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Abstract

Recently, Computational Biology has emerged as one of the most exciting areas

of computer science research, not only because of its immediate impact on many

biomedical applications, (e.g., personalized medicine, drug and vaccine discov-

ery, tools for diagnostics and therapeutic interventions, etc.), but also because it

raises many new and interesting combinatorial and algorithmic questions, in the

process. In this thesis, we focus on robust and efficient algorithms to analyze

biological networks, primarily targeting protein networks, possibly the most fas-

cinating networks in computational biology in terms of their structure, evolution

and complexity, as well as because of their role in various genetic and metabolic

diseases.

Classically, protein networks have been studied statically, i.e., without tak-

ing into account time-dependent metamorphic changes in network topology and

functionality. In this work, we introduce new analysis techniques that view pro-

tein networks as being dynamic in nature, evolving over time, and diverse in

regulatory patterns at various stages of the system development. Our analysis is

capable of dealing with multiple time-scales: ranging from the slowest time-scale

corresponding to evolutionary time between species, speeding up to intra-species

pathway evolution time, and finally, moving to the other extreme at the cellular
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developmental time-scale.

We also provide a new method to overcome limitations imposed by corrupt-

ing effects of experimental noise (e.g., high false positive and false negative rates)

in Yeast Two-Hybrid (Y2H) networks, which often provide primary data for pro-

tein complexes. Our new combinatorial algorithm measures connectivity between

proteins in Y2H network not by edges but by edge-disjoint paths, which reflects

pathway evolution better within single species network. This algorithm has been

shown to be robust against increasing false positives and false negatives, as esti-

mated using variation of information and separation measures.

In addition, we have devised a new way to incorporate evolutionary informa-

tion in order to significantly improve classification of proteins, especially those

isolated in their own networks or surrounded by poorly characterized neighbors.

In our method, the networks of two (or more) species are joined by edges of high

sequence similarity so that protein-homologs of different species can exchange

information and acquire new and improved functional associations.

Finally, we have integrated many of these techniques into one tool to cre-

ate a novel analysis of malaria parasite P. falciparum’s life-cycle at the scale of

reaction-time, single cell level, and encompassing its entire inter-erythrocytic de-

velopmental cycle (IDC). Our approach allows connecting time-course gene ex-

pression profiles of consecutive IDC stages in order to assign functions to un-

annotated Malaria proteins and predict potential targets for vaccine and drug de-

velopment.
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Chapter 1

Introduction

1.1 Motivation

Biological systems are complex machineries driven by active biochemical en-

tities, such as genes and proteins. Every living cell carries its genetic code in

DNA molecules, where genetic alphabet is represented by four characters of DNA

bases. Genetic alphabet encodes genes, which operate, regulate, and maintain liv-

ing cells. Further, DNAs can be transcribed into a more portable form, namely,

RNA, which carries genetic information closer to cellular sources, and produces

substances encoded by genes - proteins. Proteins are the basis of life. Anything

in a living cell is made of proteins or by proteins. Proteins participate in majority,

if not all, biological processes interacting with other proteins, genes, and smaller

molecules. Within a biological system, all these data (starting from DNA tran-

scription and ending at protein regulating biochemical reactions in a living cell)

are processed, integrated, and executed through a complex network of interac-

tions.
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Various relationships between proteins, such as physical interactions, regula-

tory and metabolic pathways, similarity in sequence motifs, gene expression pro-

files, cellular localization etc., define Protein Interaction Networks. In Protein-

Protein Interaction Networks, proteins correspond to nodes and relationships be-

tween proteins correspond to edges, embedding a complex net of functional and

regulatory dependencies. These networks, vibrant in nature and diverse in regula-

tory patterns, are a complex system with highly non-linear relationships and rapid

dynamics. Such networks have attracted attention of a diverse clan of scientific

communities because of their structure, complexity, and methodology, broadly

applicable to biochemical, metabolic, phylogenetic, financial, internet, and social

networks.

Protein-protein networks exhibit a rich variety of topological structures and

dependencies, which include hierarchical structures, overlapping and

non-overlapping communities, multiple types of edges, causal relationships be-

tween regulators and “regulatees”, etc. These structures and dependencies are

poorly understood, insufficiently characterized, and become even more challeng-

ing if considered over various time scales. With the increasing interest in network

topologies and relations, it is likely that the understanding of these structures will

produce a shift in insight on network organization and causal hierarchies and re-

lationships of the networks.

However, the complexity in biological networks is often approached in a

static and time-invariant manner. Such approaches describe network relationships

only at an instant during the evolution of a rather complex system. For exam-

ple, protein-protein interaction networks, as a rule, are treated as static, without

taking into account rapidly changing regulatory mechanisms as well as acquired
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evolutionary relationships between proteins. Such time-dependent forces in the

protein-protein interaction networks can entirely re-define network topology lead-

ing to completely different functional relationships between proteins at various

times and states of the system. These time-dependent topological and functional

changes in the network can be crucial for identifying malfunctioning regulatory

pathways at different disease stages or extreme cell conditions.

At the same time, if we look at one of the most widely used bio-data, namely,

gene expression profiles, relationships between genes are commonly analyzed

with Pearson correlation coefficient of their activities, which ignores temporal re-

lationships and averages over rapidly changing regulations between them. Never-

theless, gene expression regulatory patterns exhibit a far more complex behavior,

which evolves over time, and may completely re-define regulator/regulatee rela-

tionships between genes at each time step. In fact, it is possible for a single gene

to regulate multiple genes, or for a group of genes to regulate one gene. Very often

a gene-regulator can only be active in a presence of another gene/protein etc., and

the regulated gene can become a regulator at the next time step. Time-dependent

regulator/regulated patterns define a long and complex cascade of regulatory rela-

tionships, which can be used for controlling cell’s response to starvation, growth,

antibiotics, immune response, and disease progression (such as cancer, autism,

atherosclerosis, etc).

The goal of this thesis is to understand the structure and behavior of biolog-

ical networks, over multiple time scales: starting with deep evolutionary time-

scales connecting species and populations, but then moving on to generation-by-

generation time-scales modulating evolution-induced relationships inside single

specie, and ultimately ending with fast regulatory time-scales over cell’s life cy-
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cle, etc. We illustrate our approaches to multiple time scales, starting with evo-

lutionary associations between Yeast and Fly and ending with 48-time period of

a Malaria life cycle into protein-protein networks, and show how our techniques

identify specific structural and functional relationships of the biological system.

For this purpose, we integrate ideas of algorithmic theory, artificial intelligence,

Bayesian analysis, model checking, and causality analysis techniques, all still

largely unexplored in biology.

Our goal is to map topology of the networks (as they dynamically evolve over

time) to the biological properties of their building blocks (proteins, genes, small

molecules, protein complexes etc). In particular,

1. We develop a new method to overcome limitations of noise in Yeast Two-

Hybrid (Y2H) network and its interpretation. In fact, high false positive and

false negative rates in the data can obscure network connectivity and make

search for highly connected groups of proteins (termed, protein complexes),

a challenge. We propose a new combinatorial algorithm, which measures

connectivity between proteins in Y2H network not by edges but by edge-

disjoint paths, which potentially reflects pathway evolution within a single

species network. This algorithm proves to be robust against increasing false

positives and false negatives, as measured with variation of information and

separation.

2. We devise a new way to incorporate evolutionary information to signifi-

cantly improve classification of proteins, especially those isolated in their

own network and surrounded by poorly characterized neighborhood. In

our method, the networks of two (or more) species are joined with edges

4



of high sequence similarity so that proteins-homologs of different species

can exchange information (as is done by message passing algorithms for

graphical models) and acquire new and improved functional associations.

3. Finally, we focus on understanding the role of time (both at deep evolution-

ary scale as well as faster reaction-time scale) by approaching it at multiple

spatio-temporal scales. We consider malaria parasite (P. falciaprum) in a

single cell scale, during its inter-erythrocytic developmental cycle (IDC).

Understanding time-course data is crucial for defining regulatory relation-

ships between genes. In fact, parasite’s genes convey a complex pattern

of adjusting gene expression and rapidly changing regulatory relationships

as inter-erythrocytic developmental cycle evolves. We develop a novel ap-

proach to connect time-course gene expression profiles to assign functions

to un-annotated Malaria proteins and predict potential target for vaccine

development.

To summarize, this thesis aims to introduce novel robust methods to define

and improve protein and gene classifications, time-dependent relationships, and

causal time-depended inferences in protein-protein networks. Such advances can

have a tremendous future impact on many biomedical applications: personalized

medicine, drug and vaccine discovery, designing tools for diagnostics and thera-

peutic interventions, etc.

5



1.2 Thesis Outline

The thesis is organized as follows. In Chapter 1 we present the algorithm for

the detection of protein complexes from noisy Yeast-Two Hybrid experiments

by measuring network connectivity not with edges but with edge-disjoint paths.

In Chapter 2 we present a probabilistic graphical method which connects two

networks of different but related species with links of high homology to improve

protein classification of isolated or sparsely-connected proteins. In Chapter 3 we

address an important issue of protein function prediction for malaria parasite and

show that dynamic data, such as time-course gene expression profiles, can have a

crucial effect on biological process classification of malaria proteins.

6



Chapter 2

Predicting Protein Complexes and

Functional Modules from Noisy

Data by using Gomory-Hu trees

2.1 Introduction

Two-Hybrid (Y2H) Protein-Protein interaction (PPI) data suffer from high False

Positive and False Negative rates, thus making searching for protein complexes

in PPI networks a challenge. To overcome these limitations, we propose an effi-

cient approach which measures connectivity between proteins not by edges, but

by edge-disjoint paths. We model the number of edge-disjoint paths in terms of

a network flow problem and efficiently represent it in a Gomory-Hu tree. By

manipulating the tree, we are able to isolate groups of nodes sharing more edge-

disjoint paths with each other than with the rest of the network, which are our

putative protein complexes. We examine the performance of our algorithm with
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Variation of Information and Separation measures and show that it belongs to a

group of techniques which are robust against increased false positive and false

negative rates. We apply our approach to Yeast , Mouse, Worm, and Human

Y2H PPI networks, where it shows promising results. We demonstrate that our

algorithm outperforms previously described methods in the quality of produced

clusters. On Yeast network, we identify 38 statistically significant protein clus-

ters, 20 of which correspond to protein complexes and 16 to functional modules

of proteins.

2.1.1 Motivation

We wish to propose a new efficient and robust algorithm to infer protein com-

plexes correctly from Y2H experiments. If the protein-protein interaction data

were flaw-less and error free, then a fairly direct graph-theoretic algorithm work-

ing on graphs whose edges represent pair-wise interactions would have sufficed.

The intuitively direct algorithms (e.g., clique detection, clustering or density-

based methods) tend to be efficient, and work reasonably well with small number

of errors that mislabel the edges falsely (both false positive and negative, errors).

Our challenge is to devise more sophisticated algorithms that enjoy a comparable

computational efficiency, and yet work robustly as the quality of the experimental

data degrade substantially, as is common with practically all currently available

PPI data. The fundamental conceptual innovation in our algorithm is to analyze

structure of the graphs through their collections of edge-disjoint paths that re-

main relatively immune to the corrupting noises in the experiment, and yet lead

to an efficient implementation through Gomory-Hu tree representations. Below,
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we further elaborate on these points.

Complexes of proteins are at the heart of many fundamental biological pro-

cesses, including e.g. RNA metabolism, signal transduction, energy metabolism,

and translation initiation. As noted, the process of efficiently purifying [2,3] pro-

tein complexes and identifying their structure and function has remained a chal-

lenge. The most common experimental techniques result in the yeast two-hybrid

(Y2H) protein-protein interaction (PPI) networks, which encode pair-wise inter-

actions between proteins, and thus hold the promise to yield information about

large-scale phenomena such as participation in protein complexes, as examined

in [4–8]. It has been a well-known problem that Y2H experiments suffer from

noise inherent in the experiments. To overcome these limitations, one needs al-

gorithmic approaches robust against high FP and FN rates. Thus, even when the

details of protein complexes become “disguised” by false negatives or become

intertwined with each other by false positives, these algorithms could exploit the

fact that proteins within complexes still remain connected by adequately many

paths in the network. However, this qualitative statement requires a quantitative

justification, namely, as the number of false edges (positive or negative) increases,

how and when do these algorithms break down? What is the nature of the algo-

rithmic degradation: slow and graceful, or sudden and catastrophic? What is the

best algorithmic framework, in which they could be studied? Our main results are

as follows:

Algorithmic Results: We devise and implement a novel algorithm based on max-

flow and their representations through the classical Gomory-Hu tree data struc-

tures. We perform both theoretical and practical complexity analysis. We describe

and conduct its performance and robustness analysis with respect to practical data
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using Meila’s variational information [9] and Separation measure [10].

Robustnes Results: We study the nature of the computational robustness of our

algorithm through extensive simulation studies. We propose a prior model con-

sisting of a family of complexes whose sizes are random i.i.d., but distributed

according to a power-law. We study the validity of our computational analysis as

the underlying graphs evolve incorporating various forms of experimental error.

Experimental results: We consider Saccharomyces Cerevisiae as a model or-

ganism for our study, since its Y2H network as well as its protein complex data are

most complete. Data for protein Y2H pairwise interactions and protein complexes

were taken from the BIOGRID [11] and MIPS [12] databases. On Yeast network,

we identify 38 protein clusters which show p-value < 10−4 of being found at

random. Among them there are 20 protein complexes and 16 functional modules.

Identified protein complexes cover 61% of all existing MIPS complexes, which

have sufficient data coverage (or 72% of non-broken complexes, see Section 3.3).

2.1.2 Related work and overview

The Y2H experiments are known for their high false positive and false negative

rates: two adjacent proteins might not belong to the same protein complex (False

Positives; Figure 2.1 b) as well as proteins from the same complex might not

share an edge (False Negatives; Figure 2.1 a). These phenomena raise questions

about the validity of the direct statistical examination of pure Y2H networks.

With current data coverage and high false negative rates, protein complexes

of the Y2H PPI networks suffer from low connectivity within complexes. Among

all existing Y2H edges, only 6.14% connect protein pairs which participate in the

10



Figure 2.1: (a) Protein complexes that have low Y2H connectivity. (b) Protein
complexes with “fused” out-of-complex proteins.
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same protein complex. In fact, there are 788 protein complexes (from BIOGRID

and MIPS) with at least 3 nodes. Of those, 463 do not have a single Y2H edge

in the complex, 129 have only one Y2H edge, and 71 have two edges. There are

only 125 complexes which contain at least three Y2H edges in the complex and

can potentially have a minimum level of connectivity necessary to be identified

by a connectivity-based computational method.

The majority of graph-based methods for extracting protein complex informa-

tion look for densely connected, clique-like regions of the PPI network [4,5,7,8].

However, the problem of noise in yeast two-hybrid experiments required these

methods to supplement pair-wise interaction data with other biological markers,

such as co-expression [6], functional annotation [5], small-scale immunoprecipi-

tation [8] , microarrays [13], or inter-specie PPI data for conserved protein com-

plexes [4, 14].

If a protein complex corresponds to a clique-like subgraph in the Y2H PPI

graph, then increased FP and FN rates might at least interfere with and at most

preclude the search for such structures. For example, as shown in Figure 2.1

b high false positive rate in the Y2H data can produce areas of “false” density

or increase the connectivity between protein complexes making them impossible

to be identified in the network. At the same time, high false negative rate can

disguise clique-like protein complexes. Nonetheless, note that even if proteins

from a complex lose a few edges, they should maintain their association and still

be connected by enough paths in the network.

If we take a path between two proteins as evidence that they are in the same

complex, then the number of edge-disjoint paths is related to the degree of con-

fidence we have of complex co-membership (observe that an edge is also a path,
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Figure 2.2: Examples of protein complexes that contain 2-edge connected sub-
graphs.
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but a path is not limited to an edge). We say that a pair of nodes with only

one edge-disjoint path between them is weakly linked, and proteins with at least

two edge-disjoint paths are strongly linked. The high false-positive rate of Y2H

experiments suggests that we should limit ourselves to finding strongly-linked

complexes. Moreover, all proteins sharing one edge-disjoint path would simply

belong to the same connected component.

Consequently, we examined the Yeast Y2H PPI network with respect to the

number of edge-disjoint paths for pairs of proteins that belong to the same protein

complex (in-complex group) versus pairs of protein that do not belong to the same

protein complex (non-complex group), thus covering all possible protein pairs. In

Figure 2.3, we show an example of a distribution of edge-disjoint paths in each

group: it is more common for non-complex group to share just one edge-disjoint

path, compared to the in-complex group. At the same time, in-complex group

shows a clear evidence of sharing two and more edge-disjoint paths compared

to the non-complex group. Overall, the proportion of protein pairs sharing one

path versus sharing more than one path for the in-complex group is 1.059 and for

non-complex group is 2.868, emphasizing the importance of the greater number

of edge-disjoint paths for proteins from the same complex. For pairs of proteins

that do not share an edge the same dynamics is observed: the above proportion is

1.081 for in-complex group and 2.873 for non-complex group.

Our ultimate goal is to find the number of edge-disjoint path between all pairs

of nodes in the network and then combine this information to search for groups of

proteins sharing more edge-disjoint paths among themselves than they share with

the rest of the network. In our study, we consider all edges in the network as being

unweighted and undirected. In such a network, the number of edge-disjoint paths
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Figure 2.3: Distribution of edge-disjoint paths for protein pairs that belong to the
same protein complex (shown in blue) vs pairs that do not belong to the same
protein complex (shown in pink). Embedded chart shows the same distribution in
log2 scale.

between a pair of nodes corresponds to the value of the maximum flow between

that pair. However, there is no need to consider all
(
n
2

)
pairs of nodes in the

network, since the number of edge-disjoint paths (or maximum flow value) for all

pairs of nodes can be calculated in only n−1 steps and succinctly represented in a

Gomory-Hu tree [15], as detailed below. We use the Gomory-Hu tree to partition

the graph into components within which proteins share more edge-disjoint paths

(flow) within themselves than with the rest of the network. By rapid elimination

of low-weighted edges of the Gomory-Hu tree, we are able to identify clusters of

proteins which represent protein complexes and other functional modules.
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2.2 Gomory-Hu tree: Background

The reader familiar with Gomory-Hu tree and maxflow/min-cut fundamentals [15–

19] may skip directly to section 2.3.

Let G = (P,E) be a protein-protein interaction network, where P is a set of

proteins and there is an unweighted undirected edge eα,β ∈ E iff there exists Y2H

interaction between proteins pα and pβ . In our case, the absence of weights on

edges is equivalent to assigning a weight of “1” to each existing edge w(e) = 1,

e ∈ E.

A cut inG = (P,E) is defined by a partition of P into two disjoint sets P 1 and

P 2 and consists of all edges E ′ ∈ E which have one vertex in P 1 and one vertex

in P 2. The weight of the cut is defined as W (E ′) =
∑

e∈E′ w(e). In the case

of unweighted and undirected graph, W (E ′) would correspond to the number of

edges e ∈ E ′ contributing to a cut.

The problem addressed in this work is to find a minimum cost cut (or, equiv-

alently, a cut consisting of a minimum number of edges) separating two nodes pα

and pβ . This problem is the dual of a maximum flow problem, which is solvable

in polynomial time.

The generalization of min-cut problem, which is NP-hard, is a so-called Mul-

tiway cut. In the Multiway cut problem, we are given a set of terminals Q =

{q1, q2, . . . , qk} ∈ P . The objective is to find a minimum-weight set of edges

E ′inE whose removal separates each pair of terminals. Although the Multiway

cut problem is equivalent to minimum cut and thus polynomial time solvable

when k = 2, it becomes NP-hard for any fixed k > 2.

On the other hand, a maximum flow problem tries to maximize the flow that
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can be pushed from pα and pβ in the network G. Once some capacity is pushed,

it is subtracted from the edges’ weights. In other words, if all edges have weight

1, then the max flow of 1 can be pushed along one path from pα to pβ . If there

are more paths from pα to pβ , then it is possible to push more flow etc. In an

undirected unweighted graph a maximum flow between pα and pβ is equivalent

to the number of edge-disjoint paths between pα and pβ in G.

Max flow problem is known to be a dual of min cut problem. In fact, the maxi-

mum flow between pα and pβ equals to the minimum cut that separates them. The

max flow/min cut theorem states that in a flow network, the maximum amount of

flow passing from pα to pβ is equal to the maximum capacity that needs to be

removed from the network so that no flow can pass from pα to pβ .

We are interested in max flow/min cut values for all pairs of nodes in G.

In fact, we can consider all
(
n
2

)
pairs of nodes and collect max-flow (min-cut)

values for all pairs in a |P | × |P | table. However, it is possible to calculate max-

flow/min-cut only |P | − 1 times by contracting a Gomory-Hu tree, also called a

Flow Equivalent Network to G.

A Gomory-Hu tree for G = (P,E) is a tree T on the same set of vertices

P . The edges of T are not necessarily in the edge set E and have a new weight

function W ′ associated with them. In addition, each edge e ∈ T which parti-

tions T into components S and T − S is said to represent the cut associated with

separating S and T − S in G.

The conditions for a Gomory-Hu tree follow:

• For every pair of vertices pα and pβ , the weight of minimum cut between

pα and pβ is the same in both G and T .
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• For each edge e ∈ T , w′(e) is the weight of the cut represented by e in G.

In order to construct a Gomory-Hu tree for a graph G, we first choose two

nodes pα and pβ and calculate a minimum cut (maximum flow) between them.

This would divide P into two sets P 1 containing pα and P 2 containing pβ . We

might think of P 1 and P 2 as two “super-nodes” in T with an edge eα,β between

them representing the minimum cut (maximum flow) we just calculated. Then,

the next pair of nodes is chosen so that both of them belong to either P 1 or to P 2,

and so on. Performing this step |P | − 1 times results in a tree in which each node

in T represents a single vertex fromG. The algorithm ends when the |P |−1 links

are constructed. This final tree satisfies the properties of the Gomory-Hu tree.

2.3 Methods

We begin by computing a Gomory-Hu tree for each connected component of the

PPI graph. If we consider a graph with n nodes, a table of
(
n
2

)
pairwise max-

flow values is a cumbersome way to represent the connectivity information of a

graph. Gomory and Hu [15] noticed that only n− 1 distinct max-flow values are

possible in any graph, and these can be represented in a so-called Gomory-Hu

Tree. A Gomory-Hu tree is a weighted tree that spans the nodes of a graph such

that the max-flow between any two nodes in the graph is the same as the max-

flow between those nodes in the tree. That is, the max-flow from pα to pβ in the

network has value equal to the minimum edge on the path between pα and pβ in

the Gomory-Hu tree, as shown in Figure 2.4.

To compute max-flow value, we may use the Ford-Fulkerson method [19].

In particular, the best known deterministic max-flow algorithm for the undirected
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Figure 2.4: Gomory-Hu tree and its matrix representation. Nodes of the tree rep-
resent proteins and weighted edges of the tree represent max-flow values between
proteins. The max-flow value between any pair of nodes in the Gomory-Hu tree
corresponds to max-flow value between this pair of nodes in the graph.

unweighted graph is one proposed by Matula [20] and Nagamochi and Ibaraki [21]

that runs in O(|P ||E|) steps (where |P | is the number of nodes/proteins and |E|

is the number of edges). Thus, the time complexity of our algorithm is bounded

by O(|P |2|E|) in the worst time.

First we remove minimum-weighted edges from the Gomory-Hu tree. Re-

moving an edge induces a bipartition between the nodes of the tree. Thus an edge

in the Gomory-Hu tree corresponds to an edge-cut in the PPI graph. After such

elimination we recompute a Gomory-Hu tree for each induced connected com-

ponent, since the forest obtained by removing edges (of weight > 1) from the

Gomory-Hu tree is no longer the Gomory-Hu trees of the partitions. Consider the

example shown in the Figure 2.5 B. Nodes E and H have a max-flow 4 between

them in the Gomory-Hu tree. However, after eliminating edges of weight 2 from

the tree, the max-flow value between nodes E and H in the residual network is no
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Figure 2.5: Cutting the small-weight edges of a Gomory-Hu tree to induce a
partition on the nodes.

longer 4, but 1. We proceed recursively, by eliminating least weighted edges and

recomputing Gomory-Hu tree for each induced connected component until there

are no more edges to eliminate.

We call the set of nodes in each connected component of the Gomory-Hu for-

est a cluster. We eliminate singleton nodes at each phase and we say that a cluster

with a single node disappears. With every elimination phase, each Gomory-Hu

tree becomes smaller, splitting clusters or reducing their size until each cluster

disappears. Clusters found this way are then subjected to further selection ac-

cording to criteria of statistical significance, as described in 2.4.2.

The formal description of the algorithm follows: LetG = (P,E) be a protein-
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protein interaction network, where P is a set of proteins and there is an edge

eα,β ∈ E iff there exists Y2H interaction between proteins pα and pβ . Let Gi

be the graph obtained after i phases of our algorithm. We designate the jth con-

nected component ofGi byGi,j . Consider any weighted forest T i = (P,ET ,WT )

spanning the protein set P , where W ′
T represents max-flow values on the edges

produced by the Gomory-Hu calculations on each connected component. Then

T ik is the forest obtained from T i by eliminating all edges of weight at most k. As

before, T i,jk is the jth connected component of T ik. Let us define the procedure

that takes X as an input and produces Y as an output as X −→ Y . Let i = 0 and

k = min(wα,β : eα,β ∈ ET i):
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1. {Gi,1, . . . Gi,x} −→ {T i,1, . . . , T i,x}. /* During the ith phase, a

Gomory-Hu tree is computed for each connected component in

Gi. */

2. Let ki be the minimum weight of an edge in T i.

{T i,1, . . . , T i,x} −→ {T i,1k , . . . , T i,x
′

k }. /* We eliminate all

minimum-weight edges from the Gomory-Hu trees. */

3. Output: PT i,j for j = 1, . . . , x′.

4. {T i,1k , . . . , T i,x
′

k } −→ {Gi+1,1, . . . , Gi+1,x′}. /* Eliminating an

edge from a Gomory-Hu tree corresponds to eliminating all edges

of some cut in the graph. */

5. i = i+ 1.

6. go to step 1, unless EGi = ∅.

2.4 Results

2.4.1 Eliminating high degree nodes

To minimize the number of nodes and interactions that would give statistically

insignificant clusters, the common practice is to limit the number of non-selective

interactions (possibly false positives) and eliminate “excessive-degree” nodes from

the Y2H PPI graph, as for example exercised in [8]. Such nodes usually induce

the agglomerates (Figure 2.1, :b) which obscure protein complexes.
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Degree 6 7 8 9 10 11 12 13 14 15 16 17
Final clusters 2 3 5 7 7 8 11 10 11 14 11 11
MIPS clusters 1 2 3 3 3 3 3 5 4 4 4 3
P,% 50 67 60 43 43 37 27 50 36 29 36 27
Q,% 17 33 50 50 50 50 50 83 67 67 67 50

Table 2.1: Results on the training set of the Yeast Y2H PPI network: eliminating
nodes with the degrees higher than the threshold d = 6, . . . , 17.

To learn the degree threshold, to determine which nodes and adjacent edges

should be eliminated, we select a so-called “training set”, which corresponds to

about 1
4

of the network (the remaining network is called a “testing set”). To choose

a training set, we start with a random protein in the graph and accumulate the de-

sired number of nodes by breadth-first search. During the learning stage, we

eliminate nodes and their outgoing edges with respect to various degree thresh-

olds, as depicted in the Table 2.1. For example, if we choose a degree threshold

to be d = 16, then we eliminate all nodes (with corresponding edges) of degree

higher than 16.

We define several performance measures, based on a quality of produced clus-

ters, to evaluate the node/edge elimination effects. First, we calculate the percent

coverage, P , of how many final clusters correspond to MIPS/BIOGRID protein

complexes. Additionally, we introduce a new measure of protein complex cov-

erage, i.e., 2-edge connectedness. In particular, the graph is 2-edge connected if

there are at least two edge-disjoint paths between every pair of nodes in the graph,

with some examples shown in Figure 2.2.

We found that from 125 MIPS/BIOGRID protein complexes with at least three

Y2H edges , 74 (60 %) are fully or partially 2-edge connected. However, we ob-

served these protein complexes often overlap with each other or are the subsets
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of each other, producing data redundancy that can negatively influence the analy-

sis. In fact, there are 33 not overlapping non-redundant 2-edge connected protein

complexes, which we use as an additional measure in our further statistical anal-

ysis.

In particular, we measure Q, the recall rate for 2-edge connected

MIPS/BIOGRID complexes, that are in the training set. For example, in our train-

ing set initially there exist six 2-edge connected non-overlapping protein com-

plexes and Q is the fraction (in %) of these six that we identify in each run. We

evaluate our training phase with respect to both criteria: the highest Q values are

observed with d = 13− 16. Among those, d = 13 executes highest P , which we

consider our threshold and eliminate all nodes of degree higher than 13 from our

dataset (85 nodes or 2.16 % of total network nodes).

2.4.2 Statistical Significance of Clusters

As the algorithm proceeds, many clusters of different sizes are generated. The fi-

nal part of our algorithm is to estimate statistical significance of produced clusters

and decide which correspond to protein complexes and functional modules.

To measure the statistical significance of the cluster, we need to account for

the probability of finding such cluster in a random graph. To generate random

graphs, we use the Maslov-Sneppen procedure [22], which shuffles the edges of

the original Y2H PPI network so that the number of interactions for each protein

in the network is preserved.
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Figure 2.6: Number of clusters as a function of cluster size in the whole Yeast
Y2H PPI network (red line) and in the random graphs (black line). On the lower
line: rectangles represent standard deviation, with max and min as up/down bars.

Size-based p-value:

First, we calculate p-value with respect to different cluster sizes. The Figure 2.6

shows enrichment in the number of clusters of sizes 2 to 6 in the original Y2H

PPI graph, as compared to results on 100 random graphs. Clusters of size 7 and

higher, in contrast, appear more often at random. For each cluster of size s, we

calculate p-value as a probability of finding a cluster of size s at random, fit to a

normal distribution. Clusters of size 2, 3, 4 and 5 showed p-value p < 1 × 10−4,

which we consider statistically significant. In contrast, clusters of size 6 showed

p = 0.20 and therefore can appear at random with reasonably high probability.

Density-based p-value:

However, we cannot draw definite conclusions just based on bases of cluster size

or even on the number of edge-disjoint paths inside the cluster alone. In our

method, proteins inside clusters should share more edge-disjoint paths among
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themselves than with the rest of the network. Therefore, it is important to con-

sider each cluster individually and define a variable which would reflect the above

relationship. We define a “cluster-network density”, CND, in the following way.

First, we calculate the average number of edge-disjoint paths in the cluster per pair

of proteins, EDc. Then, we compute the average number of edge disjoint paths

from the proteins of this cluster to the proteins in the rest of the network (ignoring

proteins from different connected components), EDr. The CND is calculated as

EDc−EDr and reflects the difference between the connectivity inside the cluster

and connectivity of this cluster with the rest of the network. Our assumption is

that the cluster-network density for each cluster does not assume some random

value , but is a product of the unique biologically significant relationship. Of

course, all clusters from the original Yeast Y2H PPI network produced by our

algorithm show CND greater than 0. Here we again consider 100 random graphs

generated by the Maslov-Sneppen procedure [22] and calculate p-value (fit to a

normal distribution) per cluster produced. Let us define a CND of a cluster in the

original PPI network as CND∗. Then for each cluster of the original Y2H PPI

network, p-value reflects the probability that CND at random would be greater

or equal to CND∗. To correct for multiple hypotheses tested , we apply Bonfer-

roni Correction and multiply the calculated p-values by the number of hypothesis

tested (in our case, it is equal to the number of observed original clusters). We

consider those clusters with corrected p-values less than 1× 10−4 as statistically

significant. It appeared that clusters with p-values < 10−4 do not violate the sta-

tistically significant sizes shown in Figure 2.6. We report 38 out of 56 clusters as

being statistically significant according to the criteria described above. Among

clusters with p-value > 10−4, two represent protein complexes and two can be
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considered as functional modules, see online Supplementary material for details.

2.4.3 Evaluation of our method using MIPS dataset of protein

complexes

Our Y2H PPI network consists of 3930 proteins and 6219 interactions available

from BIOGRID. In this study, we consider only manually curated high quality

Y2H interactions, omit computationally derived interactions, ignore self interac-

tions, and include only proteins with at least one Y2H interacting partner. After

training on 1
4

of the network, we run the algorithm on the remaining testing set

consisting 3
4

of the network and then combine (take a union of) their results.

We first examine clusters produced by our method against a MIPS database of

Yeast protein complexes [12]. We consider a cluster a match if all of its proteins

belong to the same MIPS/BIOGRID protein complex. However, we also evaluate

the performance of our method with respect to varying matching thresholds, as

discussed in section 3.4. In addition to protein complexes, we define a notion of

a Functional Module, similarly to [8], as a group of proteins that participate in

the same cellular process in the same cellular location, however not necessarily

at the same time. In order for a cluster to be identified as a Functional module,

its proteins should reside in the same cellular location and should share simi-

lar/relevant functions (Gene Ontology classification). Even stronger supporting

evidence for Functional modules includes co-expression and literature co-citation

(we analyzed our clusters against co-expression and co-citation evidence, using

tables and criteria provided by [23] for pairwise log-odds scores). Since in many

cases we cannot say with certainty whether proteins enter a process at different
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times or at the same time, clusters from this category are strong candidates for

protein complex predictions.

We present results for both the 1
4

and 3
4

fractions of the network in the Ta-

ble 2.2. Among 38 clusters with p-value < 10−4, there are 20 MIPS/BIOGRID

protein complexes (yielding precision rate of 53%) and 18 functional modules.

Five of the functional modules are supported by co-expression evidence or co-

citation from the literature, thus making a strongly grounded predictions for new

protein complexes, as shown in Supplementary material. An example of such a

protein complex prediction is a cluster of 3 proteins, YBL078C(ATG8)

YHR171W(ATG7) YNR007C(ATG3), where YBL078C(ATG8) is a protein es-

sential for autophagy, YHR171W(ATG7) is a component of the autophagic sys-

tem, and YNR007C(ATG3) is essential for autophagocytosis. All proteins reside

in cytoplasm and are significantly co-expressed, making a strong prediction for

a protein complex. We discovered a cluster of 5 proteins (listed as Functional

Module): YDL140C(RPO21) YOR116C(RPO31) YOR341W(RPA190)

YBR154C(RPB5) YOR224C(RPB8), four of which correspond to the

550.1.213 [12] protein complex responsible for transcription, DNA maintenance

and chromatin structure. We propose to list an extra protein YDL140C(RPO21),

which is located in the nucleus and regulates DNA-binding and transcription, as

an additional potential member of this complex. Among 18 functional modules,

two clusters had weaker evidence of forming a functional association primarily

because of lack of information about the functional annotation or cellular location

of participating proteins.

Additionally, several functional modules consist of proteins that have not been

classified before. We anticipate making functional predictions for these proteins
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based on functional annotation of other proteins in the cluster. For example, an

unclassified protein YLR257W that has had no known function assigned so far,

exhibits strong evidence of being a participant in transcription initiation.

For completeness, we also studied a recall rate, which corresponds to the pro-

portion of 33 2-edge connected complexes covered. As we select our training and

testing sets, five 2-edge connected protein complexes become broken (one part

appears in training set while another part in testing set) and could not possibly

be identified in any of the sets. As a result, there are only 28 2-edge connected

MIPS/BIOGRID graphs in both sets, 20 of which we identify (yielding recall rate

of 61%, or 72% if 28 non-broken 2-edge connected complexes are considered).

Additionally, we characterize the performance of our method by a parameter M

that is a fraction of proteins in the matched MIPS/BIOGRID cluster over proteins

in the 2-edge connected part of the corresponding complex. In particular, 18 out

of 20 clusters show M = 1.

In general, among the 33 2-edge connected complexes, there are 17 triangles,

13 4-node graphs (2 fully-connected graphs with 6 links, 10 graphs with 5 links,

and 1 graph with 4 links), 2 graphs of 5 nodes (one fully-connected graph and one

graph with 7 edges), and one fully-connected graph of 7 nodes. Thus, the clusters

that cover 2-edge connected protein complexes are partially bounded by the above

sizes. We expect these sizes to increase however as the Y2H data becomes more

complete.
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Sets 1
4

3
4

1
4

⋃
3
4

Total clusters with p < 10−4 10 28 38
Clusters that cover MIPS complexes 5 15 20
FM with co-location and (co-expression or co-citation 1 4 5
FM with co-location 4 7 11
FM with limited information 0 2 2

Table 2.2: Final clusters of testing and training sets in the Yeast Y2H PPI network.

2.5 Protein Complexes of Other Species

We have applied our method to other species such as Mouse, Human, and Worm.

The Y2H interactions and protein complex information were obtained from the

BIND database.

2.5.1 Human Protein Complexes

We applied our method to Human Y2H PPI network containing 2699 proteins

and 3360 interactions. Our experiments identified four out of five 2-edge con-

nected protein complexes. Clusters that did not cover protein complexes were

tested against compatible location evidence (cellular location information for ev-

ery Human protein was taken from swiss-prot [24] database), such that all of them

responded positively.

Additionally, we subjected identified clusters to broader biological tests, de-

scribed as hsPPIP [25]. The method in [25] uses the idea that Protein Protein

Interaction Predictions are similar in different organisms. It takes Human pro-

teins/genes of interest as input. These genes are compared to Yeast proteins/genes

for possible orthologs. If such orthologs in Yeast participate in a protein complex,

then the probability that Human orthologs will form a complex is greater than zero
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CATEGORIES
final clusters 31
cover BIOGRID complexes 3
0 < PPIP < 17 10
18 < PPIP < 49 3
50 < PPIP < 89 3
90 < PPIP ≤ 100 3
NON-ZERO PPIP total 19
> 50% PPIP total 6
zero-PPIP +compatible location 9

Table 2.3: Results on Human Y2H PPI network.

(non-zero). This probability depends on the degree of orthology and the possi-

bility of Yeast orthologous proteins to build a protein complex. Thus, when any

of our clusters respond positively, they can lend some support to the hypothesis

that the cluster is a complex, whereas when the prediction is low, they yield no

information.

Table 2.3 shows results of an experiment on the Human Y2H PPI network

with corresponding hsPPIP probabilities (higher probabilities are better). All Hu-

man PPI clusters are listed at

http://research.rutgers.edu/∼ amitrofa/predictions.html.

2.5.2 Worm Protein Complexes

The Worm Y2H PPI network consists of 3154 proteins connected by 4921 edges.

All identified clusters were tested against compatible cellular location evidence,

taken from [24]. Unfortunately, the subcellular location information for Worm is

very limited, to such an extent that we were not able to obtain this information

for more than one protein in a cluster. The network, however, contains one 2-
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edge connected protein complex, which we identify. All 29 predicted protein

complexes can be found at

http://research.rutgers.edu/∼ amitrofa/predictions.html.

2.5.3 Mouse Protein Complexes

In Mouse Y2H PPI network, containing 723 proteins and 630 edges, we identi-

fied 17 clusters, 13 of which responded to the compatible location evidence. All

Mouse complex predictions are listed at

http://research.rutgers.edu/∼ amitrofa/predictions.html.

2.6 Robustness via Statistical Analysis

2.6.1 Experiment design

We examine the robustness of our algorithm by its ability to recover protein com-

plexes as we vary the number of FP and FN in a randomly constructed network.

Since we think of protein complexes as highly connected “clique-like” structures

in the PPI network [4, 5, 7, 8], we build our random test graph in the following

way: we introduce complete subgraphs of size from 10 to 2 and singletons (fol-

lowing the power-law distribution: 10 subgraphs of size 10, 20 subgraphs of size

9, etc, 300 singletons), similarly to the approach described in [10]. These groups

of nodes are our initial complexes (clustering C). At each step we delete some

number of randomly chosen edges of the network (introducing false negatives)

and add edges (false positives), which mirrors current Y2H PPI networks, with

relatively high levels of false positive and false negative interactions. We charac-
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terize these graphs in terms of parameters (k, n), which denote the fraction of the

total edges modified (k = added, n = deleted). We denote clustering obtained

on the modified network as C ′. Our main goal is to determine how well clus-

tering C ′ approximates the true clustering C (we use terms “clustering C” and

“complexes” interchangeably in this section). For this purpose, we operate two

statistical measures, Separation [10] and Variation of Information (VI) [9], both

defined in section 2.8,

2.6.2 Robustness results

With respect to robustness, we compare our method with the technique reported

as the most robust clustering on PPI networks in [10], namely, Markov Clustering

(MCL) [26]. The method in [26] is based on simulation of (stochastic) flow in

graphs assuming the presence of many edges between the members of the clus-

ter. It is assumed that higher-length (longer) paths between two arbitrary nodes

in the cluster is high compared to nodes from different clusters. In other words,

if we impose a random walks on the graph, it will infrequently go from one nat-

ural cluster to another. The algorithm simulates random walks in the graph by

alternation of two operators called expansion (computing random walks of higher

length) and inflation (boosting the probabilities of intra-cluster walks and demot-

ing inter-cluster walks). Eventually, iterating expansion and inflation results in

the separation of the graph into different segments, interpreted as clusters.

Since the protein complexes in current PPI networks suffer from low connec-

tivity, it is more important to examine the robustness of the algorithms against

increasing FN rates. We present some results in Figure 2.7, which show that our
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Figure 2.7: Each curve represents the value of VI (left panels) or Separation (right
panels) (A-B) edge removal from the test graph. (C-D) edge removal from an
altered test graph with 5% of randomly added edges. (E-F) edge removal from
an altered test graph with 10% of randomly added edges. Lower VI and higher
Separation are preferred.

approach is as much as or more robust compared to Markov clustering when ex-

amined against increased FP (by 5% and by 10%, which are most likely to exist

in Y2H PPI networks) and varying FN rates. Both methods show smooth curves

toward increased FN rates.

2.7 Comparative Analysis and Discussion

In this section, we compare our method to those previously described in the liter-

ature and most widely used, such as MCL [26], RNSC [5], and Spirin and Mirny

method [8]. The comparison is made on the same dataset of Y2H interactions

obtained from BIOGRID [11], where we considered only manually curated high
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quality interactions.

For completeness, we first briefly summarise the methods in [5, 8, 26] and

present their original results 1.

King et al. [5] develop the Restricted Neighborhood Search clustering algo-

rithm, RNSC, using a cost function (i.e., cost-based local search). After generat-

ing clusters, proteins are selectively chosen from clusters using a filtering model

(based on cluster density and functional homogeneity). In their study, King et al.

identified 33 clusters, 22 of which matched known MIPS protein complexes by at

least 90% of cluster proteins. Among them, six clusters match protein complexes

by 100% of cluster proteins (20% precision) and four clusters turned out to be

2-edge connected (12% recall). We identify 35 new clusters, among which there

are 17 new protein complexes, not covered by the method of King et. al.

On the other hand, Spirin and Mirny [8] look for heavily connected, clique-

like groups of nodes in the PPI network. They use the union of four different

clustering methods to identify 67 total clusters, 30 of which correspond to protein

complexes (45% precision) and 18 contain 2-edge connected subgraphs (55%

recall). However, in addition to two-hybrid interactions, they used information

from other hypothesis-driven studies of protein interactions such as coprecipita-

tion, which is excluded in our method to avoid the selection bias inherent in such

small samples. We identify four new protein complexes and 13 new functional

modules, not listed by the method of Spirin and Mirny.

The MCL clustering [26], described in detail in section 2.6, has not been

applied to search for protein complexes yet, but only to cluster proteins based

1Our method identified 38 protein clusters, 20 of which correspond to protein complexes (53%
precision and 61% recall).
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on their sequence similarity. However, it represents an important alternative,

since this is a widely used clustering technique and is regarded as a highly ro-

bust against increasing false positive and false negative rates in PPI networks, as

shown in [10]; consequently, we decided to conduct as well provide an extensive

comparison of our method against MCL.

For a statistically significant and biologically sound comparison, we exam-

ined the performance of our method and other computational techniques on the

same dataset with respect to several statistical measures, such as clustering-wise

positive predictive value (PPV), precision on various matching thresholds, and

average percent coverage per cluster (ACC).

In Figure 2.8, we show how various methods change their precision values

as we vary the cluster matching threshold. Precision reflects the proportion of

clusters that match known complexes in at least “m” % of their proteins, with

respect to the total number of clusters. For example, in our method, the fraction

of clusters that match known protein complexes in at least 100% of their proteins

is 0.53 (corresponding to 53%) and of those matching in at least 50% of their

proteins is 0.67 (corresponding to 67%).

In Figure 2.9 we present an average percent coverage per cluster, as an aver-

aged proportion of members of cluster j which belong to complex i, with respect

to the cluster size, as formally defined in section 2.8.

Finally, Figure 2.10 shows clustering-wise positive predictive value, as a pro-

portion of members of cluster j which belong to complex i, with respect to the

total number of members of this cluster assigned to all complexes, as detailed in

section 2.8. Positive predictive value is expected to be lower compared to other

statistical measures since MIPS/BIOGRID protein complexes very often are re-
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Figure 2.8: Precision at various cluster matching thresholds. A point in a graph
corresponds to a fraction of clusters (y axis) that match known protein complexes
in at least “m”% of their proteins (x axis).

Figure 2.9: Comparative analysis of our algorithm to other methods by using
average coverage per cluster.
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Figure 2.10: Comparative analysis of our algorithm to other methods by using
positive predictive value.

dundant or show large overlaps. Our method shows better performance, compared

to other computational techniques, in all three measures thus indicating clusters

of higher quality and biological significance.

One promising future direction for our method would be to assign a confi-

dence score for each Y2H interaction (i.e. conservation of the interaction across

species). It is possible to define a distance-based measure between proteins and

use a Diffusion Map for spectral clustering, as in [27]. However, this method is

very computationally expensive and hard to scale to large datasets. We plan to

explore an efficient implementation of a continuous approach of diffusion maps

with discrete approach of Gomory-Hu trees.

An interesting min-cut clustering approach of Tarjan et al [28], which was

applied to find communities in web and citation networks, introduced an artificial

sink node connected to all other nodes. We plan to expand our understanding of

competitive bounds for communities’ sizes addressed in [28]. Another interesting

approach described by Newman in [29] (later extended in [30]) describes graph
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decomposition based on edge betweenness, defined as the number of shortest

paths which go through an edge. Hartuv et al. in [31] present an algorithm based

on min cut idea, which shows an improved time complexity and generates clusters

with diameter 2 (two vertices are either adjacent or share one or more common

neighbors). We do not require nodes in the cluster to be adjacent or to necessarily

share a neighbor; however, they can be connected by much longer edge-disjoint

paths.

2.8 Statistical measures

2.8.1 Separation

Separation [10] is the statistical measure equivalent to the product of the com-

plex elements found in the cluster and the cluster elements found in the complex.

Having k complexes (from clustering C) and k′ clusters (from clustering C ′), we

define the contingency table as a k× k′ matrix M where row i corresponds to the

ith complex and column j corresponds to the jth cluster. The value of a cell Mi,j

indicates the number of proteins in common between complex i and cluster j.

From these values, we derive relative frequencies with respect to the marginal

sums, either per row Frow(i,j) or per column Fcol(i,j).

Frow(i,j) =
Mi,j∑k′

j=1Mi,j

Fcol(i,j) =
Mi,j∑k
i=1Mi,j
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The frequency per column Fcol(i,j) is equivalent to the well known Positive

Predictive Value, PPVi,j . The Separation between complex i and cluster j,

Sepi,j , is defined as a product of a column-wise and row-wise relative frequency.

Sepi,j = Fcol(i,j) × Frow(i,j)

The value of Separation is between 0 and 1. The perfect value of Separation

Sepi,j = 1 indicates a perfect match between complex i and cluster j, i.e. when

a cluster comprises all of complex’s proteins and nothing more. Interestingly,

Separation penalizes cases where proteins of a given complex are assigned to

multiple clusters, by using row sums rather than complex sizes.

A complex-wise separation Sepco(i) is calculated as the sum of separation

values for a given complex i.

Sepco(i) =
k′∑
j=1

Sepi,j

A cluster-wise separation Sepcl(j) is calculated as a the sum of separation

values for a given cluster j.

Sepcl(j) =
k∑
i=1

Sepi,j

A complex-wise separation over all complexes Sepco is calculated as the av-

erage of Sepco(i),

Sepco =

∑k
i=1 Sepco(i)

k

Respectively, the cluster-wise separation over all clusters is
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Sepcl =

∑k′

j=1 Sepcl(j)

k′

We then compute and operate the geometrical separation Sep as the geomet-

ric mean of

Sep =
√
Sepco × Sepcl

2.8.2 Variation of information

Variation of information another useful metric based information-theoretic crite-

rion that measures how much information is lost or gained in going form cluster-

ing C to C ′. In our case, C corresponds to the initial complexes. If we let n be

the number of nodes and K be the total number of clusters, with nk being a size

of cluster Ck, then the uncertainty (or entropy) of the clustering C is defined as

H(C) = −
K∑
k=1

P (k) log(P (k)),

where P (k) = nk/n. The joint distribution that a point belongs to cluster Ck in

C and to cluster C ′k′ in C ′ is

P (k, k′) =
|Ck
⋂
C ′k′ |

n

Then the mutual information between clustering C and C ′ is

I(C,C ′) =
K∑
k=1

K′∑
k′=1

P (k, k′) log(
P (k, k′)

P (k)P ′(k′)
)

41



And finally, the Variation of Information is defined as

V I(C,C ′) = H(C)− I(C,C ′) +H(C ′)− I(C,C ′)

Higher Variation of Information corresponds to bigger deviation from the original

clustering C.

2.8.3 Average cluster coverage

Operating the contingency table M , for each cluster j, we find its best complex

matching complex i. Then the number of matched proteins is divided by the

cluster size, basically indicating the % of cluster proteins which are matched.

ACCj = maxki=1

Mi,j

|clj|

These values for each cluster are then averaged (summed and divided by the

total number of clusters).

ACC =

∑k′

j=1ACCj

k′

2.8.4 Positive predictive value

Operating the contingency table M defined above, Positive predictive value is

defined as

PPVi,j =
Mi,j∑k
i=1Mi,j

=
Mi,j

M.j
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M.j is a marginal sum of a column j. The cluster-wise positive predictive value

PPVclj reflects the reliability with which cluster j predicts that a protein belongs

to its best matching complex.

PPVclj = maxki=1PPVi,j

To characterize the general PPV of a clustering result as a whole, we present a

clustering-wise PPV as a the weighted average of a PPVclj over all clusters.

PPV =

∑k′

j=1M.jPPVclj∑k′

j=1M.j

2.9 Conclusions

We have presented an efficient algorithm for identifying protein complexes through

efficient manipulation of the Gomory-Hu tree of the PPI Y2H network. Our

method is shown to be robust against high FP and FN rates and capable of produc-

ing clusters of high quality when compared to other approaches. Additionally, the

algorithm shows a good recall for identifying existing MIPS protein complexes

with sufficient data coverage. Identified Functional modules are strong candi-

dates for complex predictions and constitute reliable material for experimental

research.
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2.10 Web Resources and Supplementary material

Supplementary and output data are available from

http://www.cims.nyu.edu/∼antonina/predictions.html
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Chapter 3

Prediction of Protein Functions with

Gene Ontology and Inter-Species

Protein Homology Data

3.1 Introduction

Accurate computational prediction of protein functions increasingly relies on

network-inspired models for the protein function transfer. This task can become

challenging for proteins isolated in their own network or those with poor or un-

characterized neighborhoods. Here, we present a novel probabilistic chain-graph

based approach for predicting protein functions that builds on connecting net-

works of two (or more) different species by links of high inter-species sequence

homology. In this way, proteins are able to “exchange” functional information

with their neighbors-homologs from a different species. The knowledge of inter-

species relationships, such as the sequence homology, can become crucial in cases
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of limited information from other sources of data, including the protein-protein

interactions or cellular locations of proteins. We further enhance our model to

account for the Gene Ontology dependencies by linking multiple but related func-

tional ontology categories within and across multiple species. The resulting net-

works are of significantly higher complexity than most traditional protein network

models. We comprehensively benchmark our method by applying it to two largest

protein networks, the Yeast and the Fly. The joint Fly-Yeast network provides

substantial improvements in precision, accuracy, and false positive rate over net-

works that consider either of the sources in isolation. At the same time, the new

model retains the computational efficiency similar to that of the simpler networks.

3.1.1 Motivation

In protein-protein networks, each node represents a protein and edges between

nodes represent different types of functional associations, such as protein-protein

interactions, sequence similarity, co-expression patterns, and others. Majority

of computational methods for protein classification rely on the property that close

neighbors in a protein-protein network typically share a function [1,32–38]. These

methods assign the function (or functions) to a protein of interest based on the an-

notations of its neighbors. Such approaches have shown success in cases where

proteins have multiple, mostly annotated neighbors. However, the methods dis-

play much less success on proteins with insufficient neighborhoods: those pro-

teins isolated in their own network or the ones surrounded by poorly annotated

neighbors.

In this work we propose a novel approach to protein function prediction,
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which overcomes these limitations and incorporates inter-species evolutionary

information with multi-functional Gene Ontology (GO) dependencies. The fun-

damental conceptual innovation of our method is to connect protein-protein net-

works of two (or more) different, but related species, into a single computational

model. Through the edges of high homology, proteins are able to expand their

learning neighborhood and acquire additional functional information from their

neighbors-homologs of a different species network.

Our new approach relies on a chain-graph probabilistic approach to integrate

multiple sources of information: protein-protein interactions, multi-functional

ontology information, intra-species sequence similarity, and inter-species homol-

ogy which captures evolutionary relationships between species. In connecting

networks, we rely on the fact that proteins of different species, which share high

sequence similarity, are likely to share similar protein classification. In most

cases such proteins, orthologs, had established functions before the speciation

event. Thus, high similarity of sequences between species is likely to lead to

shared functions. Even though the resulting large chain-graphs can suffer from

increased time and space complexity of the models, compounded by the added

complexity of the multi-species network, we show that the combined models of-

ten lead to efficient implementations and significant improvements in predictive

accuracy not observed in isolated networks or other competing approaches.

The rest of the chapter is organized as follows. In Section 3.1.2 we first present

an overview of the closely related network approaches to protein function predic-

tion. We then introduce, in Section 3.2, a chain-graph based probabilistic network

model that combines both the GO structure and the information from protein-

protein networks of multiple species. Section 3.3 demonstrates the effectiveness
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of the proposed approach when applied to large Fly and Yeast networks, at differ-

ent granularities of the GO. We finally discuss the new results in Section 3.4 and

relate them to the performance of related state-of-the-art probabilistic network

models.

3.1.2 Related Work

Proteins are involved in many if not all biological processes, such as energy and

RNA metabolism, signal transduction, and translation initiation. However, for

a large portion of proteins, their biological function remains unknown or incom-

plete. Thus, constructing efficient and reliable models for predicting protein func-

tions has thus become the task of immense importance.

A critical factor that impacts performance of network models is the choice of

functional association between proteins. The most established methods for pro-

tein function prediction are based on sequence similarity (e.g., a BLAST score).

A large set of methods relies on the fact that similar proteins are likely to share

common functions, subcellular location or protein-protein interactions (PPIs).

Such similarity-based methods include sequence homology, similarity in short

signaling motifs, amino acid composition and expression data [35, 36, 38–41].

Using PPI data to ascertain protein function within a network has been studied

extensively. For example, methods in [32,42,43] used the PPI to define a Markov

Random Field over the entire set of proteins. These methods are based on the

notion that interacting neighbors in PPI networks should share a function [32–34].

One promising computational approach to protein function prediction utilizes

the family of probabilistic graphical models, such as belief networks, to infer

48



functions over sets of partially annotated proteins [32, 42, 43]. Using only a par-

tial knowledge of functional annotations, probabilistic inference is employed to

discover other proteins’ unknown functions by passing on and accumulating un-

certain information over large sets of associated proteins while taking into account

different strengths of associations.

Several related studies used various probabilistic frameworks to infer func-

tions of proteins [44–48]. For example, the method in [46] used multiple Sup-

port Vector Machines for the classification of protein predictions using protein

sequences of several organisms for training. GOtcha approach developed in [48]

and method in [47] search for similar sequences, using the scoring scheme for GO

annotations, based on degree of similarity of the original query and frequency of

occurrence of GO in different sequences. Shin at el [45] proposed graph sharpen-

ing as a way to eliminate undesirable edges from sequence and 3D similarity

graphs, and showed that graph sharpening together with data integration pro-

duced improvement in protein function prediction. Tsuda at el [44] proposed

automated method to choose/weigh best networks (out of PPI, genetic interac-

tions, protein complex, Pfam domain structure, gene expression networks) for

each protein class, using Support Vector Machines.

More recently, the approach of incorporating Gene Ontology structure into

probabilistic graphical models [35] has shown promising results for predicting

protein functions while outperforming approaches that do not take advantage of

dependencies among different functional terms. The approach described in [35]

considers multiple functional categories in the Gene Ontology (GO) simultane-

ously. In their model each protein is represented by its own annotation space - the

GO structure. In this case, the information is passed within the ontology structure
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as well as between neighboring proteins, leading to an added ability of the model

to explain potentially uncertain single term predictions.

Multiple approaches have proven that incorporating heterogeneous data to

predict protein function can improve the overall predictive power of automated

protein/gene annotation systems, as for example shown in [1, 35, 37]. Integrat-

ing multiple sources of information is particularly important as each type of data

captures only one aspect of cellular activity—PPI data suggest a physical inter-

action between proteins, sequence similarity captures relationships on a level of

orthologs (inter-species relationship) or paralogs (intra-species relationship), and

gene ontology defines term-specific dependencies.

Many learning approaches rely on information available from neighbors in a

protein network [1,32,37]. However, there may exist proteins with no edges con-

necting them to other proteins in their own networks. For example, considering

Yeast and Fly networks, Yeast protein YPL262W has no edges of high sequence

similarity to other proteins in its own Yeast network, but it is connected to two

Fly proteins (CG6140-PA, CG4095-PA) through high similarity edges. On the

other hand, Fly protein CG4866-PA and Yeast protein YHR148W do not share

any sequence similarity with proteins in their own networks, but are connected

through a highly homologous edge with each other. In a single species network

it is often the case that proteins are surrounded only by proteins whose functional

information is absent or very limited. In such cases, using information from mul-

tiple species becomes crucial: neighborhoods of many proteins are expanded by

connecting them to proteins of high sequence similarity in a different species’

network. Through such multi-species networks sufficient information may be ac-

cumulated to improve the accuracy of protein functional prediction.
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Figure 3.1: The hypothetical protein is positively annotated (light blue color) to
GO term 43565 and, thus, also positively annotated to its parent - GO term 3677 ,
and further up the tree to the parent’s parent, term 3676. The term 3700, with the
darker blue shade, indicates the negative annotation of the protein to this term. Its
child, term 3705, inherits this negative annotation. The protein is unknown at the
three unshaded (white) terms.
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3.2 Methods

3.2.1 Single Species Network

In our work, we employ the idea of probabilistic chain graphs with incorporated

Gene Ontology dependencies [35] to build protein network for each species (such

as Yeast and Fly).

In this method, each protein is represented not by a single node, but by a

replicate of a Gene Ontology (or subontology), as depicted in Figure 3.1. Gene

Ontology (GO) is a directed acyclic graph which describes a parent-children rela-

tionship among functional terms. The child term either “IS A” special case of the

parent or is a “PART OF” the parent’s process or its component. Every protein

has its own annotation space corresponding to each of the functional terms in the

Gene Ontology. The annotations can, in turn be, assigned positive, negative or

unknown states.

Because the relationships between children and parents are directional, if a

protein is positively annotated to a child, it is also, by definition, positively anno-

tated to a parent. However, the reverse relationship does not hold. At the same

time, if a protein is negatively annotated to a parent term, it will be negatively

annotated to all the children terms.

From the above definition it becomes clear that the probability that the child

term is negative, given that the parent term is negative, is one. In the presence

of multiple parents, a negative state of any parent immediately yields a negative

state for child. This step leaves the only probabilities that remain to be estimated

as those that define the likelihood of a child being positively/negatively annotated

when its parent is (or all parents are) positive.
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By defining such probabilistic dependencies for the Gene Ontology terms

(conditional probability distribution of all child terms given their parent terms),

we create a Bayesian network (BN) representation for each protein, as represented

in Figure 3.1.

We encode the ability of our model to transfer functions among similar pro-

teins using a probabilistic graphical representation of a Markov Random Field

(MRF) [49], similarly to [32, 42, 43]. In our work we consider two measures of

similarity within each species network: sequence similarity determined through

normalized BLAST scores and protein-protein interactions. The notion of sim-

ilarity between proteins in this case is not directional, unlike the case of Gene

Ontology.

For each measure of similarity we define a potential function, which corre-

sponds to the probability of joint annotation of two proteins at a term, given that

the proteins are similar. The sequence similarity-based potential for proteins i

and j at term c is defined as

ψ(+,+) = ψ(−,−) = swithin
i,j,c

ψ(+,−) = ψ(−,+) = 1− swithin
i,j,c

where swithin
i,j,c is a pairwise normalized BLAST score (we only consider normal-

ized BLAST scores above 0.5). In this case, swithin
i,j,c = swithin

i,j for all terms c.
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Figure 3.2: A chain graph model with three proteins. Each protein is represented
by GO subontology of size eight, with different annotations present at each pro-
tein. Some model elements, P and potential function ψ, are shown.

Similarly, the PPI-based potential is defined in a term-specific way as shown

below

ψ(+,+) = P (+,+|interaction),

ψ(−,−) = P (−,−|interaction),

ψ(+,−) = P (+,−|interaction)

ψ(−,+) = P (−,+|interaction),

where the quantities are estimated using relative frequency counts from the train-

ing data.
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If both the similarity measure and the PPI occurred between a pair of proteins,

the total potential ψ is defined as a product of the similarity-based potential and

the PPI-based potential [35].

In the model, each protein i can have the evidential function φ at each term c,

defined as follows. Let x(c)
i be the positive or negative annotation of a protein i to a

particular term c. Then the evidential function models our knowledge of particular

term annotations: a positively annotated protein at term c is modeled with φ(x
(c)
i )

defined as φ(+) = 1, φ(−) = 0. Similarly, when a protein is negatively annotated

at c, the zero and one values are interchanged so that φ(+) = 0, φ(−) = 1. For

proteins with no annotation the evidence φ is set to 0.5.

Our final model is embodied in a chain graph [50], a hybrid between a Bayesian

Network (BN) and a MRF, see Figure 3.2. Operating all of the above parameters,

the single-species model (of either Fly or Yeast, in our case) can now define a

joint Gibbs distribution of functional term annotations over a set of proteins, as

defined in Equation (1),where Z is the normalizing constant and Pa(x(c)
i ) is a

parent (parents) of the GO term c in the protein xi.

Once the network (chain graph) is built, the information is passed from anno-

tated proteins through undirected links to their neighbors. At the same time the in-

55



Figure 3.3: Yeast and Fly networks joint by the similarity edges between Yeast’s
protein i and Fly’s protein z+1. The edges between all GO terms of these proteins
are in dark bold, with ψ shown.

formation flows within each protein’s Bayesian network along the directed links,

according to the conditional probabilistic relationships among different terms.

In this fashion the annotation information is accumulated both via the similarity

MRF and the ontology BN. For each term of a protein, a set of neighbors is de-

fined by the local connectivity: for example, in the Figure 3.2 the neighbors of

3688 in the protein i+ 1 are x(43565)
i+1 , x

(3688)
i , x

(3688)
i+2 .

The flow of information is modeled using a message-passing mechanism for

chain graphs, similar to that described in [35]. Messages are passed until the state

of convergence is reached; we define it as state at which all normalized messages

change by less than 10−4 between successive iterations. We employ the “down”

message-passing schedule: messages are initiated from the annotated term nodes,

sent to all of their neighbors, then to the neighbors of their neighbors, and so on,

until all nodes have sent their messages out.

At convergence, the posterior probabilities of membership in the classes de-
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fined by GO are calculated at the target proteins, and predictions are made based

on those probabilities. We compare the beliefs, obtained thus, to a preselected

threshold. Prediction decisions are based on 0.8 decision threshold, as suggested

in [32, 35].

3.2.2 Multi-species network

Our next step is to join networks of two (or more) species by edges of high se-

quence similarity into one computational model. In particular, an edge is intro-

duced between homologous proteins in two species if their normalized BLAST

score is above 0.5 (the similarity is high). On the other hand, inter-species edges

are not introduced when the score is below 0.5 (the similarity is low), since dis-

similar proteins may or may not be involved in the same biological process. More-

over, most of the protein pairs would share some low similarity, which would

obscure the network with potentially irrelevant low-similarity edges.

More formally, in a two-species setting, we define a similarity measure be-

tween protein i in Yeast network and protein j in Fly network, at term c, as

sbetween
i,j,c , a normalized pairwise BLAST score. Consequently, the potential func-

tion for homologs between different species is defined as

ψ(+,+) = ψ(−,−) = sbetween
i,j,c

ψ(+,−) = ψ(−,+) = 1− sbetween
i,j,c

Similarly to a single-species model, we consider sbetween
i,j,c = sbetween

i,j for all

terms c of the Gene Ontology, as illustrated in Figure 3.2. While this assumption

may be open to debate, it is shown to lead to improved annotation performance.
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Considering heterogeneous values of similarity sbetween
i,j at each term cmay lead to

additional improvements, at a cost of a more complex and demanding parameter

estimation process.

The combined model for joint Fly-Yeast (referred to as “sp 1” and “sp 2”)

network now defines a joint Gibbs distribution of functional term annotations over

a set of all proteins in the chain graph, detailed in Equation (2). Here, Z is the

normalizing constant, ψwithin is a similarity measure within one species network,

ψbetween is a similarity measure between the networks, and finally, Pa(x(c)
i ) is a

parent (parents) of the GO term c in the protein xi.

After the joint network is built, a belief propagation algorithm is used to make

predictions at all ontology terms in both species. We consider a state of conver-

gence and decision thresholds to be defined similarly to a single-species network.

Adding inter-species homology information into the learning model has unique

advantages and shows significant improvements in protein function prediction.

The model is specifically beneficial for proteins isolated in their own networks

(having no interacting neighbors) or for proteins which are surrounded by poorly

annotated neighbors. In a multi-species setting, the neighborhood of such pro-

teins is expanded so that they can learn their functional annotations from their

homologs in the different species.
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3.3 Experiments and Results

3.3.1 Experiment design

We apply our method to two largest protein networks of Yeast and Fly as well as

to a joint Yeast-Fly network. Predictive performance of our models is evaluated

in a 5-cross validation setting. The test set consists of a random 20% of annotated

proteins, that maintains the same proportion of negatively and positively anno-

tated proteins as the remaining 80% of the data used for training the model. For

each randomly chosen test protein, all of its annotations are left out—the Gene

Ontology structure remains in place but the functions at all terms are now listed

as unknown. In the case of a joint Fly-Yeast network, we eliminate annotations

of 20% of annotated proteins from each network. In the testing phase, upon con-

vergence of the message-passing process, predictions at terms whose annotations

were left out are tested against the known eliminated annotations.

For each tested network, we conduct a total of ten experimental rounds using

the random splitting process. In each round, we compared results of runs on

single networks (without joining) to that of the joint network. Individual and

joint networks are trained and evaluated on the same training/testing data.

For the measure of intra- and inter-species similarity we used normalized

BLAST scores, defined as a BLAST score divided by self score of query (i.e.

BLAST score of the homologue divided by the BLAST score of the protein

against itself), ranging from 0 to 1. We obtained sequence and annotation data

from Saccharomyces genome Database [51] for Yeast (February 2 and April 11,

2009 release) and FlyBase [52] for Fly (April 27, 2009 release). Protein-protein

interaction data were obtained from BIOGRID [53] database (April 27, 2009 re-

59



lease). We considered only manual (higher quality) annotations, since computa-

tional predictions have been noted to present a conflicting evidence. To expand

the applicability of our method, we considered all reported in the above sources

Yeast and Fly proteins (as opposed to considering only proteins with specific

evidence, such as protein-protein interactions). This approach resulted in a com-

bined set of 12199 Fly and 6008 Yeast proteins that were used to construct our

joint belief networks.

Gene ontology structure was downloaded from the Gene Ontology database [54].

When reading Gene Ontology annotations, we consider two fundamental GO as-

sumptions: GO hierarchy is expanded up for positively annotated proteins (if a

protein is positively annotated by a term, then it is also positively annotated by all

of its parents/ancestors) and is expanded down for negatively annotated proteins

(if a protein is negatively annotated by a term, then it is negatively annotated by all

of its children/descendants). We construct a negative set relying on co-annotation

(co-occurence) statistics of GO annotations in the data (further maintaining two

fundamental GO assumptions). In particular, a protein is considered negatively

annotated by a specific GO term if this term has never been observed to co-occur

with a known function for a given protein, given the training data.

Our example of gene ontology was taken from molecular function subtree of

GO hierarchy 1, as depicted in Figure 3.1. As previously investigated in [32, 33,

35, 37, 38] among others, PPI networks have strong predictive power for molec-

ular function categories of Gene Ontology, especially in combination with other

1The original GO subontology covered eight terms: nucleic acid binding (3676), DNA binding
(3677), sequence-specific DNA binding (43565), methyl-CpG binding (8327), DNA replication
origin binding (3688), centromeric DNA binding (19237), transcription factor activity (3700), and
RNA polymerase II transcription factor activity, enhancer binding (3705).
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sources of evidence (such as intra- and inter- species homology). Previously PPI

and intra-species sequence homology together showed significant improvements

in predicting molecular functions of proteins, as for example shown in [35,37,38].

Most importantly, the use of the proposed inter-species homology may render our

computational method, a core concept of this work, broadly applicable to all three

ontologies: molecular function, biological process and even the cellular compo-

nent.

Our method can be applied to the entire gene ontology, at the expense of

time and space complexity. However, in practice, biologists and clinicians are

interested in specific, relatively small, subontologies, targeted in our study. For

instance, vaccine and drug targets are usually the proteins that perform very spe-

cific functions, represented by the leaves of a specific Gene subontology.

Using our algorithm, 583 Fly and 236 Yeast proteins are annotated to one

or more terms of the selected subontology (among those 110 Fly and 29 Yeast

proteins were assigned some negative annotations). Other proteins are unanno-

tated to a given subontology and are used as intermediate points for information

passage.

3.3.2 Results

For our model, we operate several performance measures, such as: precision,

recall, accuracy, false positive rates, and F1 defined as: recall = TP
TP+FN

,

precision = TP
TP+FP

, accuracy = TP+TN
TP+TN+FP+FN

, fpr = FP
TN+FP

, F1 =

2∗precision∗recall
precision+recall

, respectively.

The calculations are done separately for the Yeast network, the Fly network
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size network precision recall accuracy FP rate F1 measure
8 Fly 100 99.78 99.86 0 99.89

Fly, JN 100 99.78 99.86 0 99.89
12 Fly 99.00 99.40 99.25 0.90 99.23

Fly, JN 99.36 99.33 99.37 0.60 99.34
16 Fly 98.44 98.93 98.75 1.25 98.68

Fly, JN 99.20 98.25 98.95 0.625 98.72

Table 3.1: Average precision,recall,accuracy, false positive rate, and F1 over 10
runs for Fly species in isolated Fly and joint Fly-Yeast networks (percentage wise)
for subontologies of various sizes. JN stands for joint Yeast-Fly network.

and the joint Fly-Yeast network. In the joint network, we separately calculate

the performance of Fly and Yeast species and compare them to those in isolated

networks.

In this work, we consider GO subontologies of different sizes. The main

focus is on the GO subontology of size 8, similarly to our previous work in [55].

We expand our model to subontologies of bigger sizes: 150% the size of the

original subontology (size 12) and 200% the size of the original ontology (size

16), shown in Figure 3.4. A typical run of the model with the 8-sized ontology

on the joint Fly-Yeast network (on 3.6 GHz CPU with 8GB memory machine)

takes approximately 28 minutes (with four iterations of message passing). In

comparison, corresponding runs on individual species networks take 59 minutes

for Fly and 35 minutes for Yeast.

While the difference in running times may at first appear to go against intu-

ition, faster convergence rates in a Joint Network can be attributed to the presence

of “denser” sources of evidence in networks of multiple species compared to that

of the isolated runs.

Table 3.1 shows the average precision, recall, accuracy and false positive rate
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size network precision recall accuracy FP rate F1 measure
8 Yeast 89.52 97.66 91.13 29.32 93.41

Yeast, JN 100 96.17 97.27 0 98.05
12 Yeast 94.98 97.05 95.27 7.24 95.96

Yeast, JN 98.33 96.94 97.33 2.18 97.63
16 Yeast 95.06 96.31 95.54 4.9 95.64

Yeast, JN 99.01 95.6 97.7 0.465 97.26

Table 3.2: Average precision,recall,accuracy, false positive rate, and F1 over 10
runs for Yeast species in isolated Yeast and joint Fly-Yeast networks (percentage
wise) for subontologies of various sizes. JN stands for joint Yeast-Fly network.

for Fly: in isolated Fly network, and in joint Fly-Yeast network, for subontologies

of various sizes. Table 3.2 shows corresponding measures for Yeast.

The overall performance of Fly and Yeast networks is highly improved (com-

pared to the results presented in our previous work [55]), which is most likely due

to the more reliable sequence similarity scores, expanded protein coverage, and

more general definition of a negative set.

The joint Fly-Yeast network significantly improves precision, accuracy, and

FP rate while only slightly suffering from lowered recall, as shown in Table 3.1,

for Fly, and Table 3.2, for Yeast. We stress the importance of F1 measure, a

harmonic mean of precision and recall, and notice its consistent significant im-

provement in the joint network, even for larger subontologies. This improved

result indicates that despite the larger size and more complex structure, consider-

ing networks of multiple species jointly continues to offer important benefits to

the prediction process.
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Figure 3.4: Expanded subontologies of size 12 (added nodes are shown in gray)
and 16 (added nodes are shown in black).

3.3.3 Statistical analysis

Statistical analysis of significance of the aforementioned performance scores was

done using the t-test and the Wilcoxon Signed-Ranks Test [56]. The tests were

conducted separately for each species and each performance measure: single Fly

network is compared with the performance on the Fly in the joint Fly-Yeast net-

work; and single Yeast network is compared with the performance of the Yeast

in the joint Fly-Yeast network. For comparison to be sound, the evaluations on

single and joint networks were done using the same random samples (splits for

testing and training sets).

t-statistics per species

We present p-values calculated from t-statistics (degree of freedom= 9) to evalu-

ate statistical significance of our findings in Table 3.3. We consider p-value to be

statistically significant if it is less than 0.05. In general, Yeast shows more sub-
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stantial improvements compared to Fly, which could indicate the higher quality

of Fly data and better neighborhoods for the majority of Fly proteins.

Wilcoxon signed-ranks test

To remove the possible effects of outliers on the computed t-test statistics random

samples can compensate for overall bad performance) we applied the Wilcoxon

Signed-Ranks Test. Wilcoxon Signed-Ranks Test is a non-parametric alternative

to the t-test, which assumes commensurability of differences in a qualitative way:

greater differences count more. In many cases, this test is safer than the t-test

since it does not assume a normal distribution.

Let dq = Ec1q − Ec2q be the difference between the performance scores of the

approaches on the q-th out of the 10 random trials. Each difference is considered

at its absolute value and the values are ranked. In the case of ties between differ-

ences, the average score among them is assigned. We use R+ to denote the sum

of ranks for the samples on which the Joint method outperforms the individual

network approach; R− is the sum of ranks when the individual methods “win”:

R+ =
∑
dq>0

rank(dq) +
1

2

∑
dq=0

rank(dq)

R− =
∑
dq<0

rank(dq) +
1

2

∑
dq=0

rank(dq)

The z-statistic can be calculated as

z =

(
T − 1

4
N(N + 1)

)
/

√
1

24
N(N + 1)(2N + 1),

where T = min(R+, R−). andN = 10 is the number of samples. With α = 0.05,
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size network precision recall accuracy FP rate F1
8 Fly, t-test * * * * *

Fly, WSR * * * * *
Yeast, t-test 3 ∗ 10−6 - 2.1 ∗ 10−5 < 10−6 4 ∗ 10−6

Yeast, WSR 0.0027 - 0.0046 0.0027 0.0029
12 Fly, t-test 0.22 - 0.35 0.20 0.35

Fly, WSR 0.024 0.078 0.024 0.024 0.012
Yeast, t-test 0.016 - 0.019 0.018 0.018
Yeast, WSR 0.014 0.42 0.014 0.061 0.0053

16 Fly, t-test 0.11 - 0.33 0.10 0.47
Fly, WSR 0.016 0.003 0.003 0.016 0.11
Yeast, t-test 0.021 - 0.026 0.011 0.08
Yeast, WSR 0.016 0.016 0.016 0.016 0.017

Table 3.3: p-statistics from t-test and Wilcoxon Signed-Ranks Test: p-values with
respect to precision, recall, accuracy, false positive rate, and F1 as a measure of
statistically significant improvements of a joint network performance, for subon-
tologies of various sizes. “*” stands for “cannot be improved”.

the null hypothesis will be rejected if z < −1.96. We calculate the corresponding

p-values from the determined z-values.

The Wilcoxon test similarly confirms significant improvements in performances

on the Joint network when compared to individual Yeast and Fly networks, as

shown in Table 3.3. In fact, Wilcoxon test “catches” statistically significant im-

provements where t-test presents no evidence, such as for subontologies of size

12 and 16.

3.4 Comparative analysis

3.4.1 Gene Ontology vs single-term predictions

As a baseline test, we compare our methodology (with GO dependencies) to runs

without GO in place, where the whole network of proteins is tested on a single
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networks GO precision recall accuracy FP rate
Fly w/o GO 45.57 48.7 74.25 49.05

GO 100 99.78 99.86 0
Fly | JN w/o GO 49.5 53.78 54.94 32.13

GO 100 99.78 99.86 0
Yeast w/o GO - 0 43.79 0

GO 89.52 97.66 91.13 29.32
Yeast | JN w/o GO 34.76 70.52 72.10 54.1

GO 100 96.17 97.27 0
JN overall w/o GO 44.36 59.63 60.9 39.81

GO 100 98.70 98.98 0

Table 3.4: Comparison of results for the network with GO and without GO

ontology term (single protein function). As before, we perform 5-fold cross val-

idation by choosing random 20% of annotated proteins as a testing set over 10

trials of the program. The results shown in Table 3.4 indicate the superiority of

the network with built-in Gene Ontology over the single-term network even in the

case of multiple species networks.

It is worth highliting that the model with gene ontology in place makes a true

positive prediction where the model without it commits a false negative error.

This result is not surprising as there is only one term with one protein annotated

to it. In general, similar to [35], incorporating the ontology structure, along with

the dependencies among its functional terms, considerably improves performance

over that of traditional models that consider each term in isolation.

3.4.2 Comparison with other methods

In this section we comprehensively compare our method to the most widely

used group of techniques, such as in Nariai et. al. [1], which are based on

Bayesian probabilistic approach. In such methodologies, proteins are embed-
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ded into protein-protein network so that each protein is represented by a node

and similarity measures between proteins (such as protein-protein interactions,

sequence similarity, etc.) are represented by edges. In the model, each protein

learns its functional annotation based on the number and character of his neigh-

bors in the protein network, particularly total number of neighbors and number

of annotated (to the GO term of interest) neighbors. This information is then

embedded into a probabilistic Bayesian framework, which consequently assigns

a probability to a protein of interest as positively or negatively annotated to a

specific GO term [1]. Since fundamentals of Bayesian probabilistic approach are

at the heart of the overwhelming majority of methods currently used for protein

function prediction, we compare ourselves against this computational technique.

To achieve the most accurate comparative results, we use the same 10 train-

ing/testing sets as in our own experimental studies in a 5-fold cross validation

setting. Similarly to our setting, both PPI and Sequence similarity (determined

by normalized BLAST cores) are used to build protein interaction networks.

We present results as performance of Yeast and Fly species in the joint net-

work (Figure 3.5), as well as overall performance measures (Figure 3.6) in the

joint network. We show that our method outperforms the Bayesian probabilistic

approach of Nariai et al [1] in all statistical measures, such as F1 rate, precision,

recall, and accuracy, for all validation sets considered. Interestingly, Fly species

achieves precision of 1 and FP rate of 0 even in the method of Nariai et. al.

(the same is observed in our method for the subontology of size 8), which might

be indicative of a higher quality of data used to build Fly protein network and a

presence of a good learning neighborhood for the majority of Fly proteins.
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Figure 3.5: Comparison of our method to the Bayesian probabilistic approach of
Nariai et. al. [1]: performance of Fly and Yeast species in a joint Fly-Yeast
network.

Figure 3.6: Comparison of our method to the Bayesian probabilistic approach of
Nariai et. al. [1]: overall performance of a joint network.
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3.5 A Model Checking Interpretation

Our expanded Gene Ontology approach can also be interpreted as a special case

of a new broader framework of “probabilistic graphical model checking.” The

framework resembles classical model checking algorithms [57] implemented through

message passing in a statistical graphical model. This connection becomes ex-

plicit when a Gene subontology for a protein (Figure 3.1) is viewed as a family of

properties encoded through logical propositions and connectives. Also modal op-

erators and quantifiers may be added, if further generalizations are desired. These

properties can be embedded and propagated in a general graphical structure with

certain logical implications—all interpreted in a three-valued logic: True (posi-

tive), False (negative) and Unknown. For example, in the currently used Gene

subontology, the positive information about a child implied positive information

about a parent; and negative information about a parent implied negative infor-

mation about child. Additionally, we define a probability for a child being posi-

tive/negative given that a parent is positive, which defines a probabilistic frame-

work for the model. Thus, if we view our graphical model as not strictly related

to a GO subontology, but to a more general framework such as this, we can define

any set of properties on the elements of this graphical structure, introduce time

frames, or imply hierarchical relationships for this graph. Once we define rela-

tionships/properties, we can then propagate these properties in the entire model

(which in our application, corresponds to message passing).

For specific species, our framework connects subontologies of all proteins by

edges. In the language of model checking on graphical models, subontology net-

work for each species can be viewed as an initial labeling of “possible worlds”
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with certain relationships/properties. By connecting networks of two different

species we thus connect two neighboring “possible worlds” and try to gain some

additional information from their distances (measured by orthology or PPI). The-

oretically, if the two possible worlds are adjacent, they are expected to satisfy

similar properties. Considering both “worlds” simultaneously will lead to algo-

rithms with high fidelity and improved efficiency. Our approach suggests, for

propositional and temporal logic, a potentially much broader range of applica-

tions including many non-biological problems.

3.6 Conclusions

In this chapter we presented a novel approach that uses inter-species sequence

homology to connect networks of two, and possibly more, species together with

Gene Ontology dependencies in order to improve the predictive ability needed

for protein classification. Joining the networks of two different species shows

important advantages over runs on individual networks. While in single species

networks proteins may exist that have no annotated partners, they have the po-

tential to acquire annotated interacting partners-homologs in a two-species set-

ting. Additional benefits emerge for species with poorly defined protein functions

and/or protein interactions. Additionally, the use of the Gene Ontology enables

simultaneous consideration of multiple but related functional categories, opening

information paths for further improvements to the model’s predictive ability.

Our method readily extends to multiple species settings, and may produce

improvements similar to the case of two species. The presence of multiple inter-

acting networks may further enable integration of additional sources of evidence,
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thus contributing to increased accuracy in functional predictions.

3.7 Web Resources and Supplementary material

Supplementary and sample input data are available from

The code (C/C++/Perl) and input files are available from

http://www.cims.nyu.edu/∼antonina/yeast fly.html
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Chapter 4

Protein Classification using Malaria

Parasite’s Temporal Transcriptomic

Profiles

4.1 Introduction

Search for vaccine for malaria infections has been under intense study for many

years, but it has resisted several different lines of attack attempted by biologists.

More than half of Plasmodium proteins still remain uncharacterized and therefore

cannot be used in clinical trials. The task is further complicated by the metamor-

phic life cycle of the parasite, which allows for rapid evolutionary changes and

diversity among related strains, thus making precise targeting of the appropriate

proteins for vaccination a technical challenge. We propose an automated method

for predicting functions for the malaria parasite, which capitalizes on the impor-

tance of the intraerythrocytic developmental cycle data and expression changes
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during its five phases, as determined computationally by our segmentation algo-

rithm.

Our method combines temporal gene expression profiles with protein-protein

interaction data, sequence similarity scores, and metabolic pathway information

to produce a set of predicted protein functions that can be used as targets for

vaccine development. We use a Bayesian approach, which assigns a probability

of having (or not having) a particular function to each protein, given the various

sources of evidence. In our method, each data source is represented by either a

functional linkage graph or a categorical feature vector.

The methods are tested on Plasmodium falciparum, the species responsible

for the deadliest malaria infections. The algorithm was able to assign meaningful

functions to 628 out of 1439 previously unannotated proteins, which are first-

choice candidates for experimental vaccine research. We conclude that analyzing

time-course gene expression profiles in separate phases leads to much higher pre-

diction accuracy when compared with Pearson correlation coefficients computed

across the time course as a whole. Additionally, we demonstrate that temporal ex-

pression profiles alone are able to improve the predictive power of the integrated

data.

4.1.1 Background

World-wide, each year, malaria infects approximately 515 million people and

kills between one and three million of them. A better understanding of protein

functions in malaria parasites can have a tremendous effect on approaches aimed

at preventing malaria epidemics. This anticipated impact is suggested by the fact
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that targets for drug and vaccine design are almost always based on proteins, par-

ticularly those involving enzymatic functions. Unfortunately, since many Plas-

modium falciparum proteins remain uncharacterized, they are mostly ignored by

pharmaceutical laboratories and disregarded as potential protein targets in drug

and vaccine development. In order to reverse this trend, it is necessary to devise

more effective automated bioinformatic tools for protein classification.

Toward this goal, this chapter addresses the issue of predicting protein func-

tions using many sources of data, with an emphasis on the use of time series

gene expression data. Unlike most methods, we allow for changes in regulatory

patterns, and relationships, over time. The methods are tested on a species of

malaria parasite, P. falciparum, that accounts for about 15% of infections and

90% of deaths.

In the past, functional annotation of proteins has been addressed by various

computational, statistical, and experimental methods. In many cases, it is con-

venient to provide a graphical representation of protein networks such that each

node represents a protein and edges between nodes represent different aspects of

their functional association. The choice of functional association is used to de-

termine the predictive power of such a network. One promising computational

approach utilizes the family of probabilistic graphical models, such as belief net-

works, to infer functions over sets of partially annotated proteins [32, 42, 43, 58].

For instance, Bayesian network methods for data integration have been exten-

sively studied [1, 59–61] for predicting protein-protein interactions and protein

function similarity for pairs of genes. Additionally, the approach of incorporating

the hierarchical structure of the Gene Ontology (GO) into probabilistic graphical

models [35,55] has also yielded promising results for predicting protein functions
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for gene subontologies of interest.

The most established methods for protein function prediction are based on

sequence similarity using BLAST [62] analysis, and rely on the fact that similar

proteins are likely to share common functions. Such similarity-based methods

include sequence homology [35, 39–41, 55, 63], and similarity in short signaling

motifs, amino acid composition and expression data [64–69]. At the same time,

protein-protein interaction (PPI) data are widely used to infer protein functions.

For example, methods described in several recent papers [32,42,43,58] used PPIs

to define a Markov random field over the entire set of proteins. In general these

methods suggest that interacting neighbors in PPI networks might also share a

function [32–34, 70]. Clustering of genome-wide expression patterns has also

been used to predict protein function, as described in [1, 71–73].

4.1.2 Protein function prediction in parasites

Saccharomyces cerevisiae (Baker’s Yeast) is chosen for many case studies in-

volving protein functions, since it has been extensively studied from multi-omic

view-points, and its protein data are also the most complete. The problem of pro-

tein function prediction is, however, more difficult in parasites, where genetic and

biochemical investigations are much more challenging. For example, it is prob-

lematic to isolate a malaria parasite at various stages of its development (e.g.,

the life-cycle of P. falciparum is very rapid, ookinetes are difficult to isolate in

large numbers, the liver stage of a parasite’s development is hard to study be-

cause of technical difficulties). Such obstacles manifest themselves in a paucity

of information on the protein properties, interactions, localization and motifs of
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Plasmodium species.

When relying on just one source of protein information, it is difficult to de-

vise a reliable probabilistic framework with the ability to automatically predict

classifications for proteins of interest. Indeed, combining various types of infor-

mation was demonstrated to improve the overall predictive power of automated

protein/gene annotation systems for S. cerevisiae, as shown in [1, 35, 55]. Inte-

grating multiple sources of information is particularly important as each type of

data captures only one aspect of cellular activity. For example, PPI data suggest

a physical interaction between proteins; sequence similarity captures evolution-

ary relationships at the level of orthologs; gene expression suggests participation

in related biological processes that take place at a certain cell cycle stage; and

finally, GO defines term-specific dependencies.

As a result, it motivates one to explore, as in the case of P. falciparum, how to

combine different sources of information most effectively to infer protein func-

tions. We explore and evaluate a Bayesian probabilistic approach for predicting

protein functions in P. falciparum by integrating multiple sources of information,

namely, protein-protein interactions, sequence similarity, temporal gene expres-

sion profiling, metabolic pathway, and GO classifications.

The primary goal of our study is to demonstrate that considering the intraery-

throcytic developmental cycle (IDC) phases individually is crucial for protein

function prediction in P. falciparum. While other data sources (such as sequence

homology and protein-protein interactions) describe the static state of P. falci-

parum, time series gene expression data during the IDC reflects the dynamics of

the parasite’s system, describing rapidly evolving regulatory patterns and expres-

sion profiles. In particular, during P. falciparum’s IDC, there are distinct periods
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of consistent gene regulation, punctuated by instances of reorganization in the

regulation pattern. In such a setting, it becomes important to consider each time

window (delineating a particular stage) separately. We show that finding these

critical timepoints, clustering time-course gene expression data from each stage

of the cycle separately and then connecting clusters across windows (so that pro-

teins “travel” from one window to the other) produces better results as compared

with Pearson coefficient calculations applied to the time-course data as a whole.

We assume that if two proteins share expression patterns (i.e., belong to the same

cluster) during a period of time, such as the first window or phase, they are likely

to share a function. If these proteins also fall into the same cluster in the second

window, we would increase our belief in them being similar. Finally, if they be-

long to the same clusters in all five windows, we would be highly confident that

they share related functions.

Additionally, but not less importantly, we illustrate that inclusion of the IDC

time-course data improves the predictive power of the Bayesian probabilistic ap-

proach even in the integrated setting (when combined with protein-protein inter-

action, sequence homology, and metabolic pathways data).

Hampered by data-related limitations, we did not expect to make as many ac-

curate predictions as one could for a well-studied organism such as S. cerevisiae.

However, we were encouraged by being able to propose vaccine-related func-

tions for several P. falciparum proteins as these might play a significant role in

the next stages of vaccine and drug development, leading to effective control of

the disease.

The next part of this process involves trying to understand the underlying

causal structure that is governing P. falciparum’s gene regulation. That is, now
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that we have a set of possible functional annotations, and time course data cover-

ing the IDC, we aim to narrow the set of proteins suitable for vaccine exploration

by finding those that can be used to affect others. Note that it is likely not as sim-

ple as one protein promoting or inhibiting the production of another - there may

be arbitrarily complex relationships involving the regulation of multiple genes

in concert. Others have recently developed algorithms for causal inference [74],

where the relationships are described in a probabilistic temporal logic, allowing

arbitrarily complex causes and effects and explicit description of the time between

the cause and the effect. Preliminary results of the P. falciparum IDC have ap-

peared elsewhere [74]. One of the limitations of this data is the relatively coarse

timescale (as compared to other data sets used for causal inference). Rather than

exhaustively examining all proteins included in the data, we focused on a smaller

set of relationships to test, using our new annotations and processes known to be

useful as drug targets.

4.2 Methods

4.2.1 Data

For our analysis, we focused on 2688 P. falciparum proteins from the time-course

data [75], among which only 1249 proteins possess known biological process

annotations.
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Protein-protein interaction data

We obtained Y2H (yeast-two-hybrid) data for P. falciparum from [76]. This

dataset, however, annotates a limited number of protein-protein interactions, be-

cause of the confounding effects of the rapid life-cycle of these parasites. The

1130 interactions cover 1312 proteins.

Sequence homology

We started by gathering sequence information for proteins from [76]. Each se-

quence was queried against the entire P. falciparum sequence database [76] us-

ing BLAST. We recorded BLAST pairwise p-scores as pij’s (where i and j in-

dex the proteins) and defined a measure of sequence similarity for each pair as

sij = 1−pij . For our purpose, we defined proteins i and j to be similar (sequence-

wise), if their pairwise p-value pij < 10−4. There are 1799 proteins meeting this

criteria.

Metabolic pathway data

We used metabolic pathway data from [77]. For example, protein PFA0145c is

a part of ‘Asparagine and Aspartate metabolism’ and ‘Protein biosynthesis’ path-

ways. The data consists of 119 metabolic pathway categories for P. falciparum.

The 3526 data pairs cover 1998 genes.

Temporal gene expression data

Time-course gene expression data covering the 48 hours of the intraerythrocytic

developmental cycle of P. falciparum was obtained from a study by Bozdech et
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al. [75]. While the IDC comprises three main stages (ring, trophozoite, and sch-

izont, separated by two critical transition instants), the work in [78] identified four

critical transition instants with major changes in gene regulation, corresponding

to the following five developmental periods: End Merozoite/Early Ring stage,

Late Ring stage/ Early Trophozoite stage, Trophozoite, Late Trophozoite/ Sch-

izont, and Late Schizont/Merozoite. Each period defines a window of time rang-

ing from 7 to 16 hours. We consider each window separately and process it with

k-means clustering.

Gene Ontology data

We used GO terms as the basis of our annotation. In particular, we used the 763

biological process associated GO terms available for P. falciparum. For each term

we expanded the GO hierarchy “up” (including is-a and part-of relationships) so

that if a protein is positively annotated by a GO term, then it is also positively

annotated by all of its parents/ancestors. There are 16113 GO biological process

associated pairs, which cover 1249 P. falciparum proteins. Also, following Nariai

et al. [1], we excluded labels that appear fewer than five times among these genes,

since these terms did not constitute a sample large enough to make sufficiently

predictive contributions. Following suggestions in Nariai et al. [1], we define

a negative protein-term association as follows: if the association is not in the

positive set (defined above), and a gene is annotated with at least one biological

process, and the negative annotation is neither an ancestor nor a descendant of the

known function for this protein then it is treated as a negative association.
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4.2.2 Data representation

In order to use the available information to its full potential, it is necessary to de-

sign a proper data representation that optimally reflects the properties and struc-

ture of the data itself. We represent the data using two types of structures: func-

tional linkage graphs and categorical feature vectors.

A functional linkage graph is a network in which each node corresponds to a

protein and each edge corresponds to the measure of functional association. Such

a network takes into account the number and the nature of interacting partners for

each protein. We use this representation for PPI and sequence similarity, since, for

these data, interacting partners are more likely to share a function. We encoded

PPI and sequence homology data using separate functional linkage graphs. In the

case of PPI, the edges represent known protein-protein interactions. In the case

of sequence similarity (homology) an edge is added when the pairwise p-score is

less than 10−4.

We adopted some ideas of the representation and analysis of functional link-

age graphs from Nariai et al. [1]. For each functional linkage graph l and for each

GO label t, we define p(l)
1 and p(l)

0 , where p(l)
1 is the probability that a protein has

label t, given that the interacting partner has label t and p(l)
0 is the probability that

a protein has label t given that the interacting partner does not have label t. For

the P. falciparum network, we performed the χ2 test to show that p(l)
1 and p(l)

0 were

statistically different using a Bonferroni-corrected p-value of 0.001/T , where T

is the number of terms tested from each data set.

Another method of data representation is the categorical feature vector, which

holds a list of categories where we assign 1 to a protein that belongs to a given
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category and 0 otherwise. We used categorical feature vectors for the metabolic

pathway data. We definemr as a random variable associated with a protein so that

mr = 1, if a protein participates in metabolic pathway r, and mr = 0, otherwise.

A feature vector m = (m1, m2, . . . , mr)
T is defined for each protein, where

r = 119 is the total number of metabolic pathway categories.

Finally, we use categorical feature vectors to represent the gene expression

profiles. Gene expression profiles are usually encoded as functional linkage graphs

using the Pearson correlation coefficient calculated for all combinations of genes.

However, we found that the Pearson coefficient might not reflect the temporal

relationships, which are crucial to the P. falciparum IDC. Instead, we consider

expression data for each phase of the IDC separately. We used the five time points

found by [78] and applied k-means clustering to the expression patterns of each

time period, as described below. We considered proteins from the same cluster to

share the same categorical feature and thus possibly have related functional an-

notations. Consequently, if proteins fall into the same clusters for all or most of

the time periods, they will have similar categorical feature vectors and are more

likely to share protein classification.

More formally, we define a random variable djr associated with each protein

such that djr = 1 if a protein is in cluster r in the time period j, and djr = 0,

otherwise. A feature vector is then

d = (d1
1, d

1
2, . . . , d

1
q, d

2
1, d

2
2, . . . , d

2
q, . . . , d

w
1 , d

w
2 , . . . , d

w
q )T ,

where q = k is the number of clusters produced by k-means clustering and w = 5

is the number time windows.

83



4.2.3 Posterior probability computation

For each protein i and each function t, we computed the posterior probability of

the protein having the specified function. We define a variable Li,t which is equal

to 1 if i is labeled with t. Our ultimate goal is to calculate the probability of

Li,t = 1 for all i and t given all the available data sources and network structures.

To calculate this probability, we follow the general principles described in Nariai

et al. [1] and summarize these principles below.

The graphical data representation emphasizes the importance of the neighbors

for each protein. We define N (l)
i as the number of neighbors of protein i in the

functional linkage graph l (unannotated neighbors are excluded). Additionally,

for the corresponding t, k(l)
i is defined as the number of neighbors of protein

i annotated with term t in the functional linkage graph l. In our case, l = 1

corresponds to the PPI and l = 2 to the sequence similarity network, .

At the same time, c(j)
i is the feature vector that protein i has for a functional

category j. In our case, c(1)
i is the temporal data gene expression feature vector d

and c(2)
i is a metabolic pathway feature vector m of a protein i.

We calculate the posterior probability of Li,t = 1 given functional linkage

graphs and category feature vectors of proteins as follows:
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Assuming that k’s and c’s are independent, and that L is independent of the total

number of graph neighbors N (l)
i , then the numerator becomes:

P (k
(1)
i , k

(2)
i , c(1)

i , c(2)
i |L,N

(1)
i , N

(2)
i )P (L|N (1)

i , N
(2)
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P (k
(l)
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(1)
i , N

(2)
i ).

2∏
j=1

P (c(j)
i , |L,N (1)

i , N
(2)
i )× P (L), (4.6)

and similarly, the denominator becomes

P (k
(1)
i , k

(2)
i , c(1)

i , c(2)
i |N

(1)
i , N

(2)
i ) (4.7)

= P (L)P (k
(1)
i , k

(2)
i , c(1)

i , c(2)
i |L,N

(1)
i , N

(2)
i ) (4.8)

+ P (¬L)P (k
(1)
i , k

(2)
i , c(1)

i , c(2)
i |¬L,N

(1)
i , N

(2)
i ). (4.9)

Assuming further that k(l)
i only depends on N (l)

i and that c(j)
i does not depend
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on linkage graphs,
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Similarly to the other formulations in the literature [1, 32], P (k
(l)
i |L,N

(l)
i )

and P (k
(l)
i |¬L,N

(l)
i ) are calculated assuming the binomial distribution. P (L) is

the prior probability that gene i is annotated with term t and is calculated as a

frequency of term t among genes.

4.3 Experiments and results

For the 5-fold cross-validation study, we created each test set by eliminating all

annotations from a random 20% of annotated proteins (250 randomly chosen pro-

teins from the annotated set of 1249). We performed 5 validation runs and report

the average of these for the summary statistics. We use the statistical measures
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sensitivity and specificity, as defined in [79]. We also use the F1 measure

which represents a weighted harmonic mean of precision and recall and is de-

fined as

F1 =
2× (precision× recall)
precision+ recall

Note that F1 allows analysis of the performance weighing precision and recall

evenly.

4.3.1 Gene expression data of a parasite life-cycle

First, we show and emphasize the importance of gene expression data represen-

tation and analysis, especially when applied to parasites. Many parasites, such

as malaria parasites, trypanosomes, endoparasites with larval stages (tapeworms,

thorny-headed worms, flukes, parasitic roundworms), undergo many changes dur-

ing their various life-cycle stages as they travel from one host to the other, or

from one organ or system to another. Each stage requires utilization of different

life functions and possible metamorphosis, which involves up-regulation of nec-

essary genes and/or down-regulation of those not crucial for a specific life-cycle

period.

In this study we use the five time windows of the intraerythrocytic develop-

mental cycle (IDC) of P. falciparum identified by Kleinberg et al. [78]. This

expression data is particularly interesting since the IDC, or blood stage, is the

phase responsible for malaria symptoms in humans. This study [78] performs the

time series segmentation and clustering of the data concurrently. Their method

is formulated in terms of rate distortion theory—it searches for a compressed de-

scription of the data (i.e. the fewest clusters of expression profiles, obtained after
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an optimal temporal segmentation), while minimizing the distortion introduced

by this compression. More formally, this process is characterized by a variational

formulation:

Fmin = I(Z;X) + β〈d(x, z)〉, (4.16)

where mutual information and average distortion are defined as:

I(Z;X) =
∑
x,z

p(z|x)p(x)logp(z|x)
p(z)

(4.17)

〈d(x, z)〉 =
∑
x,z

p(x)p(z|x)d(x, z), (4.18)

and

d(x, z) =
∑
x1

p(x1|z)d(x1, x). (4.19)

Then, the set of candidate windows (i.e., enumeration of all possible windowings

within constraints on the min and max allowed window sizes) is created, and the

data is clustered within each window according to Eq. (4.16). Each window is

then scored, based on its length and Eq. (4.16). To find the optimal windowing

of the data, they formulate the problem as one of graph search and use a shortest

path algorithm to find a combination of windows that jointly provide the lowest

cost. For the P. falciparum data the study in Kleinberg et al. [78] found the critical

time points at 7, 16, 28 and 43 hours, leading to 5 windows, sized non-uniformly.

These windows correspond to the three IDC stages and the transitions between

them: End Merozoite/Early Ring stage, Late Ring stage/ Early Trophozoite stage,

Trophozoite, Late Trophozoite/ Schizont, and Late Schizont/Merozoite.

The clustering by Kleinberg et al. [78] identified 4-5 clusters per window,
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corresponding to the three phases of the cycle with an additional one or two clus-

ters per window containing terms regulating the beginning or end of a phase. In

order to predict detailed functional annotations, we decided to cluster the data

more finely. We use these previously identified windows and clustered the ex-

pression profiles within each separately, using the k-means clustering algorithm.

We then define djr as a random variable indicating if a protein belongs in the clus-

ter r within window j. The sequence of random variables for each window then

constitutes a categorical feature vector d of a protein.

We experimented with various values for k and compared results with the

linkage graph defined by a Pearson coefficient calculation; we performed this

step for all pairs of genes for the entire data set.

In our experiments, due to a high number of negative annotations for the P. fal-

ciparum dataset, specificity reaches 0.9 immediately after the threshold for poste-

rior probability goes above 0.05. In this case a ROC curve, as shown in Figure 4.1,

does not reflect a precise sensitivity-specificity relationship as expected in other

cases, obtained with a relatively large amount of data. As a result, it is necessary

to use a more sensitive statistical measure that would account for too high or too

low statistical values, e.g., a metric computed by taking their harmonic mean. In

particular, we aim to maximize the F1 statistic, which reflects a relationship of

recall to precision, as noted in Figure 4.2. Note that F1 will be maximized only

if both measures are maximized.

As shown in Figures 4.2, the variation in the number of clusters, k, does not

distort the predictive value of the method as for all values of k in this range, the

method yields nearly identical ROC and F1 curves. Figure 4.2 also shows the su-

periority of time-dependent k-means clustering over the Pearson correlation coef-
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Figure 4.1: The ROC curve of recall experiment by 5-fold cross validation
for gene expression data. Numbered legends correspond to k-means clustered
datasets.

ficient (in the majority of cases the Pearson curve is completely below the curves

for the clustered data). The linkage graph defined by the Pearson correlation co-

efficient was built using 286620 edges (a protein pair is considered co-expressed

if its Pearson coefficient is larger than 0.85 [1]) and covered 2646 proteins.

Since for all values of k both figures showed nearly identical ROC and F1

curves, we fixed it at an arbitrary value, k = 30, for the following analysis.

4.3.2 Analysis of prediction accuracy

We compare runs on individual data sources with runs which integrate PPI, se-

quence similarity, metabolic pathway information, and temporal gene expression

data. Our first step is to analyze how well our method predicts known protein-term

90



Figure 4.2: The F1 statistics of recall experiment by 5-fold cross validation for
gene expression data (posterior probability thresholds range from 0.05 to 0.95, in
0.05 increments). Numbered legends correspond to k-means clustered datasets.

associations, using 5-fold cross validation. We predict that a gene i is annotated

with term t if the probability exceeds a specified threshold.

Figures 4.3 and 4.4 summarize the positive impact of data integration (PPI, se-

quence similarity, metabolic pathway, window-based gene expression clustering)

on protein function prediction via ROC and F1 measures, respectively. However,

since ROC curves are very much influenced by the large number of negative an-

notations in P. falciparum data (similarly to Figure 4.1), specificity reaches 0.9

immediately after the threshold for posterior probability goes above 0.05), this

measure is not very sensitive with respect to specificity scores; thus, we prefer

the F1 statistic, which uses the harmonic mean of precision and recall. In these

figures, we also show the statistics for the data obtained by analysis of gene ex-
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pression using Pearson correlation coefficients (showing a clear disadvantage),

although it was not a part of the data integration.

Figure 4.3: The ROC curves for individual data sources and integrated data.

Additionally, we investigated the impact of gene expression data on data inte-

gration. In Figures 4.5 and 4.6, we show both ROC and F1 curves, respectively,

for fused data (PPI, similarity, and metabolic pathway) alone, then for fused data

together with the windowed and clustered gene expression data, and fused data

with Pearson coefficient defined data. Clustered temporal gene expression data

shows a distinctive positive impact on the overall predictive power of the method;

however, Pearson coefficient data has a negative effect on ROC and F1 statistics.

Most likely this anomaly is due to a large number of falsely defined associations

between co-expressed genes.

Figure 4.7 shows the impact of data integration on the number of TP at two

precision levels: 50% and 70%. These two levels of precision are reasonably
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Figure 4.4: The F1 statistics for individual data sources and integrated data (pos-
terior probability thresholds ranges from 0.05 to 0.95, in 0.05 increments).

accurate of the range of possible improvements in our study, and the TP number

is calculated when the precision level first hits the specified margin. In Table 4.1,

we summarize the improvements of data integration over individual sources and

conclude that data integration significantly outperforms individual data sources at

70% precision, which corresponds to 0.35 threshold of posterior probability for

function prediction. This probability threshold now can be applied in the second

step of our study: attempting to predict functions for the unannotated proteins of

P. falciparum.

In the second part of our study, we trained our method on all annotated pro-

teins and tried to assign functions to proteins without annotations. By integrat-

ing PPI data, sequence similarity, metabolic pathway, and clustered temporal

window-based gene expression data we were able to assign probable GO terms
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Figure 4.5: The ROC curves for various ways of integrating data:“fused” is de-
fined as ppi+similarity+metabolic pathway.

Data source 50% precision 70% precision
PPI 14% 20%
Sequence similarity 17% 23%
Metabolic pathway 5% 13%
Gene expression (clustering) 11% 10%

Table 4.1: % of improvements of data integration on #TP over individual data
sources

to 628 out of 1439 unannotated proteins of P. falciparum. We ignored gen-

eral terms, such as those high up in the GO hierarchy, that appeared more than

300 times. We report more than 2500 gene-GO assignment pairs, which can be

viewed at: http://www.cims.nyu.edu/˜antonina/real_output.

txt. The GO terms are reported together with their parents (ancestors) in the GO

hierarchy. In Figure 4.8, we present cumulative statistics for the number of pre-

dicted functional assignments and probability thresholds they satisfy. As shown
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Figure 4.6: The F1 statistics for various ways of integrating data:“fused” is
defined as ppi+similarity+metabolic pathway (posterior probability thresholds
ranges from 0.05 to 0.95, in 0.05 increments).

in Figure 4.8, by varying the original probability threshold, we can narrow down

the possible set of predictions. For example, probability threshold at 0.8 (80%)

would correspond to about 500 functional assignments of higher probability.

4.4 Functional predictions for pharmaceutical tar-

geting

The fundamental goal of our study is to assign functions to unannotated P. fal-

ciparum proteins in order to find possible vaccine and drug targets. For this

purpose, we analyzed all predicted functional assignments made by our com-

putational technique to determine if they are related to erythrocytic adhesion and
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Figure 4.7: Number of True Positive predictions at 50% precision (dark blue) and
at 70% precision (light blue).

modification. In particular, we paid close attention to the P. falciparum surface

proteins responsible for binding of the parasite to human erythrocytes, and to the

P. falciparum red blood cell (RBC) membrane proteins responsible for the para-

site’s intraerythrocytic survival and for the adhesion of the RBC to capillary ves-

sels. In our predicted dataset of 628 proteins, 20 are identified as RBC membrane

proteins (contributing to 78 functional predictions) and one protein is identified

as an erythrocyte binding protein (contributing to two functional predictions).

We further label RBC membrane proteins with one of the address tags: ei-

ther Plasmodium export element (Pexel) or N-terminal host targeting (HT) motif.

Both of these motifs are responsible for the transport of P. falciparum proteins

inside erythrocytic cytoplasm, as detailed below.
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Figure 4.8: Number of possible predictions as a function of probability threshold.
Each point corresponds to the number of predicted functional assignments whose
probability is greater or equal to the corresponding probability threshold.

During the blood stage of malaria, P. falciparum actively penetrates human

erythrocytes. In the process of invasion, the parasite initiates the formation of a

unique membrane, the parasitophorous vacuole membrane, which surrounds the

parasite inside the invaded erythrocyte. The parasitophorous vacuole isolates the

parasite and protects it from the host’s defenses, such as lysozymal attack.

P. falciparum needs to develop its own strategy in order to survive and feed

inside human erythrocytes, since red blood cells lose their nuclei, ability to syn-

thesize new proteins, and vesicular transport system during their formation. Re-

siding inside a red blood cell, P. falciparum injects hundreds of its own proteins

into erythrocytic cytoplasm [80] to build its living environment. The injected

proteins then interact with proteins of the erythrocytic membrane skeleton and

induce substantial changes in the morphology and function of the erythrocytic
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cell. Such changes include development of various membraneous (tubulovesicu-

lar structures and Maurer’s clefts) networks from the vacuole to the erythrocyte

membrane, which are needed for parasite’s nutrient uptake, and protrusion of

the erythrocyte membrane in a form of electron-dense elevations called adhesive

knobs [81].

To reach the erythrocytic cytoplasm and membrane, P. falciparum exported

proteins have to traverse a series of physical barriers: parasite membrane, para-

sitophorous vacuole membrane, and sometimes erythrocytic membrane [81, 82].

First, proteins are exported form the parasite into the vacuolar space following

the typical secretion pathway existing in all eucaryotic cells. However, a spe-

cial mechanism is needed to cross the parasitophorous vacuole membrane and

reach the erythrocytic cytoplasm. For the majority of P. falciparum proteins, an

N-terminus host targeting (HT) motif [82, 83] is required to cross the vacuole

membrane.

On the other hand, Pexel is a Plasmodium export element (related to, but

distinct from, HT) that is responsible for the transport of soluble P. falciparum

proteins into the erythrocyte cytoplasm through the parasitophoros vacuole mem-

brane [82].

Exported proteins then interact with the erythrocytic membrane causing its de-

formation and knobbing. Knobs mediate cytoadherence of infected erythrocytes

to capillary blood vessels. In this way, the infected cells hide in an attempt to

avoid elimination in the spleen. Such massive accumulation of infected red blood

cells in the capillary blood vessels of the brain and kidneys can lead to organ

failure and ultimately death. Thus, targeting the parasite’s RBC membrane pro-

teins could aid the development of interventions that block the parasite’s growth
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or limit the severity of the disease.

As reported in the PlasmoDB [77] database, there are 195 RBC membrane

proteins containing HT motif and 293 RBC membrane proteins containing Pexel.

We predicted functions for 20 RBC membrane proteins containing either of the

motifs. The list of RBC membrane proteins (with their predicted GO functions)

containing both motifs is shown in Table 4.2 and the list of proteins containing one

of the motifs is shown in Table 4.3. Some interesting examples, which could be-

come future pharmaceutical targets, include RBC membrane proteins PFD0495c

and PFE0040c assigned the gene ontology term GO:0007155 (cell adhesion) with

probability 70% and 99% respectively. Furthermore, close attention should be

paid to gene ontology terms responsible for reaction to outside stimulus, as those

can play a crucial role in the parasite’s survival. For example, RBC membrane

protein PFE1605w, assigned GO terms GO:0009628 (response to abiotic stimu-

lus) with probability 80% and GO:0042221 (response to chemical stimulus) with

probability 68%, could be a promising drug target.

Finally, there exist 10 P. falciparum surface proteins responsible for binding of

the parasite to erythrocyte surface ligands, as reported by [77]. Following the es-

tablishment of a tight interaction between the parasite and the RBC, entry is initi-

ated by the activation of actin-myosin motor so that the parasite forces the invagi-

nation of the erythrocytic membrane with formation of the the parasitophorous

vacuole membrane, described earlier. The only surface Plasmodium protein,

PFE0340c, present in our predicted dataset is assigned GO terms GO:0006511

(ubiquitin-dependent protein catabolism) and GO:0019941 (modification-dependent

protein catabolism) both with probability close to 63%.
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Protein ID Probability GO term
PFD0070c 0.401545231581066 GO:0043412 biopolymer modification
PFD0125c 0.49387370405278 GO:0006412 protein biosynthesis

0.494801512287335 GO:0009059 macromolecule biosynthesis
0.513352425272955 GO:0009058 biosynthesis
0.512411033603626 GO:0044249 cellular biosynthesis

PFD0495c 0.580096975765904 GO:0006412 protein biosynthesis
0.581846879650176 GO:0009059 macromolecule biosynthesis
0.603310008429891 GO:0009058 biosynthesis
0.602215349980034 GO:0044249 cellular biosynthesis
0.699684816632941 GO:0007155 cell adhesion

PFD1020c 0.7280979853935 GO:0006631 fatty acid metabolism
PFD1170c 0.422344888143171 GO:0044267 cellular protein metabolism

0.423250325426377 GO:0044260 cellular macromolecule metabolism
0.432582635313454 GO:0019538 protein metabolism
0.999999991137921 GO:0006457 protein folding

PFE0040c 0.98843772424871 GO:0007155 cell adhesion
PFE0060w 0.457539670421109 GO:0006468 protein amino acid phosphorylation

0.521369701293125 GO:0006796 phosphate metabolism
0.521369701293125 GO:0006793 phosphorus metabolism
0.437130777000256 GO:0016310 phosphorylation

MAL7P1.170 0.476701149188691 GO:0006810 transport
0.477943559067398 GO:0051234 establishment of localization
0.477943559067398 GO:0051179 localization

PF07 0132 0.351905883602301 GO:0019538 protein metabolism
PFI1785w 0.365533239904503 GO:0019538 protein metabolism

0.999794367636718 GO:0006457 protein folding
PF11 0508 0.375957294327154 GO:0006464 protein modification
PF13 0073 0.739599615802019 GO:0006412 protein biosynthesis

0.733078093566159 GO:0009059 macromolecule biosynthesis
0.751850612028445 GO:0009058 biosynthesis
0.756174623097316 GO:0044249 cellular biosynthesis

PF13 0076 0.358502146993282 GO:0006810 transport
0.360756570068609 GO:0051234 establishment of localization
0.360756570068609 GO:0051179 localization

PF13 0275 0.358502146993282 GO:0006810 transport
0.360756570068609 GO:0051234 establishment of localization
0.360756570068609 GO:0051179 localization

Table 4.2: RBC membrane proteins possessing HT motif and Pexel, their pre-
dicted functions, and corresponding probabilities.
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Protein ID Probability GO term
Pexel only:
PFA0225w 0.487145531811038 GO:0043037 translation

0.461767651699677 GO:0009058 biosynthesis
0.453487695127242 GO:0044249 cellular biosynthesis
0.539833659529562 GO:0006082 organic acid metabolism
0.539833659529562 GO:0019752 carboxylic acid metabolism
0.386239267057058 GO:0008610 lipid biosynthesis
0.388721047331319 GO:0006629 lipid metabolism
0.374685825510083 GO:0044255 cellular lipid metabolism

PFD0080c 0.665278152637513 GO:0006464 protein modification
0.511094565590855 GO:0043412 biopolymer modification
0.799046995682858 GO:0006468 protein amino acid phosphorylation
0.684531881462785 GO:0006796 phosphate metabolism
0.684531881462785 GO:0006793 phosphorus metabolism
0.704629372061098 GO:0016310 phosphorylation

PFE1605w 0.802543920254657 GO:0044267 cellular protein metabolism
0.754472317644877 GO:0044260 cellular macromolecule metabolism
0.805311582644175 GO:0019538 protein metabolism
0.72021237129596 GO:0006950 response to stress
0.70563593694521 GO:0050896 response to stimulus
0.801087730125495 GO:0009628 response to abiotic stimulus
0.680269187401183 GO:0042221 response to chemical stimulus
0.999999999999956 GO:0006457 protein folding
0.501328353480413 GO:0007155 cell adhesion

MAL7P1.7 0.400917810998465 GO:0006082 organic acid metabolism
0.400917810998465 GO:0019752 carboxylic acid
0.999999999989668 GO:0006457 protein folding

PFI1780w 0.653500492148364 GO:0043037 translation
0.877574807784855 GO:0006412 protein biosynthesis
0.871609237465261 GO:0009059 macromolecule biosynthesis
0.874807040307226 GO:0009058 biosynthesis
0.356761397372017 GO:0044260 cellular macromolecule metabolism

HT motif only:
PF13 0317 0.781092830960702 GO:0044267 cellular protein metabolism

0.781906300484652 GO:0044260 cellular macromolecule metabolism
0.78205791106515 GO:0019538 protein metabolism
0.373719533733663 GO:0043037 translation
0.781559322033898 GO:0006412 protein biosynthesis
0.782192339038305 GO:0009059 macromolecule biosynthesis
0.818767547332805 GO:0009058 biosynthesis
0.818207742211449 GO:0044249 cellular biosynthesis

Table 4.3: RBC membrane proteins possessing only Pexel motif or only HT motif,
their predicted functions, and corresponding probabilities
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4.5 Discussion and conclusions

In this work, we have applied and evaluated a probabilistic approach for pre-

dicting protein functions for the malaria parasite Plasmodium falciparum. We

combined four sources of information using a unified probabilistic framework.

PPI and sequence similarity data were presented in the form of functional linkage

graphs, since such data imply the importance of the number and GO annotation

of the nearest neighbors. Metabolic pathway and temporal gene expression data

were encoded using categorical feature vectors, simplifying the search for similar

feature patterns among related proteins.

We emphasized the importance of the data representation for parasites, though

this might not necessarily apply to non-parasitic organisms. In particular, a malaria

parasite’s life cycle is affected by change of the host (e.g., mosquito and human),

tissues (e.g., salivary glands, blood, gut wall, liver, red blood cells), and possi-

ble developmental changes of the parasite itself (e.g., gametocytes, sporozoites,

merozoites). Each such change involves different mechanisms for gene regula-

tion and employs many specific life-sustaining genes. Thus, it becomes crucial

to analyze gene expression data from each stage separately, as opposed to cal-

culating Pearson correlation coefficients for all pairs regardless of their temporal

order. We have demonstrated that the data representation, which takes advantage

of the temporal order of gene expression patterns, leads to a clear improvement in

statistical significance over function predictions using simple Pearson coefficient

calculations.

We show that data integration, previously shown to be beneficial for protein

function prediction [1, 35, 55], is crucial when applied to organisms with limited
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individual data sources, as in the case of parasites. Even more importantly, the

proposed “windowing” of the IDC provides a clear advantage to the data integra-

tion, dramatically improving its predictive performance. By embedding various

data sources into the probabilistic framework, we have been able to assign func-

tions to 628 previously unannotated P. falciparum proteins and expect to find

in those some of the most promising candidates for future vaccine trials. Toward

this, we have suggested a number of possible RBC membrane proteins that should

be explored further.

To extend this study to include ortholog genes, we next tested our method

by integrating PPI data of another closely-related malaria parasite P. vivax (in

particular, we used only PPI data of close orthologs with P. falciparum), and were

encouraged by the significant improvement in the resulting performance scores

and a much improved F1 curve. However, we have omitted further details of these

improved results, since the P. vivax genomic data await publication and remain

publicly unavailable. Once these data are published, we plan to disseminate the

improved results through our laboratory website.

We believe that this work will pave the way for more complex automatic anno-

tation algorithms based on model checking with temporal-logic queries—in this

picture, one would obtain a succinct Kripke model (a phenomenological model)

that summarizes the most important synchronization properties exhibited by a set

of temporal data streams; then use these Kripke models to infer properties sat-

isfied in various states (also called possible-worlds) of the model; and finally,

associate these properties with functional classes and genes active in these states

of the Kripke model. It should also be obvious that, at first, such a method is

likely to be employed as a debugging tool for existing ontologies: particularly, to
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check if certain ontology terms are being associated incorrectly or inconsistently

with a bio-molecule.

4.6 Web Resources and Supplementary material

The list of all predicted functions is available from

http : //www.cims.nyu.edu/ ∼ antonina/real output.txt
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Chapter 5

Conclusion

We live in the era of networks. Living entities interact with each other in more and

more complex manners: through social networks; exchanging an exponentially

growing traffic of information via World Wide Web networks; and staying alive

through complex inter-regulations within biochemical networks. In response, we

have begun to see a dramatic growth in quantitative as well as qualitative stud-

ies of networks, all aimed at elucidating fundamental concepts of such complex

systems. The genomic advances of our time have been many and spectacular:

e.g., the DNA double helix structure, gene expression profiles, human genome

sequencing, genetic engineering, decoding protein structure, discovery of antibi-

otics etc. They have opened new horizons for understanding complex, biologi-

cally important relationships among a cell’s active entities (such as genes regulat-

ing other genes, proteins interacting with genes, proteins interacting with small

molecules, proteins involved in complexes with other proteins, etc) and given a

concrete meaning to biological networks with a complexity and diversity that far

exceed anything that the human ingenuity has been able to spawn so far.
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This thesis provides a rigorous foundation for the understanding of topology,

functionality, and complexity of the protein networks as well as more accurate and

efficient algorithms for network analysis. We develop algorithms to understand

the temporal aspects of network and to do so at multiple time-scales, while taking

into account how information is distributed in the network at a fast time-scale,

and how topology is modified over a slow time-scale.

In particular, we demonstrated that re-defining network connectivity (while

looking at it from a dynamic, intra-species developmental scale) produces more

efficient and robust algorithms for identifying densely connected regions of Y2H

PPI network, commonly referred to as protein complexes. On the other hand, evo-

lutionary information, encoded as conserved inter-species homology, provides an

essential learning framework for proteins with poor neighborhood in their own

network. Finally, we proved that dynamic time-course data is essential for under-

standing protein functions necessary for identifying vaccine and drug targets in

malaria parasite.

To broaden the impact of our research, in addition to developing practical al-

gorithms for network analysis, we publicly distributed computer software imple-

menting these algorithms as well as developed datasets published electronically

and shared with other scientific and research groups. Results presented in this

study are hoped to be widely used by biological, medical, and pharmaceutical

laboratories and play a promising role on drug and vaccine development, person-

alized medicine, and bioinformatics advances.
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