-

trolled by exploiting certain specific structures of the assembly problem that

permit a quick pruning of many redundant and uninformative branches of the

tree — surprisingly, substantial pruning can be done only using local structures

of the overlap relations among the reads. The core observation is that it is not

prudent to spend time on expanding nodes that can create a suffix-path of a

previously created path, as no information is lost by delaying the expansion of

the last node/read involved in such a “transitivity” relation. This scenario can

happen every time there is a transitivity edge between 3 consecutive reads (see

figure 4.1), and it is further illustrated in Figure 4.3 with an example. Suppose

that 〈A, B1, B2, . . . , Bn〉 are n + 1 reads with a layout shown in figure 4.3. The

local structure of the D-tree will have node A with n children B1, B2, . . . , Bn.

However , since B1 also overlaps B2, B3, . . . , Bn these nodes will appear as chil-

85

n

A

A

B

B

B

B

1

2

3

n 1
h 2 h 3 h n

h

B B BB 1 2 3 n

h1

h
2

3h

h

Figure 4.3: Example of transitivity pruning: expanding nodes B2, . . . , Bn can be
delayed because their overlap with read A is enforced by read B1.

dren of B1 at the next level in the tree. So the expansion of nodes B2, B3, . . . , Bn

can be delayed because their overlap with read A is enforced by read B1. Simi-

larly arguments hold for nodes B2, B3, . . . , Bn. In the best scenario, this kind of

pruning can reduce a full tree structure into a linear chain of nodes. Additional

optimization can be performed by evaluating the children according to the fol-

lowing order (h1 ≤ h2 ≤ · · · ≤ hn), where hi is the size of the hang2 for read

Bi. This ordering gives higher priority to reads with higher overlap score. This

explains how the Transitivity() procedure from Algorithm 3 is performed.

Zig-zag overlaps mapping. Although based on a simple principle, the time

complexity of the transitivity pruning is a function of how quickly it is possible

to check the existence of an overlap between two reads (corresponding to the

red arrows of figure 4.3). The general problem is the following: given the set of

overlaps O (computed in a preprocessing step) for a set of reads F , check the

2Size of the read portion that is not involved in the overlap.

86

existence of an overlap (or set of overlaps) for a pair of reads (r1, r2). The naive

strategy that checks all the possible pairs takes time O(n2) where n = |O|. If

a graph-theoretic approach is used, by building the overlap-graph information

(adjacency list), this operation takes time O(l) where l is the size of the longest

adjacency list in the graph. However a much better (with O(1) expected time)

approach uses hashing. The idea is to build a hash-table, in which a pair of

reads is uniquely encoded to a single location of the table by using the following

hash-function:

H(a, b) =
(a + b)(a + b − 1)

2
+ (1 − b), (4.4)

where a and b are the unique identification numbers of the two reads. This is

the well known zig-zag function which is the bijection often used in countability

proofs. The number of possible overlaps |H(a, b)| between two reads is always

bounded by some constant c which is a function of the read length, genome

structure (e.g., number of simple repeats) and the strategy adopted for the overlap

computation (Smith-Waterman, exact match, etc.). In practice the constant c

is never too large because even when multiple overlaps between two reads are

available (typically 4), only a small subset with a reasonably good score (i.e.

above a threshold) is examined by the algorithm.

4.8 Lookahead

Mate-pairs. Had the overlapping phase produced only true-positive overlaps,

every overlapping pair of reads would have been correctly inferred to have orig-

87

R

B

R

Start node

C

A

B

A
C

Figure 4.4: Lookahead: the repeat boundary between reads B and C is resolved
looking ahead in the subtree of B and C, and checking how many and how well
the mate-pair constrains are satisfied.

inated in the same genomic neighborhood, thus turning the assembly process to

an almost trivial task. However, this is not the case — the overlap detection

is not error-free and produces false-positive or ambiguous overlaps abundantly,

especially when repeat regions are encountered. A potential repeat boundary

between reads A, B and C is shown in figure 4.4. Read A overlaps both reads

B and C, but B and C do not overlap each other. Thus, the missing overlap

between B and C is the sign of a possible repeat-boundary location, making the

pruning decisions impossible. However, SUTTA’s framework makes it possible to

resolve this scenario by looking ahead into the possible layouts generated by the

88

two reads, and keeping the node that generates the layout with the least number

of unsatisfied constraints (i.e., consistent with mate-pair distances or restriction

fragment lengths from optical maps).

SUTTA’s implementation generates two subtrees: one for node B and the

other for C (see figure 4.4). The size of each subtree is controlled by the parameter

Wmp, the maximum height allowed for each node in the tree. The choice of Wmp

is both a function of the size of the mate-pair library, local genome coverage and

the genome structure. For genomes with short repeats a small value for Wmp is

sufficient to resolve most of the repeat boundaries, and can be estimated from a

k-mer analysis of the reads. However some genomes have much higher complexity

(family of LINEs, SINEs and segmental duplications with varying homologies).

In this case, a higher value of Wmp is necessary, but can be estimated adaptively.

Once the two (or occasionally more) subtrees are constructed, the best path is

selected based on the overlap score and the quality of each path is evaluated by a

reward/penalty function corresponding to mate-pair constraints. For each node

in the path, its pairing mate (if any) is searched to collect only those mate-pairs

that cross the connection point between the subtree and the full tree, which are

then scored by the following rule:

SMP (r1, r2) =







1, iff (l ∈ [µ − ασ, µ + ασ]) ∧ (r1 ↔ r2) ;

−1, iff (l /∈ [µ − ασ, µ + ασ]) ∧ (r1 ↔ r2) ;

−1, iff ¬(r1 ↔ r2) ;

0, otherwise.

(4.5)

89

Here l is the distance between the two reads in the layout, µ and σ are the mean

and standard deviation of the mate-pair library, α is a parameter that controls

the relaxation of the mate-pair constrains (in the results, fixed at α = 6), and

r1 ↔ r2 denotes that the two reads are oriented towards each other. Such a

score can be easily shown to give higher value to layouts with as few unsatisfied

constraints as possible. Note that the mate-pair score is also dependent on local

coverage of the reads, so its value should be adjusted/normalized to compensate

for the variation in coverage. By penalizing the score negatively and positively

according to the constraints, the current formulation assumes uniform coverage.

However, more sophisticated score functions could be employed if it is necessary

to precisely quantify the extent to which the score varies with coverage. The

mate-pair score f of the full path P is given by the sum of the scores of each pair

of reads with feasible constraints in P :

f(P) =
∑

ri,rj∈P

SMP (ri, rj) (4.6)

Note that the current formulation of SMP models only mate-pairs libraries whose

reads face against each other. However, most current assemblies use a mixture

of paired-end and mate-pair data sets that differ in insert size and read pair

orientation. SUTTA’s mate-pair score can be easily adapted to support any read

pair orientation and insert size.

Memory management is very important during lookahead: the subtrees are

dynamically constructed and their memory deallocated as soon as the repeat

boundary is resolved. Also note that the lookahead procedure is performed ev-

90

ery time a repeat boundary is identified, so the extra work associated with the

construction and scoring of the subtrees is performed only when repeated regions

of the genome are assembled. Finally, note that the construction of each subtree

follows the same strategy (from Algorithm 3) and uses the same overlap score

(defined in section “Overlap Score”). However, recursive lookahead is not permit-

ted. The mate-pair score introduced in (4.5) is used only to prune one of the two

original nodes under consideration (or both, in the rare but possible scenarios,

where neither of the subtrees satisfies the mate-pair constraints). This explains

how the MatePairs() procedure from Algorithm 3 is performed.

Dead-ends and Bubbles. Base pair errors in short reads from next generation

sequencing produce an intuitively non-obvious set of erroneous paths in the graph

and tree structures. Because perfect matching is used to compute the overlaps,

these errors vary according to where the base error is located. Two possible

ambiguities need to be resolved: dead-ends and bubbles. Dead-ends consist of

short branches of overlaps that extend only for very few steps and they are

typically associated with base errors located close to the read ends (see figure

4.5). Bubbles instead manifest themselves as false branches that reconnect to a

single path after a small number of steps. They are typically caused by single

nucleotide difference carried by a small subset of reads (see figure 4.6). Note that

for human genomes bubbles might have been caused by either errors in the reads

or haplotypic differences due to the structure of the human genome. In the second

case both paths should be kept and given in output. The lookahead procedure is

easily adapted to handle these kind of structures. Specifically for dead-ends, each

91

Figure 4.5: Dead-end: short branches of overlaps that extend only for very few
steps. They typically associated with base errors located close to the read ends.

Figure 4.6: Bubble: false branches that reconnect to a single path after a small
number of steps. They are typically caused by single nucleotide difference carried
by a small subset of reads.

branch is explored up to depth Wde and all the branches that have shorter depth

are pruned. In the case of bubbles, both branches are expanded up to depth Wbb

and, if they converge, only the branch with higher coverage is kept and the other

one is pruned.

4.9 Implementation details

SUTTA assembler is prototyped around the AMOS3 assembly framework (A

Modular Open-Source assembler). AMOS supports a central data repository of

various genomic objects (reads, inserts, maps, overlaps, contigs, scaffolds, etc.)

to be easily collected and indexed. In addition, the framework provides several

algorithms to perform some of the standard steps in the assembly pipeline (e.g.,

Trimming, Overlapping, Error Correction, Scaffolding, Validation). SUTTA’s

3http://amos.sourceforge.net

92

pipeline is composed of three modules: (1) overlapper, (2) contigger, and (3)

multi-aligner. We developed our tools for the first two steps (described here).

However, we relied on the “make-consensus” module available in AMOS for the

computation of the final consensus sequence. Specifically, for the assembly of long

reads, the UMD overlapper [84] has been used to compute the set of overlaps for

the input reads. This overlapper keeps the number of repeat-induced spurious

overlaps small and it builds the initial overlapping-phase of the algorithm with a

reasonably small number of k-mers, whose cardinality is optimized by an order

of magnitude through the use of minimizers. For the assembly of short reads, we

instead developed our own short read overlapper (see next section).

4.10 Short-Read Overlapper

Current overlappers designed to deal with data generated by next-generation se-

quencing technologies (e.g., Illumina Inc. Genome Analyzer, Applied Biosystems

SOLiD System and 454 Life Sciences) need to efficiently deal with an impres-

sive amount of data (200X coverage or more in a single run for the bacteria

E. coli). Allowing approximate matching (using dynamic programming) for the

computation of the overlaps would not only be computationally intensive, but

also significantly increases the number of nonspecific spurious overlaps due to

sequencing errors. SUTTA’s framework supports both Smith-Waterman align-

ments and perfect matching. However, for short read technologies, we have opted

for an approach now popular among many short read assemblers: exact string

matching. Because of the high coverage of next-generation sequencing data, this

93

j

A

B

S
et

 o
f o

ve
rla

pp
in

g
re

ad
s

i j

Prefix−Tree

K

i

Figure 4.7: Overlap computation using the trie data structure.

technique produces reliable overlaps, while being drastically faster than approx-

imate matching that requires dynamic programming. We first filter the data by

removing redundant reads and those containing ambiguous bases. Next we index

the remaining reads by a prefix-tree (trie) both in the forward and reverse com-

plement direction. Using this data structure we can compute overlaps by a fast

and simple traversal of the tree as illustrated in figure 4.7. Note that using this

strategy for short reads enforces the overlaps to be only of type prefix or suffix.

94

Chapter 5

Feature-Response Curve

5.1 Introduction

As noted earlier, recent advances in DNA sequencing technology and their fo-

cal role in Genome Wide Association Studies (GWAS) have rekindled a growing

interest in the whole-genome sequence assembly (WGSA) problem, thereby, in-

undating the field with a plethora of new formalizations, algorithms, heuristics

and implementations. And yet, scant attention has been paid to comparative

assessments of these assemblers quality and accuracy. No commonly accepted

and standardized method for comparison exists as yet. Even worse, widely used

metrics to compare the assembled sequences emphasize only size, while poorly

capturing the contig quality and accuracy. This chapter addresses these concerns

and introduces a novel metric that more satisfactorily captures the trade-offs

between quality and contig size.

95

5.2 Assembly Comparison and Validation

Though validation and performance evaluation of an assembler are very important

tasks, no commonly accepted and standardized method for this purpose exists as

yet. The genome validation process appears to have remained a largely manual

and expensive process, with most of the genomes simply accepted as draft assem-

blies. For instance, the initial “draft” sequence of the human genome [38] has

been revised several times since its first publication, with each revision eliminating

various classes of errors through successive algorithmic advances. Nevertheless,

genome sequencing continues to be viewed as an inexact craft and inadequate in

controlling the number of errors, which in the draft genomes are estimated to be

up to hundred or even thousands [86]. The errors in such draft assemblies fall

into several categories: collapsed repeats, rearrangements, inversions, etc., with

their incidents varying from genome to genome.

It should be noted that the most popular metrics for evaluating an assembly

(e.g., contig size and N50) only emphasize size and poorly capture the contig

quality as they do not contain all the information needed to judge the correct-

ness of the assembly. For example N50 is defined as the largest number L such

that the combined length of all contigs of length ≥ L is at least 50% of the total

length of all contigs. In these scenarios, an assembler that sacrifices assembly

quality in exchange for contig sizes, appears to outperform others, despite gen-

erating consensus sequences replete with rearrangement errors. For example, in

the extreme case, an assembly consisting of one large contig of roughly the size

of the genome is useless if mis-assembled. On the other extreme, an assembly

96

consisting of many short contigs covering only the inter-repeat regions of the

genome could have very high accuracy although contigs might be too short to

be used in, for example, gene-annotation efforts. Similarly, just a simple count

of the number of mis-assembled contigs obtained by alignments to the reference

genome (if available), a metric typically used to compare short-read assemblies,

is also inadeguate, because it does not take into account the various structural

properties of the contigs and of the reads contained in it. For example, one single

mis-assembled contig could represent the longest contig in the set and it could

include multiple types of errors (mate-pair orientation, depth of coverage, poly-

morphism, etc) which should be weighted differently. Although the evaluation of

the tradeoff between contig length and errors is an important problem, there is

very little in the literature to address this topic and help evaluate the assembly

quality of different assemblers.

Consequently, we have developed a new metric, Feature-Response curve (FRC)

[73], which captures the trade-offs between quality and contig size more accurately

(see section 5.3). The FRC shares many similarities with classical ROC (receiver-

operating characteristic) curves, which are commonly employed to compare the

performance of statistical inference procedures. Analogous to ROC, FRC empha-

sizes how well an assembler exploits the relation between incorrectly-assembled

contigs (false positives, contributing to “features”) against gaps in assembly (false

negatives, contributing to fraction of genome-coverage or “response”), when all

other parameters (read-length, sequencing error, depth, etc.) are held constant.

97

5.3 Feature-Response Curve

Inspired by the standard receiver operating characteristic (ROC) curve, the Feature-

Response curve characterizes the sensitivity (coverage) of the sequence assembler

as a function of its discrimination threshold (number of features). The AMOS

package provides an automated assembly validation pipeline called amosvali-

date [80] that analyzes the output of an assembler using a variety of assembly

quality metrics (or features). The features include:

• (M) mate-pair orientations and separations,

• (K) repeat content by k-mer analysis,

• (C) depth-of-coverage,

• (P) correlated polymorphism in the read alignments, and

• (B) read alignment breakpoints to identify structurally suspicious regions

of the assembly.

After running amosvalidate on the output of the assembler, each contig is assigned

a number of features that correspond to doubtful regions of the sequence. For

example, in the case of mate-pairs checking (M), the tool flags regions where

multiple matepairs are mis-oriented or the insert coverage is low. Given any such

set of features, the response (quality) of the assembler output is then analyzed

as a function of the maximum number of possible errors (features) allowed in the

contigs. More specifically, for a fixed feature threshold φ, the contigs are sorted

by size and, starting from the longest, only those contigs are tallied, if their sum

98

of features is ≤ φ. For this set of contigs, the corresponding approximate genome

coverage is computed, leading to a single point of the Feature-Response curve.

Algorithm 4 shows the pseudo-code of the FRC computation.

Algorithm 4: Feature-Response Curve - pseudocode

Input: Set of contigs C tagged with features/errors F computed using
amosvalidate.

Output: Feature-Response Curve.

sort(C); /* Sort contigs by length (longest to shortest) */1

for (k=1 to 100) do2

φk := |F| × k
100.0

; /* Feature threshold */3

sum := 0; /* Sum of features */4

tot length := 0; /* Sum of contig lengths */5

for (j=1 to |C|) do6

fj := cj.getFeatures(); /* Num. of features for contig cj */7

sum := sum + fj ; /* Update the sum of features */8

tot length := tot length + cj .getLength();9

if (sum ≥ φk) then10

/* Exit if the sum of features is more than φk */

break;11

end12

end13

covk := tot length

genome size
× 100; /* Approximate coverage for φk */14

end15

return (φk, covk), k ∈ {1, 2, . . . , 100};16

Note that no reference sequence is used to compute the FRC curve, which

makes the FRC a useful tool in de novo sequencing project where a reference

genome is not available to validate and guide the assembly process. In a scenario

where the size of the genome is not available any reasonably good estimate of

the reference genome size is adequate for the purpose of computing the FRC,

since the genome size is simply used as a normalizing denominator across all

99

the assemblers to compare the contigs quality. For example, in the case of re-

sequencing, a good estimate for the genome size can be obtained from genomes

of the related species. In the case of the de novo sequencing projects the genome

size can be judged from estimate of coverage (usually modeled as a dispersed

Poisson) from a subsample of contigs (with some care to eliminate the outliers

coming from repeats or difficult to sequence regions). The procedure described

in Algorithm 4 can be applied to generate FRCs for each feature separately as

shown in chapter 6 and appendix 7.6.1. The inspection of these separate FRCs

enables to quantify comparisons of the relative strengths and weaknesses of each

assembler. Finally note that the definition of coverage computed by the FRC is

only an approximation of the standard one because the contigs are not aligned

to the genome. However, it has the property of identifying assemblies where the

genome length has been overestimated.

The current formulation of the FRC is exceedingly simple and yet natural.

Thus, we hope that starting from here, more sophisticated versions of the FRC

will be developed in the future. For example, the features could be weighted by

contig length (density function); additional features may be included; features

may be combined or transformed (e.g., eigen-features); the response, instead of

coverage, could be another assembly quality metric of choice; etc. It must be

emphasized that the features should not be interpreted directly as errors, since,

as reported by the developers of amosvalidate [80], the method used to compute

each feature may contain some false-positives. These false-positives frequently

correspond to irresolvable inconsistencies in the assembly — and not mis-assembly

100

errors or incorrect consensus sequences. Consequently, the results could appear

pessimistic for any one assembler, but are unlikely to be skewed in a comparative

study, such as the one presented in chapter 6. The utility of Feature-Response

curve is thus not diminished by the nature of the simple features, and it should be

used in combination with other metrics and alignments to the reference genome

(if available). Note further that since the reported sensitivity of amosvalidate is

≥ 92%, almost all the mis-assemblies are captured by one or more features, which

point to possible sources of errors in a particular assembler.

5.4 Implementation details

As with SUTTA, the Feature-Response curve has been also developed as part of

the AMOS1 assembly framework (A Modular Open-Source assembler). Following

the AMOS philosophy, the FRC is implemented as a pipeline that consists of two

steps: 1) invocation to the amosvalidate tool to compute the features for the

set of contigs; 2) invocation to the FRC module that implements Algorithm 4.

FRCurve module is part of the AMOS distribution and its documentation is

available at the AMOS wiki page2.

1http://amos.sourceforge.net
2http://sourceforge.net/apps/mediawiki/amos/index.php?title=FRCurve

101

Chapter 6

Experimental Comparison of

De Novo Genome Assembly

6.1 Introduction

Since the completion of the Herculean task of the Human Genome project (HGP)

in 2003, the genomics community has witnessed a deluge of sequencing projects:

They range from metagenomes, microbiomes, and genomes to transcriptomes;

often, they focus on a multitude of organisms, populations and ecologies. In

addition, the subsequent advent of high-throughput sequencing technologies –

with their promise to considerably reduce the genome sequencing cost – now

appear poised to usher in a personal genomics revolution [48, 90, 1].

However, in the ensuing euphoria, what seems to have been left neglected is

a constructive and critical retrospection, namely:

1. to appraise the strengths and weaknesses of the schemes, protocols and

102

algorithms that now comprise a typical “sequencing pipeline”;

2. to scrutinize the accuracy and usefulness of the assembled sequences by any

standard pipeline;

3. and to build assembly algorithms that would easily adapt to the fast evolv-

ing biotechnologies.

This chapter addresses these issues by presenting a diverse set of experimental

results to compare SUTTA’s performance relative to many assembly algorithms

in the literature with a targeted focus on both older Sanger technology and next-

generation sequencing technology data. The analyses are performed under both

standard metrics (N50, coverage, contig sizes, etc.) as well as the new more com-

prehensive metric (Feature-Response Curves, FRC) that has been introduced in

chapter 5. Furthermore, visual inspection of the consistency of the assembled

contigs is enabled by several graphic representations of the alignment against the

reference genome, e.g., through dot-plots. Experimental analysis of the para-

metric complexity is also reported here showing that overlap graph complexity,

assembly contiguity and assembly quality all strongly depend on the choice of

the minimum overlap parameter k.

Specifically, the chapter is organized as follows: the experimental protocol

adopted is first described; assembly results and quality analysis are then pre-

sented using standard paired and unpaired, low- and high-coverage, long and

short reads from previously collected real and simulated data. Experimental

analysis, showing the dependency of the assembly contiguity and quality on the

choice of the minimum overlap size k, is presented next; and finally, the compu-

103

tational performance of SUTTA compared to several other assemblers concludes

the chapter.

6.2 Experimental Protocol

In order to analyze the assembly quality of many different assemblers and to un-

derstand the inconsistencies that plague many traditional metrics, it was decided

to collect a significant volume of comparative performance statistics using a large

benchmark of both bacterial and human genome data. For all the genomes used

in this study, the finished sequences are available, thus enabling direct validation

of the assemblies. Before discussing the results, we present the benchmark and

assemblers that we have selected for comparison and explain the design of the

experimental protocol adopted here.

6.2.1 Benchmarks

In evaluating the assembly quality of different assemblers, several criteria were

used in choosing bench-mark data sets, assembly-pipelines and comparison met-

rics: e.g., statistical significance, ease of reproducibility, accessibility in public

domain etc. For example, by avoiding expensive studies with large sized genome-

assembly and specialized (but not widely available) technologies, we wished to

ensure that the reported results could be widely reproduced, revalidated and

extended — even by moderate-sized biology laboratories or small teams of com-

puter scientists. To the extent possible, we have favored the use of real data over

synthetic data.

104

Consequently, we have not included large genomes (e.g., whole haplotypic hu-

man genomes) or single-molecule technologies (PacBiosciences or Optical Map-

ping), but ensured that all possible genome structures are modeled in the data

(from available data or through simulation) as are the variations in coverage,

read lengths and error rates. The only long range information included has come

from mate-pairs. Note, however, that our analysis is completely general, as is the

software used in this study, and can be used for broader studies in the future.

For these reasons, following datasets were selected (see table 6.1):

1. Sanger reads data, although now considered archaic, remain an important

benchmark for the future. For instance, various technologies, promised by

PacBiosciences, Life Technologies, and others, seek to match and exceed the

read-lengths and accuracy of Sanger (hopefully, also inexpensively). Also

Sanger-approach remains a statistically reliable source of data and imple-

mentations, since there continue to exist an active community of Sanger

sequencers, a large amount of data and a variety of algorithmic frameworks

dealing with Sanger data. As a result, they provide much more reliable

statistics in the context of comparing so many different algorithmic frame-

works (e.g., greedy, OLC and SBH). Such richness is not yet available from

the current short-read assemblers, which have primarily focused on SBH

(and de Bruijn graph representation).

2. Most recent Illumina machines can now generate reads of about 100 bps

or more. However, our focus on 36 bps Illumina reads is based on the fact

the these datasets have been extensively analyzed by previously published

105

short read assemblers. Since longer reads can only make the assembly

process easier, these datasets still represent some of the hardest instances

of the sequence assembly problem. We have also discovered that longer

reads (∼ 100 bps) from recent Illumina machines have higher error rates

towards the ends of the reads, thus, limiting the apparent advantage of

longer sequences.

3. By focusing on low-coverage long reads and short reads with high cover-

age, we stress-test all assemblers against the most extreme instances of the

sequence assembly problem, especially, where assembly quality is of essence.

Genome Length (bp) # reads Avg. read Std. Cov.
length (bp) (bp)

Long reads:

Brucella suus 3, 315, 173 36, 276 895.8 44.1 9.8
Wolbachia sp. 1, 267, 782 26, 817 981.9 50.6 20.7
Staphylococcus epidermidis 2, 616, 530 60, 761 900.2 46.2 19.9
Chromosome Y∗ 3, 000, 000 37, 530 800 88 10

Short reads:

Staphylococcus aureus 2, 820, 462 3, 857, 879 35 0 47.8
Helicobacter acinonychis 1, 553, 927 12, 288, 791 36 0 284.6
Escherichia coli 4, 639, 675 20, 816, 448 36 0 161.5

Table 6.1: Benchmark data. first and second columns report the genome name
and length; columns 3 to 6 report the statistics of the shotgun projects: number
of reads, average and standard deviation of the read length and genome coverage
(∗[35,000,001 - 38,000,000]).

Long reads. Starting with the pioneering DNA sequencing work of Frederick

Sanger in 1975, every large-scale sequencing project has been organized around

reads generated using the Sanger chemistry [87]. This technology could be typi-

106

cally characterized by reads of length up to 1000 bps and average coverage of 10×.

Additional mate-pair constraints are typically available in the form of estimated

distance between a pair of reads.

The first data set of Sanger reads consists of three bacterial genomes: Brucella

suis [76], Wolbachia sp. [103] and Staphylococcus epidermidis RP62A [28]. These

bacteria have been sequenced and fully finished at TIGR, and all the sequencing

reads generated for these projects are publicly available at two sites: the NCBI

Trace Archive1, and the CBCB website2. Also included in the benchmark are

sequence data from the human genome. Specifically, we selected a region of 3Mb

from human Chromosome Y’s p11.2 region. These euchromatin regions of Y

Chromosome are assumed to be particularly challenging for shotgun assembly as

it is full of pathologically complex patterning of genome structures at multiple

scales and resolutions — usually described as fractal-like motifs within motifs

(repeats, duplications, indels, head-to-head copies, etc.). For this region of the Y

Chromosome we generated simulated shotgun reads as described in Table 6.1. We

created two mate-pair libraries of size (µ = 2, 500, σ = 166) and (µ = 10, 000, σ =

1, 300) respectively; 90% of the reads have mates (45% from the first library and

45% from the second library), the rest of the reads are unmated; finally, we

introduced errors in each read at a rate of 1%.

1http://www.ncbi.nlm.nih.gov/sra/
2www.cbcb.umd.edu/research/benchmark.shtml

107

Short reads. More recent advances in sequencing technology have produced

a new class of massively parallel next-generation sequencing platforms such as:

Illumina, Inc. Genome Analyzer, Applied Biosystems SOLiD System, and 454

Life Sciences (Roche) GS FLX. Although they have orders of magnitude higher

throughput per single run (up to 200× coverage) than older Sanger technology,

the reads produced by these machines are typically shorter (35–500 bps). As

a result they have introduced a succession of new computational challenges, for

instance, the need to assemble millions of reads even for bacterial genomes.

For the short reads technology, we used three different data sets, which have

been extensively analyzed by previously published short read assemblers. The

first data set consists of 3.86 million 35-bp unmated reads from the Staphylococcus

aureus strain MW2 [10]. The set of reads for this genome are freely available from

the Edena assembler website3. The second dataset consists of 12.3 million 36-

bp unmated reads for a raw coverage of 284×. This second dataset is for the

Helicobacter acinonychis strain Sheeba genome [23], which was presented in the

SHARCGS [22] paper and is available for download at sharcgs.molgen.mpg.de.

The third data set instead is made up of 20.8 million paired-end 36 bp Illumina

reads from a 200 bp insert Escherichia coli strain K12 MG1655 [13] library (NCBI

Short Read Archive, accession no. SRX000429).

3www.genomic.ch/edena.php

108

6.2.2 Assemblers

The following assemblers have been selected for comparison of long read pipelines:

ARACHNE [11], CABOG [64], Euler [79], Minimus [95], PCAP [35], Phrap [30],

SUTTA [74], and TIGR [96]. Simiarly, the following assembler were selected

for comparison of short read pipelines: ABySS [92], Edena [32], Euler-SR [19],

SOAPdenovo [60], SSAKE [101], SUTTA [74], Taipan [88], and Velvet [104].

Note that, although the most recent release of CABOG supports short reads

from Illumina technology, it cannot be run on reads shorter than 64bp.

This list is meant to be representative (see [49] for a survey), as it includes

assemblers satisfying the following two criteria: (i) they have been used in large

sequencing projects with some success, (ii) together they represent all the gen-

erally accepted assembly paradigms (e.g., greedy, OLC, SBH and B&B; see the

discussion in chapter 3) and (iii) the source code or binaries for these assemblers

is publicly available on-line, thus enabling one to download and run each of them

on the benchmark genomes. In order to interpret the variability in assembler per-

formance under different scenarios, both paired and unpaired data were analyzed

separately. All the long-read assemblers were run with their default parameters,

while parameters for the short-read assemblers were optimized according to recent

studies [74] (see table 7 in 7.6.1).

109

6.3 Long reads results

Analysis without mate-pair constraints. Table 6.2 presents the contig size

analysis while excluding mate-pair data (thus, ignoring clone sizes and forward-

reverse constraints). Since not all next-generation sequencing technologies are

likely to produce mate-pair data, it is informative to calibrate to what extent

an assembler’s performance is determined by such auxiliary information. Note

that ARACHNE had to be omitted from this comparison (and the associated

table 6.2), since its use of mate-pairs is tightly integrated into its assembly process

and cannot be decoupled from it. Similarly CABOG does not support data that

is totally lacking in paired ends.

A caveat with the preceding analysis needs to be addressed: if one wish-

ing to select an assembler of the highest quality were to base one’s judgement

solely on the standard and popular metrics (as in this table), the result would be

somewhat uncanny and unsatisfying. For instance, Pharp would appear to be a

particularly good choice, since it seems to typically produce an almost complete

genome coverage with fewer contigs and each of sizable length (as confirmed

by the N50 values). More specifically, except for Wolbachia, the N50 value of

Phrap is the highest, yielding a respectable genome coverage of the big contigs

(> 10 kbp). Unfortunately, a closer scrutiny of the Phrap-generated assembly

(e.g., the dot plots of the contigs’ alignment) reveals that Phrap’s apparent su-

periority is without much substance — Phrap’s weaknesses, as evidenced by its

mis-assemblies within long contigs (see alignments in the Appendix 7.6.1), are

not captured by the N50-like performance parameters. Phrap’s greedy strategy

110

Genome Assembler # ctgs # big ctgs Max ctg Mean big ctg N50 Big ctg
(>10 kbp) size (kbp) size (kbp) (kbp) cov. (%)

Brucella Euler 280 118 82 22 19 78.4
suis Minimus 203 101 89 30 32 93.1

PCAP 88 62 198 53 80 100.7
PHRAP 54 23 434 126 199 103.2
SUTTA 73 53 268 62 79 99.2
TIGR 108 67 182 48 57 98.8

Staphylococcus Euler 192 75 78 29 32 85.6
epidermidis Minimus 425 86 119 10 19 80.7

PCAP 109 36 179 72 114 100.1
PHRAP 86 22 357 123 183 103.9
SUTTA 65 31 249 83 116 99.3
TIGR 94 38 230 68 100 99.8

Wolbachia sp. Euler 604 0 6 0 1 0
Minimus 1545 37 16 13 2 40.7
PCAP 1241 41 64 23 3 77.2
PHRAP 2253 55 64 22 1.8 98.5
SUTTA 1089 39 87 26 6 80.8
TIGR 1080 46 46 20 5 73.6

Human Euler 60 27 403 107 266 96.7
Chromosome Y Minimus 850 104 48 18 11 63.1

PCAP 140 38 239 77 112 98.2
PHRAP 4 4 1869 764 1869 101.9
SUTTA 15 10 1020 301 712 100.5
TIGR 1103 108 51 10 8 63.7

Table 6.2: Long reads assembly comparison without mate-pair information
(clone sizes and forward-reverse constraints). First and second columns report
the genome and assembler names; columns 3 to 7 report the contig size statistics,
specifically: number of contigs, number of contigs with size ≥ 10kbp, max contig
size, mean contig size, and N50 size (N50 is the largest number L such that the
combined length of all contigs of length ≥ L is at least 50% of the total length of
all contigs). Finally column 8 reports the coverage achieved by the large contigs
(≥ 10kbp). Coverage is computed by double-counting overlapping regions of the
contigs, when aligned to the genome.

cannot always handle long-range genome structures and when a repeat boundary

is found it can be fooled by false positive overlaps. In contrast TIGR, PCAP and

SUTTA have similar performance in terms of N50; however, SUTTA produces

a smaller number of big contigs (>10 kbp) compared to TIGR and PCAP, and

higher genome coverage (except for the S. epidermidis, where they have simi-

lar coverage). All the assemblers encounter various difficulties in assembling the

Wolbachia sp. dataset into long contigs, which is probably due to a higher error

111

rate in the reads. These difficulties are especially noticeable for Euler assembler;

in fact, its big contigs coverage comes very close to zero. Minimus instead uses a

very conservative approach where, if a repeat boundary is encountered, it stops

extending the contig. Such a strategy reduces the possible mis-assembly errors,

but causes a considerable pdecrease in contig size.

The results for the 3Mb region of Chromosome Y (from p11.2, a euchromatin

region) paint a somewhat different picture. TIGR’s and PCAP’s performances

are now inferior, with lower coverage and a higher number of contigs gener-

ated. In particular, PCAP performance was obtained by reducing the stringency

in overlap detection to tolerate more overlaps (using parameter -d 500), this

parameter setting was necessary in order to generate reasonably long contigs.

Phrap still has the best performances in terms of contig size and N50, followed

by SUTTA, but now its alignment results do not show mis-assembled contigs

(see Appendix 7.6.1). Surprisingly, Euler now improves the genome coverage for

simulated assembly. Note that for Chromosome Y, simulated reads were gener-

ated using fairly realistic error distributions, but still raise questions about the

simulation’s fidelity (e.g., ability to capture the non uniform coverage pattern,

potential cloning bias, etc., that would be inevitable in any real large scale ge-

nomic project). Various simplifying assumptions used by the simulators may

explain why simulated data appear somewhat easier to assemble.

Since the contig size analysis gives only an incomplete and often misleading

view of the real performance of the assemblers, a more principled and informative

approach needs to be devised. As described in chapter 5, a new metric, called

112

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Feature-Response curve comparison for S. epidermidis (no mate-pairs)

SUTTA
Minimus
PHRAP

TIGR
PCAP

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Feature-Response curve comparison for Chr. Y (no mate-pairs)

SUTTA
Minimus

Phrap
TIGR

PCAP

Figure 6.1: Feature-Response curve comparison for S. epidermidis and Chromo-
some Y (3Mbp of p11.2 region) genomes when no mate-pairs information is used
in the assembly.

“Feature-Response curve” (FRC), is proposed and evaluated to see how well it

can check the quality of the contigs and validate the assembly output. Figure 6.1

shows the Feature-Response curves for the S. epidermidis and Chromosome Y

(p11.2 region) genomes when mate-pairs are not used in the assembly. The x-

axis is the maximum number φ of errors/features allowed in the contigs and

the y-axis reports the approximate genome coverage achieved by all the contigs

(sorted in decreasing order by size) such that the sum of their features is ≤ φ

(see section 5.3 for more details). Note that the definition of coverage used in

this plot is not the conventional one since we double-count overlapping regions

of contigs, when aligned to the genome. We decided to employ such a definition

because it highlights assemblies that over-estimate the genome size (coverage

greater than 100%). Based on this analysis, SUTTA seems to be performing

better than all the other assemblers in terms of assembly quality, however it is

important to mention that the current version of the FRC includes several types

113

of assembly errors with a uniform weighting, chosen arbitrarily. For example, a

mis-join is generally considered the most severe type of mis-assembly, but this

is not currently captured by the FRC. In fact SUTTA clearly creates mis-joined

contigs in the absence of paired reads (see dot plots in the Appendix 7.6.1).

However, this problem is alleviated by the addition of paired reads as shown next

in the analysis with mate-pair constraints. Finally, note that Euler and Minimus

go to extreme short lengths to avoid mis-joins in the absence of paired reads.

Analysis with mate-pair constraints. Table 6.3 presents the results with

mate-pairs data, restricting the analysis only to assemblers (ARACHNE, CABOG,

Euler, PCAP, SUTTA and TIGR) that use mate-pair constraints effectively dur-

ing the assembly process. Obviously, the use of mate-pair-constraints improves

the performance and quality of all four assemblers; however, they do so to vary-

ing degrees. For example TIGR’s N50 values are now typically twice as large as

those without mate-pairs. In contrast, Euler’s results only improve marginally

with mate-pair constraints, and it is still unable to produce contigs larger than 10

kbp for the Wolbachia sp. genome. Note that Euler shows weaker performance in

comparison to the results reported on its home-page4 for the bacterial genomes.

Although the exact explanation of this discrepancy is not obvious, it could be due

to an additional screening (preprocessing) of the reads that removes low quality

regions (note that, here, the analysis of all assemblers assumes no preprocessing.).

ARACHNE and CABOG shows the highest N50 values for all datasets.

As earlier, whereas the contig size analysis indicates all of the following assem-

4http://nbcr.sdsc.edu/euler/benchmarking/bact.html

114

Genome Assembler # ctgs # big ctgs Max ctg Mean big ctg N50 Big ctg
(>10 kbp) size (kbp) size (kbp) (kbp) cov. (%)

Brucella ARACHNE 33 28 463 119 161 101.2
suis CABOG 30 19 775 175 268 101.5

Euler 258 118 82 22 20 80.1
PCAP 81 34 416 98 131 100.5
SUTTA 72 58 269 56 74 99.2
TIGR 69 43 361 77 112 99.9

Staphylococcus ARACHNE 27 17 565 156 294 101.7
epidermidis CABOG 41 8 655 330 483 103.1

Euler 131 60 123 38 49 89.1
PCAP 103 27 362 98 153 101.5
SUTTA 89 63 244 48 63 97.6
TIGR 51 12 545 220 389 101.1

Wolbachia sp. ARACHNE 100 41 71 26 27 84.7
CABOG 1035 26 181 47 26 178.7
Euler 604 0 6 0 1 0
PCAP 1263 54 42 18 3 79.1
SUTTA 1132 46 104 22 6 86.7
TIGR 1131 29 136 40 6 91.8

Human ARACHNE 5 4 1869 763 1869 101.7
Chromosome Y CABOG 5 4 1851 756 1851 100.9

Euler 37 21 585 139 268 97.9
PCAP 135 33 239 89 130 98.9
SUTTA 17 8 1020 377 737 100.7
TIGR 1030 116 48 18 10 72.6

Table 6.3: Long reads assembly comparison using mate-pair information. First
and second columns report the genome and assembler names; columns 3 to 7
report the contig size statistics, specifically: number of contigs, number of contigs
with size ≥ 10kbp, max contig size, mean contig size, and N50 size (N50 is the
largest number L such that the combined length of all contigs of length ≥ L
is at least 50% of the total length of all contigs). Finally column 8 reports the
coverage achieved by the large contigs (≥ 10kbp). Coverage is computed by
double-counting overlapping regions of the contigs, when aligned to the genome.

blers, ARACHNE, CABOG, PCAP and TIGR producing better performance, a

cursory inspection of the Feature-Response curve points to a different conclusion.

Figure 6.2 shows the FRCs of the assemblers for S. epidermidis and Chromosome

Y (p11.2 region) genomes when mate-pairs are used in the assembly. Because Eu-

ler assembly output could not be converted into an AMOS bank for validation,

it is excluded from the plot.

An intuitive understanding of the different assembly quality can be gleaned

115

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 200 400 600 800 1000 1200 1400 1600

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Feature-Response curve comparison for S. epidermidis (with mate-pairs)

SUTTA
TIGR

ARACHNE
PCAP

CABOG
 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Feature-Response curve comparison for Chr. Y (with mate-pairs)

SUTTA
TIGR

ARACHNE
PCAP

CABOG

Figure 6.2: Feature-Response curve comparison for S. epidermidis and Chromo-
some Y (3Mbp of p11.2 region) genomes when mate-pairs information is used in
the assembly.

from Figure 6.3, which shows the dot plots of comparison of assemblies produced

by the various assemblers aligned to the completed S. epidermidis genome. The

dot plot alignments were generated using the MUMmer5 package [53]. Assemblies

generated by CABOG, Euler, PCAP and SUTTA are seen to match quite well

with the reference sequence, as suggested by the fraction of matches lying along

the main diagonal6. TIGR instead shows many large assembly errors, mostly

due to chimeric joining of segments from two distinct non-adjacent regions of

the genome. Further, note that two perfect dot plot alignments can still have

different quality when analyzed with the FRC. An example is given by compar-

ing the contigs generated by ARACHNE and SUTTA for the 3Mb segment of

Chromosome Y’s p11.2. Despite the dot plots showing high alignment quality for

both, the FRC scores them very differently (see Appendix 7.6.1). Appendix 7.6.1

5http://mummer.sourceforge.net/
6Note that since S. epidermidis has a circular genome, the small contigs aligned at the

bottom right or top left are not mis-assembled.

116

contains the dot plots for the other genomes and the associated FRCs.

To further analyze the relative strengths and weaknesses of each assembler,

Figure 6.4 shows separate FRCs for each feature type when assembling the S.

epidermidis genome using mate-pairs. By inspecting these plots it is clear that

each assembler behaves differently according to each feature type. For example,

CABOG outperforms the other assemblers when mate-pair constraints are con-

sidered. TIGR and SUTTA outperform the other assemblers in the number of

correlated polymorphism in the read alignments. The FRC that analyzes the

depth of coverage shows ARACHNE, CABOG and PCAP to be winners in the

comparison. Moving to the FRC that analyzes the k-mer frequencies, which can

be used to detect the presence of mis-assemblies due to repeats, SUTTA and

TIGR outperform ARACHNE and PCAP, while CABOG performs somewhere

in between. The breakpoint-FRC examines the presence of multiple reads that

share a common breakpoint, which often indicates assembly problems. PCAP and

ARACHNE seem to suffer more from this problems, while the other assemblers

are not affected (the FRCs reduces to a single point). Finally the mis-assembly

FRC is computed using the mis-assembly feature which is obtained applying a

feature combiner to collect a diverse set of evidence for a mis-assembly and out-

put regions with multiple mis-assembly features present at the same region (see

[80] for more details). CABOG in this case again achieves a superior rank over

the other assemblers.

117

8

911
*1

20

*3

18

1912
1314

*25*22*21
15
17
*6
16*4

7

*2

2326
2724105

S
_
e
p
i
d
e
r
m
i
d
i
s
_
R
P
6
2
A
_
c
h
r
o
m
s
o
m
e

S
_
e
p
i
d
e
r
m
i
d
i
s
_
R
P
6
2
A
_
p
l
a
s
m
i
d

Q
R
Y

REF

(a) ARACHNE

3440

41

*38

*37

8*9*136

35

39

*5*4233322172617
1830162725282014241031112213232963121519

S
_
e
p
i
d
e
r
m
i
d
i
s
_
R
P
6
2
A
_
c
h
r
o
m
s
o
m
e

S
_
e
p
i
d
e
r
m
i
d
i
s
_
R
P
6
2
A
_
p
l
a
s
m
i
d

Q
R
Y

REF

(b) CABOG

*Contig62

Contig5
Contig3Contig4*Contig37

*Contig23Contig49

Contig17
*Contig46

*Contig21*Contig40Contig47Contig20
Contig9*Contig15

*Contig100*Contig106
*Contig91
*Contig92
Contig109Contig82*Contig55
Contig12

*Contig45Contig19Contig76Contig77

*Contig105
*Contig89*Contig71Contig69
Contig68Contig26*Contig8Contig52
Contig96*Contig16Contig51*Contig1

*Contig74*Contig32
*Contig95*Contig98*Contig104*Contig84Contig99Contig93Contig83Contig90*Contig110Contig101*Contig35Contig30Contig10Contig39*Contig94*Contig102*Contig6

Contig60
*Contig44*Contig2
Contig61Contig103

*Contig66
*Contig18*Contig11

Contig54Contig80*Contig88Contig107
*Contig79
*Contig67Contig65
*Contig36
Contig31Contig70

*Contig59
Contig57Contig73

*Contig41Contig43Contig50
Contig97*Contig108Contig72*Contig58*Contig42*Contig28Contig24Contig78*Contig29Contig38
Contig33*Contig34Contig115Contig27Contig81Contig85Contig63Contig64Contig7Contig86Contig14Contig113Contig22Contig114Contig87Contig53Contig75Contig48Contig116Contig25Contig56Contig111Contig112Contig13

S
_
e
p
i
d
e
r
m
i
d
i
s
_
R
P
6
2
A
_
c
h
r
o
m
s
o
m
e

S
_
e
p
i
d
e
r
m
i
d
i
s
_
R
P
6
2
A
_
p
l
a
s
m
i
d

Q
R
Y

REF

(c) Euler

8

*7

*39*71*1

*6

60
59

52

53*2254

*9
*66*76*65*10
64
57

*1270
6869*1421*1367*1558

3
4

*11
*63*62*5

*56

20*7577*55*613332901028026991872164484742795921038931359178488793295097418110173458619217883010082252883404924794246239685369451473898343743

S
_
e
p
i
d
e
r
m
i
d
i
s
_
R
P
6
2
A
_
c
h
r
o
m
s
o
m
e

S
_
e
p
i
d
e
r
m
i
d
i
s
_
R
P
6
2
A
_
p
l
a
s
m
i
d

Q
R
Y

REF

(d) PCAP

*10

*333836*23

*5

8

*29*39309

43*11

*19

*14

2

*1

7
*3522
28*17
41*454032*443413
253

24
*4

*15

31*2712
*26
6

*21

46*2016
1849534842505147523754

S
_
e
p
i
d
e
r
m
i
d
i
s
_
R
P
6
2
A
_
c
h
r
o
m
s
o
m
e

*
S
_
e
p
i
d
e
r
m
i
d
i
s
_
R
P
6
2
A
_
p
l
a
s
m
i
d

Q
R
Y

REF

(e) SUTTA

*2

*17

1

*33

36

34*37*31*3540

3

44

*28

47

16
*483221726183027
252014492410114222461323296503951941121538844543195

S
_
e
p
i
d
e
r
m
i
d
i
s
_
R
P
6
2
A
_
c
h
r
o
m
s
o
m
e

S
_
e
p
i
d
e
r
m
i
d
i
s
_
R
P
6
2
A
_
p
l
a
s
m
i
d

Q
R
Y

REF

(f) TIGR

Figure 6.3: Dot plots for the Staphylococcus epidermidis. Assemblies produced
by ARACHNE, CABOG, Euler, PCAP, SUTTA and TIGR. The horizontal lines
indicate the boundary between assembled contigs represented on the y axis. Note
that number of single dots are an artifact of the sensitivity of the MUMmer
alignment tool; they can be reduced or removed by using a larger value for the
minimum cluster length parameter –mincluster (default 65).

118

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 100 200 300 400 500 600 700 800 900

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Matepair Feature-Response curve

SUTTA
TIGR

Arachne
PCAP

CABOG

(a) Mate-pairs

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

 0 100 200 300 400 500 600 700

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Polymorphism Feature-Response curve

SUTTA
TIGR

Arachne
PCAP

CABOG

(b) Polymorphism

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

 0 2 4 6 8 10 12 14

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Coverage Feature-Response curve

SUTTA
TIGR

Arachne
PCAP

CABOG

(c) Coverage

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 5 10 15 20 25

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Kmer Feature-Response curve

SUTTA
TIGR

Arachne
PCAP

CABOG

(d) Kmer

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

 0 10 20 30 40 50 60

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Breakpoint Feature-Response curve

SUTTA
TIGR

Arachne
PCAP

CABOG

(e) Breakpoint

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 20 40 60 80 100 120 140 160

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Misassembly Feature-Response curve

SUTTA
TIGR

Arachne
PCAP

CABOG

(f) Misassembly

Figure 6.4: Separate FR-curve comparison for each feature type for the S. epi-
dermidis genome using mate-pairs.

119

6.4 Short reads results

In case of short reads, interpretations of the contigs data, e.g., ones based purely

on contig sizes and N50, etc. are complicated by the following facts: (1) for short-

reads, the required threshold ratio K
L

is only slightly less than 1, where K is the

required minimum overlap length and L is the length of the reads; therefore the

effective coverage is significantly small, thus making all the statistics rather non-

robust and highly sensitive to choice of the parameters; (2) there is no consensus

definition of correctness of a contig – the required similarity varying from 98%

down to 90% and the allowed end-trimming of each contig being idiosyncratic; and

(3) many algorithms have specific error-correction routines that are embedded in

a pre-processing or post-processing steps and that cull or correct bad reads and

contigs in a highly technology-specific manner.

Analysis without mate-pair constraints. Returning to an analysis based on

contig size, in Table 6.4, we show a comparison of the assembly results for the S.

aureus and H. acinonychis genomes. The values reported for all the assemblers,

are based on the tables presented in the recent SUTTA paper [74]. Only contigs

of size ≥ 100 are used in the statistics. Without mate-pair information, as in

here, it is inevitable that all assembly approaches (especially, if they are not

conservative enough) could produce some mis-assemblies. As described earlier,

what constitutes a correct contig is defined idiosyncratically (align along the

whole length with at least 98% base similarity [32]), making it very sensitive

to small errors which typically occur in short distal regions of the contigs. For

120

Genome Assembler # correct # mis-assembled N50 Mean Max Coverage
(kbp) (kbp) (kbp) (%)

S. aureus ABySS 928 6 7.8 2.9 32.7 98
(strain MW2) Edena (strict) 1124 0 5.9 2.4 25.7 98

Edena (nonstrict) 740 16 9.0 3.7 51.8 97
EULER-SR 669 33 10.1 4.0 37.9 99
SOAPdenovo 867 25 8.1 3.1 30.8 97
SSAKE 2073 378 2.0 1.1 9.7 99
SUTTA 998 11 6.0 2.6 22.8 97
Taipan 692 16 11.1 3.9 44.6 98
Velvet 945 5 7.4 2.8 32.7 97

H. acininychis ABySS 270 8 13.9 5.4 54.7 98
(strain Sheeba) Edena (strict) 336 0 10.1 4.5 36.9 98

Edena (nonstrict) 302 1 13.2 4.9 35.0 97
EULER-SR 730 21 4.3 2.1 18.8 98
SOAPdenovo 479 21 7.3 3.3 29.8 98
SSAKE 675 156 3.2 1.8 14.6 99
SUTTA 313 9 9.6 4.5 41.3 98
Taipan 271 0 13.3 5.6 48.6 98
Velvet 278 2 12.8 5.4 49.5 98

Table 6.4: Short reads assembly comparison without mate-pair information. First
and second columns report the genome and assembler names; columns 3 to 7
report the contig size statistics, specifically: number of contigs, number of contigs
with size ≥ 10kbp, max contig size, mean contig size, and N50 size (N50 is the
largest number L such that the combined length of all contigs of length ≥ L
is at least 50% of the total length of all contigs). Finally column 8 reports the
coverage achieved by all the contigs.

example, contigs ending in gaps accumulate errors, as coverage gets lower towards

the ends. To overcome such errors some assemblers perform a few correction

steps. For example, Edena exercises an option to trim a few bases from these

ends until a minimum coverage is reached; Euler-SR performs a preprocessing

error correction step where errors in reads are corrected based on k-mer coverage

analysis. From the table 6.4 it is clear that SSAKE has the worst performance in

terms of contig size and quality, while the rest of the assemblers have relatively

small errors and they all achieve high genome coverage (≥ 97%).

Analysis with mate-pair constraints. Table 6.5 shows the assembly com-

parison using mate-pair information on the read set for the E. coli genome. The

121

comparison is based on the results from table 2 in [74]. In accordance with this

analysis, statistics are computed only for contigs whose length is greater than 100

bps. A contig is defined to be correct if it aligns to the reference genome with

fewer than five consecutive base mismatches at the termini and has at least 95%

base similarity. By inspecting the column with the number of errors, one might

conclude that the lower the number of errors the better the overall assembly qual-

ity. As explained earlier, a simple count of the number of total mis-assembled

contigs is not informative enough. For example, ABySS and SOAPdenovo have

the highest N50 values and a low number of mis-assembled contigs. However,

such misassembled contigs are on average longer than those from other assem-

blers like SUTTA and Edena. This is evident in the table from the analysis of the

mean length of the mis-assembled contigs. This analysis also shows that Edena

and SUTTA behave more conservatively than Velvet, ABySS and SOAPdenovo,

as they trade contig length in favor of shorter correctly assembled contigs. Inter-

estingly Taipan’s number of errors for E .coli increases compared to the results

in table 6.4. Instead SOAPdenovo’s performance improves for E.coli thanks to

the availability of mate-pair information.

Note that the N50 statistic does not give any information about the reason

why the contigs are mis-assembled: the contigs could contain an error due to

accumulated errors close to the contigs’ ends or it could contain rearrangements

due to repeated sequences. Of course, these two error types have very different

importance in terms of quality. In this scenario, the FRC analysis can give a

deeper understanding of the assembly quality, as shown in Figure 6.5 where the

122

Genome Assembler # correct # mis-assembled N50 Mean Max Coverage
(mean kbp) (kbp) (kbp) (kbp) (%)

E. coli ABySS 114 10 (49.5) 87.4 37.3 210.7 99
(K12 MG1655) Edena 674 6 (13.2) 16.4 6.6 67.1 99

EULER-SR 190 26 (37.8) 57.4 21.1 174.0 99
SOAPdenovo 200 9 (71.8) 76.6 21.7 173.9 98
SSAKE 407 66 (15.3) 31.2 9.6 105.9 98
SUTTA 423 7 (18.8) 22.7 10.2 84.5 98
Taipan 742 62 (5.2) 12.2 5.6 56.5 97
Velvet 275 9 (52.9) 54.3 15.9 166.0 98

Table 6.5: Short reads assembly comparison using mate-pair information. First
and second columns report the genome and assembler names; columns 3 to 7
report the contig size statistics, specifically: number of contigs, number of contigs
with size ≥ 10kbp, max contig size, mean contig size, and N50 size (N50 is the
largest number L such that the combined length of all contigs of length ≥ L
is at least 50% of the total length of all contigs). Finally column 8 reports the
coverage achieved by all the contigs.

contigs produced by SUTTA and Velvet are compared. Although SUTTA has

a higher number of mis-assembled contigs (see table 6.5), the FRC presents a

different scenario. By inspecting the feature information of the contigs produced

by SUTTA and Velvet, it is seen that SUTTA’s contigs have a lower number of

unsatisfied mate-pair constraints, which leads to fewer large mis-assembly errors.

This result is primarily due to SUTTA’s optimization scheme, which allows it

to concurrently optimize both overlap and mate-pair scores while searching for

the best layout. Unfortunately we were unable to generate FRCs for each short-

read assembler because their output could not be converted into an AMOS bank

for validation. The ones that could be analyzed with FRC include SUTTA and

Velvet.

123

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10000 20000 30000 40000 50000 60000 70000

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Feature-Response curve

SUTTA
Velvet

Figure 6.5: Feature-Response curve comparison for the E. coli genome using
mate-pair short read data.

6.5 Parametric complexity experiments

In order to design better assembly algorithms and exploit the characteristics of

sequence data from new technologies, it is important to have a deep understanding

of the parametric complexity of the assembly problem. This is especially true

for short reads from next-generation technologies since typically the required

overlapping length represents a significant part of the read length. In fact, the

min overlap length k is a determinant parameter, and its optimal setting strongly

depends on the data (coverage). Therefore the effective coverage [55]:

Ecov =
N(l − k)

G
(6.1)

124

is very sensitive to the choice of the minimum overlap parameter k, where N is

the number of reads, l is the read length and G is the genome size. For example,

in the case of the real dataset for S. aureus from table 6.1 (l = 35, G = 2.82 Mbp,

N = 3.86 Millions) the raw coverage and effective coverage are respectively:

c =
lN

G
= 48X, cE = N(l−k)

G
= 14X(k = 21) (6.2)

This section illustrates the the strong dependency of assembly contiguity and

quality on the choice of the minimum overlap parameter k.

6.5.1 Overlap graph complexity

As described in chapter 2, sequence assembly can be formulated as solving spe-

cific problems for a general graph constructed from the overlap information of

the reads. The size and complexity of this graph is clearly a function of the

minimum overlap size k. Figure 6.6 shows the overlap and read count distribu-

tions as a function of the minimum overlap parameter k for the E. coli dataset

from table 6.1. The Y axis of the main plot shows how many reads have the

number of overlaps in the X axis. The overlap graph seems to closely follow a

power law distribution in accordance with random graph models and scale-free

networks, where it is common to have vertices with a degree that greatly exceeds

the average. In the context of genome sequences this is expected because of the

presence of repeat regions: reads that have been sampled from such region are

more likely to have a higher number of overlaps. These reads appear in the tail

of the distribution in figure 6.6 (x ≥ 400). The majority of the sequences have

125

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 100 200 300 400 500

O
ve

rla
p

fr
eq

ue
nc

y

Number of overlaps

Overlap and read count distributions for E. coli

k=20
k=24
k=28
k=32

 1
 10

 100
 1000

 10000
 100000
 1e+06
 1e+07
 1e+08

 0 20 40 60 80 100

O
cc

ur
re

nc
e

fr
eq

ue
nc

y

Number of occurrences

Figure 6.6: Overlap and read count distribution for E. coli. Main plot: point
(x, y) represents that y number of reads have x number of overlaps. Inset plot:
point (x, y) represents that y number of reads occur x number of times in the
dataset (duplicates). For both plots the Y axis is in logarithmic scale.

a much lower number of overlaps (10 ≤ x ≤ 70) and they probably correspond

to the inter repeat regions. Because the sequencing machines are not error free,

there is another class of sequences that contains error and have very few number

of overlaps (x ≤ 10). These reads are responsible for the presence of dead-ends

and bubbles in the overlap graph, which represent a big portion of the graph size.

From this analysis it is clear that the extreme situations where sequences have

very few or high number of overlaps make the overlap graph particularly complex

to analyze and sequence assemblers must be carefully designed to explore and

disambiguate these graph structures.

126

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
 0

 5000

 10000

 15000

 20000

 25000

 30000

N
50

 c
on

tig
 s

iz
e

(S
. a

ur
eu

s)

N
50

 c
on

tig
 s

iz
e

(E
. c

ol
i)

Min overlap size k

N50 vs overlap size

S aureus
E. coli (no mate-pairs)

E. coli (with mate-pairs)

Figure 6.7: Relation between the min overlap parameter k and the N50 contig
size for S. aureus and E. coli (contigs have been assembled with SUTTA).

6.5.2 Trade-off between N50 and Overlap size k

Figure 6.7 shows the relation between the N50 size versus the minimum overlap

parameter k for two of the genomic data sets analyzed in this chapter. Clearly

there is a trade-off between the number of spurious overlaps and lack of overlaps

as the values for k move from small to larger numbers. Increasing the overlap size

allows the resolution of more ambiguities, but in turn requires a higher coverage

depth to achieve the same N50 value. It is important to emphasize that the

optimal value for k depends on the genome structure and coverage (S. aureus

and E. coli have different optimal values) and so it needs to be tuned accordingly.

Finally, the availability of mate pairs definitely improves the results and enables

assembly of longer contigs for the E. coli genome.

127

6.5.3 Feature-Response curve dynamics

The choice of the minimum overlap parameter k not only affects the estimated

length of the assembled contigs but also changes the overall quality of the as-

sembled sequences. In order to show this phenomenon, we have examined the

assembly quality as a function of k using the Feature-Response curve. Figure 6.8

shows the dynamics of the FR curve for E. coli as a function of the minimum

overlap parameter k. Like the plots in figure 6.7, both small and large values

of k produce more assembly errors, while the best value lies in the middle range

25-29. There seems to be a phase transition for k = 33 and k = 34; this is due

to the fact that the probability to detect a perfect match overlap of higher size

(k > 32) becomes more unlikely without increasing the coverage. Both average

contig length and N50 value decrease such that more contigs of size smaller than

the insert size are created. All these contigs then violate the mate-pair constraints

and result in a high number of features/errors.

6.6 Computational performance

Because of the theoretical intractability of the sequence assembly problem and

because, in principle, SUTTA’s exploration scheme could make it generate an

exponentially large number of layouts, SUTTA could be expected to suffer from

long running times and high memory requirements. However, our empirical anal-

ysis shows that SUTTA has a competitively good performance — thanks to the

branch-and-bound strategy, well defined scoring and pruning schemes, and a care-

128

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10000 20000 30000 40000 50000 60000

A
pp

ro
xi

m
at

e
ge

no
m

e
co

ve
ra

ge
 (

%
)

Feature threshold

Feature-Response curve dynamics as function of k (min overlap)

k=18
k=19
k=20
k=21
k=22
k=23
k=24
k=25
k=26
k=27
k=28
k=29
k=30
k=31
k=32
k=33
k=34

Figure 6.8: Feature-Response curve dynamics as a function of the minimum
overlap parameter k for E. coli using mate pair data.

ful implementation. SUTTA’s computational performance was compared to Vel-

vet, ABySS, EULER-SR, Edena and SSAKE on the S. aureus genome using a

four quad core processor machine, Opteron CPU 2.5GHz (see table 6.6). SUTTA

has an assembly time complexity similar to Edena, SSAKE and EULER-SR. Vel-

vet and ABySS have the best computational performance. Velvet, ABySS and

Edena consume less memory than SUTTA. However, SUTTA relies on AMOS to

maintain various genomic objects (reads, inserts, maps, overlaps, contigs, etc.),

which are not optimized for short reads. At the current stage of development,

SUTTA’s time complexity increases with mate-pairs constrain computation, but

is expected to improve with reengineering planned for the next versions. Finally,

we note that typically 2/3 of total SUTTA’s running time is dedicated to the

129

computation of overlaps, leaving only a 1/3 of the total time to assemble the

contigs.

SUTTA Edena Velvet ABySS SSAKE EULER
Time (min.) 18m 10m 2m 3m 30m 13m
Memory 3.4Gb 800Mb 600Mb 600Mb 4.2Gb 800Mb

Table 6.6: Assemblers computational performance for Staphylococcus aureus
strain MW2. Time and memory requirements reported here include both over-
lapping and assembly steps.

130

Chapter 7

Integrating Base-Calling, Error

Correction and Assembly

7.1 Introduction

Although algorithmic improvements play an important role in sequence assembly,

the complexity of the problem is strongly reduced if high quality (low error rate)

sequences can be generated. For this purpose, Base-Calling and error correction

tools play a significant role in generating highly accurate sequence assemblies.

This chapter starts by presenting a novel DNA base-caller, TotalReCaller [62],

designed to interpret analog signals from sequencing machines in terms of a se-

quence of bases ({A, C, G, T}), while simultaneously aligning the sequence reads

to a source reference (draft) genome, whenever available as it can reduce the error

rate. By merging genomic information with raw intensity data TotalReCaller pro-

duces high quality sequence reads as well as an alignment at the possible location

131

in the reference genome. To achieve these objectives, TotalReCaller combines

a linear error model for the raw intensity data and Burrows-Wheeler transform

(BWT) based alignment into a Bayesian score function, which is then globally

optimized over all possible genomic locations using an efficient branch-and-bound

(specifically beam search) approach.

This chapter also demonstrates the advantages of a complete de novo pipeline

integrating TotalReCaller (base-calling) with SUTTA (sequence assembly) in a

Bayesian manner. We have found that this pipeline significantly improves the

assembly quality and performance compared to the standard SUTTA pipeline

(without error correction) described in chapter 4. Comparison results from the

best state-of-the-art assembly algorithms (e.g., SOAPDenovo and ABySS) for

short read next-generation technology demonstrate the competitive performance

improvement with this new pipeline.

7.2 Base-Calling Challanges

Base-calling takes as input the vector analog time series of signals generated by

the sequencing machines, and produces a base-by-base digitized estimate of the

underlying DNA sequence, which is most likely to have given rise to that signal.

As explained in chapter 1, although next-generation sequencing technologies have

reduced the cost and increased the throughput, they pose new challenges in base-

calling. In fact, these platforms are error-prone, corrupt signals in the data by

non-stationary errors, and generate much shorter reads than those needed for

both proper alignment and sequence assembly as well as what used to be routinely

132

possible with the traditional Sanger sequencers.

Motivated by such challenges, novel base-calling frameworks have been pro-

posed to deal with many unknown sources of noise in the data (see chapter 1

section 1.7). However, these methods have also exposed additional difficulties

that must be resolved by better Base-Calling software:

• Over-fitting: Parametric models (e.g., Alta-Cyclic, Ibis, BayesCall, and

Rolexa) seem to suffer from over-fitting to the in-sample data and thus are

unlikely to be very robust in dealing with varying out-of-sample datasets,

even from the same sequencing platforms.

• Computational Cost: All base-callers require preprocessing to learn

the error model from training data in order to build a classifier that can

then correct the errors in the signal. This preprocessing can be very time

consuming (as in the case of BayesCall, Alta-Cyclic and Ibis) and may

require a cluster computer facility (as in the case of Alta-Cyclic), thus

preventing them from real time base-calling, which would be needed in

many clinical applications.

• Training: Since a sub-class of these base-callers (e.g., Alta-Cyclic, Ibis)

needs a training library of correct reads, they require both a secondary base

caller as well as a sequence aligner to build the training library. However,

this concern has been somewhat alleviated in the newer base-callers (e.g.,

Bustard, BayesCall), which estimate their parameters solely from intensity

files.

133

• Technology Dependence: Many base-callers (e.g., Alta-Cyclic, Ibis

and BayesCall) use a detailed parametric model to describe the signal dis-

tortion as a function of successive cycles. Such models require hard-wiring

specific knowledge of the underlying sequencing technology into the algo-

rithm, thus making it harder to customize the base-caller to support other

platforms.

Currently, the major application of the next-generation sequencing technolo-

gies is thought to be in re-sequencing. Despite the obvious centrality of alignment

in these applications, traditional base-callers have avoided performing alignment

until the end of the base-calling process. In fact, the typical pipeline for a re-

sequencing process traditionally consists of two sequential steps (see figure 7.1(a)):

(1) Base-Calling: each single base of the read is called according to the intensity

signal and error profiles; (2) Alignment: sequence reads are aligned to a refer-

ence genome. Because the base calling process is error-prone, and because correct

alignment to the reference genome is non-trivial, high coverage is required in order

to reduce the errors in re-sequencing and recover the true full DNA sequence.

Motivated by the limitations of current base-callers and the challenges of re-

sequencing, we have designed a new base-caller, TotalReCaller, which substan-

tially ameliorates the problems discussed above and significantly improves the

quality of reads by injecting knowledge of the reference genome into the base-

calling step. TotalReCaller replaces the typical sequential re-sequencing protocol

into a combined pipeline (see figure 7.1(b)) that has the ability to concurrently

perform base-calling, alignment, error correction and SNP detection. Although in

134

this chapter we address base-calling for the Illumina platform, the method is, in

principle, applicable to any other sequencing technology. Adaptation to a differ-

ent sequencing platform only requires re-designed score functions to encapsulate

error correction and alignment – and, thus, accommodate the different features

and error profiles of the variant system in a technologically extensible manner.

(a) Traditional re-sequencing pipeline

(b) Proposed re-sequencing pipeline

Figure 7.1: Block diagrams for re-sequencing pipelines: (a) open-loop (no feed-
back) and (b) closed-loop with feedback.

7.3 Source of Errors in Illumina Raw Sequenc-

ing Data

As reported previously in [24], there are four dominant sources of noise affecting

the intensities generated by Illumina:

1. Crosstalk: The intensity channels are not independent. This interdepen-

dence is due to the fact that the fluorescent markers for A, C and G, T emit

photons with similar wavelength, get excited by the same lasers and fluo-

rescent markers from one cycle can only be chemically partially removed

135

(“washed”) before the cycles for the next nucleotides (all performed in the

same flow cell). Figure 7.2 clearly shows this effect: calling the bases A

and G from their intensity channels does not pose a severe problem at least

for the first 40 cycles. In contrast, channels C and T appear hopelessly

disrupted soon after the start and within the first few cycles.

2. Fading: With successive cycles, the absolute intensity of light emitted from

the cluster of DNA strands diminishes because fluorescent markers are only

able to bind to fewer and fewer strands within the clusters. This produces

a low signal-to-noise ratio (SNR) as shown in figure 7.2. which worsens

precipitously with the cycle numbers – attributed primarily to polymerase

desynchronization and its low processivity.

3. Lagging (Phasing): Some strands in the clusters start to lag behind the

population, as in each cycle some of the polymerases fail to operate syn-

chronously, but then rejoin the other strands in subsequent cycles, whence

producing ambiguous intensity values. Eventually, the correct channel gets

obscured by the other wrong channel intensities, leading to wrong base-calls.

4. Leading (Pre-phasing): Some strands in the clusters start to lead ahead of

the population, which also causes ambiguous and incorrect channel intensity

values in a fashion analogous to lagging.

These noise factors dominate and affect the signal differently in different cy-

cles. In the first few cycles, crosstalk is the major source of base-call errors.

However, in later cycles fading, lagging and leading prevail. We have observed

136

20 40 60

0

500

1000

1500

2000

2500

in
te

ns
ity

 c
ha

nn
el

 A

cycle
20 40 60

0

500

1000

1500

in
te

ns
ity

 c
ha

nn
el

 C

cycle

20 40 60

0

1000

2000

3000

in
te

ns
ity

 c
ha

nn
el

 G

cycle
20 40 60

0

500

1000

1500

in
te

ns
ity

 c
ha

nn
el

 T

cycle

Figure 7.2: Statistics for high and low intensity levels depicted with their means
and standard deviations for four channels – one for each base B ∈ {A, C, G, T}. A
high intensity level [blue] (with a value above a threshold) in one of the channels
indicates that this base should be called at a given cycle. A low intensity level
[red] (below threshold) in a channel means that this base should not be called at a
given cycle. In a “good” set of intensities, it is expected that one channel is higher
than a threshold, while all other three are lower than it. The panels depict that
in later cycles the low and high intensities become increasingly indistinguishable,
which causes erroneous base-calling for distal positions.

that lagging often causes many false-positive insertions in the distal extending-

end of sequence reads. In later cycles, intensities measured in cycle k reflect

more and more what would have been the value in cycle (k − 1). This process

leads directly to “base-stuttering,” occurring much more frequently after some

threshold value for k, the cycle number. This dynamic can be modeled by a step

137

function appearing randomly but more frequently in later cycles, thus making

it extremely difficult to analyze. This effect has important implications for the

succeeding alignment step, since many popular short-read sequence-aligners can-

not align gapped sequence reads [56], [58]. We have also observed the effects of

leading on signal to noise ratio to be negligible in comparison to the other three

(crosstalk, fading and lagging).

7.4 TotalReCaller

TotalReCaller combines the knowledge from sequencers’ raw intensity data with

information from a reference genome (when available). In other words, it gener-

ates the most plausible m-base string (out of 4m possibilities) that is most likely

to have generated the channel intensity data, and also most likely to have orig-

inated at some location of the reference genome. Like SUTTA, TotalReCaller

tames the worst-case exponential complexity of the implementation by using a

beam search strategy strategy (an adaptation of the branch-and-bound method).

Specifically, this strategy is used to concurrently extend multiple high quality

reads that are immediately validated not only by the intensity signals but also

by the likely alignments to a reference genome (thus the genome providing a

weak prior to a Bayesian inference). This scheme builds on a rigorously defined

Bayesian score function that accounts for both — thereby, resulting in a single

score to quantify the quality of a given sequence read. In order to execute this

task, TotalReCaller implements four different components that are described in

detail in the following sections: (1) linear error model; (2) base-by-base sequence

138

alignment; (3) beam search read extension; and, finally, (4) score function.

7.4.1 Linear error model and filter

A simple linear model has been devised to correct errors resulting from crosstalk,

fading and cycle-dependent synchronous-lagging. The model is based on a cycle-

dependent transition matrix (thus dynamic) in order to filter the raw intensity

channels. The linear-algebraic model for crosstalk and fading is first derived and

then extended to include lagging. Let Ik = (Ik
A Ik

C Ik
G Ik

T)⊤ be the vector of

the four raw intensity channels. In order to model crosstalk in cycle k ∈ N,

we introduce the crosstalk matrix Ak ∈ R
4×4 and the crosstalk-free channels

Xk = (Xk
A Xk

C Xk
G Xk

T)⊤ ∈ R
4. We model their relationship simply by the

following formula:

Ik = Ak · Xk. (7.1)

Since a separate crosstalk matrix is computed for every cycle k, the intensities

are implicitly normalized, thus additionally accounting for fading.

Lagging is then modeled by introducing a dependency between the current

cycle and the previous cycle, resulting in:






Ik−1

Ik




 =






Ak−1 0

Υk Ak




 ·






Xk−1

Xk




 (7.2)

⇒






Xk−1

Xk




 =






Ak−1 0

Υk Ak






−1

︸ ︷︷ ︸

Gk

·






Ik−1

Ik




 , (7.3)

139

where Υk ∈ R
4×4 describes the coupling between Ik and Ik−1. A matrix inversion

results in a simple transition matrix Gk, which is then used to filter the raw

intensity channels. The elements of the matrices Υk and Ak are obtained by

statistical analysis of the intensities, using a library of correct reads similar to the

training sets used for the parameter estimation of the support vector machines

in Alta-Cyclic and Ibis. However, notice that for TotalReCaller this is not a

computationally expensive task since it only solves a simple linear system. Also,

notice that, while training data set is used here to simplify the learning phase of

TotalReCaller, it is not absolutely necessary for its operation, as TotalReCaller

can adaptively tune these parameters.

After applying the filter to the set of raw intensities (see figure 7.2), we were

able to significantly improve the quality of the intensity channels, as shown in

figure 7.3. The error model and filter could easily be extended to include leading

(pre-phasing). It was decided to refrain from including it in the current implemen-

tation, since it appeared to increase the computational costs without balancing

it by a further proportional improvement in the quality of intensity information.

With the intensity channels suitably filtered, we needed a metric to compare

the intensity channels among one another. For this purpose we focused on the

conditional probabilities Pk(XB | B) and Pk(XB | ¬B) with B ∈ {A, C, G, T}.

Pk(XB | B) denotes the conditional probability of the filtered intensity XB of

channel B, given that the correct base to call is base B, whereas Pk(XB | ¬B)

denotes the conditional probability of the filtered intensity XB, given that the

correct base to call is not base B. Since the filtered channels XB are independent

140

20 40 60
−1

0

1

2

in
te

ns
ity

 c
ha

nn
el

 A

cycle
20 40 60

−1

0

1

2

in
te

ns
ity

 c
ha

nn
el

 C

cycle

20 40 60
−1

0

1

2

in
te

ns
ity

 c
ha

nn
el

 G

cycle
20 40 60

−1

0

1

2

in
te

ns
ity

 c
ha

nn
el

 T
cycle

Figure 7.3: Filtered intensity channels and separation. Crosstalk and lagging are
corrected using a linear filter, developed here. The high and low intensity levels
are now cleanly separated for the first 60 cycles.

of each other, we can approximate these probabilities assuming that they are

normally distributed (with subscript k suppressed to avoid clutter),

XB | B ∼ N (µB, σB) and XB | ¬B ∼ N (µ¬B, σ¬B). (7.4)

That is:

Pk(XB | B) =
1√

2πσB

exp

(

−(XB − µB)2

2σ2
B

)

, (7.5)

Pk(XB | ¬B) =
1√

2πσ¬B

exp

(

−(XB − µ¬B)2

2σ2
¬B

)

. (7.6)

141

The means together with their standard deviations have already been presented in

figure 7.3, in order to show the workings of the linear error model and filter. Note

that although it is reasonable to assume XB | B to be normally distributed, it

seems less justifiable to take XB | ¬B to be normally distributed as well, because

the condition in this case is the disjunction of the three other bases. However,

we have experimentally computed the distribution for XB | ¬B and found out

that it follows a narrower distribution than the normal distribution. Because of

that, forcing XB | ¬B to be also normally distributed is actually less accurate.

Nevertheless, we decided to keep that assumption to design a score function that

would be simpler and faster to compute.

7.4.2 Base-by-base sequence alignment

The key idea of TotalReCaller is to perform alignment while the sequence is being

base-called. The partially generated sequences, which are grown one base at a

time, must be aligned back to the reference genome. To account for this com-

putationally intensive task, we designed an efficient base-by-base aligner that is

based on a suffix tree search algorithm. Inspired by the many Burrows-Wheeler

based short read sequence aligners (Bowtie [56], SOAP2 [59], BWA [58]), we con-

structed our base-by-base aligner essentially on the same principles, specifically

the Ferrangina-Manzini search algorithm [26] and the Burrows-Wheeler transfor-

mation [17]. Ferrangina and Manzini showed how the suffix tree of a reference

genome can be accessed through its Burrows-Wheeler transformation (BWT),

which does not require more memory than the reference genome itself. Thus

142

searching for a (partial) sequence read in a BWT reference can be performed

very efficiently. In addition, not only information about the existence but also

the number of occurrences in the given reference of the (partial) sequence read

can be computed concurrently.

Sequence Frequency fB P (B) P (¬B)
ACGACA 100 0.10 0.90
ACGACC 20 0.02 0.98
ACGACG 500 0.50 0.50
ACGACT 380 0.38 0.62

Table 7.1: Probabilities from FM search for each base preceded by “ACGAC”.

Note that sequence aligners usually only estimate whether and where a se-

quence read is located in a given reference. With alignment information for

base-calling, we are also able to use the alignment frequency of a partial sequence

read. For the example, suppose that the (partial) sequence “ACGAC” is con-

tained in a reference 1000 times. We can use the FM search to count how often

the sequences “ACGACB” with B ∈ {A, C, G, T} are contained in the reference,

from which we can then compute the probability Pk(B), that the next base (at

cycle k) in the sequence is B (similarly to the k-gram model used in natural

language analysis):

Pk(B) =
fB

fA + fC + fG + fT

, Pk(¬B) = 1 − P (B) (7.7)

Table 7.1 shows a complete example how the base probabilities are computed

using the FM search.

143

So far we have introduced the intensity filter and base-by-base alignment

components, what remains to be shown (in the next section) is how to combine

them in order to score and prune the candidate solutions.

7.4.3 Beam search read extension

Like SUTTA, TotalReCaller uses a Branch-and-Bound (specifically a variant

called beam search) strategy to combine intensity and alignment information by

sequentially constructing a tree of hypothetical sequences. In order to reduce the

computational, complexity the tree is only partially constructed and repeatedly

evaluated. At each cycle the tree grows in depth, with each node in the tree (not

just the leaves) representing a possible sequence. In order to be able to recover

the best sequence out of the Nk possible sequences, every node is scored according

to a Bayesian score function immediately upon creation. This score function com-

bines terms for intensity and alignment information and is described in the next

section. The maximally likely estimate for the correct sequence read(s) is thus

obtained by simply choosing the node with the (globally) highest score. Without

any pruning, the tree could grow exponentially in the number of cycles: at cycle

k, |Nk| = 4k sequence reads must be evaluated. Moreover, since asynchronous

lagging causes incorrect insertions into the sequence read, we need to consider

deletions as a 5th child, which means that a tree Nk, with |Nk| = 5k sequence

reads must be created and evaluated. Since TotalReCaller dynamically prunes

unpromising sequences based on the evaluation of the score function in a beam

search scheme [12], the worst-case complexity is rarely encountered in practice.

144

Note that the interesting special situations, where the exponential worst-case be-

havior would be exhibited, occur when the sequencer is extremely noisy and/or

when the reference is incorrect (or highly error-ridden), thus producing exponen-

tially many plausible hypothetical sequence reads – a judicious solution in these

cases would then involve terminating the sequence read at a smaller read-length

or rejecting it outright. The algorithm is described as a sequence of three con-

secutive steps that are repeated once for each cycle, as described in Algorithm 5.

Algorithm 5: TotalReCaller - beam-search pseudo code

Input: Set of intensities Ik and reference genome G
Output: Read sequence

repeat1

Branching: For each sequence in the solution space Nk−1 all four2

possible successor sequences are generated, resulting in the solution
space Nk (note that at this point Nk−1 ⊂ Nk);
Bounding: Each sequence in Nk is evaluated according to the score3

function g (combining intensity and alignment information);
Pruning: All but the best (highest score) l ∈ N sequences are pruned,4

thus reducing the size of Nk to |Nk| = l;
until no more cycles ;5

return Best sequence read according to g;6

Note that by reducing the computational complexity through bounding the

solution space, we are no longer guaranteed to generate the optimal solution.

However, in practice, the accuracy of the algorithm’s outputs seem to be only

slightly affected. Wherever necessary, the computational cost can be traded off

for higher accuracy by setting a parameter that controls the width of the beam

search.

145

7.4.4 Score functions

To complete the description of TotalReCaller, we need to define the score function

used to evaluate the quality of the candidate sequences in the tree. From Bayes’

theorem, it is possible to estimate the probability Pk that a specific base B ∈

{A, C, G, T} is indeed the correct base to call at cycle k, given the filtered intensity

vector Xk:

Pk(B | Xk) =
Pk(Xk | B)Pk(B)

Pk(Xk)
with B ∈ {A, C, G, T} (7.8)

=
Pk(Xk | B)Pk(B)

Pk(Xk | B)Pk(B) + Pk(Xk | ¬B)Pk(¬B)
(7.9)

=
1

1 + Pk(Xk |¬B)
Pk(Xk |B)

· Pk(¬B)
Pk(B)

(7.10)

Since for our purposes it is sufficient to have a quantitative measurement (not

a probability) to compare all different solutions to one another, we introduce a

simplified score function fscore which is based on Pk(B | Xk):

fscore = log

(
Pk(Xk | B)

Pk(Xk | ¬B)

)

︸ ︷︷ ︸

intensities (eqn. 7.5)

+walign · log

(
Pk(B)

Pk(¬B)

)

︸ ︷︷ ︸

alignment (eqn. 7.7)

(7.11)

The score function consists therefore of two parts, both of which can be computed

independently according to the sections discussing the intensity filter and the

base-by-base alignment algorithm. The weight walign ∈ [0, 1] permits a user-

defined control over the impact of the alignment on the overall score, thus enabling

the user to adjust the Bayesian bias for a particular application.

146

7.5 Base-Calling Results

Several approaches have been developed to improve the read quality of Illumina

reads. They use a variety of error models, statistical inference algorithms and

supervised learning methods. Currently there are six major base-callers for Il-

lumina sequencing machines (including TotalReCaller), which are presented in

table 7.2. In the following we compare the performance of these base-callers1

according to the standard metrics that have been used in the past: namely, base-

calling error rate, alignment rate and base-calling speed. Base-calling results for

TotalReCaller are presented with different weights on reference-alignment with

respect to intensity information. Three different datasets have been used for

comparison (listed in figure 7.3).

Name Institute Reference Technology

TotalReCaller New York University [62] Beam Search
Bustard Illumina n.a. Linear Model
Alta-Cyclic CSHL [24] SVM
BayesCall UC Berkley [42] Graphical model
Ibis Max Planck [51] SVM
Rolexa Universit de Lausanne [85] Probabilistic model

Table 7.2: List of available Base-callers for Illumina sequencing technology in-
cluding TotalreCaller.

7.5.1 Error rates

The base-calling error rate measures the quality per cycle (bp position) of the

sequence reads, produced by a given base-caller (see figure 7.4). In order to

1As we lacked the required hardware and software, we were unable to compare against
Alta-Cyclic.

147

Genome Genome size #Clusters #Cycles #Aligned Aligner Description
phiX ∼ 5.4kBp 11, 803, 171 78 87% BLAT One lane of a Genome

Analyzer I run.
E. coli ∼ 4.5MBp 35, 027, 442 125 65% BLAT The 2nd pair of a

paired-end Genome
Analyzer II run (one
lane).

poplar ∼ 420MBp 31, 445, 866 109 32% Bowtie The 1st pair of a
paired-end Genome
Analyzer II run (one
lane).

Table 7.3: Data sets used to evaluate and compare TotalReCaller’s performance
to its peers: phiX, E. coli and poplar.

generate error rates based on the same set of reads for each of the base-callers,

we aligned all Bustard reads to the respective reference genome in order to create

a set of “correct reads”. We then perform a base by base comparison between this

set of “correct reads” and the sequence reads created by each of the base-callers,

resulting in an error rate for each position (cycle) in a sequence read. Since we

used the output of Bustard to create the set of correct reads we introduced a

bias, favoring Bustard. For the small genomes, phiX and E. coli, we used the

aligner BLAT [46], which allows accurate, gapped alignment to create the set

of “correct reads” (see table 7.3). For the poplar dataset we used Bowtie [56]

to create the set of “correct reads”. We had to use Bowtie instead of BLAT in

order to properly handle the current draft of the poplar [99] genome2, which is

of relatively lower quality in comparison to E. coli and phiX, e.g. poplar consists

of many contigs (out of 2518) that have not yet been phased to a scaffold. The

low quality, in conjunction with the length and complex structure, of the poplar

genome results in an unusually large number of false positive alignments, which,

2Populus trichocarpa v2: http://www.phytozome.net/poplar Feb. 2011

148

when analyzed by a sensitive aligner, makes it impossible to create a valid set

of “correct reads.” Since Bowtie and other suffix tree based algorithms are in

general less sensitive than BLAST-like [2] alignment algorithms (e.g., they do

not allow gapped alignment), they produce fewer but, especially in case of a

“bad” reference genome, many more accurate sets of “correct reads.” The base-

calling error rates based on the reads produced by the base-callers and the set of

“correct reads” can be found in figure 7.4. Based on the previous discussion, it

is safe to conclude that the error rates for poplar dataset may be used only for a

qualitative (and not a quantitative) comparison.

10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

cycle

E
rr

or
 r

at
e

Bustard (Illumina)
BayesCall (Berkeley)
Ibis (MPG)
Rolexa (EPFL)
TotalReCaller w=1
TotalReCaller w=3
TotalReCaller w=5
TotalReCaller w=9

(a) PhiX

20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

cycle

E
rr

or
 r

at
e

Bustard (Illumina)
Ibis (MPG)
TotalReCaller w=1
TotalReCaller w=2
TotalReCaller w=3
TotalReCaller w=5
TotalReCaller w=9

(b) E. coli

20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

cycle
E

rr
or

 r
at

e

Bustard (Illumina)
Ibis (MPG)
TotalReCaller w=1
TotalReCaller w=3
TotalReCaller w=5
TotalReCaller w=7
TotalReCaller w=9

(c) Poplar

Figure 7.4: Sequence read error rates per cycle for each of the three datasets
(see table 7.3). In order to compute the error rates, the sequence reads, gen-
erated by each of the base-callers, were compared base-by-base (cycle-by-cycle)
to a corresponding “correct read”. As can be seen, sequence reads generated by
TotalReCaller have a significantly lower base calling error rate in comparison to
all other base callers. Furthermore, the error rate can be controlled by choosing
an alignment weight walign. Note also that reads produced by the GAIIx Illumina
machines are in general of higher quality than those generated by the older GAI
machines. The fluctuations in the poplar error rates are primarily due to the
poor quality of the poplar reference genome which led to a limited set of “cor-
rect reads”. It was not possible to present statistics for BayesCall and Rolex for
E. coli and poplar, since these base-callers do not support the newer Illumina file
formats (RTA pipeline).

149

Genome Base-caller ttraining tcalling alignment rate
Bustard - - 15.29%
Ibis ∼ 8h ∼ 2h 31.80%
BayesCall ∼ 50h ∼ 32h 32.66%
Rolexa ∼ 2h ∼ 90h 11.40%
TotalReCaller (w = 0.1) 40.50%
TotalReCaller (w = 0.3) 45.45%
TotalReCaller (w = 0.5)

∼ 1h ∼ 17h
49.57%

phiX

TotalReCaller (w = 0.9) 57.94%
Bustard - - 28.70%
Ibis ∼ 20h ∼ 10h 36.31%
TotalReCaller (w = 0.1) 46.45%
TotalReCaller (w = 0.2) 55.77%
TotalReCaller (w = 0.3) 64.37%
TotalReCaller (w = 0.5)

∼ 1h ∼ 28h
77.19%

E. coli

TotalReCaller (w = 0.9) 87.47%
Bustard - - 25.55%
Ibis ∼ 16h ∼ 9h 25.97%
TotalReCaller (w = 0.1) 25.60%
TotalReCaller (w = 0.3) 27.74%
TotalReCaller (w = 0.5) 29.83%
TotalReCaller (w = 0.7)

∼ 1.5h ∼ 23h
31.84%

poplar

TotalReCaller (w = 0.9) 33.62%

Table 7.4: Speed and alignment comparison. In the third column, “ttraining”
tabulates the approximate duration of the training phase, the parameter esti-
mation, for each of the base-callers. In the fourth column, “tcalling” tabulates
the duration of the actual base calling. In the last column, “alignment rate”
shows the percentage of how many of the reads, called by a specific base-caller,
could be aligned back to the reference genome using Bowtie [56]. As an exam-
ple, for E. coli after 1.5h of training TotalReCaller, with an alignment weight of
walign = 0.5, calls 35, 027, 442 reads with a length of 125BP in 28h hours, which
corresponds to 43BP

ms
. Out of these 3.5 · 107 reads, 77.19% could be aligned back

to the E. coli reference genome. Base-calling was performed on the datasets pre-
sented in table 7.3 utilizing a single CPU thread. No precise times are given, since
they vary depending on runtime parameters. In comparison to Ibis, Rolexa and
BayesCall, TotalReCaller uses a faster training phase. The relatively long base-
calling time for TotalReCaller can be accounted for by the time TotalReCaller
implicitly spends on genome-alignment while base-calling. For all three datasets,
it is shown that a bigger percentage of reads can be aligned to the reference, if
TotalReCaller’s strategy is used. Note also that the higher the alignment weight
walign, the more reads can be aligned.

150

7.5.2 Alignment rate and base-calling speed

The alignment rate (or mapping rate) describes how many reads produced by a

specific base-caller can be aligned back to the source reference genome. This rate

provides an important metric, because it quantifies how many of the estimated

reads possess good enough quality to permit high level genome analysis (such

as SNP detection and assembly). Of course, the alignment rate, similarly to the

base calling error rate, depends to large extent on the specific sequence alignment

tool that is used. In table 7.4 we present the alignment rates for the sequence

reads produced by the different base-callers for each of the three datasets. The

reads were aligned using Bowtie with conservative parameters (low sensitivity).

Table 7.4 also shows the approximate base-calling speed for each base-caller.

7.5.3 SNPs specificity and sensitivity

Notwithstanding TotalReCaller’s relative performance advantage in terms of error

and alignment rates, it may be questioned whether TotalReCaller’s bias due to

reference-based Bayesian prior is the source of this advantage, and could affect

(perhaps, adversely) its single nucleotide polymorphism (SNP) sensitivity and

specificity. Specifically, since TotalReCaller injects knowledge from a reference

genome into the base-calling process, it is possible that sequence reads at true

SNP-positions (containing information from positions where the reference genome

differs from the genome that is sequenced) are called incorrectly. Thus, it is vital

to examine what happens when a sequence read is called, if that sequence contains

one or more SNPs with respect to the reference genome. In order to assess

151

TotalReCaller’s bias toward the reference genome, particularly with respect to

reference-independent basecallers, we define two important statistics: Specificity

(SPCk) (also known as true negative rate, TNR) and Sensitivity (SNSk) (also

known as true positive rate, TPR) for each cycle k:

SPCk =
true negativesk

true negativesk + false positivesk

, (7.12)

SNSk =
true positivesk

true positivesk + false negativesk

(7.13)

These statistics are based on artificially SNP-inserted reference genomes. On

average we inserted one SNP every n bases randomly into each of the reference

genomes (see table 7.3), where n was chosen to be equal to the number of cycles

available for the given intensity data. Then the SNP-inserted genome was used

as a reference for TotalReCaller. Although all other base callers ignore side-

information, e.g., information in a reference genome, these same statistics can

be computed for all of them for comparison purposes. For those basecallers,

sensitivity and specificity depend only on their raw error rates.

Figure 7.5 shows the effect of the alignment on base-calling, as the weights

walign are varied for the E. Coli dataset. TotalReCaller’s specificity is higher in

comparison to all other base-callers for each of the presented alignment weights.

TotalReCaller’s sensitivity for a low alignment weight is however surpassed by Ibis

for the E. coli dataset. Increasing TotalReCaller’s alignment weight increases the

specificity and reduces the sensitivity. Considering the significant higher align-

152

ment rate of TotalReCaller (see table 7.4), the loss of sensitivity with increasing

waling is more than compensated.

20 40 60 80 100 120
0.8

0.85

0.9

0.95

1

cycle

S
N

P
 s

pe
ci

fic
ity

/T
N

R

Bustard (Illumina)
Ibis (MPG)
TotalReCaller w=1
TotalReCaller w=2
TotalReCaller w=3
TotalReCaller w=5
TotalReCaller w=9

(a) E. coli-SPC

20 40 60 80 100 120
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cycle

S
N

P
 s

en
si

tiv
ity

/T
P

R

Bustard (Illumina)
Ibis (MPG)
TotalReCaller w=1
TotalReCaller w=2
TotalReCaller w=3
TotalReCaller w=5
TotalReCaller w=9

(b) E. coli-SNS

Figure 7.5: SNP specificity (SPC) and sensitivity (SNS) for E. coli. These figures
show the effect of the alignment on base-calling, as the weights walign are varied.
SNP specificity (SPC) measures the rate at which a difference between a read
and its reference represents a SNP and not a base calling error. SNP sensitivity
(SNS) measures the rate of called SNPs with respect to all SNPs that should be
called.

7.6 Error Correction during Base-Calling

The general technique adopted for error correction by next-generation sequence

assemblers is based on k-mer frequency analysis. The basic idea is that, for

deep sequencing, the correct k-mers appear multiple times in the reads set, while

random sequencing errors produce k-mers with low frequency. For example, using

such frequencies, SOAPdenovo analyzes each read in the dataset to infer potential

erroneous sites of low-frequency k-mers. The impact of changing each erroneous

site to the other three allele types is then tested and changes are allowed only

153

if the new k-mer results in higher frequencies. Other well-known assemblers,

such as ALLPATH-LG and EULER-SR, use similar strategies. Since correcting

errors can significantly reduce the complexity of assembling the reads, standalone

software programs have been recently released that focus only on this task, e.g.,

Quake [45] and SHREC [89]. Although TotalReCaller was initially designed to

perform base-calling and alignment in a combined re-sequencing framework, its

range of applications goes beyond that. In this section we will show how it can

be used to correct sequencing errors even in de novo sequencing projects.

In addition to the intensities, TotalReCaller requires an input reference genome

to perform the base-calling. However, the reference genome does not need to be

the correct one or complete (gap-free). Even with a low quality draft genome, To-

talReCaller can significantly improve the quality of the reads during base-calling.

The draft genome plays the role of a prior knowledge in Bayesian inference. In

the specific case of genome sequences, the draft genome represents a more reli-

able vocabulary of longer words that can be used to correct the errors in the raw

intensities. Table 7.5 shows the number of perfect reads (no errors in alignment)

base-called by Bustard and TotalReCaller on the full E. coli dataset. Both the

absolute number and percentage of perfect reads generated by TotalReCaller is

higher then Bustard. Also note that this is true even when TotalReCaller uses

the draft genome created by SUTTA. Although the alignment rate for the first

mate improves only slightly, the number of perfect second mate is significantly

higher. This has a strong implication during the assembly process, since more

mates can be used to resolve repeat sequences in the genome.

154

Base-caller # perfect reads alignment rate
Bustard (1st mate) 13443953 54.82%
Bustard (2nd mate) 4855602 19.80%
Draft genome:
TotalReCaller (1st mate) 19412596 58.17%
TotalReCaller (2nd mate) 11226130 33.64%
Real genome:
TotalReCaller (1st mate) 19749991 59.18%
TotalReCaller (2nd mate) 11335611 33.97%

Table 7.5: Alignment rate for Bustard and TotalReCaller.

Unlike other sequence assemblers, SUTTA does not include any error cor-

rection preprocessing step. So we have designed the following pipeline to take

advantage of both SUTTA and TotalReCaller capabilities:

1. Draft Assembly: Using SUTTA (or any other sequence assembler) gen-

erate a draft assembly using the available reads.

2. Base-calling & Error correction: given the reads intensity files and

the draft assembly (generated in step 1), run TotalReCaller to generate a

new set of reads with higher accuracy.

3. Sequence Assembly: Run SUTTA on the new set of reads generated in

step 2 to create an improved assembly.

7.6.1 Assembly results

We have tested this pipeline on the Illumina E. coli dataset presented in table

7.3. Note that current Illumina software can filter the data by removing reads

that do not pass the GA analysis software called Failed_Chastity. To stress

155

test the assemblers on harder datasets, in this study we use the full output of the

machine, usually contained in the export file. This dataset consists of 49 million

125 bp long reads, for a total coverage 1320X. Since such an high coverage is not

typically available for larger genomes, we have subsampled only 100X coverage

for comparing the results.

Assembler #correct #errors #ctgs≥10K N50 Max Mean Cov. Cov.
(µ kbp) (kbp) (kbp) (kbp) (kbp) all (%) correct (%)

SUTTA (exp.) 339 49 (13.8) 147 (37.9%) 24.1 105.6 11.6 97.4 82.7
SUTTA (draft) 168 21 (20.9) 100 (52.9%) 54.6 221.5 24.1 98.2 88.6
SUTTA (ref.) 154 25 (31.4) 86 (48.0%) 71.7 141.6 25.4 98.2 81.3
SOAPdenovo (ctg) 245 80 (18.6) 52 (42.3%) 35.7 100.1 14.1 98.4 66.3
SOAPdenovo (scaf) 106 17 (99.6) 53 (45.3%) 117.6 312.5 37.1 99.3 61.9
ABySS 92 13 (80.9) 54 (49.5%) 134.4 312.5 40.7 102.9 79.7
Velvet 126 60 (32.1) 100 (53.8%) 54.8 148.8 24.5 98.5 56.9

Table 7.6: Assembly results (contigs) for E. coli dataset (100X 125bp reads from
one lane of Genome Analyzer II). A contig is defined to be correct if it aligns to
the reference genome along the whole length with at least 95% base similarity.

Table 7.6 shows a comparison of the assemblies obtained by SUTTA both

on the original read set (created by Bustard) and the error corrected set (base-

called by TotalReCaller). SUTTA’s performance significantly improves on the

new reads generated by TotalReCaller. For comparison, we have tested some of

the best assemblers for short read technology on the E. coli dataset, specifically

SOAPdenovo, ABySS and Velvet. The results are reported in table 7.6. Since the

reads are already 125 bp long, only contigs with size ≥ 200 have been considered

in the comparison. A contig is defined to be correct if it aligns to the reference

genome along the whole length with at least 95% base similarity. Inspecting

the results in the table it is clear that SOAPdenovo and ABySS are particularly

successful in assembling long contigs, in fact their N50 statistic is the highest.

However the assembly quality is inferior to SUTTA: if only correct contigs are

156

*160*37
*53

135*159*146*4415429*91*150*172137
140157*59130163*94*67

12915136
*49*1751741107843
*12313823170177*16222*14254
*40*28*97*16672
89*98

10214812214981
*109
70

*156173134*17850*48
*51139*1464*124256296
31155127145*58133

118*126*16930*86

55

*82*66
*4152422733
74
60*100*120*47

*93*147*56143*77*111*10124
115*103
*121*132*87
*131
152*4*84*45106
119*144*95

79
*63

*17668*3999
*92*73
*11461
*65*137*111218
38

10*5*141*161*4657*80*90
*153171*136*26167*83
16516876
75
20*21117

164104*916112*105
*128
*3435*69*158*19
*71*32125
1131088
*17*107
11685
15218618418718118017918218918818861853183

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000

Q
R
Y

gi|49175990|ref|NC_000913.2|

(a) SUTTA

*NODE_131_length_3123_cov_28.848223*NODE_84_length_12854_cov_29.739614*NODE_35_length_38340_cov_28.911112NODE_77_length_3236_cov_21.707355NODE_94_length_45893_cov_31.142092
*NODE_10_length_85735_cov_30.884130
*NODE_151_length_16626_cov_30.584387*NODE_111_length_1135_cov_244.862549NODE_6_length_7950_cov_32.619370*NODE_60_length_2587_cov_24.765366*NODE_129_length_9843_cov_28.331200*NODE_160_length_8419_cov_28.094547NODE_101_length_8276_cov_30.344007*NODE_184_length_3627_cov_29.062586NODE_173_length_2253_cov_31.166889*NODE_186_length_4072_cov_27.827848NODE_127_length_3916_cov_22.029877NODE_126_length_6631_cov_18.998642*NODE_153_length_5120_cov_33.173828*NODE_72_length_4128_cov_24.312742*NODE_146_length_14591_cov_27.590158*NODE_14_length_12313_cov_29.317389NODE_100_length_28510_cov_26.952719*NODE_159_length_23283_cov_27.682945*NODE_199_length_4285_cov_26.626137NODE_122_length_4874_cov_31.422445NODE_18_length_100458_cov_31.092905
*NODE_75_length_32255_cov_27.917439*NODE_23_length_41113_cov_28.441710
NODE_104_length_6610_cov_29.448259NODE_309_length_5101_cov_30.173496*NODE_195_length_260_cov_52.430771*NODE_53_length_26704_cov_27.908854*NODE_38_length_65222_cov_29.377157

*NODE_98_length_13307_cov_31.178402NODE_136_length_393_cov_27.801527NODE_45_length_41087_cov_29.988926NODE_343_length_1336_cov_19.241766*NODE_163_length_355_cov_49.664787NODE_165_length_978_cov_25.139059NODE_54_length_2559_cov_24.372021NODE_13_length_146_cov_83.863014NODE_247_length_340_cov_28.500000*NODE_137_length_5342_cov_28.476414NODE_95_length_37943_cov_29.820335*NODE_48_length_47778_cov_29.767591
*NODE_43_length_2512_cov_25.182325*NODE_49_length_78636_cov_28.137138
NODE_7_length_57371_cov_30.859144

*NODE_120_length_44067_cov_30.454126
*NODE_123_length_18044_cov_31.190258*NODE_139_length_2488_cov_28.054260NODE_121_length_16729_cov_30.904537*NODE_58_length_17507_cov_29.273491NODE_138_length_26246_cov_27.924675NODE_194_length_1517_cov_32.987476*NODE_279_length_181_cov_46.309391*NODE_17_length_23766_cov_29.765675*NODE_113_length_148294_cov_30.179873

*NODE_114_length_11804_cov_30.604542*NODE_140_length_12628_cov_30.878445*NODE_61_length_4908_cov_31.490219*NODE_70_length_19820_cov_29.741877*NODE_33_length_75508_cov_30.622517
NODE_115_length_35090_cov_30.236164*NODE_171_length_2192_cov_58.638229*NODE_280_length_33443_cov_29.491343*NODE_96_length_49570_cov_30.582933
NODE_188_length_7983_cov_30.651510NODE_203_length_3055_cov_22.074305NODE_342_length_28115_cov_29.774107*NODE_88_length_10105_cov_30.609203*NODE_9_length_54545_cov_31.040663
*NODE_90_length_6429_cov_31.194277*NODE_172_length_876_cov_33.234016NODE_89_length_14851_cov_28.617064NODE_143_length_11752_cov_31.914654NODE_36_length_45361_cov_29.003704

*NODE_50_length_103476_cov_30.629333

NODE_24_length_60828_cov_28.901722
*NODE_55_length_105530_cov_31.065033

*NODE_66_length_36160_cov_29.525055*NODE_167_length_50648_cov_30.499842
*NODE_31_length_1118_cov_389.014313*NODE_150_length_1646_cov_31.245443NODE_80_length_26625_cov_29.922480*NODE_47_length_4846_cov_33.341518NODE_76_length_67280_cov_28.669010
NODE_102_length_18445_cov_30.086906NODE_87_length_4734_cov_30.160542NODE_107_length_24769_cov_27.556786NODE_59_length_2932_cov_29.973738*NODE_141_length_2376_cov_26.238216NODE_200_length_4391_cov_27.425415NODE_73_length_59616_cov_29.851332
*NODE_51_length_12597_cov_29.077320*NODE_132_length_1711_cov_24.959673NODE_74_length_4061_cov_25.307806*NODE_246_length_191_cov_21.324608*NODE_63_length_48361_cov_30.953764
*NODE_29_length_38731_cov_29.176395*NODE_42_length_106573_cov_30.364679

NODE_46_length_11115_cov_29.736483NODE_11_length_28847_cov_30.099283*NODE_190_length_3290_cov_29.001520*NODE_1_length_60395_cov_28.764566
*NODE_149_length_10959_cov_29.348663NODE_5_length_106783_cov_29.105991

NODE_119_length_810_cov_211.151855*NODE_41_length_47675_cov_31.716393
NODE_27_length_61394_cov_28.075073
*NODE_81_length_6692_cov_26.793934*NODE_25_length_148816_cov_30.142969

*NODE_8_length_106154_cov_31.487028

*NODE_103_length_1315_cov_27.599239NODE_86_length_24822_cov_30.794214NODE_20_length_54808_cov_30.917219
*NODE_145_length_10488_cov_30.656654NODE_221_length_1524_cov_24.700130*NODE_44_length_40173_cov_29.395639NODE_67_length_30266_cov_30.585508NODE_28_length_24178_cov_29.565928NODE_32_length_71236_cov_31.788927

NODE_39_length_25803_cov_30.953726*NODE_358_length_31070_cov_30.940456NODE_268_length_324_cov_93.462959*NODE_108_length_41229_cov_34.506271
*NODE_21_length_73131_cov_30.296043
*NODE_12_length_39125_cov_29.592945*NODE_152_length_282_cov_268.400696NODE_147_length_312_cov_232.897430NODE_65_length_35133_cov_27.296103NODE_4_length_1336_cov_52.430389*NODE_157_length_3240_cov_28.379013NODE_243_length_180_cov_47.266666NODE_26_length_26837_cov_28.795469*NODE_180_length_13226_cov_30.086723*NODE_30_length_77597_cov_30.607563
*NODE_204_length_1884_cov_26.133759*NODE_130_length_11851_cov_26.462324*NODE_52_length_3364_cov_26.690546NODE_79_length_8439_cov_30.059368NODE_22_length_101905_cov_29.087248
*NODE_57_length_63514_cov_32.130444
NODE_15_length_46946_cov_30.064861

*NODE_37_length_29550_cov_30.256481*NODE_128_length_11332_cov_29.145958NODE_205_length_193_cov_29.455959*NODE_181_length_11087_cov_30.440786NODE_242_length_114242_cov_30.130302

*NODE_178_length_140_cov_238.028564NODE_231_length_4377_cov_32.588531*NODE_237_length_971_cov_72.409889*NODE_106_length_30793_cov_30.853636NODE_253_length_165_cov_227.969696NODE_16_length_30537_cov_29.645905NODE_3_length_30803_cov_30.542381*NODE_105_length_28416_cov_28.064894*NODE_64_length_12535_cov_27.934504*NODE_56_length_20125_cov_26.846012NODE_82_length_42808_cov_31.940689
*NODE_62_length_15014_cov_30.701078*NODE_2_length_58552_cov_30.185835
*NODE_19_length_45338_cov_30.422096
NODE_40_length_8005_cov_30.430481NODE_116_length_1040_cov_103.960579*NODE_164_length_3341_cov_30.360970NODE_71_length_30582_cov_30.925087NODE_78_length_28315_cov_29.900087*NODE_34_length_85957_cov_29.646788
NODE_270_length_153_cov_62.725491NODE_209_length_419_cov_45.661098NODE_252_length_306_cov_47.385620NODE_183_length_1285_cov_91.802338NODE_162_length_338_cov_59.464497NODE_85_length_539_cov_245.983307NODE_97_length_458_cov_293.694336NODE_332_length_178_cov_22.477528NODE_174_length_451_cov_249.895782NODE_179_length_200_cov_54.544998NODE_142_length_732_cov_172.954926NODE_83_length_1130_cov_217.483185NODE_210_length_145_cov_67.558624NODE_295_length_274_cov_19.996351NODE_168_length_1195_cov_147.441010NODE_298_length_171_cov_66.327484

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000

Q
R
Y

gi|49175990|ref|NC_000913.2|

(b) Velvet

C1636*scaffold36

*C1212C1282C968*C713*C1392*C1132C1040C1186C833*C773scaffold48*scaffold50*C1396C1608C1664C906scaffold44C930scaffold52*scaffold3
scaffold53*scaffold34

scaffold41*C1706*scaffold46scaffold27scaffold38*scaffold59
*scaffold16*C1094*scaffold37*scaffold22*C1156scaffold33C1054*scaffold2*C813C889scaffold10C944C785scaffold24

C1050C1194C1332C1002scaffold61
*scaffold23C1128scaffold64

*C1410scaffold39C1984
scaffold29scaffold31scaffold62
*scaffold51*C1584*scaffold13*C998*C1324*C1394*scaffold35

*C1626C1062scaffold5*C1538*C1348*scaffold55
C1510*C1556*C1414*scaffold26C1436*C1818*scaffold19

scaffold54

scaffold45
C1034*C1070C1192*C1592*C1912*scaffold57

*scaffold47

*C952*scaffold43C855*C1226scaffold11

*scaffold17*C924*scaffold7

C729*C1096*C1476C1232*scaffold1*C1432*C893*scaffold8

*scaffold42

scaffold56
scaffold21

*C954*scaffold32
*C1230C978*C787*C1952*scaffold58

*C984C1196*C1328C1000*scaffold60C1416scaffold20*C721*scaffold30*C1804*C1346scaffold28
C1504*scaffold9

*C1108*C1490C1374C1160*C1202C1116*C1112*C1144*scaffold40
*C1074*C1010C1480*C845C1004C1302C1182scaffold25
C857*C883*scaffold14

scaffold18*C1400*C1200*C827scaffold12*C1562*scaffold4C1008*scaffold63
C1060C1100*scaffold6

C1730C1310C1428*C1542scaffold49C1482*scaffold15

C719C1168C779C809C1110C1402C847C791C1024C916C881C1468C715C1208C1114C936C799C711C875C1308C1032C743C771C1102C707C901C1456C841C960C988C980C1118C942C781C1046C1052C1270C1172C1164C795C1058C1012C1146C1076C976C994C1508C1038C904C1234C1018C835C972C1042C1422C1572C1486C817C879C891C789C1366C831C1134C1016C747C819C958C1546C731C829C865C1450C765C1258C1082C705C759C982C803C1078C926C1086C912C823C839C733C751C1066C1176C869C922C1106C1484C1142C863C1464C1216C1174C1454C853C1370C974C1022C1426C950C1524C1092C1368C964C805C1150C1180C1154C775C970C753C903C717C777C1098C1170C741C737C1358C873C885C769C1068C1122C914C761C1028C1036C1030C986C1294C1204C887C1408C735C1280C1056C1158C877C996C992C745C1090C1126C1314C1006C948C739C1124C709C1334C1130C908C825C1104C793C1162C1470C807C843C859C763C928C783C837C1072C1210C1026C990C723C1044C1344C1266C1120C946C1284C962C899C1372C849C956C801C815C1140C811C1178C1088C1502C1228C867C861C1020C757C1274C749C1224C932C920C1516C727C1304C851C1166C1014C797C1362C1430C767C910C871C755C895C938C1406C1064C1148C966C1080C934C1512C1152C1548C1138C940

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000

Q
R
Y

gi|49175990|ref|NC_000913.2|

(c) SOAPdenovo

816803

*741*783781775*760*806*763*829839*804*798*825*824*768773*747

*800802833842*828
837*118*847844684*808809852275*754750

*801
*851

*786
*787*836*835
*846*771765762
*850*517810*778
*843*769772

*805
*832
826*770*831*799
*830

854

817

*749*591*758755*853

*838

*766
*827

834
334525*331756*408823796

807849*780812*751*682*48*630*14370249811*743744
*845*559779*820

813759*785776*822
790*841*782*777774*821

757524745*795794797840

*767

*761764

31674260678922412474026639678445136788
4662521928483812454694791

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000

Q
R
Y

gi|49175990|ref|NC_000913.2|

(d) ABySS

Figure 7.6: Dot plots for the E.coli assemblies produced by SUTTA, Velvet,
SOAPdenovo and ABySS. The horizontal lines indicate the boundary between
assembled contigs represented on the y axis.

aligned to the reference genome, the total coverage of SOAPdenovo and ABySS

are respectively 66.3% and 61.9%, while SUTTA achieve a coverage ≥ 80% in

all instances. This might be due to the different assembly strategy adopted:

both SOAPdenovo and ABySS first create a set of contig using solely the read

sequences and only later, in a second step, extend and merge the contigs using

the mate-pair information; SUTTA instead assembles the contigs by concurrently

optimizing mate-pairs constraints and sequence quality. Another source for the

different behavior could be found in the error correction technique: SOAPdenovo

157

uses the k-mer analysis to correct the reads but, since this process is not error-

free, it might be introducing additional errors in the set of reads. Velvet’s contigs

instead are similar in size to SUTTA’s but the coverage achieved with the correct

contigs is only 56.9%.

Figure 7.6 shows the dotplot alignments of the contigs generated by the four

assemblers using the MUMmer [53] software. All the contigs find a proper align-

ment to the reference genome, however notice that MUMmer generates the best

possible alignment for each contig (even if the alignment similarity is ≤ 95%).

So in this case, when all the contigs have already a fairly high quality, this kind

of alignment plots becomes less informative.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5000 10000 15000 20000 25000

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Feature-Response curve

SUTTA
Velvet

Figure 7.7: Feature-Response curve comparison for SUTTA and Velvet on the
100X E.coli data set.

More explanatory information can be gleaned from the Feature-Response

158

curve analysis presented in figure 7.7. SUTTA clearly outperforms Velvet as-

sembly in quality. These results are in accordance with the coverage analysis

presented in table 7.6. We were unable to compute the Feature-Response curve

for the other two assemblers, SOAPdenovo and ABySS, because their output

could not be converted into AMOS format. However, based on the previous cov-

erage in table 7.6, it is fair to presume that the results would not have significantly

changed.

159

Conclusion

Sequence assembly accuracy has become particularly important in: (1) genome-

wide association studies, (2) detecting new polymorphisms, and (3) finding rare

and de novo mutations. New sequencing technologies have reduced cost and in-

creased the throughput. However, they have sacrificed read length and accuracy

by allowing more single nucleotide (base-calling) and indel (e.g., due to homo-

polymer) errors. Overcoming these difficulties without paying for high compu-

tational cost requires (a) better algorithmic frameworks (not greedy), (b) being

able to adapt to new and combined hybrid technologies (allowing significantly

larger coverages and auxiliary long rage information) and (c) prudent experimen-

tal designs.

This dissertation has presented a novel assembly algorithm, SUTTA, that has

been designed to satisfy these goals as it exploits many new algorithmic ideas.

Challenging the popular intuition, SUTTA enables “fast” global optimization

of the WGSA problem by taming the complexity using the branch-and-bound

method. The resulting assembly paradigm gives the first priority to accuracy;

secondly, it employs judicious experiment design concurrently (using long range

information) to validate the results; and finally, it achieves computational ef-

160

ficiency by adaptive allocation of the resources. Because of the generality of

the proposed approach, SUTTA has the potential to adapt to future sequencing

technologies without major changes to its infrastructure: technology-dependent

features can be encapsulated into the lookahead procedure and well-chosen score

functions. Note that SUTTA also uses heuristics and has certain assumptions

regarding consistent coverage levels, well behaved mates, reducing memory re-

quirements (keeping the queue size small), resolving dead-ends and bubbles, etc.

However these tools are plugged into a more general and flexible branch-and-

bound (B&B) framework (similar to the one successfully applied to TSP and

SAT problems) used to solve the full sequence assembly problem.

Nonetheless, SUTTA is still in its embryonic stage and has yet to achieve

its full potential. In particular, it remains to be practically demonstrated that

SUTTA can assemble a human haplotypic genome of any individual using single-

molecule (optical) maps of moderate coverage (single molecules from only a hand-

ful of cells) rapidly and cheaply – a goal that has remained elusive to genomics

research thus far. To achieve this goal we are planning several extensions of the

SUTTA framework: (1) additional targeted error correction and local optimiza-

tion routines to improve the quality results for any specific short reads technology,

(2) software re-engineering to scale to large genomes, and (3) finally integration

of long-range map data (e.g., optical maps) to concurrently validate and assemble

in a dovetailing fashion.

A recent article entitled “Revolution Postponed” in Scientific American [31]

commented “The Human Genome Project has failed so far to produce the med-

161

ical miracles that scientists promised. Biologists are now divided over what, if

anything, went wrong...”. And yet, excitement over the rapid improvements in

biochemistry (pyrosequencing, sequencing by synthesis, etc.) and sensing (zeroth-

order waveguides, nanopores, etc.) has now pervaded the field, as newer and

newer sequencing platforms have started mass-migration into laboratories. Thus,

biologists stand at a cross-road, pondering over the question of how to tackle the

challenges of large-scale genomics with the high-throughput next-gen sequencing

platforms. One may ask: Do biologists possess correct reference sequence(s)? If

not, how should they be improved? How important are haplotypes? Does it suf-

fice to impute the haplotype-phasing from population? How much information

is captured by the known genetic variants (e.g., SNPs and CNVs)? How does

one find the de novo mutations and their effects on various complex traits? Can

exon-sequencing be sufficiently informative?

Central to all these challenges is the second problem we have addressed in

this thesis: namely, how correct are the existing sequence assemblers for mak-

ing reference genome sequences? How good are the assumptions they are built

upon? Unfortunately, we have discovered that the quality and performance of the

existing assemblers varies dramatically. The standard metrics used to compare

assemblers for the last ten years emphasized contig size while poorly captur-

ing the assembly quality. For these reasons, we have developed a new metric,

Feature-Response curve (FRC), to compare assemblers and assemblies that more

satisfactorily captures the trade-off between contigs’ size and quality. This metric

shares many similarities with the receiver operating characteristic curve widely

162

used in medicine, radiology, machine learning and other areas for many decades.

Moreover the FRC does not require any reference sequence (except an estimate

of the genome size) to be used for validation, thus making it a very useful tool

in de novo sequencing projects. Furthermore the inspection of separate FRCs for

each feature type enables to scrutinize the relative strengths and weaknesses of

each assembler.

Note that although in this thesis the aim has been to test and compare as

many de novo sequence assemblers and covering known assembly paradigms as

exhaustively as possible, in a fast evolving field such as this, this goal has not been

completely met — some of the assemblers listed in table 3.1 were only released

very recently, and not early enough to be included in the statistical comparison.

It is hoped that the community of researchers interested in sequence assembly

algorithms will close this gap with the FRC software, which is now available as

part of the AMOS open-source consortium.

The third and final topic of this dissertation has been the introduction of a

new Base-Caller, TotalReCaller, that yields better quality sequence reads, SNP-

calls, variant detection, etc., as well as an alignment at the best possible location

in the reference genome. In the same spirit as SUTTA, TotalReCaller is based

on global optimization of a Bayesian score function (combining a linear error

model for the raw intensity and Burrows-Wheeler transform based alignment)

using an efficient branch-and-bound approach. TotalReCaller and SUTTA have

been integrated into a full pipeline (from base-calling to assembly) that achieves

competitive performance compared to the state-of-the-art assemblers for next-

163

generation technology.

Returning to our earlier concerns, and the quandaries of computational biolo-

gists, biotechnologists also need to reflect on related issues: Given the unavoidable

computational complexity burden of assembly, how do we best design the se-

quencing platforms? There are many parameters that characterize a sequencing

platform: read-length, base-call-errors, homopolymer-length, throughput, cost,

latency, augmentation with mate-pairs, scaffolding, long-range information, etc.

And not all can be addressed equally well in all the platforms. The history of

sequencing technology has been a random-walk in this complex design-space. To

speed up the classical Sanger sequencing, while increasing throughput, ten years

ago, engineers focused on effects of increased electric field, Joule-heating, calibrat-

ing with smaller amount of materials, etc., as was done with multi-lane capillary-

sequencers. The next improvement came from pyro-sequencing or ligation-based

sequencing carried out synchronously using small number of clonal copies of DNA

fragments, following bridge or emulsion PCR. However, since it was difficult to

keep the reactions synchronized (with confounding leading, lagging and fading

reactions), the reads shortened and became more error-prone — somewhat, com-

pensated by higher depth of coverage. To avoid the synchronization problem, it

was necessary to go to a single (genomic DNA) molecule technology, in which

either the molecules are kept fixed and sensing mobile (optical mapping, opti-

cal sequencing, Heliscope sequencer, AFM-based mapping, SMASH, etc.) or the

molecules mobile and sensing fixed (PacificBioscienes, nanopores, etc.). How-

ever, the single-molecule technologies face the problem of mismatched speed of

164

the mobile molecules or mobile sensors and the resulting resolution. For the time

being, low-resolution map technology (e.g., optical restriction maps) for very long

immobile molecules points to the most profitable avenue. If one were to spec-

ulate what the next step should be, as was done by Schwartz and Waterman

[90], one may “project that over the next two years, reference genomes will be

constructed using new algorithms combining long-range physical maps with volu-

minous Gen-2/3 datasets. In this regard, the Optical Mapping System constructs

genome-wide ordered restriction maps from individual (∼ 500 kbp) genomic DNA

molecules” [9, 65, 4, 5, 6, 3, 74]. Among all the assemblers examined in this thesis,

SUTTA appears to be best suited for such a strategy.

165

Appendix A

This appendix contains the pseudo-code for the subroutines used in Algorithm 3.

Note that for the sake of a clear exposition we give only a high level description

of the algorithms while most of the implementation details and optimizations are

omitted. The following subroutines are also used in the pseudo-code:

isSuffix(x, y): returns true if the suffix of x overlaps with y

Consistent(x, y): checks the consistency property between reads x and y ac-

cording to the definition 3 in chapter 2.

checkTransitivity(x, y, z): checks if there is a transitivity relation between reads

x, y and z.

Lookaheadde(x, y, Wde): returns the maximum depth of the lookahead tree cre-

ated starting from node/read y with ancestor x. The local tree is constructed

using the Branch-and-Bound strategy similarly to the “Node expansion” routine

described in Algorithm 3 in chapter 4, however to avoid recursion, dead-end,

bubble and mate-pair pruning are not performed during the construction.

166

Converge(x, y): return true if the path constructed starting from nodes x and

y converges after at most Wbb steps.

Lookaheadbb(x, y, Wbb): returns the depth of the tree constructed starting from

node y with ancestor x.

Lookaheadmp(x, y, Wmp): computes the local tree starting from node y with

ancestor x of maximum depth Wmp and returns the score of the best path (highest

score). Path’s score is computed according to the mate-pair score defined in

equations (4.5) and (4.6).

167

Algorithm 6: Extensions

Input: Read/Node r to extend
Output: Set of reads/nodes E that can be extended

R := getReads(r); /* Set of reads overlapping with r */1

for (j=1 to |R|) do2

if (¬isUsed(rj)) then3

if (isRoot(r)) then4

if (leftTree ∧ ¬isSuffix(rj , r) ‖ (rightTree ∧ isSuffix(rj, r) then5

E := E ∪ {rj};6

end7

if (leftTree ∧ isSuffix(rj, r) ‖ (rightTree ∧ ¬isSuffix(rj , r) then8

E := E ∪ {rj};9

end10

else11

/* r is not the root node */

ri := ParentNode(rj);12

if (Consistent(ri, rj)) then13

E := E ∪ {rj}; /* rj is a possible extension */14

end15

end16

end17

end18

return E ;19

168

Algorithm 7: Transitivity

Input: Set of reads/nodes E , Read/Node r to extend
Output: Set of reads/nodes E (1) after removing transitivity between

siblings

for (i=1 to |E|) do1

for (j=i+1 to |E|) do2

if (checkTransitivity(r, ri, rj)) then3

E := E \ {rj};4

end5

end6

end7

E (1) := E8

return E (1);9

Algorithm 8: DeadEnds

Input: Set of reads/nodes E (1), Read/Node r to extend, max depth Wde

Output: Set of reads/nodes E (2) after removing dead-ends

for (j=1 to |E (1)|) do1

d := Lookaheadde(r, rj , Wde);2

if (d ≤ Wde) then3

E (1) := E (1) \ {rj};4

end5

end6

E (2) := E (1)
7

return E (2);8

169

Algorithm 9: Bubbles

Input: Set of reads/nodes E (2), Read/Node r to extend, max depth Wbb

Output: Set of reads/nodes E (4) after removing bubbles

for (i=1 to |E (2)|) do1

for (j=i+1 to |E|(2)) do2

if (Converge(ri, rj , Wbb)) then3

d1 := Lookaheadbb(r, ri, Wbb);4

d2 := Lookaheadbb(r, rj , Wbb);5

if (d1 < d2) then6

E (2) := E (2) \ {ri};7

else8

E (2) := E (2) \ {rj};9

end10

end11

end12

end13

E (3) := E (2)
14

return E (3);15

170

Algorithm 10: MatePairs

Input: Set of reads/nodes E (3), Read/Node r to extend, max depth Wmp

Output: Set of reads/nodes E (4) after removing low mate-pair scoring
extensions

for (i=1 to |E (3)|) do1

for (j=i+1 to |E|(3)) do2

s1 := Lookaheadmp(r, ri, Wmp);3

s2 := Lookaheadmp(r, rj, Wmp);4

if (s1 > s2) then5

E (2) := E (2) \ {ri};6

end7

if (s1 < s2) then8

E (2) := E (2) \ {rj};9

else10

/* Do nothing */

end11

end12

end13

E (4) := E (3)
14

return E (4);15

171

Appendix B

The results in Appendix B are organized in two main sections:

Long Reads

1. No Mate-Pairs constraints

(a) Brucella suis

(b) Staphylococcus epidermidis

(c) Wolbachia Sp.

(d) Chromosome Y

2. With Mate-Pairs constraints

(a) Brucella suis

(b) Staphylococcus epidermidis

(c) Wolbachia sp.

(d) Chromosome Y

Short Reads

172

1. With Mate-Pairs constraints

(a) Escherichia coli

For each genome we report the Feature-Response curves (FRC) cumulative

over all the features, the FRCs for each feature type, and the dot plot alignments

of the set of contigs generated by each assembler computed using the MUMmer

package. For the short read E. coli data, only Velvet is used in the comparison

since it is the only short read assembler whose output can be converted into an

AMOS bank for validation. For the same reason Euler is excluded from the dot

plots for long reads. The mis-assembly FRC is computed using the mis-assembly

feature which, according to the amosvalidate description, is obtained by applying

a feature combiner that collects all of the evidence for a mis-assembly and outputs

regions with multiple mis-assembly features when present at the same region.

Note that the mis-assembly feature is not used in computing the FRC curve.

Finally note that when the number of features of a specific type is 0 for each

contig in the set, the FRC reduces to a single point. Although not all the curves

are equally informative, for the sake of completeness of exposition, we present all

the FRCs.

173

Long Reads

No Mate-Pairs constraints

Brucella suis

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000 1200 1400 1600 1800

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Feature-Response curve (no mate-pairs)

SUTTA
Minimus

Phrap
TIGR

PCAP

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000 1200 1400 1600

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Matepair Feature-Response curve (no mate-pairs)

SUTTA
Minimus

Phrap
TIGR

PCAP
 0

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

 0 100 200 300 400 500 600 700

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Polymorphism Feature-Response curve (no mate-pairs)

SUTTA
Minimus

Phrap
TIGR

PCAP

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 0.5 1 1.5 2 2.5 3

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Coverage Feature-Response curve (no mate-pairs)

SUTTA
Minimus

Phrap
TIGR

PCAP
 2

 4

 6

 8

 10

 12

 14

-1 -0.5 0 0.5 1

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Kmer Feature-Response curve (no mate-pairs)

SUTTA
Minimus

Phrap
TIGR

PCAP

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Breakpoint Feature-Response curve (no mate-pairs)

SUTTA
Minimus

Phrap
TIGR

PCAP
 0

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

 0 50 100 150 200 250 300

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Mis-assembly Feature-Response curve (no mate-pairs)

SUTTA
Minimus

Phrap
TIGR

PCAP

Figure 8: Feature-Response curves by feature type for Brucella suis without
mate-pair constraints.

174

*45
7383*94*127*119*33152161108
120*157*16796*70

*15997*95
*86
173*35
42
103*32

165146199*160*1962826
*50
1231562582
*11106*1

*1646091
37
67*11013864
7*182*14*122*29

107*6871170*6516
7546
*3*51134*78*1358093*133*58188*88*24
203191*12812
*49118*5610

*14040
*183*172*687*436112513190*4

2
*111174*166*3134
7498130*124*143*13938
*4418
*39*59*154*100101195*5
*15

*1164727*137*41
36

*114*117*62*169*129*15513*11312114420
16392
*9

48
*5772

*109*104*115*158*150126*6381
*177779
85105*2221*89*84
19

*151*54
*14553
52*23
1537666
*9969
1321628

*11230
*102*17155
141142147148149168175176177178179180181184185186187189190192193194197198200201202136

A
E
0
1
4
2
9
1

A
E
0
1
4
2
9
2

Q
R
Y

REF

(a) Minimus

36
52

*45

*2738
*49

48

*54

51

2935
*50

33
*2834
*37
*3040
3146

*42

*3247

53

39
44

*43

41

2021222324252612310411512613714815916171819

A
E
0
1
4
2
9
1

A
E
0
1
4
2
9
2

Q
R
Y

REF

(b) PHRAP

Contig10
Contig217*Contig176*Contig215Contig167*Contig6*Contig12Contig50*Contig18Contig138*Contig27Contig226*Contig201Contig144Contig61
Contig147Contig173*Contig57
*Contig83*Contig75*Contig220*Contig141Contig192
*Contig65

*Contig190*Contig129*Contig136Contig128*Contig135Contig1Contig187Contig134*Contig188*Contig23Contig43*Contig67Contig68*Contig183
Contig117Contig145Contig118*Contig210*Contig223Contig133*Contig44Contig182Contig107Contig103Contig63Contig99*Contig156
Contig172*Contig109Contig178Contig17Contig77Contig59Contig32Contig78*Contig206

Contig209*Contig14Contig228Contig42*Contig216Contig97*Contig21Contig41*Contig204
Contig152*Contig211*Contig146*Contig8*Contig108Contig196*Contig195*Contig137*Contig82*Contig80*Contig20Contig121Contig102*Contig232Contig85*Contig100*Contig127*Contig81
*Contig54Contig88*Contig53Contig87Contig91
Contig15Contig16Contig36*Contig198*Contig139Contig231Contig163*Contig123Contig79*Contig113*Contig153Contig98Contig89

*Contig179Contig116*Contig142Contig157*Contig74*Contig154*Contig7*Contig73Contig218Contig29*Contig64Contig214*Contig166*Contig62*Contig24Contig40
*Contig180Contig175*Contig101*Contig155Contig181
Contig219*Contig47Contig45*Contig130Contig46Contig164

*Contig230Contig132*Contig93*Contig213Contig69*Contig120Contig160*Contig200Contig110Contig72*Contig197*Contig37Contig52Contig38*Contig131Contig58Contig186Contig150Contig106*Contig143Contig149*Contig86Contig92Contig5
Contig122Contig224*Contig4*Contig174*Contig96*Contig11*Contig161*Contig125
Contig95Contig158*Contig189*Contig205Contig227*Contig84*Contig28*Contig202*Contig193*Contig159*Contig194Contig9Contig60Contig51Contig225Contig94*Contig177Contig105Contig70*Contig90*Contig115*Contig126*Contig3

*Contig30*Contig104*Contig212

Contig13*Contig22Contig26*Contig236*Contig191
Contig56Contig114*Contig71*Contig229*Contig221Contig184Contig171*Contig207Contig112Contig31*Contig170*Contig148*Contig124*Contig168Contig234*Contig66*Contig235*Contig25Contig39

Contig111*Contig165Contig222*Contig169Contig76
Contig233Contig199Contig208*Contig151
*Contig35Contig33*Contig34
*Contig49Contig2*Contig203*Contig162
Contig140*Contig119Contig238Contig48Contig185Contig237Contig19Contig55

A
E
0
1
4
2
9
1

A
E
0
1
4
2
9
2

Q
R
Y

REF

(c) Euler

*16
31*56
51
14
*54
*47

*81*78*6870*6

49

*13
*18
*55
24*48

45

19*50

15
60
*77*5

*26*6176
62*27*37*32*67*4

*7357
79*20*7211
66*8
653

*33*25*3610
*58
*6430
7569*12
*9
*71*297

*53
46

17
59
22*2

*7421
1

*52
2328
346380
448435873941868882834042853843

A
E
0
1
4
2
9
1

A
E
0
1
4
2
9
2

Q
R
Y

REF

(d) PCAP

8
24
3728

*36
*3

50*20
*2

4541
18
*16

6
*10

405
4617
*5313

34
*4726
*25

1235
*14*51*19

42*48*4923

29
*27*52*1

54*9
31
21
7

*32
44
39*22
11

*55*4
3338
*4330
*15
575856

A
E
0
1
4
2
9
1

*
A
E
0
1
4
2
9
2

Q
R
Y

REF

(e) SUTTA

64
*50
27*44

*2
5167*59
*92*96
101*80

*10

*12*77*62
*10373

94*46
58

*89
*66*65*55
7530
14*23
8341

916*98*10643
5345

*13
*61*2169108*63*57
28*84

*10099*10279
20

*9370
*49*90
52
*729*54
32
7497
16
88*35*85*1
*3*104

76*4281
*82
*8626

8*378739

*68
45*56
*29
*9578
*71*33

381051074047481171517181922242560313436

A
E
0
1
4
2
9
1

A
E
0
1
4
2
9
2

Q
R
Y

REF

(f) TIGR

Figure 9: Dot plots for Brucella suis (no mate-pairs). Assemblies produced
by Minimus, PHRAP, Euler, PCAP, SUTTA and TIGR. The horizontal lines
indicate the boundary between assembled contigs represented on the y axis.

175

Staphylococcus epidermidis

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Feature-Response curve (no mate-pairs)

SUTTA
Minimus
PHRAP

TIGR
PCAP

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Matepairs Feature-Response curve (no mate-pairs)

SUTTA
Minimus

Phrap
TIGR

PCAP
 0

 20

 40

 60

 80

 100

 120

 0 100 200 300 400 500 600 700

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Polymorphism Feature-Response curve (no mate-pairs)

SUTTA
Minimus

Phrap
TIGR

PCAP

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Coverage Feature-Response curve (no mate-pairs)

SUTTA
Minimus

Phrap
TIGR

PCAP
 0

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

 0 5 10 15 20 25 30

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Kmer Feature-Response curve (no mate-pairs)

SUTTA
Minimus

Phrap
TIGR

PCAP

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

 0 20 40 60 80 100 120

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Breakpoint Feature-Response curve (no mate-pairs)

SUTTA
Minimus

Phrap
TIGR

PCAP
 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200 250 300 350 400 450

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Mis-assembly Feature-Response curve (no mate-pairs)

SUTTA
Minimus

Phrap
TIGR

PCAP

Figure 10: Feature-Response curves by feature type for Staphylococcus epider-
midis without mate-pair constraints.

176

62
77*14459

*277219*383*129371397133*192326*189395*2841828036
*154208261*378*139140*209*105*178*7436881*137155
85364295*175*322*10*136*18

*186*8740296*16
47*35524617482274354102*103156*253*28743*17793*245*22339142*151*243*1416955107*11193*7913

*14965
*145*8629
*98
370310*16214351*717248*15520213*152*205231*19

33*2
*164*58*372*1101
*198163*17160*120134194*234*34418156
*2283*327*229*390153*789*18776*125202227233183242*34
99386*157104*66*367228*2726

*207353199*388*131*329352362*159*16061*167112*17
*416421*224*24185*106*90*63*373126842
4210*323308*97*226*190*1668467*196*257*36623

*184*169170115*269*215294*331*12852*95*14*3015010035849
*70*318*130113241*6

*168161*250*9112778
343*54*279*158*75*288298*119*13253126180*13550*116239*39832*123204220335109*191*338337*101122*11731179*235*25*124173*111*4544138248129228*96*232*883546*94*377*200*203*165572112122142162172181461471482212222253003013023032303043053063073092362372383113132403143153163172441723192472491763203213242513252522543282552562582591884004014024033304044053324063332604073344082624093362632642653392662671952681974104114124133404143414153424162704172714183452724193462733473482752763492784204214224233504243514252802812823562833572853592862893603613632902913652922933692972993733743753763793803813823833843853873893913923933947339639910889114118121201206

S
_
e
p
i
d
e
r
m
i
d
i
s
_
R
P
6
2
A
_
c
h
r
o
m
s
o
m
e

S
_
e
p
i
d
e
r
m
i
d
i
s
_
R
P
6
2
A
_
p
l
a
s
m
i
d

Q
R
Y

REF

(a) Minimus

80

*70
51*5081

*60*82

*85

75

73
*71
*79

69
53*78

*6157*72

67*76
83

77

*6586

*59*74
*84

*58*6466*68*633738394041424344454647484912310411512613
7148159161718195254555620212223242526272829623031
3233343536

S
_
e
p
i
d
e
r
m
i
d
i
s
_
R
P
6
2
A
_
c
h
r
o
m
s
o
m
e

S
_
e
p
i
d
e
r
m
i
d
i
s
_
R
P
6
2
A
_
p
l
a
s
m
i
d

Q
R
Y

REF

(b) PHRAP

*Contig62

Contig5
Contig3Contig4*Contig37

*Contig23Contig49

Contig17
*Contig46

*Contig21*Contig40Contig47Contig20
Contig9*Contig15

*Contig100*Contig106
*Contig91
*Contig92
Contig109Contig82*Contig55
Contig12

*Contig45Contig19Contig76Contig77

*Contig105
*Contig89*Contig71Contig69
Contig68Contig26*Contig8Contig52
Contig96*Contig16Contig51*Contig1

*Contig74*Contig32
*Contig95*Contig98*Contig104*Contig84Contig99Contig93Contig83Contig90*Contig110Contig101*Contig35Contig30Contig10Contig39*Contig94*Contig102*Contig6

Contig60
*Contig44*Contig2
Contig61Contig103

*Contig66
*Contig18*Contig11

Contig54Contig80*Contig88Contig107
*Contig79
*Contig67Contig65
*Contig36
Contig31Contig70

*Contig59
Contig57Contig73

*Contig41Contig43Contig50
Contig97*Contig108Contig72*Contig58*Contig42*Contig28Contig24Contig78*Contig29Contig38
Contig33*Contig34Contig115Contig27Contig81Contig85Contig63Contig64Contig7Contig86Contig14Contig113Contig22Contig114Contig87Contig53Contig75Contig48Contig116Contig25Contig56Contig111Contig112Contig13

S
_
e
p
i
d
e
r
m
i
d
i
s
_
R
P
6
2
A
_
c
h
r
o
m
s
o
m
e

S
_
e
p
i
d
e
r
m
i
d
i
s
_
R
P
6
2
A
_
p
l
a
s
m
i
d

Q
R
Y

REF

(c) Euler

*3

67
*9743*80*25*21*60

*73*4

87*56

71*102*7418*64
*63
*44*59

5

*62

*2011
2

199
12

*68
*8284*65
*796

28*852224*75*76*23*7213
15*10
14

*58

3161

8
1

*66
697
57

*17*7016333290269955279510810992103893591781074893771062950394181521014586548830100834049104534246105963694514738983437

S
_
e
p
i
d
e
r
m
i
d
i
s
_
R
P
6
2
A
_
c
h
r
o
m
s
o
m
e

S
_
e
p
i
d
e
r
m
i
d
i
s
_
R
P
6
2
A
_
p
l
a
s
m
i
d

Q
R
Y

REF

(d) PCAP

*3

484039*20
44294

*317

*3032
8

*9

*411

*12

2

26
*27
13

*3550466
*3819
*45*17
43*5242*5334*51*493611

15
21

*28*14
10

*23
5

*33*24
*18
16

22*47*2537545556575859606162636465

S
_
e
p
i
d
e
r
m
i
d
i
s
_
R
P
6
2
A
_
c
h
r
o
m
s
o
m
e

S
_
e
p
i
d
e
r
m
i
d
i
s
_
R
P
6
2
A
_
p
l
a
s
m
i
d

Q
R
Y

REF

(e) SUTTA

*31

*67
*44*81*20

*30

6324
*3549
33

*37
66*39*46
72*2

*74

*1

58
64

82
91

86*21*84*73*7880*7022

87
43
79

8
*47*42

*41
4515

*40
1369
12

*55*94*27*19*503871757677488385888931041156
7149161718515253545657905992939523252628602961626568323436

S
_
e
p
i
d
e
r
m
i
d
i
s
_
R
P
6
2
A
_
c
h
r
o
m
s
o
m
e

S
_
e
p
i
d
e
r
m
i
d
i
s
_
R
P
6
2
A
_
p
l
a
s
m
i
d

Q
R
Y

REF

(f) TIGR

Figure 11: Dot plots for Staphylococcus epidermidis (no mate-pairs). Assemblies
produced by Minimus, PHRAP, Euler, PCAP, SUTTA and TIGR. The horizontal
lines indicate the boundary between assembled contigs represented on the y axis.

177

Wolbachia sp.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Feature-Response curve (no mate-pairs)

SUTTA
Minimus

Phrap
TIGR

PCAP

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 500 1000 1500 2000 2500 3000 3500 4000

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Mate-pairs Feature-Response (no mate-pairs)

SUTTA
Minimus

Phrap
TIGR

PCAP
 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300 350

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Polymorphism Feature-Response curve (no mate-pairs)

SUTTA
Minimus

Phrap
TIGR

PCAP

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120 140 160 180 200

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Coverage Feature-Response curve (no mate-pairs)

SUTTA
Minimus

Phrap
TIGR

PCAP

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Kmer Feature-Response curve (no mate-pairs)

SUTTA
Minimus

Phrap
TIGR

PCAP

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40 45 50

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Breakpoint Feature-Response curve (no mate-pairs)

SUTTA
Minimus

Phrap
TIGR

PCAP
 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Mis-assembly Feature-Response curve (no mate-pairs)

SUTTA
Minimus

Phrap
TIGR

PCAP

Figure 12: Feature-Response curves by feature type for Wolbachia sp. without
mate-pair constraints.

178

*40144*130*49*55392*82*21122*167*322*294171*213*45*753565918724864176325*50*215380*101634441818111*203*164406137295204230*331309*129115*165*15939404*324*258633*1513153*283141*330234*306*1160278313*2929580*39154*78199*72*355*2864777253*245*223315*30542846256*1722623662387*148*244*105*33432163419174*84*21*57*422*3745169
*20922948*26395102*113*17816*151100*299*34454*7*123*424*85*133273*252*7076362*156269126*302*28179379*267121*29614243*149228247*224*186342*205*357*153185218189*44147*443*390*136135*344300259*303*411*365*92*4109173146145*1542*38122319*278*201449*338*134*33720*90*266*396*116225222*177240217*127108117*89*27229*56310*8687*2368*35*30132*307284*110297*263*1728270101233*32166*21296
430413128*61*318*9798288182*32965*60*227114*327220219241*21625574158370*150*62343*168162188*41*154*194*104*88316*16925138293*388*257*214*14*138402*434*155193*24966*4198*243*232*124376*37218*405301197*537*3417*202*81*287*439221*71143*195140279*191285196*1211*19*385*157*24362542
423*107*120261*118119939352*429*17528058*170*31207*94671391248715124971657071757157271857371957457557657757857912501251125212537201254721125572212567231257724125872512597265805817275827287295835845855865875885891400140114021403140414051406126014071261140812621409126373012647311265732126673312677341268735126959073659173773859273959359459559659759859914101411141214131414141514161270141712711418127214191273740127474112757421276743127774412781279745746747748749142014211422142314241425142612801427128114281282142912837501284751128575212867531287128875412897557567577587591430143114321433900143490114359021436129090314371291904143812929051439129390676012947611295907762129690812979097631298764129976576676776876914401441144214439101444911144591214469131447914144891514497709167719179187729197737747757767777787791450145114521453920145492114559221456923145792414581459925780926927781928782929783784785786787788789146014611462146393014649311465932146693314671468934146993593679093779193879293979379479579679779879914701471147214739401474941147594214761477943147894414799459469479489491480148114821483950148495114851486952148795314889541489955956957958959149014911492149396014941495961149696214979631498964149996596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899920020620821022623123523623723823924224625025440040140326040740840926426526841241441541627141827427527627742042142542642728228911001101110211031104110511061107110811094314324334352904362914374382932981110111111121113111411151116111711181119440441442445446447448112011211122112311241125112611271128112945045145245345545645745845911301131113211336001134601113560211366031137604113860511396064606074616084626094634644654664674684691140114111421143610114461111456121146613114761411486151149616470617471618472473619474475476477478479115011511152115362011546211155622115662311576241158625115962648062748148262848362948448548648748848913001301130213031304130513061160130711611308116213091163630116463111656321166633116763411686351169636490491637492638639493494495496497498499131013111312131313141315131611701317117113181172131911736401174641117564211766431177644117864511796466476486491320132113221323132413251326118013271181132811821329118365011846511185652118665311876541188118965565665765865913301331133213338001334801133580213361190803133711918041338119280513391193660806119466180711956621196663808119780911986641199665666667668669134013411342134381013448111345812134681313478141348815134967081667167281781867381967467567667767867913501351135213538201354821135582213568231357824135882513596806818268276828286838296846856866876886891500150115021503150415051506136015071361150813621509136383013648311365832136683313678341368136969083583669183769283869383969469569669769869915101511151215131514151515161370151713711518137215191373840137484113758421376843137713788441379845846847848849152015211522152315241525152613801527138115281382152913838501384851138585213861387853138885413898558568578588591530153115321533153415351536139015371391153813921539139386013948611395139686213978631398864139986586686786886915401541154315441545870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899103106109112125152304161308311312313314317173179320323326180328183184100010011002100310041005100610071008100933233333533619019233910101011101210131014101510161017101834010193413453463473483491020102110221023102410251026102710281029350351352353354358359103010311032103350010345011035502103650310375041038505103950636050736150850936336436736836910401041104210435101044511104551210465131047514104851510495163715175183735193753773781050105110521053520105452110555221056523105752410585251059526381527528383384529386389120012011202120312041205120610601207106112081062120910635301064531106553210665331067534106853510695365375385393943973983991210121112121213121412151216107012171071121810721219107354010745411075542107654310775441078545107954654754854912201221122212231224122512261080122710811228108212291083550108455110855521086553108755410885551089556557558559991230123112321233700123470112357021236109070312371091704123810927051239109356070610945617071095562708109656310975647091098109956556656756856912401241124212437101244711124571212467131247714

0 200000 400000 600000 800000 1000000 1200000

Q
R
Y

Wolbachia_sp

(a) Minimus

22192227*2235*224321982236223922092202*2195*22482204222422082137*21572197*2164*2142*2206218222232253
*214122322241*2222*22472230*2162*215817612199*2229*2092*2205*218421242177*2210*837*2146221522142179*22012143*22282217*836*2185*2194223822422221*2203*2246*2234*2168*21632165*2091219221882180*21672231*2220*22452211*22122218*22252251
2249
*2152*2240*221622072252
*22132108*2183*22332196*21592237*2250
22442226*21565705715725735745755765775785792050205120522053205420552056205720582059580581582583584585586587588589123414005140161402714038206014049206114052062140620631407206414082065140920662067206820695905915925935945955965975985991410141114121413207014142071141520721416207314172074141820751419207620772078207914201421142214232080142420811425208214262083142720841428208514292086208720882089143014311432143390020901434901143590214369032093143790420941438905209514399062096209790720989082099909144014411442144391014449111445912144691314479141448915144991691791891914501451145214539201454921145592214569231457924145814599259269279289291460146114621463930146493114659321466933146714689341469935936937938939147014711472147394014749411475942147614779431478944147994594694794894914801481148214839501484951148514869521487953148895414899559569579589591490149114921493960149414959611496962149796314989641499965966967968969970971972973974975976977978979980981982983984985986987988989180018011802180318041805180618071808180999099199299399499599699799899918101811181218131814181518162001817201181820218192032042052062072082091820182118221823182418251826210182721118282121829213214215216217218219183018311832183318341835183622018372211838222183922322422522622722822918401841184218431844184518462301847231184823218492332342352362372382391850185118521853185418551856240185724118582421859243244245246247248249186018611862186318641865186625018672511868252186925325425525625725825918701871187218731874187518762601877261187826218792632642652662672682691880188118821883188418851886270188727118882721889273274275276277278279189018911892189318941895189628018972811898282189928328428528628728828911001101110211031104110511061107110811092902912922932942952962972982991110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211336001134601113560211366031137604113860511396066076086091140114111421143610114461111456121146613114761411486151149616617618619115011511152115362011546211155622115662311576241158625115962662762862921002101210221032104210521062107116021091161116211636301164631116563211666331167634116863511696366376386392110211121122113211421152116211721181170211911711172117364011746411175642117664311776441178645117964664764864921202121212221232125212621272128118021291181118211836501184651118565211866531187654118811896556566576586592130213121322133213421352136213811902139119111921193660119466111956621196663119711986641199665666667668669214021442145214721482149670671672673674675676677678679215021512153215421556806816826836846856866876886891500150115021503216015042161150515061507150815092166216969069169269369469569669769869915101511151215132170151421711515217215162173151721741518217515192176217815201521152215231524218115251526152715281529218621872189153015311532153321901534219115351536219315371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159919001901190219031904190519061907190819091910191119121913191419151916300191730119183021919303304305306307308309192019211922192319241925192631019273111928312192931331431531631731831919301931193219331934193519363201937321193832219393233243253263273283291940194119421943194419451946330194733119483321019493331133412335133361433715338163391718191950195119521953195419551956340195734119583422019593432134422345233462434725348262734928291960196119621963196419651966350196735119683523019693533135432355333563435735363583735938391970197119721973197419751976360197736119783624019793634136442365433664445367463684736948491980198119821983198419851986370198737119883725019893735137452375535437655377563785737958591990199119921993199419951996380199738119983826019993836138462633856438665387663886738968691200120112021203120412051206120712081209390391392703937172394733957439675397763987739978791210121112121213121412151216121712181219808182838485868788891220122112221223122412251226122712281229909192939495969798991230123112321233700123470112357021236703123770412387051239706707708709124012411242124371012447111245712124671312477147151248716124971771871912501251125272012537211254722125572312567241257725125872612597277287292200126012611262730126373112647321265733126673412677351268126973673773873912701271127274012737411274742127574312767441277127874512797467477487491280128112827501283751128475212857531286128775412887551289756757758759129012911292760129376112947621295129676312977641298765129976676776876977077177277377477577677777877978078178278378478578678778878916001601160216031604160516061607160816097907917927937947957967977987991610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884891300130113021303130413051306130713081309490491492493494495496497498499131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113328001333801133480213358031336804133780513388061339807808809134013411342810134381113448121345813134681413478151348816134981781881913501351135282013538211354822135582313568241357825135813598268278288291360136113628301363831136483213658331366834136713688351369838839137013711372840137384113748421375843137613778441378845137984684784884913801381138285013838511384852138513868531387854138885513898568578588591390139113928601393861139413958621396863139786413988651399866867868869870871872873874875876877878879880881882883884885886887888889170017011702170317041705170617071708170989089189289389489589689789889917101711171217131714171510017161011717102171810317191041051061071081091720172117221723172417251101726111172711217281131729114115116117118119173017311732173317341735120173612117371221738123173912412512612712812917401741174217431744174513017461311747132174813317491341351361371381391750175117521753175417551401756141175714217581431759144145146147148149176017621763176417651501766151176715217681531769154155156157158159177017711772177317741775160177616117771621778163177916416516616716816917801781178217831784178517017861711787172178817317891741751761771781791790179117921793179417951801796181179718217981831799184185186187188189100010011002100310041005100610071008100919019119219319419519619719819910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032500103350110345021035503103650410375051038506103950750850910401041104251010435111044512104551310465141047515104851610495175185191050105110525201053521105452210555231056524105752510585261059527528529200020012002200320042005200620071060200810612009106253010635311064532106553310665341067535106853610695375385392010201120122013201420152016201710702018107120191072540107354110745421075543107654410775451078546107954754854920202021202220232024202520262027108020281081202910825501083551108455210855531086554108755510881089556557558559203020312032203320342035203620371090203810912039109256010935611094562109556310965641097109856510995665675685692040204120422043204420452046204720482049

0 200000 400000 600000 800000 1000000 1200000

Q
R
Y

Wolbachia_sp

(b) PHRAP

Contig455*Contig233*Contig440*Contig9*Contig256Contig193*Contig45Contig182*Contig528*Contig181Contig164Contig372Contig131Contig212Contig387*Contig40Contig35Contig67*Contig510*Contig571*Contig14*Contig383*Contig111Contig403Contig59*Contig346Contig159*Contig472Contig109Contig108Contig99Contig171Contig24*Contig391*Contig102Contig498*Contig365Contig245Contig356*Contig244*Contig83*Contig62*Contig21Contig216Contig103Contig184Contig410*Contig350Contig414Contig260Contig56Contig567Contig146*Contig467Contig546Contig369Contig139Contig7Contig114*Contig446Contig86*Contig549Contig308*Contig147*Contig311*Contig80Contig293*Contig179Contig90Contig384Contig42Contig470Contig301*Contig275Contig416Contig281Contig127Contig167Contig373Contig38*Contig447Contig46Contig94*Contig524*Contig508*Contig269Contig253Contig396Contig397Contig124Contig138*Contig234*Contig469Contig336Contig450*Contig54Contig120*Contig340Contig348*Contig453*Contig368*Contig345*Contig303Contig286*Contig2*Contig97*Contig117Contig53*Contig390*Contig398*Contig210*Contig489Contig228*Contig143Contig264*Contig434
*Contig318*Contig307Contig405Contig135*Contig349Contig551Contig452*Contig89*Contig550Contig430*Contig126Contig137*Contig333*Contig203Contig136*Contig377*Contig168Contig501Contig468Contig170*Contig312Contig71Contig425*Contig65Contig386*Contig574Contig82Contig544Contig557Contig246*Contig113*Contig518Contig252*Contig409*Contig175Contig379*Contig174Contig17Contig530*Contig531Contig166*Contig74Contig76*Contig145Contig150Contig121Contig537*Contig488*Contig81Contig526Contig232Contig12Contig162*Contig84Contig282Contig85Contig476Contig487Contig25*Contig92Contig98*Contig23*Contig50*Contig378Contig438Contig360*Contig367Contig199Contig361Contig161*Contig214Contig61Contig93*Contig329Contig242*Contig11Contig479*Contig49*Contig483Contig343*Contig532Contig457*Contig30Contig548*Contig545Contig251Contig505Contig506*Contig529Contig229*Contig5*Contig280*Contig534Contig238*Contig420*Contig388*Contig110Contig267Contig562Contig321*Contig158*Contig370*Contig539Contig363Contig223*Contig371Contig381*Contig554*Contig338*Contig149Contig463*Contig52Contig51Contig568*Contig402Contig456*Contig504Contig323Contig28*Contig509Contig525Contig302Contig177*Contig104Contig558Contig47Contig444*Contig389*Contig565Contig209Contig132Contig380*Contig265Contig335*Contig198Contig461Contig60Contig197*Contig436*Contig258*Contig347*Contig521*Contig105*Contig16*Contig573*Contig27Contig26*Contig248*Contig411*Contig449*Contig257*Contig328*Contig395*Contig332Contig437*Contig359Contig88*Contig471*Contig118Contig561*Contig522Contig151*Contig477Contig220Contig154*Contig497*Contig189*Contig299*Contig415*Contig116Contig285Contig466Contig538*Contig160Contig169Contig540*Contig341Contig480*Contig241*Contig278*Contig240*Contig112Contig153Contig382Contig520*Contig337*Contig72*Contig536*Contig535Contig292Contig43*Contig172*Contig122*Contig418Contig324Contig268*Contig474*Contig36*Contig128*Contig195*Contig475*Contig152Contig426Contig478Contig6*Contig327Contig288Contig484Contig19Contig20*Contig393Contig499*Contig119*Contig276Contig500Contig95*Contig330Contig564*Contig496*Contig3*Contig243Contig407Contig130*Contig196*Contig366*Contig458Contig364*Contig514Contig206*Contig271Contig205Contig566Contig417Contig191*Contig204Contig218*Contig215Contig421*Contig339Contig527Contig408*Contig555Contig259Contig465*Contig57*Contig495Contig519*Contig249*Contig464Contig401*Contig176Contig194*Contig443*Contig266*Contig277*Contig34Contig41*Contig512*Contig192Contig236Contig272*Contig319Contig406Contig237*Contig419*Contig32*Contig413*Contig1Contig448*Contig442*Contig115Contig392Contig511*Contig533Contig225Contig235Contig560*Contig224Contig187*Contig516*Contig563*Contig428Contig322Contig358Contig77Contig404Contig290Contig213Contig262*Contig334Contig55Contig400*Contig357Contig201*Contig429*Contig15Contig331*Contig217*Contig58*Contig422*Contig423*Contig445*Contig207Contig10*Contig306*Contig73*Contig326Contig283Contig274*Contig486*Contig70Contig439*Contig547*Contig314Contig64*Contig295Contig523*Contig129*Contig100Contig294Contig155*Contig325*Contig144Contig394Contig250Contig305*Contig261*Contig435*Contig399*Contig374Contig289Contig513Contig75Contig297*Contig18*Contig208*Contig433*Contig432Contig482*Contig48*Contig300Contig78Contig273*Contig507Contig309Contig270Contig362Contig310Contig231*Contig552*Contig165Contig570*Contig375*Contig572Contig44*Contig8Contig31*Contig247Contig441Contig107*Contig473*Contig352Contig219Contig460*Contig543*Contig296Contig148Contig385*Contig344Contig123*Contig481*Contig342*Contig221Contig202*Contig66Contig304Contig541*Contig222*Contig263Contig317Contig4*Contig163*Contig298*Contig427Contig287*Contig133*Contig178Contig39*Contig230Contig320Contig190Contig351*Contig412*Contig63*Contig255*Contig96*Contig68*Contig141*Contig431Contig142Contig185*Contig186Contig355*Contig188*Contig33Contig37Contig183*Contig239Contig316Contig140*Contig315Contig106*Contig134*Contig492*Contig291Contig493*Contig485Contig556*Contig173Contig69*Contig454*Contig376Contig200*Contig553*Contig502*Contig13Contig462Contig125Contig79Contig226Contig180Contig227*Contig156*Contig490*Contig211Contig515Contig279*Contig353*Contig517Contig569Contig494Contig424Contig491*Contig503Contig254Contig29*Contig157*Contig87*Contig313*Contig91Contig451Contig284*Contig542Contig579Contig580Contig613Contig615Contig589Contig600Contig588Contig577Contig593Contig612Contig609Contig603Contig614Contig601Contig586Contig594Contig608Contig595Contig587Contig459Contig576Contig606Contig596Contig583Contig592Contig22Contig354Contig591Contig584Contig585Contig559Contig597Contig590Contig581Contig578Contig607Contig604Contig582Contig598Contig602Contig611Contig599Contig575Contig610Contig605Contig101

0 200000 400000 600000 800000 1000000 1200000

Q
R
Y

Wolbachia_sp

(c) Euler

*633626
19*18629
815*116507

*642627
*65316632*26*54144
643687*661506343
5

*623
65648*630671*640*29*27*654637672*706*6482864733*670624

*646694*35611604*58701*662453710
6908819730628
*15*31657102*8166765*20*9
*80*21*1231*625
*8

*723*56*1736*34*675422
639658*641*254039638645*659*2422622
*2341*128*6801229*198*66538651*13*636*12635*6551

*6826311049127718821050560117889879810315124635174584514547221109578695978728742378325889350123354011626842111538613371013407631198257112141190825389917495117111239669927582367062181172834285234594121611351203961068486160569981048100010614368639194328819311958618041024699911686111801185430447536113041518948011534381078710224445089532211089558417784260573108411447627348755061361161197144381581308906177678373773205927301514568746529754931033796102636684427277591974653440074488810111511161468101970028747578990413294932764349515120811071386061371201724666432519107486011951063708110333710323856112545191187588756446262122021211495429611087810574123817066022797756652680626425535918210810015567172324771182225330142207167360692663854969117410767665103934492745498771141112835337598411559467883032506145012784901301553875311129414615832579517828580911564255918327365397818282765201218532119355572594248721631106114639589175584988347434118486512079049304426496898861116102810981059727939320913811202249361465184819118911771127776894858140181412954385307801985971830154754847479116611017043261165100310546816193351029698621524554552598780742408904402301152993779226028411044107261293691124010864674744818672145648175637312297681092673503683153387615762227384841078103630592854411961114217328239122122387815826928136346733997748472317608711132123489254653752212510184411251007741118811869987143135291058987397115010969081191459284823903247165289729771808401845186111914797310461142915319117910527354045169747023441104561113320911183571174556003364578216963839632979212129805501164108150510949584199951225837290592149712210406173530661030365763470793120557025211598831562835942127112261070102449186410162191170799105925840597390111104240819694524211695593211820644395910653313587375807678480510204371942208461021934948572968226431527114538262833139129548926859108373911108764187839331681353481152145497891781131124772109099371536438895050910251015367976716940485685743778523720460324453244120235110405951138488752123210128353791032113901103515234245286229557934110565357768354112156476588131289740550723710021173370309567416100380914300965824120286107580011482543924966056078136447598513991228107323543694213816110356810622652961129791171114338691644520032952578716158210955771812394418681140769118127598380385375160106769134691142711116779078211541210590895691157664224796173521006126103425142636999627917695648349894725637292042888711609972500869122112007905339181122110810534144621014843120926339499151461072593151361547611987971077113611752931236967322469108857511761039979709100531019258921569911159608181501038245267543826354106475733210991217745603905656208501045891937100473092110692331013122436831699484949220851184293899292291374199114429109140973672417958124895857943271080944111367473228095727347197010413150231412373551595537475551037471017855270195105753867983111475211621241433880120633478698611177401008102710320187142371911399021222827266174820422121990511949766852688750302112677486691069359377018840210978938386161121838048708969621085755777143464105156211024971835181211439362411169705478398384836942955407376912785599116758760912351902989592360182223124377955114850434375369798172685710670710101579649352032611213109310233211199867921158371107920410414358149248858843392287608637492685318293451725962236137211043282669108242010661219529891071494487238873113757725344812272168526311201791105118771367627711928799381095118311329291331233045473962584829494991151306120410478391055166100914190940346611241230751346188481163450106070390011343189721100473185248146356802528164807

0 200000 400000 600000 800000 1000000 1200000

Q
R
Y

Wolbachia_sp

(d) PCAP

2631
*23*18*683042
*348101*70*6057*51*25*61*21*10*337

*100*1
*63*5
17
*32
*12

*896
38*4366*56*8195*54717665
29*98*599390*82*9996*46*4024
10292*16
526919

*589149*888313*22
*48
35*3

*5079*94*78*41*676427
45*4711
*36
4*748055*149744
8639*62*847285*73*91520
*28
532

77*37
7157165707175715727185737195745755765775785797207217227237247257265805817275827287295835845855865875885897307317327337347355907365917377385927395935945955965975985997407417427437447457467477487497507517527537547557567577587599009019029039049059067607619077629089097637647657667677687699109119129139149157709167719179187729197737747757767777787799209219229239249257809269277819287829297837847857867877887899309319329339349359367909377919387929397937947957967977987999409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582594004014024034044052604062614072624082634092642652662672682694104114124134144152704162714172724182734192742752762772782794204214224234244252804262814272824282834292842852862872882894304314324334344352904362914372924382932944392952962972982994404414424434444454464474484494504514524534544554564574584596006016026036046056064606074616084626094634644654664674684696106116126136146156164706174716184724736194744754764774784796206216226236246256264806274814826284836294844854864874884896306316326336346356364904916374926386394934944954964974984996406416426436446456466476486496506516526536546556566576586598008018028038048056608066618076626638088096646656666676686698108118128138148156708166716728178186738196746756766776786798208218228238248256806818268276828286838296846856866876886898308318328338346908358366918376928386938396946956966976986998408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988991031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581593003013023033043053061603071613081623091631641651661671681693103113123133143153161703171713181723191731741751761771781793203213223233243253261803271813281823291831841851861871881891000100110021003100410051006100710083301009331332333334335336190337191338192339193194195196197198199101010111012101310141015101610171018340101934134234334434534634734834910201021102210231024102510261027102810293503513523533543553563573583591030103110321033500103450110355021036503103750410385051039506360507361508362509363364365366367368369104010411042104351010445111045512104651310475141048515104937051637151737251837351937437537637737837910501051105210535201054521105552210565231057524105852510593805263815273825283833845293853863873883891060106110621063530106453110655321066533106753410685351069390536391537392393538539394395396753973983991070107110721073540107454110755421076543107754410785451079546547548549871080108110821083550108455110855521086553108755410885551089556557558559700701702703704705560706561707562708563564709565566567568569710711712713714

0 200000 400000 600000 800000 1000000 1200000

Q
R
Y

Wolbachia_sp

(e) SUTTA

472
639*41*90338699247
616196609*292*346*677143454*961*77887*920*929922*379*56210*146322*166*659706369*257760
*181
*100649*769
28925185926
*27306*743*354697091
3341045*1036*176175*415*478
*484*455*570246*108*106107*37361662103
762*23*437*317*316696746
67*150*514524*162966309912913180*804*498

*5484885596*290*44725*83*464*226569*59*682*58*8669311*542
68798
271
*3851040969*368365*3552421023*2*466885*424*213*1055205137*807273*814589
641*352*1043
591*550
*360
10613
715716717571572718573719574575576577578579720721722723724726580581727582728729583584585586587588456789730731732733734735590736737738592739593594595597598599740741742744745747748749750751752753754755756757758759900901902903904905906761907908909763764765766767768910911914915770916771917918772919773774775776777778779921923924925780926927781928782783784785786787788789930932933934935936790937791938792939793794795796797798799940941942943944945946947948949950951952953954955956957958959960962963964965967968970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999200201202203204206207208209211212214215216217218219220221222223224225227228229230231232233234235236237238239240241243244245248249250252253254255256258259400401402403404405260406261407262408263409264265266267268269410411412413414270416417272418419274275276277278279420421422423425280426281427282428283429284285286287288430431432433434435436291438293294439295296297298299440441442443444445446447448449450451452453456457458459600601602603604605606460607461608462463465467468469610611612613614615470617471618473619474475476477479620621622623624625626480627481482628483629485486487488489630631632633634635636490491637492638493494495496497499640642643644645646647648649650651652653654655656657658800801802803805660806661663808809664665666667668669810811812813815670816671672817818673819674675676678679820821822823824825680681826827828683829684685686688689830831832833834690835836691837692838693839694695697698840841842843844845846847848849850851852853854855856857858860861862863864865867868869870871872873874875876877878879880881882883884886888889890891892893894895896897898899100101102104105109110111112113114115116117118119120121122123124125126127128129130131132133134135136138139140141142144145147148149151152153154155156157158159300301302303304305160307161308163164165167168169310311312313314315170171318172319173174177178179320321323324325326327328182329183184185186187188189100010011002100310041005100710083301009331332103331112335133361901433719115192163391931719418195191971981991010101110121013101410151016101710183401019341342203432134422345243472534834928291020102110221024102510261027102810293503513035331323335634357353635835938391030103110321033500103450110355025031037504103850510395065075083624050936336442433664536746471041104251010445115121046513104710485151049370516371517372505183735151937452375535437655377378571050105110521053520105452152210565231057105852510593805263815273826052838361384625296364386653876638838968106010621063530106453110655321066533106753410685351069390536391537392393715387253939473395743967539776398399787910701071107210735401074541107510765431077544107854510795468054781825498486878889108055155255355455555655755892559939495969799700701702703704705560561707562708563564709565566567568710711712713714

0 200000 400000 600000 800000 1000000 1200000

Q
R
Y

Wolbachia_sp

(f) TIGR

Figure 13: Dot plots for Wolbachia sp. (no mate-pairs). Assemblies produced
by Minimus, PHRAP, Euler, PCAP, SUTTA and TIGR. The horizontal lines
indicate the boundary between assembled contigs represented on the y axis.

179

Chromosome Y

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Feature-Response curve (no mate-pairs)

SUTTA
Minimus

Phrap
TIGR

PCAP

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 500 1000 1500 2000 2500 3000 3500 4000

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Matepair Feature-Response curve (no mate-pairs)

SUTTA
Minimus

Phrap
TIGR

PCAP
 0

 20

 40

 60

 80

 100

 120

 0 100 200 300 400 500 600

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Polymorphism Feature-Response curve (no mate-pairs)

SUTTA
Minimus

Phrap
TIGR

PCAP

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

 0 0.5 1 1.5 2 2.5 3

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Coverage Feature-Response curve (no mate-pairs)

SUTTA
Minimus

Phrap
TIGR

PCAP
 0

 10

 20

 30

 40

 50

 60

 70

-1 -0.5 0 0.5 1

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Kmer Feature-Response curve (no mate-pairs)

SUTTA
Minimus

Phrap
TIGR

PCAP

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Breakpoint Feature-Response curve (no mate-pairs)

SUTTA
Minimus

Phrap
TIGR

PCAP
 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 100 200 300 400 500 600 700 800

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Misassembly Feature-Response curve (no mate-pairs)

SUTTA
Minimus

Phrap
TIGR

PCAP

Figure 14: Feature-Response curves by feature type for Chromosome Y without
mate-pair constraints.

180

16123260*84266*16616416011976464*11116*236*698*528*850*4427222733032958846*486*687*361*327*285*26897*126*770*424*289*197*117*35
*204*34919149148192*439*748*506*478525*492*796*269*209189*747142214255239254*240300136*750*257*312256*440*13360618*629541*620*7064134141622
717822*8042679*245244140*371*323*158157783*43430171*711*531125*673*47363*274*266*381597743376*560*366110
40*34517
89233356397*6564
24710716948*41032234465*296812295*512463*229*3433*4327835938884*579*25198*13513449
*6967*555021*18037183578*217178460127663803102374*1816*154129*20875*2928

*805*290336800*147219*339*828520*790*688499*547518378*238*79343*791*100
221387*334375485333*156*444762*466*751*764758587191267*206*2501433586*81532549*17370739599810*391*182181*258346*548*409222653652550781309308*692286*45939230295

*630354113
588246*75544556*133132*449*553431*13748477*241228*317*109*476341*716638*724*517*115739108*4216810124167235*774568*589*585*643*526130259175165*201*771631*421*556*54*53503288249*423*475301*3864457115575*472417*718608432365325*71319*641710*551*679835680*106*196*406*481*373*733*594834*480*38020*416291190*474*313314*736*713*590*780*845*458*808280279665*43790*24323*399*28761*144470*251*445*59655*11846710436722112187839701*507*307*213305*676598*337*74*11161373273*22833*807*6742140251618482382*297186*340709*450461218*172*428*324*385*754617766815*704*540*405*384*582*145*352*205*104103*659*202*146*281331*200304*523693642981509599*94*881225*226570*105

*756185351*415*686849*141*56644776138*32832678*12*29362669174*163
210*829456720*607*832*671*469*546*98536120*85435*9291*4042168331
128*152*36*237*592504*367151114

*261*685188*195433*462155*535562637*386*393*270*575696
*123262*338422*30368418211411*347320699*453*496*495*343*612509*299*294*557*28341
*5150389332372*2739734*609*310*51529306*47*46*70179*363*487*177538*2877535326*223657715642645572573719646647574648649576577721723650651725726580654581727728729656583584658586801802730804731732806660661735662809591737664738666593667668595596811813740814741742816670744817672818745819746675749677678820821823824825752753826681827755682683757684759689830831760761690836763837691838765693767694768695769696697840841843844772773847848777778779782784785786787788789792794795797798799121124203131207139212215143220224225153159230231311242315170316318248176321322252253400401403260407408263264265193194199412342271344272419275348276277420350425427282355429284357358500501430505362508438453685105115135144413704435194464474483773795215225235244514525274543835294576006016026035306046056065335343905375393944683963986106116146155426165435444715456194774798762162262362462555262662755548262848355855993488489700702703705632633634561708635636563490564491565639493567494569497498712640714

0 500000 1000000 1500000 2000000 2500000 3000000

Q
R
Y

Y

(a) Minimus

4

1

2

*3

0 500000 1000000 1500000 2000000 2500000 3000000

Q
R
Y

Y

(b) PHRAP

*Contig55

Contig0Contig32*Contig22

*Contig31
Contig8

*Contig59

*Contig57

*Contig48

Contig23*Contig40*Contig3
*Contig34Contig33
*Contig6

*Contig4Contig44Contig16
*Contig14
Contig50Contig11*Contig7

*Contig26Contig52
Contig1Contig53*Contig56*Contig2Contig35

*Contig38*Contig37

*Contig13
Contig30Contig12*Contig51
Contig5

*Contig58
*Contig46*Contig41*Contig39*Contig36

*Contig20Contig54

Contig28*Contig27Contig29
Contig42

Contig10

Contig49Contig17Contig47Contig24Contig43Contig18Contig25Contig9Contig19Contig45Contig21Contig15

0 500000 1000000 1500000 2000000 2500000 3000000

Q
R
Y

Y

(c) Euler

*4

*979
*124117*26*7

*100*104*3

*95*112*12
*82
*2486
79

*98941

28*73

92*8

*10621114*75

*2910

*50*126*108*16
*77

*17*90*125*3533*2

2711
10983
11191366613
4214

*451922*12278
2358118*38*76

*10584
8781

*62*20*85
71

*40*120*18*5

13389*6

74

3211541*72

2588*9380
3015

1271024455573165138137601016713912911013569491401311219647374363119996110311348107123396452565470681361161281345913053465134132

0 500000 1000000 1500000 2000000 2500000 3000000

Q
R
Y

Y

(d) PCAP

*1

*6

*3

*7

*1281011
*4

*9*2

*135

1514

0 500000 1000000 1500000 2000000 2500000 3000000

Q
R
Y

Y

(e) SUTTA

464762*58*827*175*174*985*565121*157156578260599105251249*317*2899751047967816625*5611094*590455337*756*1022*187*758375*379*393*717*80*433465637221042*680104677505225*976*494*1016*6*650*623*471399*1017*469*857*856*736*64*69*765131*103491027330674169*887*463*60648210855063169126630755714662938633972*98295110151023221615362187151018712*423*422*213*216*803*189*994*98826821796279*1*201*196*838192987837332*186*980100713*749*403*8354021098*211*665*1079
*2*863*493*955*723*711*627568243246*656*509*979*513*805*775*726490*38135829582*38*981*101990113870991111091821056*571*313*956*508*3109507334601091151*452*14673554678054586533159971964*782*973*764*123256*138*252*384*71966696700*702*810*840484*1075869511059*145*1025*280265*611305303352301350555300*830*819*184*47*152*53*5*579*391269*144*141*8781019924889284286*946836*953*936*380*275*43*686*871066860*859*55688324*908*378983104954907363*21*163*133*1048*130103710921032164165*2281901063*1088*550*815*89*631629823271004102428*396886264320*483*583*580*647*932593479*597698914*1020519*848108*653668*177268*526934*1093*523*1067*643*371*1072737345427*430*1005710*421*70965532675*1052*53529*852*34*234*851*374*552*44*407531081960971089*636542389442*3871012*795*1040923273272*589*78609569865*602368*970*369*3823721681076*502797436544*282*473*72407818*198*154*105366976610493251051612522100083339

783*240894879*892*404*1840695210732981068449461139*793*134*457802855386*1813831036*499*1008*459*1086*326*239*875*997754574414411716570572718573575576577720721722724725581727582728729584585586587588478973073173273459173859273959459559659874074174274374474574674774875075175275575775990090190290390490590676076190976376776876991091191391577091677191791877291977377477677777877992092192292592692778192892978478578678778878993093193393579093779179293979479879994094194294394494594794894995795895996196296396596696896997497797898498698999199299399599699899920020220320420520620720820921021221421521721922022222322422622722923023123223323523623723824124224424524724825025325425525725825940040140526126240826340926626741041241341527041627141741841927427627727842042442542628142828342928528728811001101110211034314324344352902914372924382932944392962972994404414434444454464474484504514534544564586006016036046056076084624664674686106136146164706176184726194744754764774786206216226246264804816284854864874884896306326346354914926386394954964974986406416426446456466486496516526546556576586598008018046608066618076638088096646678118128138146706716728176736766776786798208228248256818266828286838296846856876886898318328346906916926938396946956966976998418428438448458468478498508538548588618628648668678688718728738748768778808818828838848858888908918938958968978988991001021031061101121141151161171181191201221241251261271281291321351361371401421431471481491501531551583023043061601613081623091661673113123143151701713181723191731761781793213223231803273283291831851881001100210031006100933133311334123353361911533816339193171941951919719910101011101310143403413422034334423346243472534810211026102810293513035331354323553335635735373591030103110335001034501103550350410381039360507361362413644236536645367464849104110435101044511104551251451537051651750518373525437655377565759105052010545211055105752410585255276052861625296338538867681060106110625301064531106553410693905365373927071538539394733957475397763987910701071107354010745415431077107854781548549838485108010821083108455155310875549091558925599394959870110907037047055607067071095562708109656310975641099566567713714

0 500000 1000000 1500000 2000000 2500000 3000000

Q
R
Y

Y

(f) TIGR

Figure 15: Dot plots for Chromosome Y 3Mbs region (no mate-pairs). As-
semblies produced by Minimus, PHRAP, Euler, PCAP, SUTTA and TIGR. The
horizontal lines indicate the boundary between assembled contigs represented on
the y axis.

181

With Mate-Pairs constraints

Brucella suis

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

 0 200 400 600 800 1000 1200 1400 1600 1800

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Feature-Response curve

SUTTA
TIGR

Arachne
PCAP

CABOG

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 100 200 300 400 500 600 700 800 900 1000

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Matepair Feature-Response curve

SUTTA
TIGR

Arachne
PCAP

CABOG
 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 100 200 300 400 500 600 700

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Polymorphism Feature-Response curve

SUTTA
TIGR

Arachne
PCAP

CABOG

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 0.5 1 1.5 2 2.5 3

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Coverage Feature-Response curve

SUTTA
TIGR

Arachne
PCAP

CABOG
 10

 12

 14

 16

 18

 20

 22

 24

-1 -0.5 0 0.5 1

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Kmer Feature-Response curve

SUTTA
TIGR

Arachne
PCAP

CABOG

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 5 10 15 20 25

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Breakpoint Feature-Response curve

SUTTA
TIGR

Arachne
PCAP

CABOG
 0

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

 0 20 40 60 80 100 120 140

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Misassembly Feature-Response curve

SUTTA
TIGR

Arachne
PCAP

CABOG

Figure 16: Feature-Response curves by feature type for Brucella suis with mate-
pair constraints.

182

8
91011

12

1314

15
*29

*27

*26

*25

*24
*23

*22
*21*3

*19

*18*17
*1630

31

32*33

*7

*5

*4

*1

262820

A
E
0
1
4
2
9
1

A
E
0
1
4
2
9
2

Q
R
Y

REF

(a) ARACHNE

19

20

11121

22

23

2425
*326

27
28

2930

*12

*4*18
*17

*16

*15

*14

*13

72698105

A
E
0
1
4
2
9
1

A
E
0
1
4
2
9
2

Q
R
Y

REF

(b) CABOG

Contig13
Contig235*Contig191*Contig233Contig176*Contig6*Contig15Contig47*Contig16Contig18Contig148*Contig28Contig246*Contig218*Contig121Contig119Contig55
Contig158Contig188*Contig66*Contig51*Contig84*Contig76*Contig238*Contig153Contig206

*Contig216*Contig59*Contig204*Contig133*Contig145Contig132*Contig144Contig0Contig201*Contig1Contig181*Contig202*Contig27Contig43*Contig147*Contig63Contig64Contig239Contig17Contig52Contig156Contig122*Contig245*Contig229*Contig242Contig143*Contig46Contig197Contig105Contig101Contig57Contig97*Contig152Contig151Contig187*Contig107Contig194Contig25Contig78Contig53Contig36Contig79*Contig224

Contig227*Contig20Contig248Contig42*Contig234*Contig31Contig41*Contig221
Contig163*Contig230*Contig157Contig38*Contig106Contig212*Contig211*Contig146*Contig83*Contig81*Contig184Contig100*Contig252Contig86*Contig98*Contig73Contig75*Contig82
Contig108
Contig223Contig90
Contig21Contig24Contig37*Contig214*Contig149Contig251Contig172Contig130*Contig127Contig80*Contig112*Contig210*Contig74Contig72Contig96Contig88Contig60Contig115Contig192*Contig195Contig118*Contig154Contig166Contig23*Contig164*Contig7*Contig71Contig236Contig33*Contig178Contig177*Contig207Contig232*Contig175*Contig56Contig117Contig9Contig44

*Contig196Contig190*Contig99*Contig165*Contig182Contig183
Contig237*Contig11Contig173

*Contig250Contig142*Contig92*Contig231Contig65*Contig124Contig169Contig134*Contig217Contig109Contig70*Contig213*Contig39Contig49Contig40*Contig140*Contig137Contig139Contig200Contig161Contig104*Contig155Contig160*Contig87Contig91Contig5
Contig125Contig243*Contig4*Contig189*Contig95*Contig14*Contig170*Contig162*Contig129Contig94Contig126Contig167*Contig203*Contig222Contig247*Contig85*Contig32*Contig219*Contig208Contig209Contig138Contig12Contig54*Contig141Contig48Contig244Contig93*Contig193Contig103Contig68Contig113*Contig89*Contig116*Contig131*Contig3
*Contig34*Contig102*Contig136

Contig135Contig19*Contig26Contig30*Contig255*Contig205
Contig50Contig114*Contig69*Contig249*Contig240Contig198Contig186*Contig225Contig111*Contig228Contig35*Contig185*Contig159*Contig128*Contig179Contig67Contig120*Contig61*Contig254*Contig29Contig45

Contig110*Contig174Contig241*Contig180
Contig77

Contig253Contig215Contig226*Contig62
*Contig22*Contig10Contig2*Contig220*Contig171
Contig150*Contig123Contig168Contig8Contig256Contig257Contig58Contig199

A
E
0
1
4
2
9
1

A
E
0
1
4
2
9
2

Q
R
Y

REF

(c) Euler

*56
*55

*54
28*6348

49

5051

52

53

*27
*26
9
10
1112
1314

2915
1617

*5
182324
25*22

*21*20

*1957
58

*8*7

*6

*4

*3
*2*1
*61*60*59

3332718072447431357877653964418173664576626770683075406979
4246364738343743

A
E
0
1
4
2
9
1

A
E
0
1
4
2
9
2

Q
R
Y

REF

(d) PCAP

*26
82539
45*17

62*44
*3

19*16

*21
*2

3857
49*34
*33
6

*10

485
5818
*6713

5042
*64*6129
*55*37

1243
*14*20

*6324
*65*52
31
*30*66*1
28
68*9
35
22
36
567
27

*40
5459
47*23
6011

*69*4
4151
46
*5332
*15
717270

A
E
0
1
4
2
9
1

*
A
E
0
1
4
2
9
2

Q
R
Y

REF

(e) SUTTA

*40
31

*13*66

38
58

*442627
*46

*61
*10

23

*37
5624
3460*2

*4
*39353
*5736

*1849
9

5242
3051

*32
43*6333

*17

548
22*1

*59*64

47
*48
*5011

*35

*25
15

*45
*6719

41512671416552021282962656869

A
E
0
1
4
2
9
1

A
E
0
1
4
2
9
2

Q
R
Y

REF

(f) TIGR

Figure 17: Dot plots for Brucella suis (with mate-pairs). Assemblies produced
by ARACHNE, CABOG, Euler, PCAP, SUTTA and TIGR. The horizontal lines
indicate the boundary between assembled contigs represented on the y axis.

183

Staphylococcus epidermidis

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 200 400 600 800 1000 1200 1400 1600

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Feature-Response curve

SUTTA
TIGR

ARACHNE
PCAP

CABOG

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 100 200 300 400 500 600 700 800 900

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Matepair Feature-Response curve

SUTTA
TIGR

Arachne
PCAP

CABOG
 0

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

 0 100 200 300 400 500 600 700

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Polymorphism Feature-Response curve

SUTTA
TIGR

Arachne
PCAP

CABOG

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

 0 2 4 6 8 10 12 14

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Coverage Feature-Response curve

SUTTA
TIGR

Arachne
PCAP

CABOG
 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 5 10 15 20 25

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Kmer Feature-Response curve

SUTTA
TIGR

Arachne
PCAP

CABOG

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

 0 10 20 30 40 50 60

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Breakpoint Feature-Response curve

SUTTA
TIGR

Arachne
PCAP

CABOG
 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 20 40 60 80 100 120 140 160

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Misassembly Feature-Response curve

SUTTA
TIGR

Arachne
PCAP

CABOG

Figure 18: Feature-Response curves by feature type for Staphylococcus epider-
midis with mate-pair constraints.

184

8

911
*1

20

*3

18

1912
1314

*25*22*21
15
17
*6
16*4

7

*2

2326
2724105

S
_
e
p
i
d
e
r
m
i
d
i
s
_
R
P
6
2
A
_
c
h
r
o
m
s
o
m
e

S
_
e
p
i
d
e
r
m
i
d
i
s
_
R
P
6
2
A
_
p
l
a
s
m
i
d

Q
R
Y

REF

(a) ARACHNE

3440

41

*38

*37

8*9*136

35

39

*5*4233322172617
1830162725282014241031112213232963121519

S
_
e
p
i
d
e
r
m
i
d
i
s
_
R
P
6
2
A
_
c
h
r
o
m
s
o
m
e

S
_
e
p
i
d
e
r
m
i
d
i
s
_
R
P
6
2
A
_
p
l
a
s
m
i
d

Q
R
Y

REF

(b) CABOG

*Contig62

Contig5
Contig3Contig4*Contig37

*Contig23Contig49

Contig17
*Contig46

*Contig21*Contig40Contig47Contig20
Contig9*Contig15

*Contig100*Contig106
*Contig91
*Contig92
Contig109Contig82*Contig55
Contig12

*Contig45Contig19Contig76Contig77

*Contig105
*Contig89*Contig71Contig69
Contig68Contig26*Contig8Contig52
Contig96*Contig16Contig51*Contig1

*Contig74*Contig32
*Contig95*Contig98*Contig104*Contig84Contig99Contig93Contig83Contig90*Contig110Contig101*Contig35Contig30Contig10Contig39*Contig94*Contig102*Contig6

Contig60
*Contig44*Contig2
Contig61Contig103

*Contig66
*Contig18*Contig11

Contig54Contig80*Contig88Contig107
*Contig79
*Contig67Contig65
*Contig36
Contig31Contig70

*Contig59
Contig57Contig73

*Contig41Contig43Contig50
Contig97*Contig108Contig72*Contig58*Contig42*Contig28Contig24Contig78*Contig29Contig38
Contig33*Contig34Contig115Contig27Contig81Contig85Contig63Contig64Contig7Contig86Contig14Contig113Contig22Contig114Contig87Contig53Contig75Contig48Contig116Contig25Contig56Contig111Contig112Contig13

S
_
e
p
i
d
e
r
m
i
d
i
s
_
R
P
6
2
A
_
c
h
r
o
m
s
o
m
e

S
_
e
p
i
d
e
r
m
i
d
i
s
_
R
P
6
2
A
_
p
l
a
s
m
i
d

Q
R
Y

REF

(c) Euler

8

*7

*39*71*1

*6

60
59

52

53*2254

*9
*66*76*65*10
64
57

*1270
6869*1421*1367*1558

3
4

*11
*63*62*5

*56

20*7577*55*613332901028026991872164484742795921038931359178488793295097418110173458619217883010082252883404924794246239685369451473898343743

S
_
e
p
i
d
e
r
m
i
d
i
s
_
R
P
6
2
A
_
c
h
r
o
m
s
o
m
e

S
_
e
p
i
d
e
r
m
i
d
i
s
_
R
P
6
2
A
_
p
l
a
s
m
i
d

Q
R
Y

REF

(d) PCAP

*10

*333836*23

*5

8

*29*39309

43*11

*19

*14

2

*1

7
*3522
28*17
41*454032*443413
253

24
*4

*15

31*2712
*26
6

*21

46*2016
1849534842505147523754

S
_
e
p
i
d
e
r
m
i
d
i
s
_
R
P
6
2
A
_
c
h
r
o
m
s
o
m
e

*
S
_
e
p
i
d
e
r
m
i
d
i
s
_
R
P
6
2
A
_
p
l
a
s
m
i
d

Q
R
Y

REF

(e) SUTTA

*2

*17

1

*33

36

34*37*31*3540

3

44

*28

47

16
*48383920212223
2441254226432745294649104115126137148301593250185119

S
_
e
p
i
d
e
r
m
i
d
i
s
_
R
P
6
2
A
_
c
h
r
o
m
s
o
m
e

S
_
e
p
i
d
e
r
m
i
d
i
s
_
R
P
6
2
A
_
p
l
a
s
m
i
d

Q
R
Y

REF

(f) TIGR

Figure 19: Dot plots for Staphylococcus epidermidis (with mate-pairs). Assem-
blies produced by ARACHNE, CABOG, Euler, PCAP, SUTTA and TIGR. The
horizontal lines indicate the boundary between assembled contigs represented on
the y axis.

185

Wolbachia sp.

 0

 50

 100

 150

 200

 250

 0 500 1000 1500 2000 2500

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Feature-Response curve

SUTTA
TIGR

Arachne
PCAP

CABOG

 0

 50

 100

 150

 200

 250

 0 500 1000 1500 2000 2500

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Matepair Feature-Response curve

SUTTA
TIGR

Arachne
PCAP

CABOG
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 50 100 150 200 250 300 350

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Polymorphism Feature-Response curve

SUTTA
TIGR

Arachne
PCAP

CABOG

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 20 40 60 80 100 120

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Coverage Feature-Response curve

SUTTA
TIGR

Arachne
PCAP

CABOG
 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Kmer Feature-Response curve

SUTTA
TIGR

Arachne
PCAP

CABOG

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60 70 80 90 100

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Breakpoint Feature-Response curve

SUTTA
TIGR

Arachne
PCAP

CABOG
 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Misassembly Feature-Response curve

SUTTA
TIGR

Arachne
PCAP

CABOG

Figure 20: Feature-Response curves by feature type for Wolbachia sp. with mate-
pair constraints.

186

7131
30
2829

*22
*2186*37
*36*9315
16
*8
*7
18

34
3525

14

49
*20

19

555651
*6

*58*66*48
46
89*53*5278*17*62*61*70*5943
44*3345*32
5423
24*948767
5763

*39*38
6465*96*8826
27

*47
5

4041
7950
10

11
*13

*12
*60*8291*9

42
92*2

*1

*69*68*4

*3

90809972
84749577
97817376

100837585
98

0 200000 400000 600000 800000 1000000 1200000

Q
R
Y

Wolbachia_sp

(a) ARACHNE

1031

1*1028
*17

*1027
9991000

*3*71001

10021003

1029
*18*1926*977151004

1005

1210061007
*1026

990991
*994
996

997998

*995
*32*993*987*2*149*992

1030

*4
127718825608987985124635174584514547226345786959787287423783252988935054058684211153861337101340763119825718253899174959667582367062188342852345949648616056989843686391943288193119586180410246690614304475364151894804381078710224445089532213955841778426057376263873487550613611614466138158130890617767837377320522927301514568746529754931033796366844272775919746534400744208886331011151468101970028747578413294932764349515138606137724666432519860708110333710323856112545191187588646756446262212542961810574170336602275665268062642553591821086045567172324778156712253301422071674836069266385496976651039344965827454987765968235337598494678812830325061450127849013015538753626941461583257951782858094255918327365397818282761025205325557259424872163395891755849883534766543486590493044264968988664864219872793932091381120224936146518481977689485814018141295438530780198597183015475484747970432668161933569856215245545525987807424089044023011529937792260284161293691701467474481867214564817563731657229768673503683153387615762222573848430592862354421732823912287862815826928136346733630367484723176087111328925465375221251018446677417143135293979084592848239032471652897297718084018451861479739153197354045169747023446365612093571174556008033645782169638396329792980105505056709584198372906255921497122104061735306636576347079365457025288315628365559421271102449186410162191379910592584059739011138408196945242559118206443959331358737580767848051020437194220846102131934948572968675226431527382628331391295489268597398766624187839331681353481454978917812477262771523364388653950509102510153679767169404856857437782152372046032445372324463735159548875210128353791032113901103515234245286229557934153577683541647658813128974540550723737030956741610038091430096582412028680025439249660560781342644759851399235694436942138165682652967911713869164452003295252778716158210955771844186867276927598380319785375160691346911427677907826505908956966422479617352126103425142636927965117695648349862994725637292042888799725008697905339184144621014843263632394514610725931513615504767972939673226454696355759797092840310192589215699687960818150245267543826354757332347456039056562085089193716730921233101336831661184911492208511842938992922913741991144294097367241795812489585794327944674732280957273471622970241041315023143551595537475554737101785527019553867968083152116243388064733478698674010081032018714237199028272661748204229059741668526887503027748669106935937701884026418938386166408380487089696275577714346465624971835184393624111697054783983848369429554073769127855995876091902989592360182223124377955114850434375369798172685710670710101579646593520326181102332186624792371656204435814924885884339228760863749268531829345172596223613721282669420121639952989494487238873577253448216852643631797136762778799389291331233045476313962584829494995654306708391668810093014190940346675134618848450703900318972473185248146356802528164807

0 200000 400000 600000 800000 1000000 1200000

Q
R
Y

Wolbachia_sp

(b) CABOG

Contig455*Contig233*Contig440*Contig9*Contig256Contig193*Contig45Contig182*Contig528*Contig181Contig164Contig372Contig131Contig212Contig387*Contig40Contig35Contig67*Contig510*Contig571*Contig14*Contig383*Contig111Contig403Contig59*Contig346Contig159*Contig472Contig109Contig108Contig99Contig171Contig24*Contig391*Contig102Contig498*Contig365Contig245Contig356*Contig244*Contig83*Contig62*Contig21Contig216Contig103Contig184Contig410*Contig350Contig414Contig260Contig56Contig567Contig146*Contig467Contig546Contig369Contig139Contig7Contig114*Contig446Contig86*Contig549Contig308*Contig147*Contig311*Contig80Contig293*Contig179Contig90Contig384Contig42Contig470Contig301*Contig275Contig416Contig281Contig127Contig167Contig373Contig38*Contig447Contig46Contig94*Contig524*Contig508*Contig269Contig253Contig396Contig397Contig124Contig138*Contig234*Contig469Contig336Contig450*Contig54Contig120*Contig340Contig348*Contig453*Contig368*Contig345*Contig303Contig286*Contig2*Contig97*Contig117Contig53*Contig390*Contig398*Contig210*Contig489Contig228*Contig143Contig264*Contig434
*Contig318*Contig307Contig405Contig135*Contig349Contig551Contig452*Contig89*Contig550Contig430*Contig126Contig137*Contig333*Contig203Contig136*Contig377*Contig168Contig501Contig468Contig170*Contig312Contig71Contig425*Contig65Contig386*Contig574Contig82Contig544Contig557Contig246*Contig113*Contig518Contig252*Contig409*Contig175Contig379*Contig174Contig17Contig530*Contig531Contig166*Contig74Contig76*Contig145Contig150Contig121Contig537*Contig488*Contig81Contig526Contig232Contig12Contig162*Contig84Contig282Contig85Contig476Contig487Contig25*Contig92Contig98*Contig23*Contig50*Contig378Contig438Contig360*Contig367Contig199Contig361Contig161*Contig214Contig61Contig93*Contig329Contig242*Contig11Contig479*Contig49*Contig483Contig343*Contig532Contig457*Contig30Contig548*Contig545Contig251Contig505Contig506*Contig529Contig229*Contig5*Contig280*Contig534Contig238*Contig420*Contig388*Contig110Contig267Contig562Contig321*Contig158*Contig370*Contig539Contig363Contig223*Contig371Contig381*Contig554*Contig338*Contig149Contig463*Contig52Contig51Contig568*Contig402Contig456*Contig504Contig323Contig28*Contig509Contig525Contig302Contig177*Contig104Contig558Contig47Contig444*Contig389*Contig565Contig209Contig132Contig380*Contig265Contig335*Contig198Contig461Contig60Contig197*Contig436*Contig258*Contig347*Contig521*Contig105*Contig16*Contig573*Contig27Contig26*Contig248*Contig411*Contig449*Contig257*Contig328*Contig395*Contig332Contig437*Contig359Contig88*Contig471*Contig118Contig561*Contig522Contig151*Contig477Contig220Contig154*Contig497*Contig189*Contig299*Contig415*Contig116Contig285Contig466Contig538*Contig160Contig169Contig540*Contig341Contig480*Contig241*Contig278*Contig240*Contig112Contig153Contig382Contig520*Contig337*Contig72*Contig536*Contig535Contig292Contig43*Contig172*Contig122*Contig418Contig324Contig268*Contig474*Contig36*Contig128*Contig195*Contig475*Contig152Contig426Contig478Contig6*Contig327Contig288Contig484Contig19Contig20*Contig393Contig499*Contig119*Contig276Contig500Contig95*Contig330Contig564*Contig496*Contig3*Contig243Contig407Contig130*Contig196*Contig366*Contig458Contig364*Contig514Contig206*Contig271Contig205Contig566Contig417Contig191*Contig204Contig218*Contig215Contig421*Contig339Contig527Contig408*Contig555Contig259Contig465*Contig57*Contig495Contig519*Contig249*Contig464Contig401*Contig176Contig194*Contig443*Contig266*Contig277*Contig34Contig41*Contig512*Contig192Contig236Contig272*Contig319Contig406Contig237*Contig419*Contig32*Contig413*Contig1Contig448*Contig442*Contig115Contig392Contig511*Contig533Contig225Contig235Contig560*Contig224Contig187*Contig516*Contig563*Contig428Contig322Contig358Contig77Contig404Contig290Contig213Contig262*Contig334Contig55Contig400*Contig357Contig201*Contig429*Contig15Contig331*Contig217*Contig58*Contig422*Contig423*Contig445*Contig207Contig10*Contig306*Contig73*Contig326Contig283Contig274*Contig486*Contig70Contig439*Contig547*Contig314Contig64*Contig295Contig523*Contig129*Contig100Contig294Contig155*Contig325*Contig144Contig394Contig250Contig305*Contig261*Contig435*Contig399*Contig374Contig289Contig513Contig75Contig297*Contig18*Contig208*Contig433*Contig432Contig482*Contig48*Contig300Contig78Contig273*Contig507Contig309Contig270Contig362Contig310Contig231*Contig552*Contig165Contig570*Contig375*Contig572Contig44*Contig8Contig31*Contig247Contig441Contig107*Contig473*Contig352Contig219Contig460*Contig543*Contig296Contig148Contig385*Contig344Contig123*Contig481*Contig342*Contig221Contig202*Contig66Contig304Contig541*Contig222*Contig263Contig317Contig4*Contig163*Contig298*Contig427Contig287*Contig133*Contig178Contig39*Contig230Contig320Contig190Contig351*Contig412*Contig63*Contig255*Contig96*Contig68*Contig141*Contig431Contig142Contig185*Contig186Contig355*Contig188*Contig33Contig37Contig183*Contig239Contig316Contig140*Contig315Contig106*Contig134*Contig492*Contig291Contig493*Contig485Contig556*Contig173Contig69*Contig454*Contig376Contig200*Contig553*Contig502*Contig13Contig462Contig125Contig79Contig226Contig180Contig227*Contig156*Contig490*Contig211Contig515Contig279*Contig353*Contig517Contig569Contig494Contig424Contig491*Contig503Contig254Contig29*Contig157*Contig87*Contig313*Contig91Contig451Contig284*Contig542Contig579Contig580Contig613Contig615Contig589Contig600Contig588Contig577Contig593Contig612Contig609Contig603Contig614Contig601Contig586Contig594Contig608Contig595Contig587Contig459Contig576Contig606Contig596Contig583Contig592Contig22Contig354Contig591Contig584Contig585Contig559Contig597Contig590Contig581Contig578Contig607Contig604Contig582Contig598Contig602Contig611Contig599Contig575Contig610Contig605Contig101

0 200000 400000 600000 800000 1000000 1200000

Q
R
Y

Wolbachia_sp

(c) Euler

*9644
670*675*15*1260*14*17266*16681682691*677*55*673*38*657*643*642*54271*53*52709646

*6891213
406908
*18651*59652*688*19*56*22*21*656*655*65451683*81684*6872835
685*669*729*668*66769212516936946786796806036
2689127*3723
4*653*20*45*44*43*42*41*39*232931

*627*6585
11

*777*660*65946
*6766

749*7950662*12486636746716724748*661645
66483665*745666*837*712624*892*649*64824

*647
1

*650*58*57*101049127718821050560117889879810315124635174584514541250722634110957869597872812447423783258893501233540116221115386133710134076311982571121411908253899174951171112396699275823670621811721259834285234594121611351203961068486160569981048100010616863919432881931195861804102469991168611180118543044753611304151894801153438107871022444508953221108955841778426057310841144762638734875506136116119714438158130890617737377312472059273014568749754931033796102636684427277591974653440074488863310111511161468101970028747578990413294932764349515124212081107138606137120172443251910748601195106370811033371032385611254519118758875644626212202121149542961108781057412381703322797756652680626425535918212291086041001556717232477815118222533014220716736085496911741076766510393449274549877114111283533759841155946788128303250614501278490130155387111262694146158325795178285809115642559183273653978182827610252012185321193259424872163110611463958917558498834743411848651207904930442886111610281981098105972793932091381120224936146518481911891177112777689485814018141295438530780198597183015475484747911661101704326116510031054619335102969862152455455259878074240890440230115299377922602841104410726129369112401086701467474481867214564817563731229768109250368315338761576222257384841243107810363051253928623544119611142173282391221223878628158269281363733997630748472317608711132125412345465375221251018112510077411188118699871431352910589873971150109690811914592848239032471652897718084018451861231111912491479731046114291531911791052735404516974702344636110456111332091118357117455600803364578216963839632979212129805501164108150510949584199951225290625592149210406173530661030365763470793120557025211598831562834211226125610701024491864101621911707991059258405973901111042408196945242116955932118206443959106533135873758076784805102043719422012578461021126393494857296822643152711453826283313912954892612468591083739111087641878393316813534811521457891781131124772109099371536438895050910251015367976716940485743778523720460324453723244120263735110405951138488752123210128353791032113901103515234245286229557934110565357754112156476588131289740550723710021173370309567416100380914125830096582412028610758001148254392496605607813759851399122810732354369421381611035681062265296112979117111433869164452001261329525787161582109557718123944186811407691181275983803197853751124510673469114271111907821154121059089569115722461735210061261034251426369996279176956483498629947256372920428887116099725008691221120079053391811221108105341446210148431209263632394991514610725931513615476119879710771136117529312369673224696351088575117610399791005310192589215699111596081815010382452675438263541064757332109912173460390565620850104593710047309211069233101312243683169946118494922085118429389929229137419911442910914097367241795812489585794327108094411137322809572734716229701041315023141237355159553747125255510371017855270195105753883111475211621241433880120633478698611177401008102710320187142371911399021222827174820422121990511949775030211267748669105937701884021097641893838616640112180487089696210857551434641051562110249718351812114393624111697054783983848369429554073769127855991167587609123519029895923601822231243779551148504343753697981726857106707101015796465935203261121310931023321119986792115837110792041041435814924885884339228760863749268531829345172596223613721125510432821082420106612163995298910714944872388731137577253448122721685263112017911051187713277119287993810951183126211329291331233045476313962584829494991151306120470104783910551668810093014190940346611241230751346188481163450106070390011343189721100473185248146356802528164807

0 200000 400000 600000 800000 1000000 1200000

Q
R
Y

Wolbachia_sp

(d) PCAP

3137
*2034*42389
*86*7
83*102*121*67*28*30*2613
1*23*54*41*36

*35137*2
*85*7863*12514355*39
*14
*79*61*116146653

*111*12348*72*107110*69*32*10113888*131948033
*145*118*74132117*108*142136*56*50*7729
*93130*18
6884*12

*7312065*11510915*24
22*58
43100*66133*134*97*51*8144
62*57*11
46*454*9210510370*71*16
1393
87529849

*106*76*11290113*91*101721
27
64*8
519
2595*47*757157165707175715727185737195745755765775785797207217227237247257265805817275827287295835845855865875885897307317327337347355907365917377385927395935945955965975985997407417427437447457467477487497507517527537547557567577587599009019029039049059067607619077629089097637647657667677687699109119129139149157709167719179187729197737747757767777787799209219229239249257809269277819287829297837847857867877887899309319329339349359367909377919387929397937947957967977987999409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582594004014024034044052604062614072624082634092642652662672682694104114124134144152704162714172724182734192742752762772782794204214224234244252804262814272824282834292842852862872882891100110111021103110411051106110711081109430431432433434435290436291437292438293294439295296297298299111011111112111311141115111611171118111944044144244344444544644744844911201121112211231124112511261127112811294504514524534544554564574584591130113111321133600113460111356021136603113760411386051139606460607461608462609463464465466467468469114011411142114361011446111145612114661311476141148615114961647061747161847247361947447547647747847911501151115211536201154621622623624625626480627481482628483629484485486487488489630631632633634635636490491637492638639493494495496497498499640641642643644645646647648649650651652653654655656657658659800801802803804805660806661807662663808809664665666667668669810811812813814815670816671672817818673819674675676677678679820821822823824825680681826827682828683829684685686687688689830831832833834690835836691837692838693839694695696697698699840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899104114119122124126127128129135140141144147148149150151152153154155156157158159300301302303304305306160307161308162309163164165166167168169310311312313314315316170317171318172319173174175176177178179320321322323324325326180327181328182329183184185186187188189100010011002100310041005100610071008330100933133233333433533619033719133819233919319419519619719819910101011101210131014101510161017101834010193413423433443453463473483491020102110221023102410251026102710281029350351352353354355356357358359103010311032103350010345011035502103650310375041038505103950636050736150836240509363364365366367368369104010411042104351010445111045512104651310475141048515104937051637151737251837351937437537637737837959105010511052105352010545211055522105652310575241058525105938052638152738260528383384529385386387388389106010611062106353010645311065532106653310675341068535106939053639153739239353853939439539639739839910701071107210735401074541107554210765431077544107854510795465475488254989108010811082108355010845511085552108655310875541088555108955655755855996997007017021090703109170410927051093560706109456170710955627081096563109756470910981099565566567568569710711712713714

0 200000 400000 600000 800000 1000000 1200000

Q
R
Y

Wolbachia_sp

(e) SUTTA

*34
*210

550
*307
*353
*59*785850*339

633*679

*2
*2117*2771070
*137*611*373*530230*82*8375*31281596

424

*480965284806807150*702*447
36

*168
*1

622
233

*3151061968*288287*2261082
*185*1074*17696259*717518324

1080*1098
71571657057157271857371957457557657757857972072172272372472572658058172758272872958358458558658758858934567897307317327337347355907365917377385927395935945955975985997407417427437447457467477487497507517527537547557567577587599009019029039049059067607619077629089097637647657667677687699109119129139149157709167719179187729197737747757767777787799209219229239249257809269277819287829297837847867877887899309319329339349359367909377919387929397937947957967977987999409419429439449459469479489499509519529539549559569579589599609619629639649669679699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989992002012022032042052062072082092112122132142152162172182192202212222232242252272282292312322342352362372382392402412422432442452462472482492502512522532542552562572584004014024034044052604062614072624082634092642652662672682694104114124134144152704162714172724182734192742752762782794204214224234252804264272824282834292852862891100110111021103110411051106110711081109430431432433434435290436291437292438293294439295296297298299111011111112111311141115111611171118111944044144244344444544644844911201121112211231124112511261127112811294504514524534544554564574584591130113160060160260360460560646060746160846260946346446546646746846961061261361461561647061747161847247361947447547647747847962062162362462562662748148262848362948448548648748848963063163263463563649049163749263863949349449549649749849964064164264364464564664764864965065165265365465565665765865980080180280380480566066166266380880966466566666766866981081181281381481567081667167281781867381967467567667767882082182282382482568068182682768282868382968468568668768868983083183283383469083583669183769283869383969469569669769869984084184284384484584684784884985185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613813914014114214314414514614714814915115215315415515615715815930030130230330430530616016130816230916316416516616716931031131231331431617031717131817231917317417517717817932032132232332532618032718132818232918318418618718818910001001100210031004100510061007100833010093313321033311334123351333619014337191153381921619319418195191961971981991010101110121013101410151016101710183401019341342203433442234523346243472534826273492829102010211022102310241025102610271028102935035135230354323553335635735358373593839103010311032103350010345011035502103650310375041038505103950636050736150836240509363413644236543366444536746368473694849104010411042104351010445111045512104651310475141048515104937051637151737250515193745237553543765537756378573795810501051105210535201054521105552210565231057524105852510593805263815273826052838361384625296338564386653876638867389686910601062106310645311065532106653310675341068535106939053639153739270393715387253939473395743963977639877399787910711072107354054110755421076543107754410785451079546805478154854984858687888910811083108455110855521086553108755410885551089556905579155892559939495979899700701109070310917041092705109356070610945617071095562708109656310975647091099565566567568569710711712713714

0 200000 400000 600000 800000 1000000 1200000

Q
R
Y

Wolbachia_sp

(f) TIGR

Figure 21: Dot plots for Wolbachia sp (with mate-pairs). Assemblies produced
by ARACHNE, CABOG, Euler, PCAP, SUTTA and TIGR. The horizontal lines
indicate the boundary between assembled contigs represented on the y axis.

187

Chromosome Y

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Feature-Response curve

SUTTA
TIGR

ARACHNE
PCAP

CABOG

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 500 1000 1500 2000 2500 3000 3500 4000

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Matepair Feature-Response curve

SUTTA
TIGR

Arachne
PCAP

CABOG
 0

 20

 40

 60

 80

 100

 120

 0 100 200 300 400 500 600

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Polymorphism Feature-Response curve

SUTTA
TIGR

Arachne
PCAP

CABOG

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

 0 0.5 1 1.5 2 2.5 3

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Coverage Feature-Response curve

SUTTA
TIGR

Arachne
PCAP

CABOG
 0

 10

 20

 30

 40

 50

 60

 70

-1 -0.5 0 0.5 1

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Kmer Feature-Response curve

SUTTA
TIGR

Arachne
PCAP

CABOG

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Breakpoint Feature-Response curve

SUTTA
TIGR

Arachne
PCAP

CABOG
 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250 300 350 400 450

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Misassembly Feature-Response curve

SUTTA
TIGR

Arachne
PCAP

CABOG

Figure 22: Feature-Response curves by feature type for Chromosome Y with
mate-pair constraints.

188

1

2

3

4

*5

0 500000 1000000 1500000 2000000 2500000 3000000

Q
R
Y

Y

(a) ARACHNE

*5

*4

*3

*2

1

0 500000 1000000 1500000 2000000 2500000 3000000

Q
R
Y

Y

(b) CABOG

*Contig5

Contig1Contig32Contig34

*Contig37

*Contig36

*Contig12Contig17

*Contig27*Contig2
*Contig21Contig19
*Contig10

*Contig8Contig31
*Contig9

*Contig14*Contig13

Contig23Contig4*Contig3Contig24
*Contig25Contig6

*Contig20
Contig22Contig16

*Contig26

Contig7

Contig35*Contig29
Contig28

Contig33

Contig11Contig18Contig30Contig15

0 500000 1000000 1500000 2000000 2500000 3000000

Q
R
Y

Y

(c) Euler

*44

*46*43
*118111*42*41

*49*53*40

*106*39
*38

*37
*47*36*35

92*34

*33

*100*3263*31

*93*30
*68*120*102*29

*28*27*119*2697*25

*24*23
103*21
105*2054130133*19

*109*18*17*70*16
*1576112*56*14

*99*13
*12*11
*10*9
*8

*58*114*7

127*6*5

59*4

45*3*90*2
94*1
71125558495578978658160101738662671291108213569124104131121799612698117807274611081151139148107877712350645266881161281347583122228551132

0 500000 1000000 1500000 2000000 2500000 3000000

Q
R
Y

Y

(d) PCAP

*1

13*7

*3

*148*5

*4

*2

*166

11179121510

0 500000 1000000 1500000 2000000 2500000 3000000

Q
R
Y

Y

(e) SUTTA

42036*38*142146907*50191123*126*778516218541*80*206*210273*243246579887*741587*494533*395299938*152327*329*345*55*3944125811028957*614959264*904*935*586*415358*416*779*780*678*42*43*815*6971031010*288949303609134*814*410*561*438*996*460*271262490594*8525738921018*937939183*567*14187657417363364179181*157*406914918*47491981164
*156*869*764293902924*1023*7611008194*726*598*968
*1002788435891*672517*755681507204588*451*456*732673434*331*312249*17*909*77*910827997881151966510*266879449*2698756761003*392*118*46670748260489746129899*721*894*736*98213*215*343*66574638*639*734*789432*984797975*112*941*223991237*265
*307*259*254*770*499154*28*122*32*1013*521*349*113*117*817*936*827238241*868784*890*871*339*235*20*625*976785*78661284830905758778313171026*97*121*958148101952*131*135*191*147973*998*484766665687535925*347275280221*423*523*525*870*536*826*537*654*8335946375169*6046242294688461004469*981*985*692*304365*366651*401*6563947348*610*962*47411771*15*199*772*487*21246919948811000577340*341928*717*953839*231*527255546808*547320350137989*444*719*371*686*502*245*50*659*963623969*290*961*479*9207582
*708*201*806816351*1022354*8761015261977*385408*439109715*111635*399792*650*333336930*926*400*997*289*202*804*917*5123563607165705715727185745755765787207227237247255807275827287295835845855893678973073173373559059173773859273959359559659759974074274374474574774875075275475675775990090190390676076290876376576776876991191291391591691977377477577677792192292392778178292978378793193293393479079179379479579679894094294394494594694794895095195495595696096496596797097197297497897998098298398698798899099299399599920020320520720820921121221421621721922022222422522622722823023223323423623924024224424724825025125225325625725840240340440526040726340926726841141341427027241841927427627727827942142242442542628142728242828342928528628743043143343629143729229429529629729844044144244344544644744845045245345445545745845960060160260360560660746160846246446546761161261361561647061747161847261947547647747862062162262648062748162848362948548648863063163263363463649163749249349549649749864064164264364464564664764864965265365565880080180280380566066180766266380966466666766866981081181281367067181881967467567767982082182282382482568068282868382968468568768868983283469083583683783869369469569669869984084184284384484584784884985085185385485585685785885986086186286386486586686787287387487888088288388488588688888989389589689789810010210410510610710811011411511611912012412512712813013213313613813914014114314414514915015315515815930030130230530616016130816230916316516616716816931031131331431531617017131817231917317417517617717832132232332432532618032818218418518618818910011005100610073301009332103341233513190337338192161931819519196197101110121014101610171019342344222334625348262729102010211024102510271029352303533135533343573537359103050050350450550636150836240509414445367463684736949511513514515370372518373515193745237553543763775637857379585205225243805263813825283833846252963643866538738867389685305315325345353903917039371538725397339639776398795405425435445455485498384858687888955055155255355455555690557558925599394959699700701702703704705560706562563564709565566569710711712713714

0 500000 1000000 1500000 2000000 2500000 3000000

Q
R
Y

Y

(f) TIGR

Figure 23: Dot plots for Chromosome Y 3Mbps region (with mate-pairs). As-
semblies produced by ARACHNE, CABOG, Euler, PCAP, SUTTA and TIGR.
The horizontal lines indicate the boundary between assembled contigs represented
on the y axis.

189

Short Reads

With Mate-Pairs constraints

Escherichia coli

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10000 20000 30000 40000 50000 60000 70000

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Feature-Response curve

SUTTA
Velvet

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10000 20000 30000 40000 50000 60000 70000

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Matepair Feature-Response curve

SUTTA
Vlvet

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Polymorphism Feature-Response curve

SUTTA
Velvet

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40 45

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Coverage Feature-Response curve

SUTTA
Velvet

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Kmer Feature-Response curve

SUTTA
Velvet

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

-1 -0.5 0 0.5 1

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Breakpoint Feature-Response curve

SUTTA
Velvet

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300 350

A
pp

ro
xi

m
at

e
co

ve
ra

ge
 (

%
)

Feature threshold

Misassembly Feature-Response curve

SUTTA
Velvet

Figure 24: Feature-Response curves by feature type for Escherichia coli with
mate-pair constraints.

190

248132111
*191

*104*66*81196115*642261432722473240*177*176120140*69*105161452181491021*346530
*142249*15027013435165*139*117*189*181*163*179187*109*89*112116
128*4814613*273*257*233*215*245208272262*278*247*185*162*258*259*243*91

*114
*36

24*2374170136*98

*123*26043
151256*10675*22
*6863*59*119135*99220197166*49261271*206264122*40
*15317520
217237222148*209*52*184178*107*276
*210

*6

*4
17428*3
5588

*39
154*213121

*152*7938
168*204194*127

*160*78*190
182*4137*19595282137*275*266*60156*1558617
*2

*82207161
*6772
167*85*147*198*15845
*253*26910180
14*15*267*274*7*25151

*108*263*157

20392*939133138212279*221*241*242*26*25512619929*131*103192*252*463261
173*2327657228*83*12

*1101
*100
*71*251028742
33183186*159*118*50*225*265*56319684

*125*44
*90*53*229*171*12458*164
9777
6211*24623470*230284*21147*129193

*14454
28023620285180244201113214188254239281205235941692001823126817222323821622727719141283250130219

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000

Q
R
Y

gi|49175990|ref|NC_000913.2|

(a) Velvet

*1982*1890
*1899

1089*1904*1986*1969*1962*1984*1981*19251922*19881987*1939*19201924

19151895
1921195419751879*1898*1965
*1976*19571959*1967*192719611914967*19731972891917*19931956*19921903*1945

1981994

*11981985
*18961946

19071947
*1911339437*1943*46*1952*1953
196619741932*1948*1897*1934*19701968
18941928*19791977
*18831902*1941*1944
*1983

1909

1910
*193519401950
1923

*19491521908

*1878*1929

1884
*1764*103012342001901

*21931
*943*1480*10381568*1888
*1936
1938

*1937
*1980
*1820*1964
*1905*19891926*1990
1991

1887*195819191891*1194*1573*196319511978
14381880*1933

1892
19961960*6631881
1889
18857561882*19001913
*19121886
1971

*1930*1906
*19421893

9016985601004138780587245461184213331303325968540442116214301318833166017809661317167013571681509491416165810418115585941671123719162338865355316010159810616804601191621202637144174020113111044113010351356122214195354745641749456931084175676287533857676114715811726140316721418145043929617915371393161046815071604441275853606150028490343515169241995176316904461715107113311613253141715751238167382117941221359182183012629916929958545101501178111281009984466156283133718291918170213021777129425747331955528945

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000

Q
R
Y

gi|49175990|ref|NC_000913.2|

(b) ABySS

*contig1754|size5846|read10|cov0.00*contig1198|size3947|read12|cov0.00*contig1449|size140|read11|cov2.00contig2076|size2788|read9|cov0.00contig2773|size217|read7|cov1.00*contig1340|size5243|read11|cov0.00*contig1783|size6906|read10|cov0.00contig1465|size12069|read11|cov0.00*contig2227|size628|read9|cov0.00contig1672|size15958|read10|cov0.00*contig1676|size5368|read10|cov0.00*contig1621|size5401|read10|cov0.00contig1284|size9561|read11|cov0.00contig1569|size12661|read11|cov0.00*contig1522|size17126|read11|cov0.00*contig1538|size2643|read11|cov0.00*contig1911|size13643|read10|cov0.00contig1620|size14128|read10|cov0.00*contig2343|size1925|read8|cov0.00contig2059|size7687|read9|cov0.00contig1665|size13623|read10|cov0.00contig1208|size4502|read12|cov0.00contig2722|size458|read8|cov0.00*contig1691|size6252|read10|cov0.00*contig2465|size2358|read8|cov0.00*contig1444|size23340|read11|cov0.00contig1441|size4833|read11|cov0.00contig1829|size1837|read10|cov0.00*contig2346|size987|read8|cov0.00contig1813|size2413|read10|cov0.00contig2232|size556|read9|cov0.00contig2048|size8584|read9|cov0.00contig1377|size7375|read11|cov0.00*contig128|size138|read29|cov7.00*contig1890|size7976|read10|cov0.00*contig2156|size2138|read9|cov0.00contig1012|size123|read13|cov3.00*contig1494|size8129|read11|cov0.00*contig2431|size765|read8|cov0.00*contig2051|size1170|read9|cov0.00contig1346|size3873|read11|cov0.00contig1735|size4532|read10|cov0.00contig1282|size4272|read11|cov0.00contig2020|size1224|read9|cov0.00contig2018|size2312|read9|cov0.00contig3068|size226|read7|cov1.00contig3353|size145|read6|cov1.00contig2516|size618|read8|cov0.00*contig2123|size413|read9|cov0.00*contig2686|size447|read8|cov0.00*contig3000|size239|read7|cov1.00*contig1468|size1602|read11|cov0.00contig1517|size258|read11|cov1.00*contig2537|size191|read8|cov1.00contig2085|size2063|read9|cov0.00*contig1972|size4062|read9|cov0.00contig1926|size3917|read10|cov0.00contig1950|size5271|read10|cov0.00contig2083|size894|read9|cov0.00contig2383|size315|read8|cov0.00*contig1603|size5851|read10|cov0.00contig2307|size957|read9|cov0.00*contig1719|size2522|read10|cov0.00*contig2390|size2576|read8|cov0.00contig1633|size1037|read10|cov0.00contig1898|size6287|read10|cov0.00*contig1836|size4718|read10|cov0.00*contig2044|size1092|read9|cov0.00*contig1752|size3771|read10|cov0.00contig951|size14009|read13|cov0.00contig283|size4532|read23|cov0.00*contig2900|size119|read7|cov2.00contig1170|size5311|read12|cov0.00*contig1884|size4343|read10|cov0.00*contig2332|size1802|read8|cov0.00contig2215|size3008|read9|cov0.00contig2144|size2752|read9|cov0.00*contig2445|size150|read8|cov1.00contig2952|size165|read7|cov1.00*contig1183|size11915|read12|cov0.00contig2099|size2765|read9|cov0.00contig2002|size2412|read9|cov0.00contig2222|size2179|read9|cov0.00contig4119|size125|read5|cov1.00*contig1948|size3776|read10|cov0.00contig1188|size9165|read12|cov0.00*contig1712|size2373|read10|cov0.00*contig2133|size2819|read9|cov0.00contig1276|size13008|read11|cov0.00*contig2414|size1047|read8|cov0.00*contig2033|size4541|read9|cov0.00*contig1794|size732|read10|cov0.00contig1925|size13394|read10|cov0.00*contig2013|size7201|read9|cov0.00*contig3177|size107|read7|cov2.00*contig1763|size3086|read10|cov0.00contig1366|size18443|read11|cov0.00*contig1074|size19375|read12|cov0.00contig1523|size2422|read11|cov0.00*contig1988|size3393|read9|cov0.00*contig1604|size11423|read10|cov0.00contig1871|size7100|read10|cov0.00contig1755|size14684|read10|cov0.00contig2078|size2081|read9|cov0.00*contig3230|size204|read7|cov1.00contig3666|size130|read6|cov1.00*contig667|size10938|read16|cov0.00*contig1714|size13449|read10|cov0.00contig3175|size169|read7|cov1.00*contig3580|size145|read6|cov1.00contig1955|size4808|read10|cov0.00contig2359|size1164|read8|cov0.00*contig2594|size215|read8|cov1.00contig1241|size7150|read11|cov0.00contig1976|size725|read9|cov0.00contig1804|size1333|read10|cov0.00*contig1164|size6455|read12|cov0.00contig2143|size167|read9|cov1.00contig1480|size1276|read11|cov0.00contig2040|size1274|read9|cov0.00*contig1824|size774|read10|cov0.00contig1883|size1094|read10|cov0.00contig1186|size131|read12|cov3.00*contig2761|size113|read7|cov2.00contig2467|size104|read8|cov2.00*contig1325|size139|read11|cov2.00*contig1302|size208|read11|cov1.00contig2753|size351|read7|cov0.00*contig2962|size159|read7|cov1.00contig1255|size1056|read11|cov0.00contig1744|size3065|read10|cov0.00contig2094|size2597|read9|cov0.00*contig1024|size8352|read13|cov0.00contig2540|size105|read8|cov2.00*contig2495|size2408|read8|cov0.00contig2041|size8483|read9|cov0.00contig2109|size791|read9|cov0.00contig285|size11546|read23|cov0.00contig1185|size2909|read12|cov0.00*contig1596|size3010|read10|cov0.00*contig1985|size4527|read9|cov0.00*contig1592|size2790|read10|cov0.00contig2284|size1101|read9|cov0.00*contig1184|size10437|read12|cov0.00contig1124|size8965|read12|cov0.00contig2117|size771|read9|cov0.00contig1218|size31798|read12|cov0.00*contig1601|size7427|read10|cov0.00*contig2108|size135|read9|cov2.00contig2282|size220|read9|cov1.00*contig1701|size2331|read10|cov0.00contig1505|size4390|read11|cov0.00*contig1834|size3999|read10|cov0.00*contig1717|size7369|read10|cov0.00contig2895|size107|read7|cov2.00contig1807|size2235|read10|cov0.00contig1627|size8766|read10|cov0.00contig2324|size3073|read8|cov0.00contig2549|size209|read8|cov1.00*contig3712|size103|read6|cov2.00*contig2097|size134|read9|cov2.00*contig1912|size111|read10|cov3.00*contig5125|size101|read5|cov1.00contig2694|size230|read8|cov1.00contig1310|size112|read11|cov3.00contig1688|size901|read10|cov0.00*contig1840|size1227|read10|cov0.00*contig3612|size139|read6|cov1.00*contig1968|size188|read9|cov1.00contig1058|size115|read12|cov3.00contig2172|size869|read9|cov0.00*contig1618|size1404|read10|cov0.00contig3186|size112|read7|cov2.00*contig1729|size2607|read10|cov0.00contig1703|size14803|read10|cov0.00*contig1503|size4374|read11|cov0.00*contig1455|size17763|read11|cov0.00contig2046|size108|read9|cov3.00*contig929|size106|read13|cov4.00contig906|size21530|read14|cov0.00contig2449|size2394|read8|cov0.00*contig2869|size118|read7|cov2.00contig1935|size9655|read10|cov0.00*contig1722|size4925|read10|cov0.00*contig2358|size863|read8|cov0.00*contig1655|size10884|read10|cov0.00*contig2074|size5287|read9|cov0.00*contig1608|size4755|read10|cov0.00*contig2111|size3278|read9|cov0.00contig1303|size6376|read11|cov0.00contig1447|size34153|read11|cov0.00contig1253|size13509|read11|cov0.00contig1335|size15294|read11|cov0.00contig1364|size8496|read11|cov0.00*contig1971|size2201|read9|cov0.00*contig1753|size9543|read10|cov0.00contig4937|size138|read5|cov1.00contig1728|size5265|read10|cov0.00*contig2045|size836|read9|cov0.00*contig2082|size2042|read9|cov0.00*contig1786|size7653|read10|cov0.00*contig1163|size17048|read12|cov0.00*contig1806|size15990|read10|cov0.00contig3125|size254|read7|cov0.00contig2052|size1321|read9|cov0.00contig1789|size7947|read10|cov0.00*contig2480|size1016|read8|cov0.00contig1029|size12881|read13|cov0.00contig1358|size25356|read11|cov0.00contig1287|size13279|read11|cov0.00contig1510|size3441|read11|cov0.00contig68|size210|read32|cov5.00contig2382|size636|read8|cov0.00contig1986|size340|read9|cov0.00*contig933|size10476|read13|cov0.00contig1615|size6073|read10|cov0.00contig2793|size418|read7|cov0.00*contig1872|size5605|read10|cov0.00*contig1961|size6973|read10|cov0.00*contig1859|size3787|read10|cov0.00*contig1103|size9575|read12|cov0.00*contig2267|size1509|read9|cov0.00*contig1630|size5363|read10|cov0.00contig1432|size10536|read11|cov0.00*contig1597|size7850|read10|cov0.00*contig1516|size13284|read11|cov0.00*contig1625|size18903|read10|cov0.00contig2528|size1246|read8|cov0.00*contig1739|size8601|read10|cov0.00contig1799|size4328|read10|cov0.00contig1977|size3562|read9|cov0.00contig1257|size27294|read11|cov0.00contig1634|size6980|read10|cov0.00*contig1768|size2201|read10|cov0.00contig3267|size127|read6|cov1.00*contig2219|size813|read9|cov0.00contig3282|size202|read6|cov1.00*contig2423|size854|read8|cov0.00*contig1684|size13668|read10|cov0.00*contig2497|size244|read8|cov1.00*contig2181|size130|read9|cov2.00*contig3158|size101|read7|cov2.00contig1155|size35848|read12|cov0.00contig1372|size9593|read11|cov0.00*contig2784|size103|read7|cov2.00contig737|size16137|read15|cov0.00*contig1436|size108|read11|cov3.00contig2779|size256|read7|cov0.00contig1640|size11921|read10|cov0.00*contig1848|size1111|read10|cov0.00*contig2028|size3794|read9|cov0.00*contig2438|size1468|read8|cov0.00*contig1863|size3661|read10|cov0.00*contig1137|size21276|read12|cov0.00contig1652|size9014|read10|cov0.00contig1778|size4448|read10|cov0.00contig1165|size5941|read12|cov0.00contig1296|size9258|read11|cov0.00*contig1395|size24313|read11|cov0.00*contig1190|size3639|read12|cov0.00contig1106|size7666|read12|cov0.00*contig1910|size2344|read10|cov0.00contig1646|size8099|read10|cov0.00*contig1564|size15755|read11|cov0.00contig2501|size956|read8|cov0.00*contig153|size3477|read28|cov0.00contig15|size124|read41|cov11.00*contig138|size197|read28|cov5.00*contig149|size2994|read28|cov0.00contig2410|size322|read8|cov0.00contig2588|size405|read8|cov0.00contig1039|size315|read12|cov1.00contig1156|size482|read12|cov0.00contig1070|size143|read12|cov3.00*contig957|size405|read13|cov1.00contig2901|size109|read7|cov2.00*contig1043|size31415|read12|cov0.00contig2561|size138|read8|cov2.00*contig3026|size128|read7|cov1.00*contig2157|size1103|read9|cov0.00*contig2148|size104|read9|cov3.00*contig1422|size23497|read11|cov0.00contig1743|size11092|read10|cov0.00*contig1135|size12547|read12|cov0.00contig2036|size2535|read9|cov0.00contig1234|size5720|read12|cov0.00*contig1839|size2244|read10|cov0.00*contig3324|size204|read6|cov1.00contig3365|size140|read6|cov1.00contig1305|size2415|read11|cov0.00contig1885|size117|read10|cov3.00contig2240|size2015|read9|cov0.00contig2604|size896|read8|cov0.00contig1250|size4193|read11|cov0.00*contig1386|size7528|read11|cov0.00contig2362|size577|read8|cov0.00contig1764|size1915|read10|cov0.00contig2378|size657|read8|cov0.00*contig1565|size1473|read11|cov0.00*contig1923|size6934|read10|cov0.00*contig1904|size3412|read10|cov0.00*contig2058|size3189|read9|cov0.00*contig1570|size5056|read11|cov0.00contig1979|size536|read9|cov0.00contig1327|size25743|read11|cov0.00*contig2719|size491|read8|cov0.00*contig1333|size24260|read11|cov0.00*contig2001|size3488|read9|cov0.00contig1938|size6214|read10|cov0.00*contig1970|size105|read9|cov3.00*contig2860|size109|read7|cov2.00contig1214|size273|read12|cov1.00*contig880|size294|read14|cov1.00*contig2417|size444|read8|cov0.00contig3065|size323|read7|cov0.00contig2349|size103|read8|cov2.00contig3132|size110|read7|cov2.00contig1699|size128|read10|cov2.00contig2739|size534|read8|cov0.00*contig1213|size4143|read12|cov0.00*contig2329|size355|read8|cov0.00*contig1334|size8277|read11|cov0.00contig2636|size714|read8|cov0.00*contig1167|size6633|read12|cov0.00contig1245|size5152|read11|cov0.00*contig2022|size17458|read9|cov0.00contig1126|size6734|read12|cov0.00*contig1816|size4071|read10|cov0.00*contig1881|size8496|read10|cov0.00contig1159|size8673|read12|cov0.00contig2770|size167|read7|cov1.00contig1557|size8915|read11|cov0.00contig2399|size1566|read8|cov0.00*contig2184|size7082|read9|cov0.00contig1865|size13185|read10|cov0.00*contig2118|size2522|read9|cov0.00*contig1867|size4309|read10|cov0.00*contig2474|size105|read8|cov2.00contig1450|size13168|read11|cov0.00*contig1461|size56510|read11|cov0.00
contig1212|size30597|read12|cov0.00contig2213|size3708|read9|cov0.00*contig2387|size2565|read8|cov0.00contig1616|size2573|read10|cov0.00*contig1345|size3089|read11|cov0.00*contig1844|size14452|read10|cov0.00*contig2071|size1127|read9|cov0.00contig948|size4367|read13|cov0.00contig1417|size12097|read11|cov0.00contig1203|size9451|read12|cov0.00contig1838|size5535|read10|cov0.00*contig1598|size18889|read10|cov0.00contig1407|size30116|read11|cov0.00contig961|size15434|read13|cov0.00*contig1647|size7264|read10|cov0.00contig1973|size1441|read9|cov0.00contig1373|size10362|read11|cov0.00*contig1568|size2481|read11|cov0.00*contig1248|size3948|read11|cov0.00*contig2026|size5971|read9|cov0.00*contig1825|size1767|read10|cov0.00*contig1696|size31404|read10|cov0.00*contig1641|size4952|read10|cov0.00contig1369|size4509|read11|cov0.00*contig1315|size7182|read11|cov0.00*contig1614|size6287|read10|cov0.00*contig1690|size1787|read10|cov0.00contig1880|size2383|read10|cov0.00*contig1727|size3887|read10|cov0.00*contig18|size147|read40|cov9.00*contig1624|size1636|read10|cov0.00*contig2113|size1258|read9|cov0.00contig1704|size15757|read10|cov0.00*contig1642|size14560|read10|cov0.00*contig1637|size15563|read10|cov0.00*contig1658|size14880|read10|cov0.00contig1782|size6758|read10|cov0.00contig1294|size8150|read11|cov0.00*contig1313|size21888|read11|cov0.00contig1338|size7838|read11|cov0.00contig913|size13262|read13|cov0.00contig2090|size3655|read9|cov0.00*contig2098|size890|read9|cov0.00*contig1283|size22678|read11|cov0.00*contig1994|size5150|read9|cov0.00*contig1989|size4392|read9|cov0.00contig916|size106|read13|cov4.00*contig1837|size2090|read10|cov0.00*contig1585|size5268|read10|cov0.00contig1249|size16321|read11|cov0.00*contig1820|size3201|read10|cov0.00contig1573|size26751|read10|cov0.00contig1887|size6041|read10|cov0.00*contig1572|size1120|read11|cov0.00*contig1674|size11408|read10|cov0.00contig1710|size1725|read10|cov0.00*contig784|size11876|read15|cov0.00*contig2406|size125|read8|cov2.00*contig1010|size11542|read13|cov0.00*contig1390|size6199|read11|cov0.00contig1974|size5630|read9|cov0.00contig1984|size3907|read9|cov0.00contig1671|size2932|read10|cov0.00contig2230|size2578|read9|cov0.00contig1374|size7855|read11|cov0.00contig2959|size205|read7|cov1.00*contig1611|size7096|read10|cov0.00contig1031|size27290|read12|cov0.00*contig1148|size38689|read12|cov0.00contig691|size1582|read16|cov0.00contig798|size11271|read14|cov0.00contig1089|size27060|read12|cov0.00contig2782|size118|read7|cov2.00*contig2833|size105|read7|cov2.00contig2134|size879|read9|cov0.00*contig2628|size125|read8|cov2.00contig1479|size11996|read11|cov0.00*contig1582|size5318|read10|cov0.00contig1261|size22043|read11|cov0.00contig1311|size2879|read11|cov0.00contig1383|size2467|read11|cov0.00*contig1798|size2095|read10|cov0.00*contig1697|size658|read10|cov0.00*contig1941|size140|read10|cov2.00contig1337|size17039|read11|cov0.00*contig1434|size10841|read11|cov0.00contig1204|size11512|read12|cov0.00contig1266|size7142|read11|cov0.00*contig2175|size5626|read9|cov0.00contig1243|size19106|read11|cov0.00contig1772|size8796|read10|cov0.00contig1875|size1769|read10|cov0.00*contig1576|size32655|read10|cov0.00contig1053|size8734|read12|cov0.00contig1428|size8845|read11|cov0.00contig1575|size1308|read10|cov0.00contig1581|size7332|read10|cov0.00*contig2239|size2917|read9|cov0.00contig2054|size6238|read9|cov0.00*contig2400|size2109|read8|cov0.00contig2151|size1660|read9|cov0.00*contig1116|size7346|read12|cov0.00*contig2012|size1355|read9|cov0.00*contig2030|size5378|read9|cov0.00*contig1014|size23431|read13|cov0.00contig1983|size1318|read9|cov0.00contig2025|size1801|read9|cov0.00*contig1050|size9622|read12|cov0.00*contig2593|size329|read8|cov0.00contig90|size265|read31|cov4.00contig1508|size17825|read11|cov0.00contig1380|size10663|read11|cov0.00*contig1153|size5375|read12|cov0.00contig1850|size2592|read10|cov0.00*contig3109|size236|read7|cov1.00*contig2826|size437|read7|cov0.00*contig2234|size432|read9|cov0.00contig2404|size598|read8|cov0.00contig2279|size144|read9|cov2.00contig2110|size793|read9|cov0.00*contig1484|size6202|read11|cov0.00*contig1550|size1396|read11|cov0.00contig2883|size103|read7|cov2.00*contig1802|size4380|read10|cov0.00contig2337|size246|read8|cov1.00*contig934|size2746|read13|cov0.00*contig1445|size17567|read11|cov0.00contig1771|size4854|read10|cov0.00*contig1695|size9605|read10|cov0.00*contig2435|size110|read8|cov2.00contig2555|size107|read8|cov2.00*contig2625|size111|read8|cov2.00*contig1059|size16555|read12|cov0.00contig1473|size2604|read11|cov0.00contig1542|size4733|read11|cov0.00*contig2070|size5383|read9|cov0.00*contig1223|size33234|read12|cov0.00*contig1419|size3027|read11|cov0.00contig1376|size10837|read11|cov0.00contig2009|size4669|read9|cov0.00contig1157|size18404|read12|cov0.00contig1906|size5244|read10|cov0.00contig2557|size795|read8|cov0.00*contig2313|size1890|read9|cov0.00contig1209|size1104|read12|cov0.00contig1579|size15744|read10|cov0.00contig2103|size3368|read9|cov0.00*contig2350|size1432|read8|cov0.00contig1626|size19420|read10|cov0.00contig1937|size1920|read10|cov0.00contig1649|size6268|read10|cov0.00*contig1520|size8270|read11|cov0.00*contig2064|size2486|read9|cov0.00*contig1017|size10482|read13|cov0.00contig1021|size551|read13|cov0.00contig1442|size5284|read11|cov0.00*contig1247|size9095|read11|cov0.00contig1093|size17367|read12|cov0.00contig1160|size12582|read12|cov0.00contig2466|size531|read8|cov0.00*contig1795|size3091|read10|cov0.00contig1073|size23958|read12|cov0.00contig1991|size1207|read9|cov0.00contig1254|size11419|read11|cov0.00*contig1008|size18973|read13|cov0.00*contig1246|size3575|read11|cov0.00contig1605|size5049|read10|cov0.00contig1524|size4119|read11|cov0.00*contig1067|size15641|read12|cov0.00*contig1367|size8334|read11|cov0.00contig1725|size11029|read10|cov0.00*contig3307|size128|read6|cov1.00contig1418|size7533|read11|cov0.00*contig1264|size22059|read11|cov0.00*contig1726|size5797|read10|cov0.00*contig1399|size7164|read11|cov0.00contig2368|size166|read8|cov1.00contig1670|size186|read10|cov1.00*contig2585|size167|read8|cov1.00*contig2015|size4382|read9|cov0.00contig2298|size1577|read9|cov0.00contig1486|size2141|read11|cov0.00contig1001|size12041|read13|cov0.00contig2789|size405|read7|cov0.00contig2291|size1041|read9|cov0.00*contig2478|size772|read8|cov0.00contig1677|size13850|read10|cov0.00contig1751|size3348|read10|cov0.00contig1414|size4978|read11|cov0.00*contig1584|size21425|read10|cov0.00*contig1306|size8723|read11|cov0.00*contig3066|size140|read7|cov1.00*contig1990|size2603|read9|cov0.00contig1168|size6329|read12|cov0.00contig1085|size15192|read12|cov0.00*contig2049|size2736|read9|cov0.00contig1591|size9170|read10|cov0.00contig1105|size9030|read12|cov0.00contig1586|size3109|read10|cov0.00*contig1042|size12197|read12|cov0.00*contig1318|size17507|read11|cov0.00*contig1628|size2709|read10|cov0.00contig1202|size12197|read12|cov0.00contig1099|size2722|read12|cov0.00*contig1304|size1942|read11|cov0.00*contig1375|size23500|read11|cov0.00contig2055|size1253|read9|cov0.00*contig1477|size8947|read11|cov0.00contig1623|size12753|read10|cov0.00contig1662|size3840|read10|cov0.00contig1982|size4223|read9|cov0.00*contig2750|size128|read7|cov1.00contig891|size130|read14|cov3.00*contig1040|size41221|read12|cov0.00contig956|size569|read13|cov0.00*contig1738|size155|read10|cov2.00contig1431|size30027|read11|cov0.00contig1425|size3612|read11|cov0.00contig2814|size125|read7|cov2.00*contig1999|size3773|read9|cov0.00contig1072|size3899|read12|cov0.00*contig1371|size31333|read11|cov0.00contig1398|size4010|read11|cov0.00contig1749|size2155|read10|cov0.00*contig2105|size1795|read9|cov0.00contig360|size11798|read21|cov0.00contig1152|size16724|read12|cov0.00contig1723|size3163|read10|cov0.00*contig1076|size11601|read12|cov0.00*contig1587|size2676|read10|cov0.00*contig1895|size2728|read10|cov0.00*contig1500|size7519|read11|cov0.00*contig1133|size10544|read12|cov0.00*contig3618|size129|read6|cov1.00contig1381|size1042|read11|cov0.00*contig2301|size118|read9|cov2.00contig1368|size13725|read11|cov0.00*contig1653|size1308|read10|cov0.00contig1960|size7539|read10|cov0.00contig2302|size223|read9|cov1.00contig2131|size2382|read9|cov0.00contig1467|size1332|read11|cov0.00contig881|size13018|read14|cov0.00*contig1251|size6999|read11|cov0.00*contig2288|size1768|read9|cov0.00contig1811|size4356|read10|cov0.00contig1709|size18849|read10|cov0.00contig966|size898|read13|cov0.00*contig1980|size5730|read9|cov0.00*contig1815|size2354|read10|cov0.00contig3567|size112|read6|cov1.00*contig1307|size27615|read11|cov0.00contig1347|size4768|read11|cov0.00*contig2201|size3152|read9|cov0.00*contig1996|size993|read9|cov0.00contig1617|size8421|read10|cov0.00contig1992|size8587|read9|cov0.00contig1580|size520|read10|cov0.00*contig2364|size585|read8|cov0.00*contig1496|size6640|read11|cov0.00*contig1063|size4295|read12|cov0.00contig1231|size33898|read12|cov0.00contig1506|size5536|read11|cov0.00contig1654|size7659|read10|cov0.00*contig1679|size5412|read10|cov0.00contig1474|size16223|read11|cov0.00contig2004|size7960|read9|cov0.00contig1263|size12211|read11|cov0.00contig2165|size5145|read9|cov0.00*contig2106|size861|read9|cov0.00contig2611|size473|read8|cov0.00contig1770|size3947|read10|cov0.00*contig1343|size14495|read11|cov0.00contig1324|size16441|read11|cov0.00contig1823|size7026|read10|cov0.00contig1578|size18467|read10|cov0.00contig1410|size7517|read11|cov0.00*contig101|size196|read30|cov5.00*contig1352|size28495|read11|cov0.00*contig1698|size7232|read10|cov0.00*contig2515|size1625|read8|cov0.00contig1536|size9117|read11|cov0.00contig1466|size9967|read11|cov0.00contig1861|size5371|read10|cov0.00*contig1350|size13680|read11|cov0.00*contig2767|size1138|read7|cov0.00contig1201|size3962|read12|cov0.00contig1905|size7611|read10|cov0.00*contig418|size279|read20|cov2.00*contig2672|size106|read8|cov2.00contig1504|size4906|read11|cov0.00*contig1145|size7825|read12|cov0.00*contig973|size7602|read13|cov0.00contig598|size2488|read17|cov0.00contig1300|size6899|read11|cov0.00*contig2038|size3240|read9|cov0.00*contig1645|size6353|read10|cov0.00contig1632|size1218|read10|cov0.00*contig1869|size1408|read10|cov0.00contig2153|size679|read9|cov0.00contig2080|size1966|read9|cov0.00contig1997|size5346|read9|cov0.00*contig2194|size3797|read9|cov0.00*contig1499|size6809|read11|cov0.00contig1817|size7176|read10|cov0.00*contig1192|size3132|read12|cov0.00*contig1301|size10166|read11|cov0.00*contig1842|size6071|read10|cov0.00contig1370|size9801|read11|cov0.00contig1411|size5620|read11|cov0.00contig1571|size3740|read11|cov0.00contig993|size6184|read13|cov0.00*contig1724|size112|read10|cov3.00contig1812|size5736|read10|cov0.00*contig1694|size6946|read10|cov0.00contig1065|size156|read12|cov2.00contig984|size3601|read13|cov0.00*contig2304|size256|read9|cov1.00contig2168|size305|read9|cov1.00*contig1482|size305|read11|cov1.00contig1299|size5303|read11|cov0.00*contig1018|size21908|read13|cov0.00*contig2180|size3590|read9|cov0.00contig1995|size130|read9|cov2.00contig1513|size5322|read11|cov0.00contig1421|size10856|read11|cov0.00contig2096|size900|read9|cov0.00contig1401|size5178|read11|cov0.00contig1041|size5604|read12|cov0.00*contig1471|size2277|read11|cov0.00*contig1796|size1886|read10|cov0.00*contig1683|size4253|read10|cov0.00contig1269|size20186|read11|cov0.00*contig1252|size15531|read11|cov0.00*contig1588|size230|read10|cov1.00contig2287|size1368|read9|cov0.00*contig2178|size746|read9|cov0.00contig2205|size325|read9|cov0.00contig1747|size3088|read10|cov0.00contig2203|size5067|read9|cov0.00contig1667|size17894|read10|cov0.00*contig1265|size3691|read11|cov0.00*contig1718|size7342|read10|cov0.00*contig1902|size572|read10|cov0.00contig1928|size6026|read10|cov0.00contig2237|size1829|read9|cov0.00*contig1451|size12294|read11|cov0.00contig1868|size7589|read10|cov0.00*contig2087|size2253|read9|cov0.00*contig1044|size6364|read12|cov0.00*contig1273|size10660|read11|cov0.00*contig1998|size5553|read9|cov0.00*contig1280|size7174|read11|cov0.00*contig1975|size4798|read9|cov0.00*contig1809|size1654|read10|cov0.00*contig1349|size16528|read11|cov0.00contig1046|size8947|read12|cov0.00*contig1537|size10557|read11|cov0.00contig1416|size6278|read11|cov0.00contig1706|size16092|read10|cov0.00contig1919|size1888|read10|cov0.00contig1629|size3809|read10|cov0.00*contig2450|size567|read8|cov0.00*contig1362|size3257|read11|cov0.00contig1660|size5193|read10|cov0.00*contig1594|size523|read10|cov0.00*contig1767|size4316|read10|cov0.00*contig1406|size4240|read11|cov0.00contig2701|size243|read8|cov1.00contig1577|size3278|read10|cov0.00contig1355|size1926|read11|cov0.00*contig1774|size1622|read10|cov0.00contig1793|size2754|read10|cov0.00contig1453|size3779|read11|cov0.00*contig1090|size5822|read12|cov0.00contig1818|size4252|read10|cov0.00contig1262|size4206|read11|cov0.00*contig1322|size2539|read11|cov0.00*contig1687|size978|read10|cov0.00contig2432|size258|read8|cov1.00contig349|size175|read21|cov4.00contig625|size202|read17|cov3.00*contig413|size719|read20|cov1.00*contig2391|size394|read8|cov0.00*contig405|size9476|read20|cov0.00*contig950|size125|read13|cov3.00*contig394|size158|read20|cov4.00contig448|size127|read19|cov5.00contig231|size430|read25|cov2.00contig2043|size3540|read9|cov0.00contig990|size27098|read13|cov0.00*contig1737|size1060|read10|cov0.00*contig1784|size3675|read10|cov0.00contig1271|size2252|read11|cov0.00contig1224|size14333|read12|cov0.00contig1114|size18305|read12|cov0.00contig1433|size4515|read11|cov0.00contig1238|size8076|read12|cov0.00*contig1847|size3937|read10|cov0.00*contig1659|size290|read10|cov1.00contig2772|size208|read7|cov1.00*contig1228|size7653|read12|cov0.00*contig1669|size14206|read10|cov0.00contig1708|size2967|read10|cov0.00*contig2468|size1388|read8|cov0.00*contig1268|size14094|read11|cov0.00contig1064|size161|read12|cov2.00contig1022|size153|read13|cov3.00contig83|size407|read31|cov2.00contig20|size116|read38|cov11.00contig183|size114|read27|cov8.00contig64|size163|read33|cov7.00contig600|size565|read17|cov1.00contig126|size165|read29|cov6.00contig328|size215|read22|cov3.00contig95|size296|read31|cov3.00contig426|size717|read20|cov1.00contig804|size224|read14|cov2.00contig129|size110|read29|cov9.00contig1590|size128|read10|cov2.00contig976|size400|read13|cov1.00contig1132|size113|read12|cov3.00contig169|size108|read27|cov9.00contig159|size129|read28|cov7.00contig193|size378|read26|cov2.00contig1193|size398|read12|cov1.00contig325|size242|read22|cov3.00contig100|size172|read30|cov6.00contig975|size108|read13|cov4.00contig58|size125|read33|cov9.00contig124|size129|read29|cov8.00contig235|size115|read25|cov7.00contig14|size142|read41|cov10.00contig71|size274|read32|cov4.00contig132|size239|read28|cov4.00contig2089|size355|read9|cov0.00contig52|size140|read34|cov8.00contig46|size117|read34|cov10.00contig2067|size100|read9|cov3.00contig187|size134|read26|cov6.00contig1125|size162|read12|cov2.00contig842|size193|read14|cov2.00contig86|size152|read31|cov7.00contig110|size121|read30|cov8.00contig78|size211|read32|cov5.00contig1260|size296|read11|cov1.00contig364|size117|read21|cov6.00contig1879|size104|read10|cov3.00contig1083|size478|read12|cov0.00contig84|size184|read31|cov6.00contig205|size285|read26|cov3.00contig5|size163|read44|cov9.00contig1852|size134|read10|cov2.00contig115|size154|read30|cov7.00contig165|size112|read27|cov8.00contig790|size294|read15|cov1.00contig147|size153|read28|cov6.00contig593|size118|read17|cov5.00contig250|size115|read24|cov7.00contig109|size112|read30|cov9.00contig3|size132|read47|cov12.00contig1256|size106|read11|cov3.00contig39|size259|read35|cov4.00contig6|size107|read44|cov14.00

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000

Q
R
Y

gi|49175990|ref|NC_000913.2|

(c) Taipan

scaffold34new50scaffold60
*scaffold16

*scaffold36*C4925*scaffold9scaffold28*C4127new44*C4195*scaffold32*scaffold68*scaffold47*new66*scaffold59scaffold80new79new80*new23*new22*scaffold11*scaffold75*scaffold42

C4063*scaffold22*C4839C4577*C4261scaffold61*C4253C4055*C4207*C4335*new51*scaffold35*scaffold57
scaffold37new52new53new55scaffold2scaffold23*scaffold3*scaffold62scaffold29new45C4137scaffold38scaffold72

new74new72new73new75*new25*new24

*C4189*scaffold12

scaffold20*scaffold48
*scaffold6*new71
*scaffold71C4101scaffold17C5117*scaffold5
scaffold10new12new13new11new14new17*C4247C5057*scaffold82

*C5255scaffold79*new41*scaffold26*C4245C4275C4325*C4427*C4147scaffold14new28new30*C4027*scaffold41
C4307*scaffold73*new62*scaffold53C4433*scaffold88
C4049*C4263scaffold31new47*C4053scaffold51*scaffold78

*scaffold69

scaffold84

*new65*new64
*scaffold58*C4563C4683C4493*C5279*scaffold49
scaffold21

new38
scaffold65*new33

*scaffold18
scaffold56new63*new60*new58
*scaffold50

C4287C4161C4011scaffold7new6new7new10*C4047*new32*new31*scaffold15

scaffold85
*new43

*new42*scaffold27scaffold83
scaffold1new1

*new36*new35*new34*scaffold19C5305
*C4423*new61

*scaffold52new37*scaffold54scaffold64scaffold40scaffold45C4227*scaffold67*scaffold81scaffold13new26
C4323scaffold33new49

*scaffold39*new67
*scaffold63scaffold55
*scaffold70
*scaffold87scaffold30*C4197*scaffold46scaffold86*scaffold74
*scaffold77scaffold66new70*C4831scaffold76

*new57*C4073*scaffold44*C4265C4381scaffold8C4273*new56
scaffold25

C4239C4271C4019new29C4277C4209new39new3C4149scaffold43C4237C4077C4043C4201scaffold24new59new77C4283C4231new27scaffold4C4333new18C4229C4099C4069new21C4331C4061C4289C4143C4215C4125C4135C4455C4315new81new4new48new2C4353C4169new19new40new46C4145C4395C4167new76new68new5

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000

Q
R
Y

gi|49175990|ref|NC_000913.2|

(d) SOAPdenovo

*282*36090353*68
132105252416295127216260*371274*45*60*359343*333*10229431942432938023*392*368*365*171398412181*214391195153*20938397*396419*268248358*37685355155*139143*201*276266344162
179*193272405*427*426*401*96425*94*107*138*19219893142*204361*235310*385194*177123314*330*184320*324*351*302*29133*374*40731383*328348*120352125217243308*133203354*285*12299
269141*146*340350257*19675*388*112
*189*378423*254*33520210238*300*115
84*363*28741340955
30*404*232213135

*227*309*116*140187379*246*33632*47*202395148166
73206280*174236226164

26451*4834*35*410*418*149*87382*297296411*233111151*31682200118
157
339170
*16127
*76*183176*375*2313*185147*261265*30325140278*390*279*273*110386205*1*327*41532372*215242*393*286318*49
*54250*381*10617524290*34938922186*306*406*267129305*356*59312*56*307377341218373263364144288*9*83*128*43207420399*362*208*241*103*224298126*372*33224413080165*367100*240*113156
*7050
*366*299137384262*315239*230*255*150104134*277*173421234394*369253237*284197*321*7141422065*231225*40*337114*52258*211*86*2942
*69*22327097
131*57*91*22227195275*178*894087788370229*357152*67*221199*119158387*24979
*109*180*172168*325*74*108347*145*256101283245400*334191212228*922516740341764*190*188160*281259*331*66*163278*58*326345219*62154*24781
*342169301*6*322311*53*292361433821*26*346*124*18*159*304*136182*293*121*317*289161115898375614223912414644171176371019281334

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000

Q
R
Y

gi|49175990|ref|NC_000913.2|

(e) SUTTA

contig_422*contig_207*contig_108*contig_164contig_103*contig_155contig_240*contig_91*contig_514*contig_226contig_511contig_23contig_397*contig_632contig_147*contig_376*contig_131*contig_337*contig_248*contig_100*contig_352contig_277contig_190*contig_673contig_244contig_441contig_232contig_205*contig_551*contig_485contig_427*contig_347*contig_137contig_400*contig_482*contig_529contig_218*contig_625*contig_553contig_640contig_519*contig_593*contig_557contig_561*contig_531*contig_490*contig_201*contig_416*contig_526*contig_459contig_431*contig_408contig_292*contig_404*contig_125*contig_354contig_260contig_591*contig_172contig_327*contig_332contig_6*contig_86contig_259contig_289*contig_282*contig_220contig_595contig_614*contig_405contig_82contig_254*contig_206*contig_534*contig_668*contig_535*contig_296contig_267*contig_138contig_344*contig_186*contig_229contig_67*contig_305*contig_64contig_162*contig_463contig_293*contig_351contig_281contig_321*contig_36*contig_367*contig_472*contig_440contig_599*contig_539*contig_502*contig_19contig_123*contig_484contig_313*contig_126contig_298contig_181*contig_360*contig_592*contig_462contig_661*contig_537contig_527contig_406*contig_629contig_429*contig_428*contig_420*contig_365contig_61contig_475contig_13contig_414*contig_97*contig_421contig_176contig_73*contig_106*contig_346contig_461contig_528*contig_377*contig_129contig_302contig_195*contig_333contig_601contig_524contig_549*contig_581contig_598*contig_657contig_483*contig_270contig_679contig_468*contig_389*contig_544*contig_667*contig_596contig_555contig_473*contig_674contig_253contig_95*contig_110*contig_74*contig_568*contig_571*contig_464contig_212*contig_670contig_675contig_111contig_447*contig_525contig_286contig_90*contig_84contig_375*contig_368*contig_231contig_102
*contig_179contig_642contig_262contig_68contig_382*contig_285contig_331contig_450*contig_279contig_43contig_348contig_165*contig_130*contig_33
*contig_510contig_399*contig_15contig_99*contig_597contig_9contig_356contig_26*contig_444*contig_139contig_134contig_148*contig_72
*contig_52*contig_626*contig_536contig_580*contig_497contig_520*contig_85*contig_607*contig_618*contig_559*contig_288*contig_112
*contig_651*contig_269contig_198*contig_613contig_489*contig_275*contig_171*contig_191*contig_113
contig_153*contig_39contig_314*contig_136*contig_117contig_216contig_276contig_457contig_645*contig_443contig_637contig_238contig_415*contig_518*contig_664contig_602contig_80*contig_566contig_486*contig_493*contig_649contig_121
*contig_533*contig_454contig_393contig_59contig_241*contig_370contig_451*contig_339*contig_83contig_243*contig_677contig_1
contig_94*contig_616contig_487contig_116*contig_650contig_623contig_540contig_630*contig_494contig_590*contig_576contig_340contig_631contig_542contig_617*contig_418contig_398contig_660contig_362contig_573contig_210*contig_211contig_387*contig_264contig_357contig_372contig_309*contig_8contig_669*contig_4*contig_79contig_28

*contig_202contig_35
contig_343contig_96contig_25*contig_361contig_60contig_358*contig_222*contig_374*contig_435contig_412*contig_225*contig_66*contig_128contig_71*contig_268contig_452*contig_606contig_214*contig_252*contig_178contig_386contig_32contig_322contig_363contig_434contig_392contig_236contig_249contig_636contig_315contig_257contig_31contig_353*contig_328contig_185*contig_383contig_194contig_413*contig_48contig_246*contig_373*contig_42*contig_530*contig_562*contig_671*contig_140*contig_209*contig_17
*contig_76contig_235contig_329contig_500*contig_456*contig_620*contig_217*contig_310*contig_261*contig_101*contig_311contig_654contig_425*contig_453contig_586contig_437contig_5contig_465contig_324contig_89contig_142contig_255contig_133*contig_55*contig_381*contig_266contig_157contig_301*contig_458contig_426contig_213*contig_124contig_448contig_149*contig_299contig_3*contig_193*contig_167contig_258contig_455*contig_513*contig_680contig_659*contig_556contig_604contig_29*contig_2*contig_145contig_411contig_639contig_371contig_577*contig_508*contig_588*contig_643*contig_615contig_522contig_554contig_585*contig_182contig_350contig_424contig_609contig_558contig_338*contig_546contig_538contig_168*contig_27*contig_184contig_570*contig_391contig_605contig_567*contig_160contig_192*contig_396*contig_170*contig_290contig_87contig_200*contig_20contig_122contig_92contig_600contig_107*contig_141*contig_345contig_44*contig_75contig_16contig_187contig_646*contig_30contig_436contig_364contig_359contig_10*contig_401*contig_273*contig_70*contig_317*contig_169contig_417contig_204contig_150*contig_491*contig_47*contig_219*contig_256contig_635*contig_127*contig_230*contig_93*contig_563*contig_641*contig_380contig_78*contig_307contig_22contig_312contig_460contig_152*contig_612contig_433*contig_300contig_174contig_319*contig_410contig_114*contig_560*contig_51*contig_223*contig_323contig_132*contig_7*contig_403*contig_120*contig_423contig_239*contig_224*contig_183*contig_199*contig_196contig_621*contig_34
*contig_479*contig_515*contig_237*contig_77*contig_156contig_647*contig_119*contig_57*contig_263*contig_105contig_46*contig_583*contig_478contig_308*contig_666contig_251*contig_234*contig_325contig_474*contig_676contig_41*contig_432*contig_283contig_505*contig_336contig_438*contig_98*contig_678contig_280*contig_284contig_159contig_45*contig_439contig_569contig_12contig_395contig_69*contig_215contig_532*contig_135contig_574*contig_466*contig_638*contig_271contig_208contig_88*contig_21
*contig_388*contig_104contig_188*contig_189contig_49*contig_378contig_634*contig_158contig_272contig_509*contig_54*contig_320*contig_594contig_177contig_143contig_384contig_326contig_316*contig_385*contig_366contig_481contig_227contig_304contig_492*contig_228contig_37contig_291contig_40*contig_265*contig_449contig_58contig_476contig_480*contig_24*contig_175*contig_287*contig_242contig_233contig_56*contig_445contig_166contig_407*contig_151*contig_355*contig_245contig_18contig_173*contig_297*contig_499contig_118contig_247*contig_295contig_62*contig_496contig_11contig_81contig_197*contig_115contig_203*contig_14*contig_394*contig_154*contig_161contig_303contig_318contig_342*contig_274contig_180*contig_419contig_430contig_495*contig_653*contig_584contig_470*contig_467contig_501contig_53*contig_548contig_663*contig_506*contig_507*contig_665*contig_477contig_63*contig_390contig_603*contig_38contig_409*contig_349contig_379contig_250*contig_109*contig_146*contig_658*contig_610contig_278*contig_469contig_306*contig_50*contig_163contig_547contig_656contig_578contig_503contig_579contig_369contig_572contig_622contig_334contig_582contig_488contig_627contig_550contig_512contig_335contig_545contig_442contig_402contig_611contig_624contig_619contig_589contig_608contig_652contig_330contig_504contig_446contig_552contig_575contig_543contig_221contig_662contig_648contig_564contig_587contig_471contig_65contig_644contig_516contig_521contig_294contig_655contig_628contig_565contig_633contig_672contig_517contig_498contig_341contig_144contig_541contig_523

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000

Q
R
Y

gi|49175990|ref|NC_000913.2|

(f) Edena

Figure 25: Dot plots for E. coli (with mate-pairs). Assemblies produced by
Velvet, ABySS, Taipan, SOAPdenovo, SUTTA and Edena. The horizontal lines
indicate the boundary between assembled contigs represented on the y axis.

191

Table 7: Short Read Assemblers parameter setting.
Assembler S. aureus H. acininychis E. coli

ABySS k=23 k=27 k=31 n=5
Edena m=21 m=27 m=30
EULER-SR k=21 k=27 k=28 CloneLength=215 CloneVar=40
SOAPdenovo k =21 k=27 k=25 -R
SSAKE default default m=17 o=4 r=0.7 t=1
SUTTA k=21 Wmp=150 Wde=10 Wbb=140 k=27 Wmp=150 Wde=30 Wbb=140 k=29 Wmp=150 Wde=20 Wbb=140
Taipan k=19 T=8 k=27 T=18 k=29 T=10
Velvet k =21 cov cutoff=7 k=27 cov cutoff=8 k=29 ins length=215 cov cutoff=12 -exp cov=24

NOTE: Long-read Assemblers have been ran with their default parameters.

192

Bibliography

[1] Can Alkan, Saba Sajjadian, and Evan E. Eichler. Limitations of next-

generation genome sequence assembly. Nature Methods, 8(1):61–65, Jan-

uary 2011.

[2] S F Altschul, T L Madden, A A Schäffer, J Zhang, Z Zhang, et al. Gapped

BLAST and PSI-BLAST: a new generation of protein database search pro-

grams. Nucleic acids research, 25(17):3389–402, September 1997.

[3] T. S. Anantharaman, V. Mysore, and B. Mishra. Fast and cheap genome

wide haplotype construction via optical mapping. In Pacific Symposium on

Biocomputing, p. 385 396, 2005.

[4] Thomas S. Anantharaman, Bud Mishra, and David C. Schwartz. Genomics

via optical mapping iii: Contiging genomic dna and variations (extended

abstract). In Proceedings 7th Intl. Cnf. on Intelligent Systems for Molecular

Biology: ISMB ’99, volume 7, pp. 18–27. AAAI Press, 1997.

[5] TS Anantharaman, B Mishra, and DC Schwartz. Genomics via optical

mapping. ii: Ordered restriction maps. J Comput Biol., 4(2):91–118, 1997.

193

[6] Marco Antoniotti, Thomas Anantharaman, Salvatore Paxia, and Bud

Mishra. Genomics via optical mapping iv: Sequence validation via op-

tical map matching. Technical report, New York University, New York,

NY, USA, 2001.

[7] David Applegate, Robert E. Bixby, Vasek Chvátal, and William Cook. Tsp

cuts which do not conform to the template paradigm. In Computational

Combinatorial Optimization, Optimal or Provably Near-Optimal Solutions

[based on a Spring School], pp. 261–304, London, UK, 2001. Springer-

Verlag.

[8] Chris Armen and Clifford Stein. A 2 2/3-approximation algorithm for the

shortest superstring problem. In CPM, pp. 87–101, 1996.

[9] Christopher Aston, Bud Mishra, and David C. Schwartz. Optical mapping

and its potential for large-scale sequencing projects. Trends in Biotechnol-

ogy, 17(7):297 – 302, 1999.

[10] Tadashi Baba, Fumihiko Takeuchi, Makoto Kuroda, Harumi Yuzawa, Ken

ichi Aoki, et al. Genome and virulence determinants of high virulence

community-acquired mrsa. The Lancet, 359(9320):1819 – 1827, 2002.

[11] Serafim Batzoglou, David B. Jaffe, Ken Stanley, Jonathan Butler, Sante

Gnerre, et al. ARACHNE: A Whole-Genome Shotgun Assembler. Genome

Research, 12(1):177–189, 2002.

194

[12] R. Bisiani. Beam search. In S. Shapiro, editor, Encyclopedia of Artificial

Intelligence, pp. 56–58. Wiley & Sons, 1987.

[13] Frederick R. Blattner, Guy Plunkett, Craig A. Bloch, Nicole T. Perna,

Valerie Burland, et al. The Complete Genome Sequence of Escherichia coli

K-12. Science, 277(5331):1453–1462, 1997.

[14] Marten Boetzer, Christiaan V. Henkel, Hans J. Jansen, Derek Butler, and

Walter Pirovano, et al. Scaffolding pre-assembled contigs using SSPACE.

Bioinformatics, 2010.

[15] Sbastien Boisvert, Franois Laviolette, and Jacques Corbeil. Ray: Simulta-

neous assembly of reads from a mix of high-throughput sequencing tech-

nologies. Journal of Computational Biology, 17(11):1519–1533, 2010.

[16] Douglas Bryant, Weng-Keen Wong, and Todd Mockler. Qsra - a quality-

value guided de novo short read assembler. BMC Bioinformatics, 10(1):69,

2009.

[17] M. Burrows and D.J. Wheeler. A block-sorting lossless data compression

algorithm, 1994.

[18] Jonathan Butler, Iain MacCallum, Michael Kleber, Ilya A. Shlyakhter,

Matthew K. Belmonte, et al. ALLPATHS: De novo assembly of whole-

genome shotgun microreads. Genome Research, 18(5):810–820, 2008.

[19] Mark J. Chaisson and Pavel A. Pevzner. Short read fragment assembly of

bacterial genomes. Genome Research, 18(2):324–330, 2008.

195

[20] Alonzo Church and J. B. Rosser. Some properties of conversion. Transac-

tions of the American Mathematical Society, 39(3):472–482, 1936.

[21] Martin Davis, George Logemann, and Donald Loveland. A machine pro-

gram for theorem-proving. Commun. ACM, 5(7):394–397, 1962.

[22] Juliane C. Dohm, Claudio Lottaz, Tatiana Borodina, and Heinz Himmel-

bauer. SHARCGS, a fast and highly accurate short-read assembly algorithm

for de novo genomic sequencing. Genome Research, 17(11):1697–1706, 2007.

[23] Mark Eppinger, Claudia Baar, Bodo Linz, Gnter Raddatz, Christa Lanz,

et al. Who ate whom? adaptive helicobacter genomic changes that ac-

companied a host jump from early humans to large felines. PLoS Genet,

2(7):e120, 07 2006.

[24] Y Erlich, PP Mitra, M delaBastide, WR McCombie, and GJ Hannon, et al.

Alta-cyclic: a self-optimizing base caller for next-generation sequencing.

Nat Methods, 5(5):679–82, 2008 Aug.

[25] Brent Ewing, LaDeana Hillier, Michael C. Wendl, and Phil Green. Base-

Calling of Automated Sequencer Traces UsingPhred.I. AccuracyAssess-

ment. Genome Research, 8(3):175–185, 1998.

[26] P. Ferragina and G. Manzini. Opportunistic data structures with applica-

tions. Annual Symposium on Foundations of Computer Science, 41:390–

398, 2000.

196

[27] John Gallant, David Maier, and James Astorer. On finding minimal length

superstrings. Journal of Computer and System Sciences, 20(1):50 – 58,

1980.

[28] Steven R. Gill, Derrick E. Fouts, Gordon L. Archer, Emmanuel F.

Mongodin, Robert T. DeBoy, et al. Insights on Evolution of Vir-

ulence and Resistance from the Complete Genome Analysis of an

Early Methicillin-Resistant Staphylococcus aureus Strain and a Biofilm-

Producing Methicillin-Resistant Staphylococcus epidermidis Strain. J. Bac-

teriol., 187(7):2426–2438, 2005.

[29] Sante Gnerre, Iain MacCallum, Dariusz Przybylski, Filipe J. Ribeiro,

Joshua N. Burton, et al. High-quality draft assemblies of mammalian

genomes from massively parallel sequence data. Proceedings of the National

Academy of Sciences, 2010.

[30] Phil Green. Phrap documentation, 1996.

http://www.phrap.org/phredphrap/phrap.html.

[31] Stephen S. Hall. Revolution postponed. Scientific American, pp. 60–67,

2010. doi:10.1038/scientificamerican1010-60.

[32] David Hernandez, Patrice Franois, Laurent Farinelli, Magne sters, and

Jacques Schrenzel, et al. De novo bacterial genome sequencing: Millions

of very short reads assembled on a desktop computer. Genome Research,

18(5):802–809, 2008.

197

[33] Mohammad Hossain, Navid Azimi, and Steven Skiena. Crystallizing short-

read assemblies around seeds. BMC Bioinformatics, 10(Suppl 1):S16, 2009.

[34] Xiaoqiu Huang and Anup Madan. CAP3: A DNA Sequence Assembly

Program. Genome Research, 9(9):868–877, 1999.

[35] Xiaoqiu Huang, Jianmin Wang, Srinivas Aluru, Shiaw-Pyng Yang, and

LaDeana Hillier, et al. PCAP: A Whole-Genome Assembly Program.

Genome Research, 13(9):2164–2170, 2003.

[36] Ruo-Wei Hung and Maw-Shang Chang. Solving the path cover problem

on circular-arc graphs by using an approximation algorithmstar. Discrete

Applied Mathematics, 154(1):76–105, 2006.

[37] Ramana M. Idury and Michael S. Waterman. A new algorithm for dna

sequence assembly. Journal of Computational Biology, 2(2):291–306, 1995.

[38] International. Initial sequencing and analysis of the human genome. Nature,

409(6822):860–921, February 2001.

[39] International Human Genome Sequencing Consortium. Finishing the eu-

chromatic sequence of the human genome. Nature, 431(7011):931–945, Oc-

tober 2004.

[40] Sorin Istrail, Granger G. Sutton, Liliana Florea, Aaron L. Halpern,

Clark M. Mobarry, et al. Whole-genome shotgun assembly and compar-

ison of human genome assemblies. Proceedings of the National Academy of

Sciences of the United States of America, 101(7):1916–1921, 2004.

198

[41] William R. Jeck, Josephine A. Reinhardt, David A. Baltrus, Matthew T.

Hickenbotham, Vincent Magrini, et al. Extending assembly of short DNA

sequences to handle error. Bioinformatics, 23(21):2942–2944, 2007.

[42] Wei-Chun Kao, Kristian Stevens, and Yun S. Song. BayesCall: A model-

based base-calling algorithm for high-throughput short-read sequencing.

Genome Research, 19(10):1884–1895, 2009.

[43] Richard M. Karp. The role of algorithmic research in computational ge-

nomics. Computational Systems Bioinformatics Conference, International

IEEE Computer Society, 0:10, 2003.

[44] J. Kececioglu and E. Myers. Combinatorial algorithms for dna sequence

assembly. Algorithmica, 13(1):7–51, February 1995.

[45] David Kelley, Michael Schatz, and Steven Salzberg. Quake: quality-

aware detection and correction of sequencing errors. Genome Biology,

11(11):R116, 2010.

[46] W. J. Kent. BLAT—The BLAST-Like Alignment Tool. Genome Research,

12(4):656–664, March 2002.

[47] W. James Kent and David Haussler. Assembly of the Working Draft of the

Human Genome with GigAssembler. Genome Research, 11(9):1541–1548,

2001.

[48] Jeffrey M. Kidd, Nick Sampas, Francesca Antonacci, Tina Graves, Robert

Fulton, et al. Characterization of missing human genome sequences and

199

copy-number polymorphic insertions. Nature Methods, 7(5):365–371, April

2010.

[49] Sun Kim, Haixu Tang, and Elaine R. Mardis. Genome Sequencing Tech-

nology and Algorithms. Artech House, Inc., Norwood, MA, USA, 2007.

[50] Carl Kingsford, Michael Schatz, and Mihai Pop. Assembly complexity of

prokaryotic genomes using short reads. BMC Bioinformatics, 11(1):21,

2010.

[51] Martin Kircher, Udo Stenzel, and Janet Kelso. Improved base calling for

the illumina genome analyzer using machine learning strategies. Genome

Biology, 10(8):R83, 2009.

[52] A. N. Kolmogorov. Sulla determinazione empirica di una legge di dis-

tribuzione. Giorn. 1st. Ital. Attuari, 4:83–91, 1933.

[53] Stefan Kurtz, Adam Phillippy, Arthur Delcher, Michael Smoot, Martin

Shumway, et al. Versatile and open software for comparing large genomes.

Genome Biology, 5(2):R12, 2004.

[54] A. H. Land and A. G Doig. An automatic method of solving discrete

programming problems. Econometrica, 28(3):497–520, 1960.

[55] Eric S. Lander and Michael S. Waterman. Genomic mapping by finger-

printing random clones: A mathematical analysis. Genomics, 2(3):231 –

239, 1988.

200

[56] Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L. Salzberg. Ultra-

fast and memory-efficient alignment of short DNA sequences to the human

genome. Genome Biology, 10, 2009.

[57] Samuel Levy, Granger Sutton, Pauline C Ng, Lars Feuk, Aaron L Halpern,

et al. The diploid genome sequence of an individual human. PLoS Biol,

5(10):e254, 09 2007.

[58] H. Li and R. Durbin. Fast and accurate short read alignment with burrows-

wheeler transform. Bioinformatics, 25(14):1754, 2009.

[59] Ruiqiang Li, Chang Yu, Yingrui Li, Tak-wah Lam, Siu-ming Yiu, et al.

SOAP2: an improved ultrafast tool for short read alignment. Bioinformat-

ics, 25(15):1966–1967, 2009.

[60] Ruiqiang Li, Hongmei Zhu, Jue Ruan, Wubin Qian, Xiaodong Fang, et al.

De novo assembly of human genomes with massively parallel short read

sequencing. Genome Research, 20(2):265–272, 2010.

[61] Paul Medvedev, Konstantinos Georgiou, Gene Myers, and Michael Brudno.

Computability of models for sequence assembly. In Algorithms in Bioin-

formatics, Lecture Notes in Computer Science, chapter 27, pp. 289–301.

Springer, 2007.

[62] Fabian Menges, Giuseppe Narzisi, and Bud Mishra. TotalReCaller: Im-

proved Accuracy and Performance via Integrated Alignment & Base-

Calling. Bioinformatics (under review), 2011.

201

[63] Michael L. Metzker. Emerging technologies in DNA sequencing. Genome

Research, 15(12):1767–1776, 2005.

[64] Jason R. Miller, Arthur L. Delcher, Sergey Koren, Eli Venter, Brian P.

Walenz, et al. Aggressive assembly of pyrosequencing reads with mates.

Bioinformatics, 24(24):2818–2824, 2008.

[65] Bud Mishra. Optical mapping. Encyclopedia of Life Sciences, 2005.

[66] James C. Mullikin and Zemin Ning. The Phusion Assembler. Genome

Research, 13(1):81–90, 2003.

[67] Eugene W. Myers. Toward simplifying and accurately formulating fragment

assembly. Journal of Computational Biology, 2:275–290, 1995.

[68] Eugene W. Myers. The fragment assembly string graph. Bioinformatics,

21(suppl 2):ii79–85, 2005.

[69] Eugene W. Myers, Granger G. Sutton, Art L. Delcher, Ian M. Dew,

Dan P. Fasulo, et al. A Whole-Genome Assembly of Drosophila. Science,

287(5461):2196–2204, 2000.

[70] Niranjan Nagarajan and Mihai Pop. Parametric complexity of sequence

assembly: theory and applications to next generation sequencing. Journal

of computational biology, 16(7):897–908, July 2009.

[71] Giuseppe Narzisi. Sutta: Scoring-and-unfolding trimmed tree assembler,

2010. 9th IEEE International Workshop on Genomic Signal Processing

and Statistics, Cold Spring Harbor Laboratory (poster).

202

[72] Giuseppe Narzisi and Bud Mishra. A novel technologically agnostic de novo

sequence assembler, 2010. Systems Biology and New Sequencing Technolo-

gies, Centre for Genomic Regulation (poster).

[73] Giuseppe Narzisi and Bud Mishra. Comparing de novo genome assembly:

The long and short of it. PLoS ONE, 6(4):e19175, 04 2011.

[74] Giuseppe Narzisi and Bud Mishra. Scoring-and-unfolding trimmed tree as-

sembler: concepts, constructs and comparisons. Bioinformatics, 27(2):153–

160, 2011.

[75] Pramila Nuwantha Ariyaratne and Wing-Kin Sung. PE-Assembler: De

novo assembler using short paired-end reads. Bioinformatics, 2010.

[76] Ian T. Paulsen, Rekha Seshadri, Karen E. Nelson, Jonathan A. Eisen,

John F. Heidelberg, et al. The Brucellasuis genome reveals fundamental

similarities between animal and plant pathogens and symbionts. Proceed-

ings of the National Academy of Sciences of the United States of America,

99(20):13148–13153, 2002.

[77] Hannu Peltola, Hans Sderlund, and Esko Ukkonen. SEQAID: a DNA se-

quence assembling program based on a mathematical model. Nucleic Acids

Research, 12(1Part1):307–321, 1984.

[78] Pavel A. Pevzner, Haixu Tang, and Michael S. Waterman. An Eulerian

path approach to DNA fragment assembly. Proceedings of the National

203

Academy of Sciences of the United States of America, 98(17):9748–9753,

2001.

[79] Pavel A. Pevzner, Haixu Tang, and Michael S. Waterman. An Eulerian

path approach to DNA fragment assembly. Proceedings of the National

Academy of Sciences of the United States of America, 98(17):9748–9753,

2001.

[80] Adam Phillippy, Michael Schatz, and Mihai Pop. Genome assembly foren-

sics: finding the elusive mis-assembly. Genome Biology, 9(3):R55, 2008.

[81] Mihai Pop, Daniel S. Kosack, and Steven L. Salzberg. Hierarchical Scaf-

folding With Bambus. Genome Research, 14(1):149–159, 2004.

[82] Mihai Pop and Steven L. Salzberg. Bioinformatics challenges of new se-

quencing technology. Trends in Genetics, 24(3):142 – 149, 2008.

[83] Horst W. J. Rittel and Melvin M. Webber. Dilemmas in a general theory

of planning. Policy Sciences, 4(2):155–169, June 1973.

[84] Michael Roberts, Brian R. Hunt, James A. Yorke, Randall A. Bolanos, and

Arthur L. Delcher, et al. A preprocessor for shotgun assembly of large

genomes. Journal of Computational Biology, 11(4):734–752, 2004.

[85] Jacques Rougemont, Arnaud Amzallag, Christian Iseli, Laurent Farinelli,

Ioannis Xenarios, et al. Probabilistic base calling of solexa sequencing data.

BMC Bioinformatics, 9(1):431, 2008.

204

[86] Steven L. Salzberg and James A. Yorke. Beware of mis-assembled genomes.

Bioinformatics, 21(24):4320–4321, 2005.

[87] F. Sanger, S. Nicklen, and A. R. Coulson. DNA sequencing with chain-

terminating inhibitors. Proceedings of the National Academy of Sciences of

the United States of America, 74(12):5463–5467, 1977.

[88] Bertil Schmidt, Ranjan Sinha, Bryan Beresford-Smith, and Simon J.

Puglisi. A fast hybrid short read fragment assembly algorithm. Bioin-

formatics, 25(17):2279–2280, 2009.

[89] Jan Schrder, Heiko Schrder, Simon J. Puglisi, Ranjan Sinha, and Bertil

Schmidt, et al. Shrec: a short-read error correction method. Bioinformatics,

25(17):2157–2163, 2009.

[90] David Schwartz and Michael Waterman. New generations: Sequencing

machines and their computational challenges. Journal of Computer Science

and Technology, 25:3–9, 2010. 10.1007/s11390-010-9300-x.

[91] Colin A. M. Semple. Assembling a view of the human genome. In Michael R.

Barnes and Ian C. Gray, editors, Bioinformatics for Geneticists, chapter 4,

pp. 93–117. John Wiley & Sons, Ltd, 2003.

[92] Jared T. Simpson, Kim Wong, Shaun D. Jackman, Jacqueline E. Schein,

Steven J.M. Jones, et al. ABySS: A parallel assembler for short read se-

quence data. Genome Research, 19(6):1117–1123, 2009.

205

[93] N. V. Smirnov. Approximate laws of distribution of random variables from

empirical data. Uspekhi Mat. Nauk, 10:179–206, 1944.

[94] T. F. Smith and M. S. Waterman. Identification of common molecular

subsequences. Journal of Molecular Biology, 147(1):195–197, March 1981.

[95] Daniel Sommer, Arthur Delcher, Steven Salzberg, and Mihai Pop. Minimus:

a fast, lightweight genome assembler. BMC Bioinformatics, 8(1):64, 2007.

[96] G. G. Sutton, O. White, M. D. Adams, and A. R. Kerlavage. TIGR Assem-

bler: A new tool for assembling large shotgun sequencing projects. Genome

Science and Technology, 1(1):9–19, 1995.

[97] J. Tarhio and E. Ukkonen. A greedy approximation algorithm for construct-

ing shortest common superstrings. Theor. Comput. Sci., 57(1):131–145,

1988.

[98] J. S. Turner. Approximation algorithms for the shortest common super-

string problem. Inf. Comput., 83(1):1–20, 1989.

[99] G a Tuskan, S Difazio, S Jansson, J Bohlmann, I Grigoriev, et al. The

genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science

(New York, N.Y.), 313(5793):1596–604, September 2006.

[100] J. Craig Venter, Mark D. Adams, Eugene W. Myers, Peter W. Li,

Richard J. Mural, et al. The Sequence of the Human Genome. Science,

291(5507):1304–1351, 2001.

206

[101] Rene L. Warren, Granger G. Sutton, Steven J. M. Jones, and Robert A.

Holt. Assembling millions of short DNA sequences using SSAKE. Bioin-

formatics, 23(4):500–501, 2007.

[102] David A. Wheeler, Maithreyan Srinivasan, Michael Egholm, Yufeng Shen,

Lei Chen, et al. The complete genome of an individual by massively parallel

DNA sequencing. Nature, 452(7189):872–876, April 2008.

[103] Martin Wu, Ling V Sun, Jessica Vamathevan, Markus Riegler, Robert De-

boy, et al. Phylogenomics of the reproductive parasite wolbachia pipientis

wmel: A streamlined genome overrun by mobile genetic elements. PLoS

Biol, 2(3):e69, 03 2004.

[104] Daniel R. Zerbino and Ewan Birney. Velvet: Algorithms for de novo short

read assembly using de Bruijn graphs. Genome Research, 18(5):821–829,

2008.

207

	Dedication
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	List of Appendices
	Introduction
	1 Genome Sequencing and Assembly
	1.1 Introduction
	1.2 DNA: Deoxyribonucleic acid
	1.3 Shotgun Sequencing
	1.4 Next Generation Sequencing and their challenges
	1.5 Lander-Waterman statistics
	1.6 Trade-off in sequencing technology
	1.7 Assembly Pipeline
	1.8 History of the assembly of the Human Genome

	2 Sequence Assembly: Problem and Complexity
	2.1 Introduction
	2.2 The dovetail-path framework
	2.2.1 Basic definitions: reads, overlaps and layouts
	2.2.2 Min-length reconstruction theorem

	2.3 Shortest Superstring Problem (SSP)
	2.4 Graph-Theoretic formulation
	2.4.1 Strings, Overlaps and Overlap Graph
	2.4.2 String Graph
	2.4.3 De Bruijn graph

	2.5 Probability of unique reconstruction
	2.6 Sequence Assembly as a ConstrainedOptimization Problem
	2.6.1 Modeling sequencing errors
	2.6.2 A new formulation of SAP
	2.6.3 Relation to the prior art

	3 Sequence Assemblers and Assembly Paradigms
	3.1 Introduction
	3.2 A Historical Perspective on Sequence Assembly
	3.3 Assembly Paradigms
	3.3.1 Greedy
	3.3.2 Graph-based
	3.3.3 Seed-and-Extend

	4 SUTTA: Scoring-and-Unfolding Trimmed Tree Assembler
	4.1 Introduction
	4.2 History and Motivation
	4.3 SUTTA Algorithm
	4.4 Overlap Score (Weighted transitivity)
	4.5 Node expansion
	4.6 Search Strategy
	4.7 Pruning the Tree
	4.8 Lookahead
	4.9 Implementation details
	4.10 Short-Read Overlapper

	5 Feature-Response Curve
	5.1 Introduction
	5.2 Assembly Comparison and Validation
	5.3 Feature-Response Curve
	5.4 Implementation details

	6 Experimental Comparison of De Novo Genome Assembly
	6.1 Introduction
	6.2 Experimental Protocol
	6.2.1 Benchmarks
	6.2.2 Assemblers

	6.3 Long reads results
	6.4 Short reads results
	6.5 Parametric complexity experiments
	6.5.1 Overlap graph complexity
	6.5.2 Trade-off between N50 and Overlap size k
	6.5.3 Feature-Response curve dynamics

	6.6 Computational performance

	7 Integrating Base-Calling, Error Correction and Assembly
	7.1 Introduction
	7.2 Base-Calling Challanges
	7.3 Source of Errors in Illumina Raw Sequencing Data
	7.4 TotalReCaller
	7.4.1 Linear error model and filter
	7.4.2 Base-by-base sequence alignment
	7.4.3 Beam search read extension
	7.4.4 Score functions

	7.5 Base-Calling Results
	7.5.1 Error rates
	7.5.2 Alignment rate and base-calling speed
	7.5.3 SNPs specificity and sensitivity

	7.6 Error Correction during Base-Calling
	7.6.1 Assembly results

	Conclusion
	Appendices
	Bibliography

