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Abstract 
 
Genome evolution, especially duplications, was studied using a computational 

approach. The motivation of the thesis work comes from the �evolution by gene 

duplication� theory proposed by Susumu Ohno in 1970�s, which postulates that 

duplication is one of the main forces in driving genome evolution and creating 

genome complexity. The research described in this dissertation investigates the 

duplication process systematically by analyzing whole-genome data. In 

particular, it studies the molecular mechanisms of the segmental duplications in 

mammalian genomes; the influence of duplications and other evolutionary 

processes on the genome statistical structures; and the measurement of 

phylogenetic distances between genomes based on the number of duplications 

and other evolutionary events. During the process, we have developed 

computational methods and mathematical models that take into account the 

nature of the data and incorporate the dynamics of the evolutionary processes.  

 

Using a Markov model of the segmental duplication process in the mammalian 

genomes, we found that about 12% of these recent segmental duplications were 

caused by recombination mediated by the recent active interspersed repeats in 

the mammalian genomes. In addition, the physical instabilities in the DNA 
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sequence may also affect the process by introducing �fragile� sites in the 

genomes. A �rich gets richer� dynamics of the duplication process is suggested 

by the results of the analysis on the copy number distributions of the segmental 

duplications as well as other genomic components. Based on these observations, 

we propose a parsimonious genome evolution model, which includes three 

elementary processes: substitution, duplication and deletion. Using this model 

as our prior, we further developed a novel alignment-independent method that 

estimates the genomic evolutionary distance based on their word copy number 

variations. The phylogenomic distance measured using our method reflects the 

total number of substitution, duplication and deletion events since the 

divergence of the two genomes. Combined with conventional phylogenomic 

methods, we can study the modulation of the three different evolutionary 

processes in different lineages.   
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Chapter 1 

Introduction 

1.1 Background 

 
Genome evolution is the underlying process that ultimately determines the 

structure, regulation and variation of the other processes in a biological system, 

and is the key to understanding the development and diversity of biological traits. 

It is a complex process that involves various molecular mechanisms such as point 

mutations, insertions, deletions, duplications transpositions, translocations, 

inversions and recombinations, and is further affected by selective constraints, 

effective population size, and various environmental factors. In the genomic era, 

the research on genome evolution has moved from a gene-centric view to a 

global perspective at genome-wide scale. The construction of large-scale cellular 

networks, including regulatory, metabolism and protein-protein interactions, has 

allowed the investigation on the relation between the evolutionary rates of a gene 

and its position in the network [176], bringing evolutionary studies to a system 

level. Recently, there has been great progress in both tool development and 

biological insights on various problems of genome evolution that were not 

accessible before.  
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Comparative genomics has played an essential role in the recent development of 

the genome evolution field. Most of the current genome evolution research 

requires tools to compare a genome in its entirety to itself or to other genomes. 

For example, well-conserved inter-genome regions hint at a selection advantage, 

and intra-genome duplicated regions suggest interesting evolutionary dynamics. 

Currently available sequence alignment tools have incorporated many 

innovations to greatly advance very detailed comparative genomics studies. Most 

of local alignment tools use exact or inexact k-mers as homology seeds for local 

alignment extension, such as BLAST [4], PatternHunter [110], CHAOS [29], 

BLASTZ [150][149], BLAT [93] and PASH [89].  The global alignment tools, 

such as MUMmer [40], AVID [25] and LAGAN [28] are built on top of the local 

alignment tools, creating the global alignment by chaining the significant local 

alignments and applying the local alignment tool iteratively in the gaps. Some 

tools even incorporate the statistical structure of the genome, to reach higher 

sensitivity and specificity (e.g., mapping out wobble positions, as in WABA 

[94]). Most of these algorithms are applicable to whole-genome-scale 

comparisons, and can safely detect homology levels higher than 80%.  

 

The availability of whole-genome-scale alignment results from comparison 
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studies either between different genomes or against the same genome has 

motivated the recent studies on many complex and interesting evolution 

problems. For example, based on the sequence comparison between different 

genomes, on a gross scale, one can detect the structure and distribution of the 

synteny groups and infer the possible mechanisms for large scale genome 

rearrangements [57][182][133]. On a finer scale, the mutational pattern has been 

extensively studied and co-variation has been observed among the rates of 

different mutational events in different regions of the genome 

[157][74][188][140]. Furthermore, the conserved non-coding sequences that are 

potentially functional with different lineage-specificities [45][112][39][180][43] 

can be identified using phylogenetic foot-printing [72][22][130] among distantly 

related genomes and phylogenetic shadowing [23] among closely related 

sequences. Combining the sequence analysis in a single genome and its close 

relatives, the rate of the (retro)transposition over the evolutionary history of the 

genome can be inferred [57][182][183] [105].  

 

Duplication in Genome Evolution 

 

One of the important topics in genome evolution has been the study of 

duplication process. In 1970, S. Ohno [124] proposed �evolution by gene 

duplication�, first suggesting the essential role of the duplication process 
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in genome evolution. As the results from large scale sequencing and 

experimental effort as well as comparative genomics become available, Ohno�s 

theory, expanded to a more general view including duplications of both gene and 

non-genic regions, has gained much attention and progress. On the gene level, 

large scale detection of paralogous genes in various genomes [141][103][109] led 

to the analysis of the age, scale and functional category of the duplication genes. 

The ubiquitousness of the gene duplication phenomenon and the variation in the 

duplication pattern has led to deep appreciation of the complexity of the 

duplication process [69][55][32][155][77][1]. The rates of gene duplication and 

deletion have been examined in different genomes, and were found to be on a 

similar scale as the substitution rate [109].  

 

The fate of the duplicated genes is also of great interest to biologists. Ohno�s 

theory [124] argues that after gene duplication, one of the duplicated copy 

preserves the original function while the selection pressure on the other copy is 

relaxed, allowing it to accumulate various mutations. The mutational copy 

eventually becomes a pseudogene by loss-of-function, or by chance give rise to 

an advantageous gene with a gained new function. This theory was later referred 

to as the �mutation during nonfunctionalization� (MDN) model by A. Hughes 

[81]. Under such a model, the population genetic theory predicts that a 
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duplicated gene is much more likely to experience loss-of-function in typical 

situations than gaining a new function, suggesting a low retention rate of the 

duplicated genes [178]. However, many [81][175] have criticized the MDN 

theory based on the observations of negative and positive selection in the 

duplicated gene pairs and the high retention rate of duplicated genes in tetraploid 

fish lineages and Xenopus laevis [171][121]. A. Hughes proposed �gene sharing� 

as an alternative theory [81]. In his theory, the singleton genes first gain multiple 

functions and go through a period of gene sharing (one gene performing multiple 

functions). The following gene duplication then allows each daughter gene to 

specialize one of the functions of the ancestral gene. Under similar assumptions, 

A. Force and M. Lynch proposed the duplication-degeneration-complementation 

(DDC) model [54]. Similar to Hughes� model, it suggests that, after duplication, 

the two gene copies acquire complementary loss-of-function mutations in 

independent sub-functions, such that both genes are required to produce the full 

complement of functions of the single ancestral gene. Population genetic theory 

[177] predicts that when duplicated genes are preserved by sub-functionalization, 

it potentially extends the time period during which both genes are exposed to 

natural selection, thereby enhancing the chance of gaining rare beneficial 

mutations to novel functions. It also partially releases the selection pressure on 

both copies by reducing their pleiotropic constraints, allowing further 
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fine-tuning on the specific subfunctions. Both the gene sharing and the DDC 

model have found support from individual experimental data, such as the Hox 

genes and the nodal genes in zebrafish (reviewed in [136]), and the great 

retention rate of the duplicated genes in tetraploid fish lineages and Xenopus 

laevis [171][121].  

 

Several groups [109][98] have conducted large scale experiments in various 

genomes to examine the mutation rates in duplicated genes of different ages, and 

confirmed the temporary relaxation of the selection pressure right after the 

duplication occurs. However, not so infrequently, the two duplicated genes 

evolve �asymmetrically� at expression and/or sequence level [42][176][36], i.e. 

one duplicated gene or part of that gene has gone through a significantly different 

divergence rate or selective pressure from the other duplicate copy when 

compared to their out-group ortholog. To explain such diversification in the 

duplicated genes, more specific models have been proposed. For example, 

Nowak [123] tried to explain the retention of the functionally redundant genes in 

a population by the balance between the fitness provided by the redundancy and 

the variance in the mutational rate of the duplicated genes during germline or 

somatic development. Gibson and Spring [58] proposed that duplications of 

multi-domain proteins may be preserved by purifying selection 
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because deleterious mutations in the duplicated copy can cause a dominant-

negative phenotype by incorporating a mutation protein into the protein complex 

and disrupting it normal function. 

 

All the above models describe the duplicated gene fixation as a surviving process 

from neutral or negative selection. There are also evidences that duplicated genes 

can be fixed by positive selection. For instance, by producing more of the same 

protein, duplicated genes can be retained in the genome through dosage 

compensation effect [96]. In other cases, the duplicated genes can go through 

Darwinian positive selection and provide functional or structural variation, 

contributing to the adaptive evolution of the organism [80][191]. 

 

To understand the role of the duplicated genes in the evolution of the biological 

system, research has been conducted to study their expression pattern, genetic 

dispensability, and their positions in the cellular networks [176]. It has been 

found that duplicated genes diverge faster at the expression level than at the 

protein coding level, indicating that transcription evolution is much faster than 

protein sequence evolution [70]. From a large scale knock-out experiment in 

yeast, it was found that if a gene has a duplicate in the genome; its knockout has 

less effect on the fitness of the organism compared to the knockouts of 
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the singleton genes [71]. Such experimental results confirmed the long-held 

speculation that the duplicated genes provide robustness to the genome. 

Interestingly, the genetically dispensable duplicated genes tend to have a medium 

level of expression correlation, instead of being highly or anti-correlated [88]. 

These observations are consistent with the sub-functionalization model discussed 

earlier, where duplicated genes can be fixed in the genome by becoming 

complementary either at the expression level (expect to be anti-correlated) or at 

the protein function level (expect to be correlated). To examine the duplication 

process on a system level, the duplicated genes have also been characterized in 

various cellular networks, and were found to be more constrained to the part of 

the network with more specific functions [31][17][114]. For example, in C. 

elegans, most of the duplicated developmental genes are in the late development 

stage instead of the early stage in which genetic changes tend to be more fatal 

[31].  

 

The availability of genome data and sequence analysis tools also shed much light 

on the otherwise inexplicable possible whole genome duplication events in 

several evolutionary lineages at different evolutionary times, particularly in early 

vertebrates [48][82][117], Arabidopsis [62][173], and Saccharomyces [184][152]. 

The sequencing of a related species, Kluyveromyces waltii, that diverged 
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from Saccharomyces cerevisiae before the duplication event and the comparative 

study on the gene orders and copy numbers provided the most convincing 

evidence for a whole genome duplication in S. cerevisiae followed by a massive 

gene loss [92]. Although whole genome duplication theory is favored in the cases 

of early vertebrates and Arabidopsis, more convincing evidence are still lacking 

and may also depend on similar comparative studies as those performed on yeast. 

 

Although whole genome duplication events can bring large impact on genome 

evolution, more often, duplications occur at a scale much smaller than the whole 

genome. The duplicated segments do not necessarily cover a functional gene unit, 

and in fact may not carry any coding regions at all. Therefore, one needs to 

expand the gene-centric view in studies of the duplication process to a genome-

scale view.  

 

Recently, large segmental duplications have been detected and cataloged in 

various mammalian genomes. These duplications, which happened quite recently 

(30-60Mya), covered both coding and non-coding regions and include both intra-

chromosomal and inter-chromosomal events [13][34][12][35][170]. They are 

distributed in the genome in a clustered manner, mostly around pericentromeric 

and subtelomeric regions, and have been suggested to have contributed to 
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the evolutionary dynamics of the mammalian genomes. Different studies have 

confirmed the significant association between segmental duplications and 

syntenic breakpoints [11][6], indicating their role in large genomic 

rearrangement events. Additionally, many of the duplicated segments in the 

human genome have been found to be involved in further rearrangements, some 

leading to genetic diseases [51][85]. The genic contents of the segmental 

duplications suggest that they may also play a role in adaptive evolution and a 

domain accretion process [144].  

 

Using in-laboratory evolution experiments and various new experimental 

techniques, such as array-CGH (Comparative Genomic Hybridization), various 

genome rearrangements, including segmental duplications, have been traced on a 

genomic scale in a time series, from which the exact sequence and onset time of 

the events can be recorded. For example, adaptive segmental duplications have 

been observed during the in-laboratory evolution of E. coli [142] and S. 

cerevisiae [46] strains. The mutational spectrum has also been studied in C. 

elegans strains evolved under a regime in which effects of selection were greatly 

reduced relative to genetic drift [41]. During the micro-evolution of cancer 

development, a genome goes through a large amount of rearrangements, in the 

forms of duplications, deletions and translocations (reviewed by 
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[101][14][2][154]), and cause the copy numbers of different genomic regions to 

fluctuate considerably [106][107][2][134]. Similar techniques are now being 

applied to study these processes in cancer cells. 

 

The availability of the genomic sequence has also greatly facilitated the studies 

on the molecular mechanisms of the duplication process. Repeat elements, 

especially transposable elements were found to play an important role. A famous 

case of repeat�s involvement in gene duplication is the duplication of the γ�

globin gene by unequal crossover mediated by L1 long interspersed repetitive 

elements (LINE) in an early ancestor of simian primates [53]. More recently, Alu, 

a short interspersed nucleotide element (SINE) in the primate genomes, were 

found to be actively involved in various chromosome rearrangements, including 

duplications, deletions and translocations,  by creating recombination hotspots in 

both genetic diseases, such as tumor, and genomic polymorphisms in the normal 

population (reviewed in [97]). Detailed breakpoint flanking sequence analyses in 

the in-laboratory evolved E. coli [142] and S. cerevisiae [46] strains showed that 

the large genomic evolutionary events were mostly caused by the homologous 

recombination or transposition of the mobile elements (insertion sequences, or 

transposable elements and their relics). However, duplications can also be caused 

by repeat-independent mechanisms. For example, the presence of left-
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handed helical Z-DNA structure can induce recombination events by altering 

chromatin organization [158].  Double strand breakage followed by non-

homologous end joining (NHEJ) can also lead to gene amplification [44].  

 

Phylogenetic Methods 

 

Another important area of genome evolution is to understand and estimate the 

evolutionary relations and distances between different genomes. There has been 

significant progress in the field of molecular phylogeny recently. According to 

the types of data used, the current phylogeny methods can be roughly divided 

into three classes: those that are based on sequence alignments, gene orders, or 

sequence compositions. Depending on the approaches used for evolutionary tree 

inference, there are, again, roughly three classes: maximum parsimony (MP), 

maximum likelihood (ML) and distance-based approaches.  

 

The sequence alignment based methods have been advanced quite rapidly and 

are now easily accessible through various well-implemented program packages, 

such as PAML [189], PAUP [165], and PHYLIP [52]. The one-parameter Jukes-

Cantor model [87] represents the first step towards modeling the substitutions 

between two aligned sequences. Since then, methods that contain more and more 

parameters have been invented to incorporate the complexity in the 



 13

sequence evolutionary process � from Kimura�s two-parameter model [95] that 

incorporates the difference between transition and transversion rate, to the HKY 

model that considers base composition bias [75], to the REV model that contains 

a set of eight parameters for all the possible reversible mutations between 

different bases and base compositions, and to the various complicated non-

stationary models (reviewed in [66] and [7]). To account for the region-specific 

mutational rates, the substitution rate variation along the sequences has been 

further incorporated into the above models, mostly as a Gamma function (general 

review in [122]). Recently, codon biases have also been incorporated when 

dealing with sequences from coding regions [60][120]. Furthermore, instead of 

building separate trees for each different sequence, methods have been developed 

to infer phylogeny relationships from concatenated multiple sequences [59]. 

Although the complexity of the methods make them more faithful to the biology, 

it also leads to a significant increase in the parameter space, which results in 

larger variances in the computed results. It has been shown that for most data, the 

simple models often give more robust results [122].  

 

In spite of a large body of literature, most of the sequence alignment-based 

methods focus only on the substitutions, and indels are often ignored or treated as 

separate characters from the alignment positions [91]. For example, assuming 
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there is no parallel or reverse evolution; one can treat the transposons in the 

genomes as individual characters, and use their insertion or deletion events to 

infer phylogenetic distance [21]. However, indel events (duplications and 

deletions) other than transposon insertions/deletions occur at very different scales 

and rates and also contribute significantly to the genome evolutionary process 

[63][132]. In addition, the non-parallel non-reversible evolution assumptions can 

be violated, i.e. the gaps in the sequence alignments may be generated by 

multiple events [15], and therefore should not always be treated as a single 

indivisible character. However, methods that can properly incorporate the indels 

into the evolutionary distance remain to be developed.  

 

Another class of phylogeny methods is based on gene order. Such methods can 

be applied to species that have diverged a long time ago, since they only look at 

the order of the orthologous genes and not the specific sequences. However, 

there are two inherent difficulties with such approaches. First, the computational 

expense grows exponentially with the number of genes if one wishes to model 

the rearrangements (transpositions and inversions) properly and to find the 

correct answer. Second, events such as gene duplication, deletion and inter-

chromosomal translocations are difficult to deal with in those methods. To 

simplify the computational task, Sankoff et al. [146][145] first proposed 
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the �breakpoint analysis� to compute the most parsimonious rearrangement 

distance between two sequences. Later, Prevzner [73][9] developed an efficient 

polynomial-time algorithm to compute the reversal and transpositional distance 

between the gene order data. More recently, programs such as GRAPPA 

[119][167] and GRIMM [168] have further increased the efficiency of the 

breakpoint distance method and even extended it to a maximum likelihood (ML) 

approach. However, methods from this class are only applicable to small 

genomes (a few hundred genes) [167], and cannot handle sequences in which 

there are too many gene duplication or deletion events.  

 

The third class of methods does not require the sequential information of the 

sequences under comparison, but only relies on the composition of the sequences. 

According to the scale of the composition unit, methods have been developed 

based on the contents of genes [65][78], protein domains or short nucleotide 

(amino acid) mers [137][162]. The gene based methods [65][78] have been 

mainly used to conjecture the contents of the common ancestral genome of 

divergent species [159]. The domain-based method [187] has been applied to 

infer the phylogenetic relation of the completed genomes. Although not directly 

relied upon for sequence alignments, both the gene-based and domain-based 

methods heavily depend on genome annotations, whose accuracy varies 
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with the underlying model and the amount of knowledge we have about the 

organism. The mer-based methods are the only class that does not require 

extensive pre-analysis on the sequence, therefore are more resistant to the errors 

in the sequencing or assembly data. The mer-based methods [137][162] have 

been used to reconstruct the phylogeny relationships of bacteria or phages. 

However, so far this class of methods is mostly empirical-based without 

theoretical explanations.  

 

Markov Chain 

 

A better understanding of genome evolution lies in a deeper comprehension of 

the dynamics of its mechanisms: A limited number of evolutionary mechanisms 

with simple dynamics, through repetitions and interactions, can lead to an 

unlimited number of complex evolutionary paths. The increasing number of 

genome-wide datasets available today provides an unprecedented opportunity to 

study genome evolutionary mechanisms in more details, especially in a 

quantitative manner. In this thesis, I am interested in studying the duplication and 

other events in genome evolution by modeling them as Markov chains.  

 

Markov chain is a useful tool to model statistical and random behaviors in 

physical and biological sciences. Given a finite or countable set of states E, a 
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Markov chain is, by definition, a stochastic process (i.e. a set of random variables) 

tx  such that its future depends only on the immediate past [49][172]. More 

precisely, for transition probability P , we have the following condition: 

0 0 1 1 1 1( ,..., ) ( )t t t t t tP x j x i x i P x j x i− − − −= = = = = =  

where 0 1, ,... tj i i −  are states from E. Often we specify the initial distribution µ  

where 

0( ) jP x j µ= =  

and denote the one step transition matrix. 

1 1( | )t t tP x j x i− −= =  as 
ij

P . 

The n step transition matrix is defined to be nP . 

 

A Markov chain is irreducible if for any pair i, j, there exists an integer n such 

that 0n
ijP > . Intuitively, this means that any two states of E communicate with 

each other eventually. A Markov chain is recurrent if the process starting from 

any state j will return to j at a later time with probability 1. A Markov chain is 

positive recurrent if the expected time of returning to any state j is finite. 

 

For a given state i in E, let { 0}n
i iiD n P= > . The greatest common divisor id  of 

iD  is called the period of state i. If the chain is recurrent, the period is the 
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same for all the states. If id  is equal to 1 for all i, then the chain is called 

aperiodic. A distribution π  is called the stationary distribution of a Markov chain, 

if  

Pπ π= , and 1j
j

π =∑ . 

 

Suppose the Markov chain is irreducible, positive recurrent and aperiodic, then 

there exists a stationary distributionπ . Moreover, for any i, we have n
ij jP π→  in 

the limit as n goes to infinity. 

 

However, most of the processes in evolutionary biology belong to the group of 

non-stationary Markov processes, in which the transition matrix changes over 

time, or depends on the current state, such that 1( )t tP x j x i−= =  is a function of t 

and i . 

 

Parameter Estimation 

 

In our models of genome evolution, various parameters need to be estimated by 

fitting the model to the data. The procedure of parameter estimation is important 

because the optimal parameters computed this way may reflect the underlying 

dynamics of the biological processes.  
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The problem of parameter estimation is to estimate an unknown probability 

density function based on observed data [143].  More precisely, given 

independent observations 1 2{ , ,..., }nx x x , assuming that the probability density 

function ( )f x θ  is parameterized by a variable θ , we want to find θ  which best 

describes the data x . A simple example is where f is equal to Gaussian 

distribution with unit variance, the parameter θ  which controls the mean, and 

1 2{ , ,..., }nx x x are the independent samples generated by this Gaussian distribution. 

In general, there are two ways for parameter estimation: the frequencist view and 

the Bayesian view. 

 

The frequencist view does not assume any prior knowledge about θ . We define 

the likelihood function to be 

1 2 1( ) ( , ,... | ) ( )... ( )n nL f x x x f x f xθ θ θ θ= = . 

Then we simply look for  

1 2max ( , ,... | )MLE nArg f x x xθθ θ=  

This method is called Maximum likelihood estimation (MLE) and the result MLEθ  

is called a maximum likelihood estimator. 

 

In the Bayesian setting, we assume prior knowledge about how likely each 
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( )f x θ  is relative to the true distribution. We quantify this knowledge as a prior 

distribution with prior density function ( )p θ  on the parameter θ  space. Given 

the data 1 2{ , ,..., }nx x x , the posterior density function 1 2( , ,... )np x x xθ  which 

quantifies our belief about the true θ  after we observe the data is given by: 

1 2
1 2

1 2

( , ,... ) ( )
( , ,... )

( , ,... ) ( )
n

n
n

f x x x p
p x x x

f x x x p d
θ

θ θ
θ

θ θ θ
=
∫

 

To estimate θ  in the Bayesian framework, one can choose θ  that 

maximizes 1 2( , ,... )np x x xθ . Such an estimator of θ  is called the maximum a 

posteriori (MAP) estimator. Other useful estimators include the posterior mean 

estimate and posterior median estimator.  

 

When the prior knowledge is available and dependable, the Bayesian method is 

usually more accurate than the frequencist method in practice. However, when 

the prior knowledge is not available, the frequencist method is the reasonable 

choice. We like to point out that when the prior density function ( )p θ  is uniform 

over θ , the MLE is the same as the MAP. 

 

In the previous discussion, we fixed the model f of the distributions which 

generate the data. However, in practical problems, the choice of model space is 

often not unique. Based on the models we use, we obviously obtain different 
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distribution functions. An over-simplified model often gives a poor fit to the 

observed data, while a complicated model with many degrees of freedoms is 

often unstable and uninformative. An important principle of statistics and 

learning theory is called Occam�s Razor, which says that one should not increase, 

beyond what is necessary, the number of entities required to explain anything, 

therefore the simplest model which fits the data reasonably well should be 

favored. We practice this principle throughout the thesis by using the most 

parsimonious model to explain complex sequence evolutionary problems. 

Although the models we use may be an over-simplification of the biological 

reality, by avoiding over-fitting, the parsimonious models can help uncover the 

most essential features of the underlying process.  

 

 
1.2 Rationale 

 
Susumu Ohno first proposed the �evolution by gene duplication� theory in 

1970�s [124]. As I have discussed in the previous section, it has recently attracted 

a renewed attention. It is now widely believed that duplication is one of the key 

processes that create robustness, plasticity and novelty during genome evolution 

[71]. Furthermore, the duplication process may facilitate speciation events by 

random silencing of the duplicated genes or by mediating large genome 
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rearrangements [108][37][185][169].  Therefore, a necessary and important step 

towards a full understanding of genome evolution is to address such questions as 

how duplications happen, what effect they have on genome structures, and how 

they are modulated in association of other evolutionary processes. One practical 

use for such work is in cancer biology. The causal mechanisms for copy number 

fluctuations in tumor genomes may share some commonality with the 

mechanisms that caused the recent segmental duplications. The answer to the 

questions related to the duplication process may thus have implications for 

related medical research.  

 

With the availability of whole-genome data, a great deal of work has been done 

at the genomic level, aimed at understanding the duplication process and its 

effect on genomic structures (as I have surveyed in the Background). However, 

many questions still remain open. I describe three of them further: First, although 

the recent segmental duplications in the mammalian genomes have been mapped 

[13][34][12][35][170], their mechanism is still unclear. Second, several models 

[186][79][20][174][19] have been proposed to study the effect of duplications on 

the genomic structure. However, most of these models are built to reflect the 

changes on higher-level cellular information, i.e. protein interactions [19], gene 

families [186], and expression clusters [20], which are hard to interpret using 
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basic evolutionary mechanisms.  Third, despite the great advances in the 

development of phylogenomic methods, we still lack a method that can 

incorporate the effect of duplication and deletion (indels) events with the 

commonly used substitution estimation in measuring the genomic evolutionary 

distances. The absence of such distance measurement greatly hinders research on 

the modulation of different sequence evolutionary processes.  

 

In this thesis, I present my work to understand and quantify the mechanisms of 

segmental duplications in the mammalian genomes using Markov models, and 

develop novel and efficient phylogenomic approaches incorporating duplication 

and deletion events based on our parsimonious genome evolution model.  

 

1.3 Problem Statement 

 
The goal of the work presented in this thesis is to study the duplication process 

systematically by examining the different aspects of the process: the origination 

of the segmental duplications; the effect of the duplication process on the 

genomic structure; and the role of the duplication and deletion processes in 

genomic evolutionary distances.  
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Origination of Segmental Duplication: It is known that tandem duplications 

can be caused by unequal crossing over, and small interspersed duplications can 

be caused by retro-transposition [50]. However, a clear delineation of 

mechanisms responsible for the recent large segmental duplications found in the 

mammalian genomes remains elusive. The excessive content of interspersed 

repeats in the flanking regions suggests a repeat-recombination mechanism 

[8][10]. However, the involvement of the fast evolutionary dynamics of the 

repeat elements [105] and the possible errors in the genome assembly and 

duplication mappings [34] make it necessary to study the problem using carefully 

designed mathematical models that take into account these complexities.  

 

Effect of Duplication on Genomic Structures: Although existing literature 

[128][30][111][56] have reveals interesting statistical features on genomic and 

proteomic data, no systematic analysis on different scales across a wide variety 

of species has been performed. Since the changes on different scales are mostly 

rooted in the changes in the genomic sequences, a general model at the genomic 

level that incorporates only the basic molecular evolutionary processes can be 

developed to explain the observations at different scales in one unified 

framework. Such a model could also help us study the relative frequencies of the 
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duplication events in comparison to other evolutionary events in various species. 

 

Role of Duplication and Deletion Events in Genomic Evolutionary Distances:  

Most of the current phylogenetic distance measurements are based on the 

alignment of orthologous gene sequences from different genomes (see [122] for a 

general introduction). These types of methods suffer from three shortcomings: 1) 

the methods focus mostly on the coding sequences of the genes, and ignore the 

changes in the non-coding regions; 2) the measurements rely on the sequence 

alignment algorithms which assume no rearrangements in the sequence, and 

whose parameters should have reflected the real rates of the evolutionary 

processes, but are often chosen somewhat arbitrarily in practice; 3) the distances 

are usually represented only by the number of substitution events, while other 

events are assumed to be correlated and hence neglected. To study the role of 

duplication and deletion events during genome evolution and how they are 

modulated, there is a demand for an alignment-independent genome-wide 

measurement of evolutionary distance that incorporates the counts of all 

evolutionary events.   

 
1.4 Contributions and Thesis Organization 

 
This thesis addresses the problems in various aspects of the duplication 
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process, including its origination, effect, and modulation in the evolving 

genomes. At the same time, we have also developed novel mathematical models 

and statistical tools that can be used in other similar genome evolution studies. 

The main contributions of the thesis are: 

•  We test and quantify the repeat-recombination mechanism in the recent 

segmental duplication process in mammalian genomes using a Markov 

model that incorporates the evolutionary dynamics of the involved 

genomic elements and the possible errors in genome assemblies and 

duplication mappings [194]. The model suggests that about 30% of the 

recent human segmental duplications were caused by a recombination-like 

mechanism, among which 12% were mediated by Alu. A similar picture is 

found in the mouse and rat genomes. Therefore, in contrast to the previous 

research which suggested a larger role for Alu in these duplications [10], 

the recent segmental duplication in the mammalian genomes is shown to 

be a multi-mechanism process, and a significant proportion of the 

duplications is caused by some repeat-independent mechanism.  

•  Our further analysis on the physical features of the duplication flanking 

sequences suggests that one of repeat-independent mechanisms of 

segmental duplication in mammalian genomes may be shared by genetic 
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instability, and is related to physical instability in the DNA sequences 

[194].  

•  We examine the statistical structure of the genomes on different scales 

(from small oligonucleotide mers, peptides, to protein families), and of 

different organisms (from bacteria, archaea, to eukaryota), and find that 

the distributions of genomic components on different scales are all 

featured by the over-representation of high-frequency elements [193]. 

Since no significant difference in selection pressure has been found for 

mers with different copy numbers, such distributions can be explained by 

the effect of duplication process. 

•  Motivated by these generic features, especially the mer frequency 

distributions, we propose a parsimonious model for genome evolution 

[193]. Our model is reminiscent of Polya�s Urn model, and contains three 

indispensable processes: duplication, deletion and substitution. The model 

can explain the frequency distribution of mers of different sizes in various 

genomes much better than previous models, and can be easily generalized 

to explain the statistics of other genomic components. The parameters in 

the model, when fitted to the real data, represent the average activity level 

of the three processes over the entire evolutionary history of the genome, 

reflecting the effect of modulation on the activity of the 
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process instead of the details of individual events during evolution. 

•  Based on our genome evolution model, we developed a novel alignment-

independent phylogenetic method based on the mer (oligonucleotides of a 

certain length) frequency statistics in the sequences. In our method, we 

measure the evolutionary distance between two genomes by the total 

number of duplication, deletion and substitution events occurred since the 

divergence of the genomes from their common ancestor. This number is 

estimated from the changes in the mer copy numbers between two 

genomes using Maximum Likelihood approach. The comparison of the 

phylogenetic trees constructed using our method to the trees constructed 

using other methods can reveal the relative influences of different 

evolutionary processes to the genomic evolutionary distance.   

 

 

This thesis is organized as follows. Chapter 2 describes our study on the 

mechanisms of the recent segmental duplications in the human, mouse and rat 

genomes, using statistical analysis and modeling on the duplication flanking 

regions. Chapters 3 and 4 describe the results from our systematic analyses on 

the statistical structure of various genomes, and a parsimonious genome 

evolution model inspired by our observation in the genome structure 
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studies. Chapter 5 describes the novel alignment-independent phylogenomic 

method based on mer statistics, its verifications and applications. 
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Chapter 2 

Mechanisms of Segmental Duplications in 

Mammalian Genomes 

2.1 Introduction and Related Work 

In all the genomes examined so far, duplications have been found in both coding 

and non-coding regions, and at various scales and ages [69][55][32][155][77][1]. 

In particular, the mammalian genomes are filled with duplicated sequences of 

different sizes. In the last few years, researchers have found that 3.5~5% of the 

human genome [13][34], 1.2~2% of the mouse genome [12][35], and 3% of the 

rat genome [170] contain recent segmental duplications (genomic sequence 

blocks whose identity level is higher than 90% and length larger than 1kb). 

Those segmental duplications are mostly interspersed, and were suggested to 

play a role in the domain accretion in the human genome [144] the dynamic 

large-scale rearrangement events during genome evolution [11][6], and various 

genomic disorders [51][85].  

 

Nonetheless, a clear delineation of mechanisms responsible for those 

recent duplications in the mammalian genomes remains elusive: Unequal 
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crossovers usually cause tandem duplications. For example, L1 (long 

interspersed repeat family 1) elements have been shown to be involved as 

recombination breakpoints in large tandom duplications [53]. L1 retrotransposon 

machinery can also cause interspersed duplications smaller than 1kb [50]. 

Recently, a detailed analysis on the duplication breakpoints in a specific genomic 

region showed that some segmental duplications may have been caused by Alu-

mediated recombination events [8]. Later, Bailey's group [10] reported that a 

significant portion of the interspersed segmental duplications terminated within 

an Alu repeat. These results led to the suggestion that the primate-specific burst 

of Alu retro-transposition activity is the primary cause of the recent boom of 

segmental duplications in the human genome [10]. However, given the highly 

dynamic nature of the Alu repeats in the recent past [105], estimation of its 

contribution to the segmental duplication process could be biased if its 

evolutionary dynamics are not taken into consideration. 

 

Assuming that at least some of the duplication mechanisms has left recognizable 

sequence signatures in the duplication flanking sequences, in order to recover all 

sequence-dependent mechanisms, we started by mer analyses. Such a general 

analysis can point out the candidate hypotheses, which are followed by further 

verifications by rigorous statistical tests and mathematical modeling. Our 
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analyses suggested that there are multiple processes involved in the duplication 

mechanism. 

 

In our mer analysis, we found an enrichment of Alu repeats and A(T)-tract 

sequences in the duplication flanking regions in the human genome. Such results 

indicate the involvement of interspersed repeats and regions with unusual 

physical properties of the DNA sequences in the duplication process. Following 

the clues from our mer analysis results, we further analyzed the content of 

various repeats in the flanking regions of the recent segmental duplications in 

three mammalian genomes. Consistent with the results from other groups [8][10], 

we found an overrepresentation of the most recently active interspersed repeats 

(Alu in human, and L1 in rodents), especially the younger subfamilies, 

suggesting that the recombination between homologous repeats may contribute 

to segmental duplications.  

 

To quantitatively assess the relative contribution of Alu recombination 

mechanism to the process of segmental duplication without a prior bias, we 

developed a dynamic mathematical model which formulates the evolution of the 

repeat distribution in the duplication flanking regions (see Figure 4 for the 

definition of flanking regions) as a Markov process with the time 
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measured by the divergence level in the duplicated sequences since duplication 

[194].  The results from the model suggests that although the duplication 

flanking regions may have been involved in Alu recombination significantly 

more often than pairs of randomly selected genomic regions, Alu recombination 

contributes to only about 10~12% of the segmental duplications in the human 

genomes. Therefore, the largest fraction of duplications remains unaccounted for 

by just recombination between interspersed repeats as we demonstrated through 

our computation.  

 

Through a more detailed analysis of the sequence physical properties, we 

discovered that the regions flanking duplications are enriched for sequences with 

low helix stability and high DNA flexibility. These physicochemical properties 

also characterize sequences known to be �fragile� sites [115][118] for genetic 

rearrangement. Thus, segmental duplications may share a mechanism linked to 

genetic instability.  

 

It is worth mentioning that we are keenly aware of the possible inaccuracies in 

the mapping data, especially at the duplication boundaries, and have performed 

analysis to estimate the errors in the current mapping of the segmental 

duplications in the human genome. Although we could not completely 
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exclude the effect of such inaccuracies, in the parsimonious design of our model 

minimized the influence of these errors. The results, as can be seen below, are 

quite robust in spite of the presence of these errors.  

 

2.2 Methods 

 
Sequence Preparation  

 

We used 4 different segmental duplication mapping datasets from 3 different 

mammalian genomes in our study: the July 2003 Human genome assembly (hg16) 

[34] [http://chr7.ocgc.ca/humandup/]; the April 2003 Human genome assembly 

(hg15) [13] [http://genome.ucsc.edu/]; the February 2003 Mouse  genome 

assembly (mm3) [12]; and the June  2003 Rat genome assembly (rn3) [35]. To 

avoid redundancy and ambiguity, we only selected the duplication pairs that 

satisfy the following criteria: 1) only duplicated once; 2) cannot be included in 

any other duplications; 3) inter-chromosomal or at least 9kb apart; 4) longer than 

6kb. A list of the filtered duplication pairs can be found at 

[http://www.pnas.org/cgi/content/full/0407957102/DC1]. Two control sequence 

sets are created for each dataset: One contains sequences randomly chosen from 

the corresponding genome assembly [http://genome.ucsc.edu/] to control the 

general genomic background noise; the other contains sequences randomly 



 35

selected from inside the duplicated regions to control the potential compositional 

bias in the duplicated regions.   

 

Mer Analyses 

 

We calculated the frequencies of each possible 5- or 6-mer at each base-pair 

position relative to the breakpoints. A mer is considered over-represented at a 

particular position if its frequency at this position is at least 8 standard deviations 

higher than its mean frequency at other positions, and the absolute copy number 

at this position is above 20 (see Figure 1). To test the significance of the over-

representation of certain mers in a region (a set of continuous positions), such as 

A-/T-rich mers, a two-sample t-test was used on the frequency values in the 

region of interest and the frequency values at all other positions.  

 

Figure 1. The procedures of mer analysis in the segmental duplication 
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flanking sequences. The flanking sequences are arranged into a file where their 

duplication junctions are aligned. The frequency of each m-mer (4m in total) at 

each position, measured by the base pair distance to the duplication junction, is 

computed. For each m-mer, its frequency at each particular position is tested for 

significant over-representation by comparing it to the frequencies at all other 

positions using t-test. The significantly enriched mers as well as the position of 

their enrichment are recorded.  

 

The mers identified as over-represented at one or multiple positions were 

arranged according to their over-representing positions. Interestingly, most of the 

over-represented mers aligned well to form an Alu consensus sequence (see 

Figure 3). The analysis is repeated with all the Alu-containing sequences removed. 

 

Repeat Analysis  

 

The repeats are identified according to the genome annotation database 

[http://genome.ucsc.edu/]. We consider a repeat as present in that flanking 

sequence, if its length is longer than a threshold (100bp in this study). For a pair 

of flanking regions to be identified as having a common repeat in a specific 

region (labeled as +/+), the repeat sequences have to be on the same side of the 

duplicated segments, in the same direction, and share at least 100bp of 
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high similarity. For Alu family, sequences from any subfamilies share high 

similarity [16][16]. For L1 family, however, only sequences from the same 

subfamily are found to be highly similar [156]. In our model, the frequency of 

+/+ flanking region pairs in each age group is further normalized by subtracting 

the average frequency of repeats inside the duplicated segments, assuming that 

the repeats inside the duplicated region resulted from some recombination-

independent mechanism and are uniformly distributed. 

 

Markov Model of Duplication 

 

Our model tests the hypothesis that recombination between homologous repeats 

from a family X [e.g., Alu or L1] contributes to the recent segmental duplication 

processes in mammalian genomes. If some of the segmental duplication were 

caused by repeat recombination, these duplications should contain compatible 

repeat configurations ( )+/+  in its flanking regions right after the duplication 

events. On the contrary, if repeat recombination does not contribute to the 

segmental duplication process, the configurations of repeats in the flanking 

regions should be similar to those expected from randomly selected genomic 

regions. However, after the initial duplication events, the ( )+/+  repeat 

configuration in the flanking regions of those segmental duplications caused by 

repeat recombination starts to change due to mutation accumulation, forming 
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a specific pattern of distribution of configurations over time. Similarly, in the 

flanking regions of the duplications not caused by repeat recombination, the 

repeat configuration also changes and forms another specific pattern of 

distribution over time. How the repeat configuration changes over evolutionary 

time follows a Markov process determined by the dynamics of the repeat 

elements (see the transition matrix XM  below). Given enough time and assuming 

constant evolutionary rates, the repeat configurations in the flanking regions will 

reach a stationary distribution over different duplication age groups.  

 

However, the stationary distribution varies depending on how many duplications 

were caused by repeat recombination: If no duplications are caused by repeat 

recombination, we expect to see a stationary distribution anticipated from an 

initial repeat configuration in two randomly selected genomic regions. In contrast, 

if repeat recombination contributes significantly to the duplication process, the 

stationary distribution will deviate from the former case. The deviated part 

should follow the stationary distribution anticipated from an initial repeat 

configuration of ( )+/+ , and the degree of deviation should imply the portion of 

the duplications caused by repeat recombination. Therefore, to test our 

hypothesis, we need to compare the data against the null model, in which no 

duplications are caused by repeat recombination. The portion of 
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duplications caused by repeat recombination can be estimated using our model if 

the data deviate significantly from the null model.  

 

Model Parameter Estimation 

 

Known Parameters 
 
All but two of the model parameters can be derived from the existing literature. 

They are enumerated in Table 1. We chose a flanking region size that is large 

enough to minimize the effect of mapping and annotation errors (by allowing 

some gaps and shifts, see Figure 5, Figure 6, Figure 7), and yet sufficiently 

restrictive to distinguish the signals from the genomic background noise. To 

establish the most appropriate size of the flanking regions to be used in the study, 

we applied the model to the datasets generated from several different flanking 

region lengths (200bp, 500bp, 1000bp and 2000bp). The estimation of repeat 

recombination, measured by the h1 value (see below for definition), reaches its 

highest in the 500bp and 1000bp datasets, thereby, suggesting these two sizes to 

be optimal choices. The data presented in this dissertation use a flanking region 

length of 500bp.   
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Table 1. In the top half of the table we summarize the rates, the most recent 

reference for each rate, and its estimated value. In the bottom half of the table, we 

summarize the parameters, the mathematical formula to compute each parameter, 

and its computed value subsequently used in the model. The genomic data with 

segmental duplication mapping is then used to estimate the remaining two 

parameters, 1h  and 1f .  

 

The model that we propose is based on certain simplifying assumptions and 

estimated parameters taken from the existing literature; they are enumerated 

below: The model assumes constant rate of duplication, mutation, and 

repeat amplification. The sequence divergence rate α  in the duplication 
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pairs is estimated based on the average mutation rate in the human genome 

0 14= .g %µ  per million years (Myr) [182]. We take (2 )= / ⋅ ⋅∆g tα ε µ  because of 

the parallel divergence in the duplication pairs. The sequence diversity intervals 

(ε ) between different age groups is set to be 1%, so that each age group contains 

at least 100 samples (see Appendix A for how the interval is chosen). These 

choices were based on our empirical studies showing that these sample sizes 

were needed for us to estimate the corresponding statistics within a reasonable 

error bounds. A detailed analysis on error bounds based on different sample size 

is listed in Table 10 in Appendix A. The range of the duplication pairs divergence 

is set to be between 0.5% and 8.5%. The duplications with lower divergence 

levels are omitted to avoid assembly or mapping errors. Given the duplication 

divergence rate ( α ) and interval ( ε ), the time interval is selected to be 

(2 ) 3 57∆ = / = .gt ε µ α  Myr. The amplification rates for Alu and L1 in humans are 

estimated in [105] by comparing syntenic sequences from human, baboon (which 

diverged from human ≈ 25 Myr ago), and chimpanzees (which diverged from 

human ≈5 Myr ago). Using those data, we estimated their amplification rates in 

a flanking sequence of size 500 bp, given that the insertion can result in a 

detectable repeat size that is larger than a threshold ( ThrL , 100 bp in this 

dissertation). If the duplication flanking regions contain two independently 

inserted repeats, they are counted as in state (+/+) only when the two repeats 
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are positioned in certain ways (see Repeat Analysis). Therefore, the rate at which 

duplication pairs change from (+/-) to (+/+) state is not β , but should divide β  

by 2 to correct for the appropriate orientation, assuming insertion occurs with 

equal probability in both orientations in the genome. If we assume that when the 

divergence levels of Alu�s and L1�s reach above 30% the repeats become 

unrecognizable for the RepeatMasker, and the divergence level in the repeats are 

uniformly distributed, then 2
Alu Alu 30 1 78 10−≈ ⋅∆ / = . ×t %γ µ , and 

2
L1 L1 30 2 56 10−≈ ⋅∆ / = . ×t %γ µ . The background repeat distribution R  is computed 

from the corresponding repeat frequencies in randomly selected 500bp genomic 

regions.  

 
Given the parameters in Table 1, we can write down the transitional probabilities 

between different states within a time interval ∆t  (see Table 1). The transition 

matrix can be expressed as follows:  

 
1 2 0

2 1 2 2
0 2 1 2

 
 
 
 
 
 
 
 

−
= − / − .

/ −

X X

X X X X X

X X

M
β γ

β β γ γ
β γ

                                    (2.1) 

 
The subscript X represents the repeat family, i.e. either Alu or L1. Vector AX

�;k(t) 

(k>0) represents the frequencies of flanking region pairs in the kth age group 

with different configurations of the repeats from X family at evolution time t. 

(AX
1;k(t): (−/−); AX

2;k(t): (+/−); AX
3;k(t): (+/+). ∑

=

=
3~1

; 1
i

X
kiA .)  AX

�;0(t) represents 
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the configurations of repeat X in the flanking regions of the new duplications at 

evolution time t. 

 
The changes in the distribution of repeat configurations over evolutionary time 

follows a Markov process, which can be written as:  

 1 1 0 1( ) (1 ) ( ) ( )⋅, : ⋅, : ⋅, : −+ ∆ = − ⋅ ⋅ + ⋅ ⋅ .X X X
k X k X kA t t M A t M A tα α  

0 ( )⋅,
XA t  is a constant vector over all t . In the �null� model, 0 ( )⋅, =X

XA t R . 

 

Unknown Parameters 

 

1

0 1

1

0 1

The portion of duplications caused by repeat

recombination

1 The portion of duplications not caused by

repeat recombination

The fraction of the recombination mechanism

mediated by repeats X

1 The fraction

≡

;

= − ≡

;

≡

;

= − ≡

X

X X

h

h h

f

f f of the recombination mechanism

mediated by repeats other than X.

 

 

Unknown Parameter Estimation 

Assuming that the mechanisms and their relative contributions to the segmental 

duplication events are well conserved over a long period of time in the 
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mammalian genomes, we have a constant 0⋅,
XA , i.e. 00 0( ) ( ) ⋅,⋅, ⋅,= =X X XA t A s A , for any 

0>t  and 0>s . 0⋅,
XA  depends on the two unknown parameters, 1h  and 1

Xf  , in the 

model:  

 
0

0 0 1

1

0

 
 
 
 
 ⋅,
 
  
 

= ⋅ + ⋅

X

X
X

X

f
h R hA

f
 (2.2) 

 

We wish to estimate 1h  and 1
Xf  from the observed distribution of X repeat 

configurations 1⋅, :
X

kA  in the duplication flanking regions. The process our model 

describes can be written as the following equations:  

 1 1 0 1( ) (1 ) ( ) ( )⋅, : ⋅, : ⋅, : −+ ∆ = − ⋅ ⋅ + ⋅ ⋅X X X
k X k X kA t t M A t M A tα α   (2.3) 

i.e. for any 1≥i ,  

 1( ) (1 ) ( ) ( )⋅, ⋅, ⋅, −+ ∆ = − ⋅ ⋅ + ⋅ ⋅X X X
i X i X iA t t M A t M A tα α  (2.4) 

After a sufficiently long period of time, the process will reach a stationary 

distribution:  

 11 1( ) ( ) ⋅, :⋅, : ⋅, :+ ∆ = =X X X
kk kA t t A t A  (2.5) 

i.e. for any 1≥i ,  

 ( ) ( ) ⋅,⋅, ⋅,+ ∆ = =X X X
ii iA t t A t A  (2.6) 

Combining Equations 2.4 and 2.6, we get  

 1(1 )⋅, ⋅, ⋅, −= − ⋅ ⋅ + ⋅ ⋅X X X
i i iX XM MA A Aα α  
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After rearrangement, we get  

 1
1( (1 ) )−

⋅, ⋅, −= ⋅ − − ⋅ ⋅ ⋅X X
i iX XI M MA Aα α  

Therefore, given a constant 0⋅,
XA , the stationary distribution can be written as: For 

any 1≥i ,  

 0( (1 ) ) ( )−
⋅, ⋅,= ⋅ − − ⋅ ⋅ ⋅i i iX X

i X XI M MA Aα α  (6) 

When 1=α ,  

 0( )⋅, ⋅,= ⋅ .iX X
i XMA A  

 

Assuming that the currently observed repeat configuration distribution in the 

duplication flanking regions is a good approximation of the stationary 

distribution: 11 ⋅, :⋅, : ≈X X
kkA A , we may compute the optimal 1h  and 1

Xf  that result in a 

0⋅,
XA  which can best explain the observed data 1⋅, :

X
kA . To find the optimal values, 

we performed an exhaustive search in the parameter space [0 1] [0 1], × ,  with 

precision of 0.01. Given a parameter set of 1 1( ), Xh f , the corresponding 

0 1 1( )⋅, , XX h fA , and the stationary distribution 1 1 1( )⋅, : , XX
k h fA  are computed. Out of the 

101 101×  sets, the optimal 1 1( ), Xh f  is chosen by minimizing the square difference 

between the stationary distribution and the observed distribution 

1 1 1 1 2
( )⋅, : ⋅, :, −X XX

k kh f AA .  
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Estimation Results 

Cross-validation is performed to test the performance of the model and the 

confidence intervals of the estimated parameters (see Model Evalutation). The 

data from 5�- and 3�- flanking region pairs are analyzed separately, and the 

results are combined. The estimated unknown parameters ( 1h  and 1
Xf ) in each 

dataset and their confidence intervals are listed in terms of mean ±  standard 

deviation.  

 

Model Evaluation 

 

We use a cross-validation method to test the performance of the model and the 

confidence intervals of the estimated parameters. The complete dataset is 

randomly partitioned into two equal-sized groups: An in-sample set to estimate 

the parameters and an out-of-sample set to cross-validate and measure 

significance of the estimated parameters. In the result section, we report the mean 

values of the parameters estimated in 50 independent trials, as well as their 

standard deviations. The goodness-of-fit was tested in the out-of-sample data 

using the parameters estimated from the in-sample data. We use the maximum 

2χ  error between the predicted trajectories and the experimental data as 

goodness-of-fit statistics:  
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2

2
1 3

1

( ), ,
= :

= : ,

  −
= .      

∑ j i j i
j

i k j i

O E
X MAX

E
 

 

By ,j iO  and ,j iE  we denote, respectively, the observed and expected data 

trajectories. Index i  indicates different duplication age groups. Index j  indicates 

different repeat configurations [1: ( )−/− ; 2: ( )+/− ; 3: ( )+/+ ]. The P value is 

computed as 2 2
5( )>Pr Xχ  for our model, and 2 2

7( )>Pr Xχ  for the null model. 

The degree of freedom is computed as: 8(age group number)-2(free parameter 

number)-1=5 for our model, and 8(age group number)-0(free parameter number)-

1=7 for the null model.  

 

Stability and Flexibility Computation  

 

The helix stability of DNA duplex is estimated by the average strand dissociation 

Gibbs free energy (∆G) in overlapping 50bp windows, computed by the nearest 

neighbor model experimentally verified by Breslauer [26]. The DNA flexibility 

is estimated by the average twist angle in overlapping 50bp windows computed 

by the method in [148].  
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2.3 Mer Analysis on the Duplication Flanking Regions 

 
In order to identify the possible sequence �signatures� left by the duplication 

mechanism, we analyzed the duplication flanking regions by computing the mer-

frequency distributions in these sequences. All the flanking sequences were first 

aligned according to their position to the breakpoints. For each mer we create a 

profile of its copy number at each base-pair position in the aligned sequences. 

For example, for the mer �AAAAAA�, we computed how many times it appears 

at the first base-pair position in all the sequences examined, then how many 

times it appears at the second base-pair position, and so on (Figure 1). Assuming 

that the �signatures� contain characteristic sequences, and the distance between a 

certain �signature� and the breakpoints is conserved, we expect to identify the 

characteristic sequence by recognizing words that are overrepresented at specific 

positions.  

 

 

 

 

 

 

Figure 2. The average frequencies of the 6-mer �AAAAAA� in the flanking 

-512bp 

Fr
eq

ue
nc

y 
of

 �A
A

A
A

A
A

� 

Junction Duplicated Region 



 49

sequences at different physical locations relative to the duplication breakpoint. All 

the flanking sequences are aligned in 5�-to-3� direction according to their 

breakpoint positions. The average frequency of �AAAAAA� in the flanking 

sequences (blue) significantly increases in a small region immediately next to the 

breakpoints compared to the control set (black). The peak of the �AAAAAA� 

frequency is only partially due to the enrichment of Alu sequences around the 

breakpoint. After all the flanking sequences containing Alus are removed from the 

analysis, the peak in the �AAAAAA� frequency (cyan) continues to be highly 

significant.  

 

Mers of length 5 and 6 are examined in this manner. The most striking 

observation was the strong enrichment of A(T)-rich words around the 

breakpoints ( 

Figure 2). There are other mers overrepresented at different positions as well. 

Interestingly, the majority of those overrepresented mers were found to align 

with each other and the aligned sequence turned out to be the Alu consensus 

sequence (Figure 3). Such a result reflects the intimate association between Alus 

and the recently duplicated regions�a point we will revisit in the following 

result section. It also attests to the power of the mer frequency analysis approach. 

When all the Alu-containing sequences were removed from the analysis, most 

mers were found not to be significant any longer, confirming that they were 
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merely over-represented as part of the Alu sequences. However, although the 

over-representation level of the A(T)-rich mers also decreased after the removal 

of Alus, they still remained significantly enriched at the breakpoints (Figure 2). 

The findings of the clustering of A(T)-rich mers around the breakpoints suggest 

unstable thermodynamic features around the breakpoints. Furthermore, it has 

been shown that the poly-A duplexes have a much more rigid structure than 

generic B-DNA duplexes [116]. It has been suggested that they contribute to the 

bending of the DNA sequences, and even the deformation of the nucleosome 

structure in yeast [163]. Therefore, the accumulation of the poly-A sequences, 

which have the above physical features, at the duplication breakpoints strongly 

argues for a duplication mechanism that relies on the physical instability and 

easy accessibility of certain specific sequences involved. 

        

Figure 3. The significantly over- represented 5 and 6-mers in the 
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duplication flanking sequences are alignable and form a contiguous sequence 

(Query), which is highly similar to the second half of the Alu consensus sequence 

(Sbjct).  

 

Finally, we verify if we could discern any bias in the distribution of the 

sequences with those �enriched words,� particularly with respect to their 

chromosomal locations (e.g., intrachromosomal vs. interchromosmal duplication, 

pericentromeric/subtelomeric vs. euchromatic regions), but failed to find any 

with high enough statistical significance, suggesting that the mechanisms for 

interspersed segmental duplications are most likely the same for different regions 

in the genome.  

 

2.4 Repeat Analysis on the Duplication Flanking Regions 

 
Inspired by the observation of Alu consensus sequence from the mer analysis, we 

further analyzed the repeat composition in the duplication flanking regions in 

more detail. Two assemblies of human genome (hg15 and hg16) were examined, 

as well as the two rodent genomes (mm3 and rn3) (see Methods). Consistent 

with the previous report on the human segmental duplications [13], we detected a 

significant over-representation of the repeats from the younger Alu subfamilies 

(AluY and AluS) in the flanking regions compared to random regions in 
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both human genome assemblies (Figure 4), but no significant over-representation 

of LINEs was detected. In the mouse and rat genomes, although no over-

representation of the SINEs (B1, B2, ID and B4) is found (Figure 4), we detected 

a significant over-representation of the repeats from the younger LINE1 (L1) 

subfamilies in the flanking sequences compared to random regions (Figure 4). 

Therefore, both the human genome and the rodent genomes are enriched with the 

most recently active family of interspersed repeats in the duplication flanking 

regions (Alu in the human genome [183], and L1 in the rodent genomes 

[57][182]). The generality of the observation suggests that the recombination 

mediated by high-homology repeats may be a ubiquitous mechanism driving 

segmental duplications in all the mammalian genomes.  
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Figure 4. The appearance frequencies of various subfamilies of repeats detected in 

Duplicated RegionFlanking Region 
500bp >6kPair 
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the duplication flanking regions in the human (hg16 and hg15), mouse (mm3) and rat 

(rn3) genomes. The relationship between the flanking regions and the duplicated 

regions is shown in a pair of segmental duplications on top of the figure. In this 

disseration the length of the flanking regions is 500bp, and the duplicated regions are 

longer than 6kb. The fractions of the flanking sequences containing different subfamily 

repeats are compared to the two control sets: sequences randomly selected from the 

whole genome, and sequences randomly selected from inside the duplication regions. 

The names of the different subfamilies of L1, Alu in the human genome, and SINEs in 

the rodent genomes are listed on the X-axis, roughly ordered according to their age 

(from younger to older). Two sample t-tests are used to test the statistical significance 

of the repeat overrepresentation in the flanking regions compared to the two controls 

respectively. ** The frequency in the flanking regions is significantly higher than both 

of the controls with p<0.05. The statistics are based on the following sample sizes: hg16: 

random regions: 20918; inside the duplication regions: 13321; flanking sequences: 9788. 

hg15: random regions: 18864; inside the duplication regions: 9562; flanking sequences: 

7652. mm3: random regions: 15824; inside the duplication regions: 6766; flanking 

sequences: 3288. rn3: random regions: 6274; inside the duplication regions: 3631; 

flanking sequences: 1652. 

 

However, to test the above hypothesis, one needs to consider the highly active 

history of the over-represented repeats in the duplication flanking regions, and 

the reliability of the genome assembly and duplication mapping data. 
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Therefore, we conducted a detailed analysis on the hypothesis through a 

mathematical model that incorporates the evolutionary dynamic of the active 

repeats and minimizes the effect of assembly or mapping errors. 

 

 
2.5 Error Analysis on the Current Mapping of Segmental 

Duplications in Human Genome 

 
Before analyzing the data in greater details, we first examined the degree of 

errors in the current mapping of the recent segmental duplications in the human 

genome that could be caused by the genome assembly, repeat annotation or 

duplication mapping procedure. In fact, as stated in [34], which reported the 

segmental duplication mapping in hg16, the accuracy of the duplication 

boundaries is within 500bp, and there are many mapped duplications involving 

assembly errors present in the earlier assembly version (hg15).  

 

To assess the level of mapping and annotation errors, we conducted a detailed 

analysis on the �gap� and �shift� in the duplication flanking regions with 

matching repeats. Please see Figure 5, Figure 6, Figure 7. If the duplication 

mapping is accurate, the duplications caused by repeat recombination should 

contain no gaps or shifts; while the gaps and shifts in the duplications 
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caused by other mechanisms should have a distribution similar to those in the 

randomly paired genomic sequences. Furthermore, for duplications not caused by 

repeat recombination, the gap sequences should share no similarity and there 

should be no correlation between the shift sizes and the duplication ages. 

Therefore, homologous gaps, or association between duplication age and shift 

sizes are indications of map inaccuracies at the boundaries of the duplications 

caused by repeat recombination. 

                                        

 
 
Figure 5. The figure represents schematically the definition of gap, shift and internal indel. Gap is 

the distance from the matching homologous repeats in the flanking regions to the duplication 

boundary. Gaps are expected when the duplication boundaries or repeat boundaries are not 

annotated precisely, or when there are concentrated accumulation of mutations in a small fragment 

within the duplicated region. Shift represents the difference in the positions of the matching 

homologous repeats in the flanking regions. Some of the large shift sizes may be caused by the 

random pairing of Alu repeats that are not related to duplications in the flanking regions. Others 

could be due to the insertions and deletions accumulated after the initial duplication event.  Internal 

indels are the gaps in the alignment of the duplicated segments, which were caused by insertions 

and deletions after the duplication event. 
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Figure 6. Analyses on the gaps between the matching homologous repeats in the 

flanking regions and the mapped duplication boundaries. We have measured the 

gap sizes in all the duplication pairs with matching Alu repeats (+/+) in their 

flanking regions. The distribution of the gap sizes is shown as a histogram (A & 

A�). Majority of the gaps have very small sizes (about 50% are smaller than 10bp). 

To characterize the larger gaps (>10bp), the gap sequences are aligned using 

dynamic programming (with score values: match=1; mismatch=-0.5; gap=-0.5). 

The homology levels (proportion of matched positions in the alignment) of the gap 

sequences estimated from the alignment results are displayed in B & B� (closed 

bars), in comparison with the estimated homology levels of random genomic 

sequences of similar sizes (open bars). The homology levels of the gap 
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sequences form a bimodal distribution (Mode1 and Mode 2). Mode 1 is similar to 

the random sequence results, and Mode 2 is significantly larger (close to 1). The 

presence of Mode 2 could be explained by the imprecision in the mapped 

duplication boundary positions. Mode 1 may have been caused by the random 

pairing of Alu repeats that are not related to duplications in the flanking regions, 

or by erosions in the duplicated sequences due to mutation accumulation after the 

initial duplication events. C & C� show how much (in proportion) of all the gaps 

within a particular size range has a relatively low homology level (those from 

Mode 1). There are very few long gaps that have low homology level, suggesting 

that most of the long gaps are due to inaccuracies in the boundary mapping. On 

the contrary, the proportion of the shorter gaps from Mode 1 is very large. Since it 

is more likely to get a by chance smaller fragment with low homology level under a 

fixed mutation rate by chance, the above observation is consistent with the 

presence of mis-mapped small fragments that are slightly more mutated but 

should be part of the duplicated regions. It is interesting to note that compared to 

hg15 dataset, in the hg16 dataset, the gap size distribution is more skewed towards 

zero; the  bimodality in the distribution of the homology levels from larger gaps 

are less pronounced; and the proportion of larger gaps with low homology levels is 

smaller. These observations may suggest the improvement of duplication mapping 

in the later assembly version (hg16). 

                 



 59

 

Figure 7. Analyses on the shifts between the positions of the matching 
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homologous repeats in the duplication flanking regions. The distribution of the 

shift sizes between the matching Alu repeats in the duplication flanking regions is 

displayed in (A & A�). In most cases, the shift sizes are small (about 70% is smaller 

than 40bp in hg16). The shifts in the positions of the matching repeats could have 

been caused by insertions and deletions after the initial duplication events, or the 

random pairing of Alu repeats that are not related to the duplication process in the 

flanking regions. To examine the expected shift sizes caused by insertion and 

deletion events after duplication, we analyzed the internal indel sizes in the 

duplication regions aligned by LAGAN [28] (B & B�). The shift sizes expected from 

the random pairing of Alus are computed from randomly paired genomic 

sequences of the same size (500bp) and are shown in C & C�. The distribution of 

shift size (A & A�) has an intermediate shape between internal indel distribution 

(B & B�) and random pairing distribution (C & C�):  Both the shift size 

distribution and the internal indel distribution are skewed towards zero. However, 

the distribution of shift sizes is flatter, possibly due to the presence of randomly 

paired Alu repeats in the flanking regions (C & C�). Since we have included the 

random pairing case in our model (see Appendix), we expect that such cases will be 

removed as genomic background, and will not enter into our estimation of its 

contribution to the duplication process. To test our assumption that a considerable 

amount of the shifts are caused by insertions and deletions after duplication, we 

examined correlation between duplication age and shift size. As expected, shown in 

the age distribution of the duplications containing large internal indels 
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(>median) (E & E�), older duplications (with lower duplication identity levels) are 

more likely to get larger insertion and deletions inside their duplicated regions. 

Similarly, older duplications also tend to have larger shift sizes (>median) in their 

flanking regions more often than younger duplications (D & D�). (The data in D & 

D� is more noisy due to a much smaller sample size than the internal indel dataset.)  

Therefore, the evolution of the shift in the flanking region is consistent with the 

evolution of insertion and deletion events inside the duplicated regions. Similar to 

our observation in Figure 6, in hg16 dataset, the shift size distribution is more 

similar to the internal indel distribution, and the correlation between duplication 

age and shift size is stronger than in hg15 dataset, suggesting a better duplication 

mapping because of the improvement on the assembly accuracy.  

 
 
We can summarize our observation by following conclusions: 

a) Gaps are rarely larger than 10 or 20 bps, and larger gaps often have high 

homologies. This is consistent with the fact that in some cases the boundary 

determined by mapping is incorrect and the true boundary is within the 

flanking region. 

b) The distribution of shift size in duplication flanking regions has an 

intermediate shape between the size distribution of indels inside the 

duplicated regions (internal indels) and the shift size distribution in randomly 

paired genomic regions:  Both the shift size distribution in the 
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flanking regions and the internal indel size distribution are concentrated at 

zero and decay rapidly. The distribution of shift sizes in flanking regions is 

flatter, possibly due to the presence of randomly paired Alu repeats in the 

flanking regions. However, similar to the indel sizes inside the duplication 

regions, the lengths of the shifts in flanking regions are positively correlated 

with the age of the duplication event, suggesting that a considerable amount 

of the shifts are caused by insertions and deletions after duplication, and 

possibly lead to incorrectly mapped duplication boundaries. 

c) The number of large gaps and shifts reduces as assembly and mapping has 

improved (see Figure 6, Figure 7), further suggesting that they are possibly 

caused by the inaccuracies in the mapping and assembly.  

 

The presence of these errors points to need for caution in the design and 

interpretation of the analyses on the duplication flanking regions. An analysis on 

sequences strictly at the mapped duplication boundaries underestimates or even 

worse, diminishes the signals left by the repeat recombination. 

 
 
2.6 Markov Model of the Duplication Process 

 
The repeats that caused duplications by recombination should reside on the same 

side of the duplicated segment, in same orientation, and share enough 



 63

homologous sequences. Therefore, intuitively, we could directly estimate the 

contribution of repeat recombination to duplication by measuring the excessive 

level of such repeat configurations in the flanking regions of the newly 

duplicated segments before any erosion on the sequence occurs through mutation 

events. However, the newly duplicated segments are almost identical, therefore 

are most prone to genome assembly errors, making the estimations unreliable. 

On the other hand, if we use the �older� duplications, which are less prone to 

assembly errors; we could potentially over- or under-estimate the contribution of 

the repeats. �For instance, the actively amplifying transposable repeats can be 

inserted into the flanking regions after duplication, and form a configuration that 

falsely suggests a recombination event, resulting in overestimation of the 

hypothesis. Conversely, the repeats in the flanking regions can also lose its initial 

configuration after the recombination incident due to point mutations and 

deletions after duplication, consequently leading to underestimation of the 

hypothesis. Furthermore, the errors present in the current duplication mappings, 

as shown in the previous section, may also affect the observed pattern of repeat 

distribution.   

 

To resolve the above dilemma, we incorporated the evolutionary dynamics of the 

repeats and the duplicated segments in our model. Over time, all the repeats in 
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the flanking regions, regardless of whether they have caused the duplication by 

recombination or not, are subject to changes in their configurations. Assuming 

that the mechanisms of segmental duplication and their relative contribution have 

been well conserved over time, the current repeat configuration in the flanking 

regions of duplications of different ages may be viewed as sampled from its 

stationary distribution. If the evolutionary rates of the repeats and the duplicated 

segments are known, the relative contribution of repeat recombination to 

segmental duplications can be estimated from the stationary distribution.  

 

To minimize the effect of the errors in the current duplication mapping, in our 

model we use a flanking region size of about 500bp and count a repeat as present 

when its length is larger than 100bp. Such a less stringent criterion would allow 

the presence of small errors in the duplication mapping, thus avoiding 

underestimation. On the other hand, by taking into account the genomic 

background in our model, we �cancel� out the noises introduced by our less 

stringent criteria and avoid overestimation of counting randomly paired repeats 

not involved in recombination events. 
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Table 2. The table lists all possible transitions between different states of the 

duplication flanking regions in a short evolution period �t. The state of a flanking 

region pair is defined by both the configuration of the repeats (short arrows) in the 

flanking regions and the age group (k) of the duplicated segments (long arrows), 

and is schematically displayed in the table. The left column lists all the possible 

transitions within the same age group (k), and the corresponding transition 

probabilities. The right column lists all the possible transitions into the next (older) 

age group (k to k+1), and the corresponding transition probabilities. The transition 

probabilities are expressed by the evolution rates of the repeats and duplicated 

segments: α: the rate of duplicated segments evolving into an older age group in ∆t; 

β: the insertion rate of the repeat in the flanking regions by mechanisms such as 

retro-transposition in ∆t; γ: the decay rate of the repeats in the flanking 
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regions due to mutations in ∆t. (See Methods for details.) 

 
To explain the model, we begin by introducing some notations. In our model, 

each pair of the duplication flanking regions is assigned to a state specified by 

the configuration of the interspersed repeats in the flanking regions and the age 

of the duplication event. There are three possible repeat configurations in a pair 

of flanking regions (defined in Figure 4): The flanking regions may share a 

common repeat when they both contain a repeat from the same family in the 

same orientation and with sufficient length of homology (+/+) (see Methods); or 

one of them has a repeat, the other has no repeat or a repeat of different direction 

(+/−); or neither of them contains repeats (−/−). The ages of the duplication 

events are estimated by the sequence divergence level between the duplicated 

segments, and are grouped into bins with divergence interval ε. A flanking region 

pair is assigned to the age group k, if the corresponding duplicated segments have 

a divergence level of d, where k·ε-½ε≤ d<k·ε+½ε. The divergence interval is 

chosen to be ε=1%  based on sample size needed in each age group to draw 

statistical conclusions without being overly affected by corrupting noise (see 

Appendix A for details). This partition results in eight age groups, after omitting 

the duplications with extremely low divergence levels (d<0.5%) because of their 

proneness to assembly errors. In the following text, we use the vector AX
�;k(t) 

(k>0) to represent the frequencies of flanking region pairs in the kth age 
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group with different configurations of the repeats from X family at evolution time 

t. (AX
1;k(t): (−/−); AX

2;k(t): (+/−); AX
3;k(t): (+/+). ∑

=

=
3~1

; 1
i

X
kiA .) AX

�;0(t) represents the 

configurations of repeat X in the flanking regions of the new duplications at 

evolution time t. Let h1=1�h0 represent the fraction of the duplications caused by 

the repeat recombination mechanism, and among those let fX
1=1-fX

0 represent the 

fraction mediated by repeat family X. (The product h1·fX
1 represents the relative 

contribution of the repeat family X to the duplications through the 

recombination-like mechanism.) AX
�;0(t) can be expressed using h1, fX

1, and X 

repeat distribution in randomly paired sequences from the genome (RX) (for 

details, see Methods). Our model tests the following hypotheses: Null hypothesis 

(H0): recombination between repeats from family X does not contribute to 

segmental duplications, i.e. h1·fX
1=0; alternative hypothesis (H1): recombination 

between repeats does contribute to segmental duplications, i.e. h1·fX
1>0. 
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Figure 8. A schematic display of our mathematical model formulating the changes 

in the distribution of flanking region pairs over different states as a Markov 

process over evolution time. At a particular evolution time, t, the flanking region 

pairs are distributed over different states (circles), defined by the configuration of 

the repeats in the flanking region (−/−, +/−, or +/+) and the age group of the 

duplicated segments (k). During evolution, in each time interval ∆t, the flanking 

region pairs may change its state through many possible transitions (arrows). The 

change in the distribution of the flanking region pairs in a particular state at time 

t+∆t from time t depends on how much has entered into this state from other states, 

and how much has exited out of this state and into other states in interval ∆t since 

time t. The in-flow and out-flow are the sum of the corresponding transition 

probabilities (1a~7a, 1b~7b), whose details can be found in Table 2. Take A2,k (bold 

circled) for example, at evolution time t the flanking region pairs in state A2,k can 

change into other states (grey arrows) in time interval ∆t. At the same time, 

the flanking region pairs in other states can change into state A2,k (dashed 



 69

arrows). The difference between A2,k(t) and A2,k(t+∆t) can be calculated by taking 

the difference between the sum of the outflows (grey arrows) and inflows (dashed 

arrows). Given enough evolution time, the process will reach the stationary state, 

in which the distribution over different states does not change with time any more, 

because each state has identical inflow and outflow. In the A2, k example above, the 

sum of the grey arrows is equal to the sum of the dashed arrows in the stationary 

state.    

 

The model describes the dynamically changing state distribution of the flanking 

regions as a Markov process over evolutionary time under the effect of 

accumulating mutations and repeat amplifications. Table 2 lists in details all the 

possible transitions between states in a small time interval (∆t), as well as the 

corresponding transition probabilities expressed in the evolutionary rates of the 

repeats and duplicated segments. A schematic representation of the model, 

integrating the details in a small example, is displayed in Figure 8.  

 

The model rests on two assumptions: First, the evolutionary dynamic rates and 

the mechanisms of segmental duplication as well as their relative contribution 

have been well conserved over a long period of evolutionary time.  Second, the 

state distribution evolution in the flanking regions has reached its stationary state; 

i.e. despite the uninterrupted dynamic changes in the state of each individual 
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flanking region pairs, the distribution over different states among all the flanking 

region pairs stays unchanged. Formally, there exists a sufficiently large T, such 

that for any time t or s with t, s≥T, AX
�;k(t)=AX

�;k(s), (k≥0). For a detailed example 

of stationary states, see Figure 8. Under those assumptions, we can evaluate the 

two free parameters of the model (h1 and fX
1) based on the observed data, if the 

evolutionary rates are known (see Methods for details).   

 

We apply the model to the duplication flanking regions in the human genome on 

the distribution of their states specified by repeats from Alu (X=Alu) and L1 

(X=L1) families respectively, whose evolutionary rates have been well-

characterized [105] (see Table 2).  Two different datasets (hg15 and hg16) 

[13][34] are used. The free parameters in the model and their corresponding 

standard deviations are determined by cross-validation (see Methods). For both 

datasets (Figure 9), the model with the estimated parameters fits exceedingly well 

with the state distribution of the flanking regions specified by Alu repeats (p>1-

10-4 in the goodness-of-fit test, see Methods), while the null model (with h1·fX
1=0, 

see Methods) cannot explain the observed Alu distribution adequately (p=0.04). 

As expected, the null model can explain the L1 distribution in the flanking 

regions quite well (p=0.86), although the model with the estimated parameters 

can do slightly better (p>1-10-4). See Table 3 for a list of the relative 
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contributions of Alu and L1 by recombination to the recent segmental 

duplications in human genome as estimated by the model. 

 

           

 

Figure 9. The fitting of the model to the distribution of Alu and L1 repeats in the 

duplication flanking regions in the human genome (hg16 shown here) and Mouse, 

Rat genomes. The fractions of flanking region pairs with different repeat 

distribution patterns are computed in each group of different sequence divergence 

levels (d). We estimated the parameters and fitted our model to the distribution of 

Alu and L1 in the flanking region sequence pairs respectively. The various 
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symbols represent the real data, and the smooth lines are the theoretical 

trajectories of the model for the optimal choices of the parameters h1 and f1. The 

total number of flanking regions pairs is hg16: 4894; mm3:1644; rn3: 826.  

 

To further measure the significance of the contribution to the duplication process 

by the recombination in these two repeat families, we compared the estimated 

contribution (h1·fX
1) from the original dataset (flanking) to three control datasets: 

The permuted dataset (permute) is created by randomly switching the partners in 

the flanking region pairs while preserving the total repeat frequencies. The 

outside and inside datasets are obtained from positions farther outside or inside 

of the duplicated regions respectively. The results are listed in Table 3. As 

anticipated by the model, the estimated contributions in the permute and outside 

data, where random distribution is expected, are very close to zero; whereas in 

the inside data, where no random distribution is expected, the estimations are 

very close to one (Table 3). The contribution of Alu recombination to the 

duplication (h1·fAlu
1) estimated from flanking data is about 12%, which is 

significantly higher than the estimation from the permute and outside datasets. 

However, the contribution of L1 recombination estimated from the flanking is 

much lower, and do not differ significantly from either the permute or outside 

dataset. The estimated unknown parameters (h1 and f1) in each dataset 
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and their confidence intervals are listed below. All data are shown in terms of 

mean±standard deviation. Alu family repeats: hg15: h1 = 0.278±0.042; f1
Alu = 

0.445±0.082; hg16: h1 = 0.315± 0.032; f1
Alu = 0.416 ± 0.042; L1 family repeats: 

hg15: h1 = 0.355±0.041; f1
L1 = 0.084±0.026; hg16: h1 = 0.330± 0.048; f1

 L1 = 

0.214 ±0.039. 

 

Dataset Flanking Permute Inside Outside 
Alu(hg15) 12.1±1.4% 0.5±2.3% 91.8±2.2% 3.8±0.8% 
Alu(hg16) 12.9±1.0% 0.2±1.3% 92.5±1.3% 3.7±0.7% 
L1(hg15) 3.1±1.0% 0.4±1.5% 92.1±1.8% 2.7±1.0% 
L1(hg16) 6.9±1.1% 0.8±2.0% 92.7±1.4% 2.7±1.0% 

 

Table 3. The contribution of repeat recombination, estimated by the model from 

the datasets in different regions. Flanking: the original dataset from the 

duplication flanking regions. Permute: the permuted dataset from the flanking 

regions. Inside: the dataset from regions inside the duplication. Outside: the 

dataset from regions outside the duplication far (>3000bp) away from the 

breakpoint. All the data are shown in mean±standard deviation.  

 

The hg15 dataset and hg16 dataset were independently mapped by different 

research groups using different strategies [13][34], and it has been shown that the 

earlier map (hg15) contains more artifacts caused by assembly errors than the 

later one [13]. In spite of such differences, the model still gives 

consistent results between the two assemblies. It is also reassuring to find 
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that for both repeat families, the model estimated that the fraction of the 

duplications caused by recombination-like mechanism (h1) is about 30%, even 

though their contributions to the duplication mechanisms are quite different. The 

consistency in the parameter values suggests the robustness of our model against 

errors in assembly, mapping and annotation. This robustness is mostly due to the 

parsimony of the model, and the way in which the model accounts for a 

reasonable amount of errors and efficiently removes the corrupting noise.  

 

For the mouse and rat genomes, a good estimation of the evolutionary dynamic 

parameters of the interspersed repeats is still lacking. Furthermore, the available 

duplication mappings in the rodent genomes are likely to be less accurate due to 

the unfinished status of the genome assemblies [57][182]. Those factors 

prevented us from applying the model accurately to the rodent datasets as we did 

for the Alu and L1 repeats in the human genome. However, if one approximates 

the mutation rates in the rodent genomes by doubling the corresponding rates in 

the human genome and the rodent L1 insertion rate by tripling the human L1 

insertion rate, then it is possible to reach a fairly good fitting for the L1 

distribution in both the mouse and the rat datasets (Figure 9). The contribution of 

the L1 repeats to the recent segmental duplications through recombination-like 

mechanism is then estimated at about 10% in the rodent genomes.  
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In conclusion, in all the mammalian genomes examined, our model estimates that 

about 10~12% of the recent segmental duplications were caused by the 

recombination between the most active interspersed repeat elements in the 

genome (Alu in human, and L1 in rodents). The results from the model further 

suggest that the segmental duplications are likely to be caused by multiple 

mechanisms, and a large fraction (~70%) of the duplications are caused by some 

unknown mechanism independent of the interspersed repeat distributions, which 

is consistent with the conclusions of [192].   

 

2.7 Physical Instability in the Duplication Flanking Regions 

 
Apart from the repeats, in our mer-based statistical analysis we also discovered 

an enrichment of DNA sequences that are physically instable around the 

duplication boundaries in our mer analysis. The physical properties of the DNA 

duplex plays an important role as the initial step in many molecular processes, as 

shown in transcription [18], replication [135], and the large genome 

rearrangement events that originated from the chromosomal �fragile" sites 

[115][118]. Therefore, it is possible that similar properties can initiate or 

facilitate the segmental duplication process in the mammalian genomes. 
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Figure 10. The helix stability and the DNA flexibility in the repeat-less flanking 

sequences in the human (hg16 shown here) and mouse genomes. The average 
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helix stabilities in the flanking regions around the duplication junction (darker line) 

and the repeat-less random genomic regions (lighter line) are estimated by the 

average ∆G in overlapping 50bp windows. The average DNA flexibility in the 

flanking regions around the duplication junction (darker line) and the repeat-less 

random genomic regions (lighter line) are estimated by the average fluctuation in 

the helix twist angle in overlapping 50bp windows. The shaded regions indicate the 

duplication junction where there is a slight decrease in the helix stability and a 

slight increase in the DNA flexibility. The mapped duplication boundary is at 0bp; 

the negative bp positions are coordinates outside the duplicated region; and the 

positive bp positions are coordinates inside the duplicated region.  

 

To explore possible repeat-independent explanations and to avoid the bias 

introduced by the AT-rich regions in Alus and L1s, we analyzed the flanking 

sequences that do not contain any repeats for their helix stability [26] and DNA 

flexibility [148] (See Methods for details). These two features are suggested to 

be the specific characteristics of the �fragile� sites in the genome, where genetic 

rearrangements frequently occur [115][118]. In both the mouse and human 

datasets, there is a slight decrease of the average helix stability and increase of 

the average DNA flexibility at the duplication junction compared to the other 

regions either inside or outside the duplicated segments (see Figure 10). To test 

the significance of these observations, we counted the number of duplication 
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junctions (-250bp to +250bp flanking the boundary) that contain sequence sites 

with both exceptionally low helix stability and exceptionally high flexibility. The 

criteria for recognizing such a site is that the average ∆G in its centering 50bp 

window is smaller than 1.3kcal/mol/bp (the bottom 0.5% of random genomic 

sequences) and the average fluctuation in twist angle is larger than 14º per bp 

(the top 0.5% of random genomic sequences) [115][118]. We found enrichment 

of such potential �fragile" sites in the repeat-less duplication flanking regions 

from all of the three mammalian genomes compared to the randomly selected 

genomic regions (Table 4). The enrichment of these characteristic sites is 

statistically significant in all the datasets, except in the rat genome where it is just 

on the verge of being significant. Interestingly, the significance level increases 

with the degree of finishing of the genome assemblies, suggesting that the lack of 

significance in the rat genome could be explained by its most primitive status of 

the current assembly. It is worth noting that because of the presence of errors in 

the current duplication mappings, the proportions of the duplications with 

�fragile� site like properties may be underestimated here.  

 

The methods we used to calculate helix stability [26] assumes that the free 

energy of a duplex results from the sum of its nearest-neighbor interactions with 

some pre-assigned initiation free energy for different base pairs, and 



 79

represents the free energy at a particular condition (25ºC in a pH7 1M NaCl 

buffer). The method and data used to compute DNA flexibility were obtained by 

computational method minimizing the free energy without the consideration of 

the backbone [148].  We chose those methods to be consistent with the previous 

work. However, more updated methods and measurements [147][190] can be 

used to repeat the analysis. With improved mapping and measurement of 

flexibility and stability, a more exact picture will emerge.  

Genome Flanking Random Fold P-value 
Human(hg16) 4.82% (2052) 1.99% (2964) 2.42 <10-7 
Human(hg15) 3.81% (2863) 2.41% (5280) 1.58 <10-5 
Mouse(mm3) 3.68% (815) 2.51% (2632) 1.47 <0.05 
Rat(rn3) 4.21% (570) 2.76% (1123) 1.53 0.07 

 

Table 4. The enrichment of the �fragile" sites in the repeat-less duplication 

flanking sequences in different mammalian genomes. The table lists the fractions 

of the flanking and random regions containing �fragile" sites, the total number of 

sequences examined (in parenthesis), and the folds of enrichment (Fold). The 

significance of the enrichment (p-value) is computed using two-sample test for 

binomial proportions. 

 
 
The over-representation of sequences with physical features similar to the 

�fragile� sites in the duplication flanking regions suggests that segmental 

duplications may share a mechanism linked to genetic instability. While this 

is the first evidence for the hypothesis that some repeat-independent 
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mechanism is involved in the recent mammalian segmental duplications, the 

hypothesis needs to be explored further. 

 

2.8 Summary 

 
From previous studies [34] as well as our detailed analysis on gaps and shifts in 

the duplication flanking regions (see Figure 6, Figure 7), we conclude that the 

current map of segmental duplications is still tainted with errors from assembly, 

mapping and annotation. In the presence of these errors, an analysis on sequences 

strictly at the mapped duplication boundaries will underestimate or even diminish 

the signals left by the repeat recombination. Using a flanking region size that 

allows some gaps and shifts helps us to minimize the effect of these errors on our 

analysis. In addition, by incorporating our knowledge of the related evolutionary 

processes in the dynamic model, it was possible to decrease the effect of random 

noise. Therefore, in spite of the nature of the data, our method was found to be 

quite robust. Of course, the accuracy of the results will increase with the 

finishing stages of the genome assembly and the improvement on the mapping 

and annotation schemes.  

 

The human genome has significantly more interspersed segmental duplications 

than the rodent genomes [57][182][183]. It was suggested that 
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the difference is due to the recent burst of primate Alu retro-transposition activity 

[10]. However, the preliminary estimations from our model suggest that the 

relative contribution from the most active repeats through the recombination-like 

mechanism remains more or less constant in the human and rodent genomes. 

Therefore, the answer to why the genomes have different amount of segmental 

duplications is to be sought elsewhere (for example, the difference in the 

tolerance for large duplications, the difference in effective population sizes, or 

the finishing stage of the genome assembly [153]).  

 

Although recombination between repeats cannot explain all the segmental 

duplications, it did contribute to the process significantly, as we have estimated 

using our model. If we view the amplification of repeats also as a duplication 

process, then duplication, as a dynamic process, has demonstrated its avalanche 

effect on the genome evolutionary dynamics by creating a positive feedback 

mechanism through the recent segmental duplications in the human genome 

(Figure 11). The amplifying interspersed repeats in the human genome can drive 

evolution both directly by homologous recombination between themselves, and 

indirectly by causing other duplications which can lead to further recombinations. 



 82

 

 

 

 

 

 

Figure 11. The schematic representation of the propagating effects of duplication 

during recent human genome evolution. The recent amplification (duplication) of 

interspersed repeats (Alu, L1, etc.) populated a significant portion of the human 

genome with segmented regions of high levels of similarity. These interspersed 

homologous repeat sequences provided potential sites for recombinations between 

different parts of the genome, thus conferring a basis for genome plasticity and 

causing various genome evolutionary events, including large segmental 

duplications. The segments duplicated in this manner could in turn mediate yet 

more recombinations between their homologous copies, leading to further 

evolutionary events, including duplications in multiple scales. Hence, duplication 

creates a positive feedback dynamic, and makes genomic evolution a self-driven 

process. 

 

Segmental duplications have been shown to be associated with both genome 

rearrangement events during species evolution [6][11] and the copy number 
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fluctuations [107][134][104][160] and other rearrangements [101] in genomic 

sequences during cancer development. Therefore, some of the mechanisms used 

by segmental duplications, such as recombination mediated by interspersed 

repeats [97][164] may be shared by other genomic rearrangement events. 

Suggested by the �fragile� sites we found in the duplication flanking sequences 

and their association with the breakpoints of the syntenic blocks [6][11], perhaps, 

another common mechanism could be correlated to the specific physical 

properties in the DNA sequences. In fact, it has been suggested that segmental 

duplications in yeast are caused by breakage-induced-replications induced by 

replication fork stalling at the AT-rich replication termination sites [164]. These 

are topics of future research that may rely on mathematical models akin to the 

ones proposed here.  
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Chapter 3 

Statistical Structure of the Genomes 

3.1 Introduction and Related Work 

 
Genome evolution is a dynamic process driven mainly by the changes in the 

genomic sequences. It can further lead to changes in the cellular information at 

higher levels (transcriptome, proteome, interactome, etc.). Various historical 

evolutionary events leave their �signatures" in the present sequences, which can 

be deciphered by statistical analyses on a family of genomes that are currently 

available. Although different organisms can experience completely different 

selection pressure, the dominating evolutionary processes may leave common 

signatures in the genome structures of all the organisms.  

 

A survey of the literature reveals many interesting statistical analyses of various 

kinds on genomic and proteomic data. Among the large collection of results, the 

most interesting ones are those pointing to a universality seen through statistical 

characteristics, shared by data from all organisms, from different cellular 

processes, as well as at various scales. 
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Long-range correlation (LRC) in genomic sequences: Correlations are the 

result of interactions between different constituents of a system. When a 

sequence has LRC, it suggests that the interactions extend within the entire 

system. Since last decade, LRC between single nucleotides have been found to 

be persistent (positively correlated) and pervasive in the genomic sequences of 

various species from different kingdoms, and in different regions of the genomic 

sequences [128][30][126][195].   

 

Nonrandom distribution of various elements on genomes: The physical 

locations of the various DNA elements on the genome are not randomly 

distributed. For example, fractality (fractional dimension) has been detected in 

the juxtaposition of coding and non-coding regions in higher eukaryotic genomes 

[3]. The physical locations of Alu�s in human genome also show a highly 

nonrandom pattern [161]. (This deviation from randomness may be explained by 

the distribution of the target sequences for insertion).  

 

Linguistic features in genomic and proteomic sequences: It was shown that 

the mer (oligonucleotides of a particular length) frequency distributions in DNA 

sequences, both coding and non-coding, and amino acid sequences have a 

statistical feature similar to Zipf�s law, as observed in natural languages 
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[111][56]. Such a distribution, when compared with a random distribution, has an 

over-representation of words of both high and low frequencies.  

 

Scale-free property of cellular pathways and protein interaction networks: 

The large-scale gene networks and protein interaction networks in some model 

organisms are presently available, e.g. metabolic networks in E. coli [84], protein 

interaction networks in yeast [151] and H. pylori [139]. The topology of those 

networks was found to be characteristic of a group of graphs known as scale-free 

networks [83][113]. Scale-free networks are characterized by their �hubby" 

structures associated with a power-law distribution of their connectivities, and 

can be created by an evolution process following a �rich gets richer" rule.  

 

At first glance, the statistical features discussed above may seem to be unrelated 

at one glance. In fact, there is a generic and deep connection among them � all of 

them can be created by an evolutionary process with positive-feedback 

mechanism, such as the duplication process. The duplication process we refer to 

here as well as in the following chapters has the general definition of a process 

that leads to the duplication of a sequence segment. Therefore, it includes more 

specific processes such as tandem duplication, segmental duplication, and even 

transposition. Although some models based on duplication have been 
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proposed to explain the observed statistical features [186][79][20][174][19], no 

systematic analysis on different scales across a wide variety of species has been 

performed. To fully appreciate the significance of duplication process at many 

levels of biology, we have systematically surveyed the distributions of various 

genomic components at different scales (from mers, peptides, to protein families), 

and in different genomes (from bacteria, archaea, to eukaryota). To study if there 

are alternative mechanisms other than duplication that can cause the observed 

shape in the distributions, we also examined the effect of repeats and selection on 

the mer copy number distribution. But neither repeats nor selection can fully 

explain the observed pattern in mer distribution, suggesting that duplication is the 

main mechanism that has caused these statistical features in the genome. A better 

understanding of the genome statistical structure can also provide new insights 

into the study of comparative genomics, which can potentially lead to better 

phylogenomic methods. 

 
 
3.2 Analysis on the Distribution of the Segmental Duplications 

in Human Genome 
 
 
Recently, intensive large segmental duplications (both intra- and inter-

chromosomal) have been reported in the assembled human genome, and the 

potential large duplicated regions (>500bp, >95% identity) have been 
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mapped out in pairs under the standard sequence homology criteria 

[13][34][12][35][170]. In the previous chapter we have studied their potential 

mechanisms by statistical analysis and modeling on their duplication flanking 

sequences. To further study the dynamics of the segmental duplication process, 

we examined how the duplication frequency is distributed along the human 

genome. The average duplication copy number in each non-overlapping window 

of a fixed size is computed along the genome. The histogram of the duplication 

copy number in each window over a chromosome or over the whole genome 

gives a power-law distribution (Figure 12), implying that the genomic regions 

previously duplicated tend to be duplicated more often.  

 

 
Figure 12. The distribution of the potential duplication `hot-spots' on the 
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human genome. A. The distribution of the duplicated segment end-points on the 

chromosomes (over windows size of 1Kb). The `hot-spot' density is color coded (see 

the color bar). The dark areas represent chromosomal regions where no reference 

sequences are available. There is a tendency for areas with high densities to cluster 

together on the chromosomes. B. The distribution of the duplication copy numbers 

on a log-log scale. The X-axis shows the duplication copy number in non-

overlapping windows of size 1Kb, starting from 1. The Y-axis indicates the number 

of non-overlapping 1Kb windows containing a given copy number of duplications. 

It is clear that the Log10(duplication copy number) and  Log10(number of 

windows) form a linear relationship, both in the whole-genome range (thick black 

points) and in individual chromosome range (multiple thin colored lines). 

 
 
To further verify this interpretation, we performed a correlation test (detrended 

fluctuation analysis) [129] on the number of duplication breakpoints in the non-

overlapping windows along the genome in relation to the distances between them. 

The result of the test showed a positive correlation between neighboring 

windows, suggesting that over the evolutionary history, consecutive segmental 

duplications occur favorably near or on some previously duplicated segments, 

and are absent elsewhere. Such observation is consistent with the positive 

feedback dynamics of the duplication process that helps to shape the statistical 

structure of the genome.  
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The power law distribution of the duplication frequency is reminiscent of the 

connectivity distribution of the scale-free network. Along with its definition [84], 

it was suggested that the scale-free network structures can be created by a 

process in which the probability of adding a new edge to a node in the graph is 

proportional to the present number of edges (connectivity) of the node. The 

similarity of the copy number distribution of segmental duplication to the 

connectivity distribution of a scale-free network suggests that the probability of 

duplicating a segment in the genome is roughly proportional to the current copy 

number of the segment.  

 
 
3.3 Analysis on the Distribution of the Protein Domain Family 

Sizes 
 
 
To test if such characteristic dynamics also has long-term impact on the 

proteome level, we analyzed the distribution of the protein domain family sizes 

in various genomes. The protein domain families in different organisms are 

extracted from the protein family database InterPro [5]. The classification of 

domain families is based on sequence signature and homology. A family of 

protein domains found by this method can be viewed as a cluster of amino acid 

sequences from a proteome that share enough similarity with each other and 
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have maintained their critical sequences. When the histograms of the sizes of 

those protein domain families from various organisms were plotted on a log-log 

scale, a linear relationship was observed in all cases, including in E. coli K12, P. 

abyssi, S. cerevisiae, H. sapiens shown in Figure 13. Therefore, the domain 

family size distribution, or more generally, the copy numbers of homologous 

amino acid sequences, seems to follow a power-law distribution. It is consistent 

with the observation in the copy number distribution of the segmental 

duplications, which suggests that the copy number-dependent duplication process 

may have contributed to the distribution of the protein domain family sizes.  
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Figure 13. Protein domain family size distribution in some genomes examined. The 

plots show the protein domain family size distribution in the corresponding 

proteomes (dots). The protein domain family data is extracted from InterPro 

database. The plots are on a log-log scale. The almost linear shape (straight line) 

on such a plot indicates a power law relationship between a domain family size and 

the number of domain families of that size. The exponents of the fitted power law 

are listed. Therefore, the protein domain family size distributions are also 

characterized by an over-representation of large size families when compared with 

uniformly random distributions (black curves). 

 

Exponent=2.69 Exponent=2.62 

Exponent=2.54 Exponent=1.54 
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However, although the protein domain family size distributions from different 

organisms all follow a power-law distribution, the actual exponent in the power-

law is different among different species Figure 13. Such quantitative variation 

may reflect the difference in the rate and scale of the duplication process, as well 

as other evolutionary processes, such as deletion and substitution. We will use a 

parsimonious genome evolution model to estimate such differences in the later 

chapters. 

 
 
3.4 Analysis on the Distribution of the Mer Frequencies 

 
To study the statistical features of smaller sequence elements, we performed a 

large-scale non-overlapping mer-frequency distribution analysis in different 

whole genomic sequences. The experiment was conducted on all the reasonable 

mer-sizes, covering almost all the presently available whole genomic sequences 

and including various organisms from all the kingdoms. To avoid the 

complication of inversions, we treated two inversely complimentary mers as one 

species. (For example, 5'-ATCG-3' and 5'-CGAT-3' are counted as one mer 

species, i.e., their frequencies are combined.) Therefore, for mer size m, there are 

4m/2 species of m-mers. From our results, it is clear that the mer-frequency 

distributions from all the genomic data examined deviate from the random 

distribution (see Figure 14 for some of the results). Furthermore, they are all 
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characterized by the same type of deviation � over-representation of high 

frequency mers.  

 

Figure 14. Mer-frequency distribution in some genomes examined. The plots shows 

the non-overlapping mer frequency distribution (bars) in the genomes of a 

eubacteria (E. coli K12), an archea (P. abyssi) and two eukaryote (S. cerevisiae and 

C. elegans). When compared with the expected distribution from a random 

sequence of the same length (black line), the distributions from real sequences 

consistently show an over-representation of high-copy mers.  

 



 95

We have also examined the mer-frequency distribution in just the coding 

sequences, and the distribution of amino-acid mer-frequency in the 

corresponding proteome sequences. (For a length of m, there are 20m species of 

different amino-acid mers.) Both results share the same type of deviation from 

the random distribution that is observed in the whole genomic sequences (Figure 

15). 

 

      

Figure 15. Amino acid mer-frequency distribution in E. coli K12 and H. pylori 

(bars). When compared with the expected distribution from a random sequence of 

the same length (black line), the distributions from real sequences consistently 

show an over-representation of high-copy mers. 

 

Despite the observation that the mer copy number distributions do not always 

follow a power-law distribution (although one can show that the tail distribution 

is similar to power-law), one finds that the types of the pattern observed in the 
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mer distribution is consistent with those observed in the protein domain family 

size distribution in that the high frequency elements are overrepresented. 

Although on a different scale, the mer distribution may also be caused by the 

positive feedback dynamics suggested by the segmental duplication distribution 

in the human genome, in which the duplication probability is proportional to the 

current copy number of the element. To examine this hypothesis, a simple 

simulation of �evolution by duplication� was performed, where a short random 

sequence (1000bp) was allowed to evolve to a final length of 500Kb by 

duplicating fragments randomly chosen from itself. The deviation in the mer-

frequency distribution of the final sequence from a random sequence closely 

resembles the pattern seen in real genomes (see Figure 16). Therefore, the 

statistics of mers in genomes and short amino-acid words in proteomes could be 

simply due to the duplication processes during genome evolution. We will 

introduce a formal model for genome evolution in next chapter to explain the 

mer copy number distribution more carefully.  
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Figure 16. The 6-mer frequency distribution of the resulting sequence of a simple 

�evolution by duplication" simulation. The initial condition is a random sequence 

of length 1000bp. The sequence is evolved through multiple iterations until it 

reaches a length of 500Kb. In each iteration, a fragment of length uniformly 

randomly distributed from 1 to 100bp is randomly chosen from the sequence, 

duplicated, and re-inserted randomly into the sequence. The dark bars in the plot 

show the 6-mer frequency distribution of the final sequence from the simulation. 

The light bars show the 6-mer frequency distribution of a random sequence of the 

same length. 

 

3.5 The Effect of Repeats and Selection on the Mer 

Distributions 
 
 
One may argue that the overrepresentation of high frequency elements are due to 

selection constrains or excessive repetitive elements. However, since the 
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prokaryotes, such as E. coli and P. abyssi, do not contain many repetitive 

elements, but still show the same qualitative pattern in their composition 

distribution, it is unlikely that the repeats are solely responsible for the �fat-tail� 

in the mer frequency distribution. To examine the hypothesis in eukaryotes, we 

compared the mer copy number distribution in S. cerevisiae before and after all 

the repeats in the genomes have been masked and found no significant changes 

in the shape of the distribution (Figure 17). 

                              

Figure 17. The 7-mer copy number distribution in S. cerevisiae before (grey bars) 

and after (black line) the removal of repetitive elements from the analysis. 

 

To examine the hypothesis that the deviation in the mer copy number distribution 

from the random distribution is caused by differential selection constrains on 

mers with different copy numbers, we examined the rate of mer copy number 

changes in evolution by comparing closely related species. We have 



 99

aligned the genomic sequence of E. coli K12 to another strain E. coli O157 using 

MUMmer [40]. The total copy number of each 7-mer in the strain K12 as well as 

the number of copies that have experienced mutations in O157 compared to K12 

is recorded. If the selection constrain is different for mers with different copy 

numbers, we expect to see a difference in the mutational frequencies of mers 

with different copy numbers. However, as shown in Figure 18, the number of 

changed copies and the total copy number of each mer is linearly correlated, 

indicating a constant mutational frequency for mers of different copy numbers. 

Such observation indicates that most of the mutational changes are 

homogenously distributed among different mers and likely to be neutral; 

therefore, the number of changed copies for each mer is roughly proportional to 

its total copy number. A similar picture is also seen in P. abyssi when it is 

compared to a slightly distant relative P. horikoshii. Therefore, it is unlikely that 

the skewed distribution of mer copy numbers is mainly caused by natural 

selection. However, one cannot rule out the possibility of natural selection effect 

on the composition of the genome. Unfortunately, there is no method currently 

available to measure such effects reliably.  
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Figure 18. The relation between the total copy number of each 7-mer in E. coli K12 

and P. abyssi and the number of copies that have experienced changes when 

compared to the genomes of their close relatives E. coli O157 and P. horikoshii, 

respectively. Each point represents one particular 7-mer. The number of changed 

copies is roughly linear (fitted by the black line) to the total copy number, 

indicating a homogeneous natural selection pressure on mers with different copy 

numbers. 

 
 
3.6 Summary 
 
 
We have examined the copy number distribution of various genome components 

on very different scales and in many different genomes. Consistent with previous 

studies, all genomes examine are characterized by the overrepresentation of the 

high frequency elements. The distributions of larger scale components 

(segmental duplications and protein domain families) follow a power-law 
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distribution. The power law property, one of the definitive features of the scale-

free networks, can be created by a simple duplication process called �preferential 

attachment� that favors high copy number elements. The distribution of mers, 

although do not follow power-laws, can also be explained by an extremely 

simple simulation process that includes duplication process.  

 

By examining the mer distribution before and after the removal of the repeat 

elements in the genome, we have shown that the presence of the repetitive 

elements cannot fully explain the statistical characterization of the mer 

distribution in the genomes. In addition, a linear relationship between the copy 

number of a mer in a genome and the number of copies mutated in a closely 

related genome implies that there is no obvious difference in the selection 

pressure for mers with different copy numbers. Therefore, it is unlikely that 

either repeats or selection can fully explain the observed distribution pattern. A 

duplication process with the positive feedback �rich gets richer� dynamics may 

be the main force carving out the common qualitative features in the statistical 

structures of various genomes. In the next chapter, we will examine the 

quantitative difference in the distributions of these components in different 

genomes. 
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Chapter 4 

A Polya�s Urn Model for Genome Evolution 

4.1 Introduction and Related Work 
 
 
In the past few years, with the increasing availability of whole-genome 

sequencing data, detailed statistical analyses of the sequenced genomes have 

been carried out. It is now apparent that genomes are neither random nor 

deliberately and accurately sculpted. The seemingly random non-coding regions 

have nonrandom compositions and long-range correlations, whereas the more 

conserved coding regions are subject to constant mutations and tolerant of 

enough polymorphisms. Although there is a huge diversity on the sequence level 

in the genomes of different organisms, as we have shown in the last chapter, 

some statistical characteristics of genome composition and structure are found to 

be generic. The results from genomic data analysis at different scales, at different 

levels, and in different organisms repeatedly show the same pattern (over-

representation of high-frequency elements), which are observed as the �fat-tails� 

in the histograms of mer frequencies, gene family sizes, and duplication copy 

numbers [111][56][193]. These statistical features are further reflected in higher-

level cellular processes, such as protein-protein interaction networks, 
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metabolic networks, and genetic pathways [84][151][139][83]. 

 

These observations consistently suggest a generic evolutionary dynamic 

involving positive feedback as postulated by S. Ohno's theory of �evolution by 

duplication�.  Although some models based on duplication have been proposed 

to explain the observed statistical features, all of them are applied to a specific 

level of cellular process: [186] on microbial gene family size distribution; [79] on 

6-mer frequency distribution; [138] on protein family size distribution; [20] on 

expression network topology; and [127] on protein interaction network topology. 

Since the protein interaction networks, as well as other higher-level cellular 

processes, are encoded in genomic sequences, the evolution of their topology is 

rooted in the genomic sequence changes. Therefore, we believe that a more 

general model of �evolution by duplication� at genomic level can explain the 

common pattern observed at various scales and different cellular information 

levels, and enable the quantification of the importance of duplication and/or 

deletion process relative to other evolutionary processes. 

 

In this chapter, we will first introduce a simple version of our genome evolution 

model for the copy number distribution of non-overlapping mers in various 

genomes. Different from the previously proposed �minimal� 
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models [186][79], our model also includes deletion as one of the three essential 

processes in genome evolution besides substitution and duplication. However, 

the number of free parameters does not increase. The parsimony of the model, 

especially the necessity of including deletion, is attested by its superior 

performance in fitting the copy number distributions of mers of different sizes. A 

more refined model applicable to the distributions of overlapping mers will be 

examined and applied to estimate the evolutionary distance in the next chapter. 

 
 
4.2 Polya�s Urn Model for Genome Evolution 

 
Our genome evolution model can be viewed as an extension of Polya's urn model 

[86], and considers genome evolution as a non-stationary Markov process. A 

genomic sequence evolves by three elementary processes under lineage-specific 

rates. Similar to most of the previous models [186][79], in our model, we assume 

that most sequence evolution events are neutral and the mutational rates are 

mostly homogeneously distributed along the genome. Such assumptions can be 

made if one believes that most of the mutational events are neutral or near neutral 

given the effective population size [38]. Under these assumptions, the probability 

of a particular genome component getting involved in any evolutionary process 

is proportional to its copy number in the genome. This is consistent with our 

observation that for a particular mer the number of copies changed during 
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evolution is linearly related to its total copy number in the genome, and is futher 

supported by the clustered distribution pattern of the recent segmental 

duplications in the human genome. Therefore, the genome components with high 

copy numbers are more likely to be duplicated, deleted or substituted, just as the 

properties controlled by the rules of game in Polya�s Urn. The copy number 

distribution of the different components is decided by the relative rate and scale 

of the three processes.  

 

Models with such a simplified assumption may not faithfully reflect the 

biological reality especially without considering the effect of natural selection. 

But so far no good models for natural selection are available. Given the 

complexity of the genome evolution problem, and the evidences that most of the 

time the changes in the genomic sequences are neutral, such simplifications, 

which lead to a mathematically traceable model, are necessary to make the first 

step towards the understanding of the quantitative behavior in the genome 

evolution process. As the model gets more complicated by incorporating more 

context-dependent processes, these assumptions can be gradually relieved.  
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4.3 A Simple Model for Non-overlapping Mers: The 

Parsimony of the Genome Evolution Model  
 
 
Recently, several research groups have proposed genome evolution models to 

explain the statistical features in the distributions of various genome components. 

All of them are motivated by Ohno�s theory [124], incorporating two basic 

processes: duplications and point mutations. DeLisi et al. [186] described a 

simple model to explain the gene family size distributions in various microbes. 

Very recently, Lee et al. [79] proposed another minimal model that was able to 

fit the 6-mer distributions in several bacterial genomes. Both models assume that 

the currently observed genomes have evolved neutrally from some small 

primordial genome with randomly distributed components under homogeneous 

evolutionary rates.  

 

Our model [193] for genome evolution, although also motivated by Ohno�s 

theory, incorporates not only point mutations and duplications, but also deletions. 

By applying different models to the statistical distributions of the non-

overlapping mers in various genomes, we found that deletions play a role no less 

critical than mutations or duplications. The effect of deletion process cannot 

simply be replaced by a reduction in duplication rate and/or an increase in point 

mutation rate. Deletion occupies a unique role in evolution as we found 
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that the omission of the deletion process leads to an inadequate model. These 

conclusions from model analyses are consistent with biological experimental 

results [63][132][131], which show that deletions happen as often as duplications, 

and their contribution in shaping the genome composition is significant. Our 

model, which considers all three processes, is able to fit the distributions of mers 

of different sizes from a wide range of scale. It also applies equally well to 

eukaryotic genomes. However, models with only substitution and duplication 

processes but no deletions, such as Lee�s model [79], can only explain the 

distribution of genome components on a specific scale, and usually is not 

applicable to all genomes.  

 

The effect of genome evolution on the distribution of the non-overlapping mers 

in the genome can be considered in a graph evolution setting. The genome under 

evolution can be represented by a directed Eulerian graph1. Each pair of inverse-

complementary mer species of a particular length is represented by a node 2. 

Whenever two non-overlapping mers are immediately adjacent to each other in 

                                                 
1 Eulerian graph is a group of graphs in which each node has even number of edges (for 
directed Eulerian graph, for each node the number of incoming edges is equal to the 
number of outgoing edges). In these graphs, one can find Eulerian in which each edge is 
visited exactly once.  
 
2To avoid the complication of inversions, we treated two inversely complimentary mers 
as one species. (For example, 5�-ATCG-3� and 5�-CGAT-3� are counted as one mer 
species, i.e., their frequencies are combined.) Therefore, for mer size m, there are 4

2
m  

species of m-mers. 
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the genome, they are connected by an additional directed edge. Without loss of 

generality, the edges are always directed from the 5� end to the 3� end. In a graph 

created in this manner, the number of directed edges from node i  to node j  ( ,i jl ) 

indicates how many times the thi  mer is immediately adjacent to the 5� end of the 

thj  mer in the genome. Due to the Eulerian property of the graph, each node has 

identical in- and out-degrees. We use ik  to represent both the out-degree ( out
il ) 

and the in-degree ( in
il ) of the node i , which are equal to the copy number of the 

corresponding mer in the genome. For mers of size m, and a genome of length G, 

the graph will have a total of 4
2= mN  nodes and 

1=
= =∑NG

im i
E l  edges. Each 

possible Eulerian path in the nontrivial (non-singleton) connected component 

encodes a genome with the same mer composition. However, the genomes 

represented by the same graph do not necessarily have the same arrangement of 

mers.  

 

The evolution of a genome is modeled as a non-stationary discrete Markov 

process on the graph. The model assumes that all the presently existing genomes 

originated from a very small primordial genome with uniformly randomly 

distributed mers. Thus, the initial graph is a random graph with a small average 

degree. In each time step, one of the three possible processes occurs: 
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duplication of a chosen mer (with probability rµ ), deletion of a chosen mer (with 

probability dµ ), or substitution of a chosen mer by another mer (with probability 

sµ ) (Figure 19). Therefore, 1+ + =r d sµ µ µ .  

                          

Figure 19. The three processes occurring during graph evolution: deletion, 

duplication, and substitution. In each process, the target node (clear circle) is 

chosen with preference for nodes with larger degrees: If the i-th node has degree il , 

the probability of it being chosen is proportional to 
1=∑

i
N

ii

l

l
. In deletion (A), a pair of 

edges of the target node (thick black arrows), one incoming and one outgoing, is 

randomly chosen and deleted, and a new edge (thick black arrow) is added 

between the ascendant and descendant nodes (black filled circles). In duplication 

(B), new edges are added between the target node and the ascendant/descendant 

nodes (black filled circles) of an edge (thick black arrow) randomly chosen to be 

deleted. In substitution (C), a randomly chosen pair of edges of the target node 

(thick black arrows), one incoming and one outgoing, is rewired to the 
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randomly chosen substitute node (gray filled circle with thick boundary). Note that 

all the processes during graph evolution preserve the equality of the in-degree and 

out-degree of each node. 

 

To avoid extinction, we let >r dµ µ . During graph evolution, let ( )il t  and ( )E t  

indicate the copy number of thi  mer and the total number of mers in the evolving 

genome at tht  iteration. If we assume that the target mers for any process is 

chosen uniformly randomly from the genome, then the probability of thi  mer 

species being chosen for a process in the next iteration is proportional to its 

frequency in the genome in the current iteration ( ( )
( )∝ il t

E t ). Such a strategy 

implements a �rich gets richer� dynamic rule. If a mer undergoing substitution is 

modeled as changing into any other mer with equal probability after 

substitution 3, then with this simplifying assumption, we can write down the 

difference equation describing the expected probability distribution for the copy 

number of the thi  mer:  

( ( ) ) ( ( 1) 1) ( ( ) | ( 1) 1)= = − = − = − = −i i i iP l t n P l t n P l t n l t n  

                                                 
3We approximate the probability of a specific mer being chosen to substitute another 
mer during substitution as 1

1−N  . This approximation follows if we assume that the 
frequency of the nearest neighbors (with 1bp mismatch) of the ith mer is 3

1−
m

N  in the rest 
of the genome excluding the ith mer. Since only when the mutation occurs at the 
mismatched position and results in a particular base pair out of three possible 
substitution outcomes, will it change into the ith mer, the probability of such an event 
can be approximated by 3 1 1 1

1 3 1
⋅ ⋅ =

− −
m

N m N
. 
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  ( ( 1) ) ( ( ) | ( 1) )+ − = = − =i i iP l t n P l t n l t n   
    
  ( ( 1) 1) ( ( ) | ( 1) 1)+ − = + = − = +i i iP l t n P l t n l t n  
 

1 1( ( 1) 1) (1 )
( 1) ( 1) 1

 − −= − = − + − − − − 
s

i r
n nP l t n

E t E t N
µµ  

  ( ( 1) ) 1 (1 )
( 1) ( 1) 1

 
+ − = − − − − − − 

s
i

n nP l t n
E t E t N

µ  

  1 1( ( 1) 1)
( 1) ( 1)

 + ++ − = + + − − 
i d s

n nP l t n
E t E t

µ µ  

 
1( ( 1) 1) ( )

1 ( 1) 1
 −= − = − − + − − − 

s s
i r

nP l t n
N E t N
µ µµ  

  ( ( 1) ) 1 (1 )
1 ( 1) 1

 
+ − = − − − − − − 

s s
i

nP l t n
N E t N
µ µ  

  1 1( ( 1) 1)
( 1) ( 1)

 + ++ − = + + . − − 
i d s

n nP l t n
E t E t

µ µ    (4.1) 

 

When the mer size is sufficiently large, each mer species only accounts for a very 

small fraction of the genome; we assume that the copy number of each mer 

species evolves independently, and the genome size ( )E t  grows deterministically 

with time in a linear fashion with a rate of ( )r dµ µ− . These approximations have 

been validated by Monte Carlo simulations. Therefore, the above equation can be 

viewed as an expression of the copy number distribution of all possible mers in a 

genome.  

 

We fit our model to the mer frequency distribution in real genomes by 
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numerical simulations. The initial condition is set as a random sequence of length 

1kb. The iteration proceeds until the graph size reaches the corresponding size of 

the real genome under study. The model has only two free parameters, but it is 

able to fit the distributions of mers over a wide range of scales (Figure 20).  

 

Figure 20. Mer-frequency distribution in some genomes examined. The plots shows 

the non-overlapping mer frequency distribution (grey bars) in the genomes of a 

eubacteria (E. coli K12), an archaea (P. abyssi) and two eukaryota (S. cerevisiae 

and C. elegans), and the distribution from random sequence of the same length 

(black line). Our simulation results (grey line) from the simple graph model closely 

fit the �real� mer frequency distribution. Given that we only have 
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two free parameters ( sµ  = single point mutation probability and rµ / dµ  = ratio of 

probabilities of duplication over deletion, see below) in the model, the data-fitting 

is extremely convincing. 

 

The comparison between our full model and the model without deletion process reveals 

that deletion process is as essential as point mutations and duplications. When deletion 

is omitted, the model can still fit the 6-mer frequency distribution quite well � a result 

consistent with Lee, et al. [186]. However, this model can no longer fit the frequency 

distribution of mers of other sizes (Figure 21).   

  

Figure 21. Our model (black solid lines) is fitted to the distributions of different 

mer sizes in Escherichia coli K12 genome (gray bars). The results are 
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compared between the full model (black solid lines) and the model without deletion 

(black dotted lines). Both models fit quite well to 6-mer distribution. However, for 

other mer sizes, the full model, which includes deletion, evidently does much better 

than the other, which only incorporates point mutation and duplication. 

 
Our model fits not only the distributions of nucleotide mers in genomic 

sequences but also the distributions of amino acid mers in protein sequences 4. 

Those results on the amino acid level again proves the essential role of deletion 

in the model (Figure 22). Therefore, although deletion can be neglected when 

modeling the distributions of large functional units, such as gene families [186], 

it has a significant effect in modeling the statistical features at a smaller scale. 

The diminished role of deletions on gene family level may be due to the strong 

selection pressure against deletions of large sizes. But in a scalable and more 

generalizable model, deletion remains irreplaceable.  

                                                 
4When the model is applied to aa frequency distributions, each node in the graph 
represents a different peptide of length w , and there are 20w  nodes in the graph. The 
initial condition is a random peptide sequence of 300 single amino acids 
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Figure 22. The model is also successfully applied to the distribution of 3-amino 

acid mers computed from all Escherichia coli K12 proteins (gray bars). The 

comparison of the results between the full model (black solid lines) and the model 

without deletion (black dotted lines) confirms once again the importance of 

deletion process in the model. 

 
It is worth noting that the model parameter sµ  (point mutation probability) is 

significantly lower when fitted to amino acid mer distributions than to the 

distributions of mers of corresponding sizes (three times the amino acid mer size). 

For example, the sµ  estimated for E. coli K12 nucleotide 9-mers is 0.2810, while 

that for the amino acid 3-mers is 0.0192; and the sµ  estimated for H. pylori 

nucleotide 6-mers is 0.007, while for the amino acid 2-mers is 0.0024. Such 

differences can be explained by the purifying selection in coding regions and the 

degeneracy of amino acid codons. The successful application of the model on 

amino acid mer frequency distributions imply an expected, yet 
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important phenomenon � the evolution processes and their resulting statistical 

structures on the genomic level are well-reflected on protein level. Naturally, we 

expect our model to generalize, in order to explain the statistical features in 

higher-level genomic or cellular processes, such as protein-protein interaction 

networks, signaling pathways, etc.  

 

In our empirical studies, the model is applied to various mer lengths and to 

genomes from organisms of various domains: eubacteria, archaea, unicellular 

and multicellular eukaryota. The fitted values of the two free parameters ( sµ  and 

r

d

µ
µ ) in some of the studied genomes are listed in Table 5.  

Eubacteria 6-mer 7-mer 8-mer 
Genomes sµ  rµ / dµ  sµ  rµ / dµ  sµ  rµ / dµ  

M. genitalium 0.0117 1.03 0.0477 1.14 0.1725 1.67 
M. pneumoniae 0.0410 1.10 0.1241 1.61 0.3106 2.81 
H. influenzae 0.0136 1.03 0.0366 1.10 0.1546 1.58 

S. subtilis 0.0095 1.02 0.0320 1.09 0.1406 1.50 
E. coli K12 0.0101 1.01 0.0210 1.02 0.0708 1.05 
Archaea 6-mer 7-mer 8-mer 
Genomes sµ  rµ / dµ  sµ  rµ / dµ  sµ  rµ / dµ  
P. abyssi 0.0155 1.02 0.0674 1.09 0.2028 1.51 

P. furiosus 0.0111 1.02 0.0303 1.03 0.1132 1.21 
S. solfataricus 0.0072 1.02 0.0338 1.05 0.0670 1.15 

S. tokodaii 0.0059 1.02 0.0190 1.05 0.0637 1.22 
Eukaryotic 8-mer 9-mer 10-mer 
Genomes sµ  rµ / dµ  sµ  rµ / dµ  sµ  rµ / dµ  

S. cerevisiae 0.0568 1.18 0.1944 2.00 0.3704 2.97 
C. elegans 0.0112 1.06 0.0350 1.30 0.1307 2.97 
A. thaliana 0.0051 1.02 0.0131 1.05 0.0519 1.24 

D. melanogaster 0.0114 1.04 0.0393 1.20 0.1728 2.78 
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Table 5. Graph model parameters ( sµ , rµ / dµ ) fitted to the mer-frequency 

distribution data (6 to 8-mer for prokaryotic genomes and 8 to 10-mer for 

eukaryotic genomes) from the whole genome analysis. Different mer lengths are 

shown for prokaryotes and eukaryotes because of the large difference in their 

genome sizes. 

 

The fitted parameter values in the table show some interesting properties. First, 

the point mutation probabilities ( sµ ) increase monotonically with the mer length 

(m) in each genome. This may reflect the scaling effect introduced by fixing the 

size of duplications and deletions in the model as the size of one mer (m). 

However, in the related biological processes, while one point mutation always 

changes one mer to another, the size of a duplication or deletion event may be 

larger than the mer size in the model, leading to changes in the copy numbers of 

more than one mer. For a duplication or deletion event of a certain size, when the 

mer size increases, the number of mers affected by the event decreases. 

Therefore, the relative probability of point mutation of longer mers tends to be 

bigger than those of shorter ones. Second, the model fits various distributions 

nicely when rµ / dµ   is set to be larger than 1, and the values of rµ / dµ   grow with 

the mer lengths in each genome. These results validate our assumption ( rµ > dµ ), 

but also suggest that the probability of duplication decays more slowly than 

the probability of deletion when the length of the duplicated/deleted 
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fragment increases. Therefore, duplication events of large sizes are more likely to 

occur than deletion events of comparable sizes. Third, not so infrequently, the 

relative point mutation rate sµ  as well as the ratio rµ / dµ   tends to be anti-

correlated with the genome size (in Table 5, genomes in different domains are 

listed according to their genome sizes in an ascending manner). These 

observations are to be expected if the sizes of the fragments in both duplication 

and deletion events are bigger in larger genomes.  

 

The fitted model parameters to a genome imply the relative frequencies of point 

mutation, duplication and deletion events over the evolution history of the 

genome. For example, A. thaliana genome has been reported to have gone 

through several rounds of large-scale duplication events, accompanied by 

massive gene loss relatively recently [62][173]. On the contrary, no recent large-

scale duplications or deletions are detected in S. cerevisiae 5, C. elegans, or D. 

melanogaster. Consistent with those genome studies, in A. thaliana the relative 

point mutation rate sµ  and the ratio between duplication and deletion rµ / dµ   are 

much lower compared to other eukaryotic genomes, indicating duplication and 

deletion events of higher rate and larger scale.  

 

                                                 
5Although S. cerevisiae also went through a large-scale duplication, the event is far 
more ancient, and the duplicated segments have significantly diverged. 
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The genomes in the Table 5 are separated into prokaryotics and eukaryotics. The 

prokaryotic genomes are further divided into eubacteria (upper half) and archaea 

(lower half). It is interesting to notice that although the parameter values vary 

among the organisms from the same domain, the most dramatic variations are 

observed between prokaryotic and eukaryotic genomes. More specifically, in 

eukaryotic genomes, the relative point mutation rates ( sµ ) are much smaller, as 

well as the ratios between duplication and deletion probability ( rµ / dµ ) for a 

certain mer length. We hypothesize that this might be due to the differences in 

the efficiency of various evolution machineries acting at the molecular level 

between prokaryotes and eukaryotes, or between haploid and diploid genomes, 

such as DNA repair efficiency, recombination rate, and tolerance of deletions or 

insertions.  

 

The model for genome evolution we presented here does not compensate for the 

effect of natural selection. Evolution is modeled as a purely stochastic process, 

which assumes that all the genome-altering events are neutral. In spite of the 

important role that natural selection plays on evolution of genomes, our 

approximate model is still capable of explaining distributions of various scales 

and in different organisms without implicitly modeling selection force. This may 

imply that most of the events during genome evolution are actually neutral, 
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which is consistent with our analysis results described in the previous chapter 

where we observed homogeneous selection pressure on mers with different copy 

numbers. A more interesting implication is that natural selection acts not only on 

individual gene level, it may also act by tuning the relative frequencies of the 

basic stochastic processes (deletion, duplication and point mutation) in evolution. 

In that case, it is likely that the variation in the model parameter values across 

different organisms further reflects the differences in the organisms� interaction 

with their environment. 

 

As important as the effect of natural selection on genome evolution, the model 

also suggests that evolution is not a delicately tuned process. It is rather full of 

chances at each step. Similar to the dynamics in Polya�s Urn model [86], a small 

change in some earlier steps will possibly lead to dramatic difference in the later 

ones. Each genome can be viewed as the current position of a random walk 

during such a non-stationary Markov process. When two species diverge from 

the common ancestor, it can be viewed as a branching process. Therefore, the 

structures of each genome, such as mer frequency, can be seen as a signature 

more or less unique to the organism in a high-dimensional genome composition 

space. We think this is the biological basis underlying the successful application 

of mer frequency spectrum in several biological sequence classification 
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studies [102]. In the next chapter, we describe a phylogeny method that estimates 

the evolutionary distance by measuring the differences of such stochastic 

processes in different sequences.  

 

4.4 Summary 

 
Motivated by our observations on the statistical structure of the genomes from 

last chapter, we propose a simple genome evolution model to explain the 

common patterns found in the distribution of various sequence elements on 

different scales. The model contains three basic processes: substitution, 

duplication and deletion. Compared to the previously proposed �minimum� 

genome evolution model [186][79], our model has an additional deletion process. 

The necessity of the deletion process in the parsimonious model is proved by the 

capability of our model in fitting the distributions of mers of different sizes, and 

the limitation of a model without the deletion process to fit only 6-mer 

distributions.  

 

We have shown that our simple model is able to fit the statistical distributions on 

different scales and on different sequences (nucleotides and amino acids) from 

wide range of organisms, including eubacteria, archaea and eukaryota. The 

general and unifying nature of our model suggests a universal minimal 
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set of mechanisms (deletion, duplication and substitution) that are driving 

genome evolution. Ultimately, these basic schemes can be viewed as the results 

of selection not just on genomes, but also on the evolutionary processes and their 

modulations. These processes persist possibly because their combination 

balances the plasticity against the robustness of not just the genome sequences, 

but also the cellular and inter-cellular structures. These features of genomic 

processes hold the answer to how genomes can be both stable, and yet 

paradoxically mutable and adaptive. 

 

However, in this simple model studied here, all the duplication and deletion 

events are implicitly assumed to have the size of a fixed mer length. In the next 

chapter, we introduce a more refined model that allows duplication and deletion 

events of different sizes, and use it to study the evolutionary distance between 

two sequences. 
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Chapter 5 

A Novel Alignment-Independent Method for 

Estimating Phylogenomic Distances 

5.1 Introduction and Related Work 

 
Most of the conventional phylogeny methods can be roughly categorized into 

two types: those that rely on detailed sequence alignment results, and those that 

rely on gene order. Those methods are relatively accurate once the correct 

alignment results or gene orders are given, and can provide high-resolution 

details on the evolutionary events in the sequences. However, both types have 

their limitations. For example, both types require a common set of orthologous 

sequences without paralogs. This requirement is difficult to satisfy especially for 

more divergent genomes, not to mention that it introduces bias in the sampling 

procedure. In the alignment-dependent methods, the sequence alignment 

procedure implies the assumption that there is contiguity in the conservation 

between the homologous sequences. However, this assumption can be violated if 

there are any rearrangement events in the sequences, which occurs in divergent 

genomes and frequently in pathogen genomes. Moreover, most of the alignment-

dependent methods use distance measures based on mismatches in the 
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alignment results (Kimura, Jukes-Cantor, HKY, Gamma, etc.) (for a general 

introduction see [122]). Fast evolving regions and insertion/deletion events that 

are not alignable are usually discarded. Since the divergence in sequences 

happens on different time and size scales, such approach may lead to bias in the 

results, even if we ignore the variability in the alignment results depending on 

which algorithm is used (reviewed in [27]).  

 

The phylogeny methods based on gene order compute the genome evolutionary 

distance as the number of genome rearrangement events [145][119][167][61]. 

Those methods do not rely on the details of the sequence alignment results, but 

the order of the orthologous genes in the genomes. However, gene order methods 

are computationally expensive, and only applicable to small datasets with a 

limited number of genes (such as mitochondria or chlorophyll genomes). Since 

those methods usually require a common set of orthologous genes, they are 

affected by common evolutionary events such as gene duplication, deletion, 

fusion and rapid divergence. Furthermore, they are highly sensitive to the errors 

in the genome assembly or gene annotation, which are common in the genomes 

sequenced by shot-gun techniques.  

 

To overcome the problems in the traditional methods, a new class of 
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alignment-independent methods has been developed in recent years to 

complement existing approaches. According to the scale of the components 

studied by those methods, two directions have emerged: those that work on gene 

scale and those that work on mer (oligonucleotides or oligopeptides) scale. The 

gene-scale methods [65][78] mostly take the maximum parsimonious approach 

based on the presence and absence of a particular gene or gene family. These 

methods are applicable to very divergent genomes. However, they are prone to 

the errors or biases introduced by homologous alignments in ortholog recognition 

and genome annotation processes, and are further complicated by the presence of 

paralogs. There are a few methods currently available that are based on the mer 

frequency statistics in the sequences [137][162]. Although they are relatively 

robust and often produce consistent results with the commonly accepted 

phylogenetic relations, the distance measurements used (Singular Value 

Decomposition (SVD) [162] and normalized vector angle [137]) are in 

normalized forms, and do not have explicit biological interpretations. Therefore, 

how well those distance functions will scale to genomes of very different sizes is 

still unknown.  

 

We propose a new method as complementary to the traditional approach, and 

provide an accompanying theoretical explanation for mer-based analyses. 
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The method provides information about genome evolution at a very coarse level, 

and cannot reveal high-resolution details of individual evolutionary events. 

However, like other alignment-independent methods, it is barely affected by the 

assembly or annotation error, and free of the possible bias introduced by the 

alignment algorithm. The method is derived naturally from our genome evolution 

model described in the previous chapter and treats the genome evolution process 

as a non-stationary Markov process. Through a step-by-step development, the 

method offers an explanation on why and how the mer-based methods work 

under a parsimonious genome evolution model, thus providing the missing 

theoretical support for the class of alignment-independent methods. Furthermore, 

unlike the previous methods, the distance measured by our method has explicit 

biological meaning: the total number of substitution, duplication and deletion 

events that occurred since the divergence of the two genomes. Therefore, it is 

expected to scale properly for genomes of different sizes. We have tested our 

method on in silico evolved sequences, as well as some real biological sequences. 

Our method can recover the �true� evolutionary distances quite faithfully when 

the divergence level between the sequences is lower than 35%, a threshold 

similar to the alignment-based methods.  

 

Furthermore, since our method only relies on the mer statistics of the 
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sequences, it not only is independent of the sequence alignment, but also does 

not require a completed sequence. The mer-based method can be applied to 

unassembled sequencing data, such as the unassembled reads from shotgun 

sequencing with a suitable coverage. If the mer statistics can be measured 

directly in array-based experiments, we can even apply our method to estimate 

the phylogenomic distance in a sequencing-independent manner. Most of the 

current array-based phylogeny methods measure the similarity level of the 

unknown species/strains to the known species/strains by the presence or absence 

of the �signature� sequences from the genomes of the known species/strains 

[179][181][47]. Such methods assume that the unknown genome is closely 

related to the known genomes, or we have the completed genomes of enough 

species/strains to estimate the phylogenetic position of the unknown organism. In 

contrast to these methods, our method supports a comparative array-based 

approach that does not require any prior knowledge of the two genomes under 

consideration. The evolutionary distance between the two genomes can be 

measured by their mer-statistics, which can be read off from the array signals. 

These features suggest many applications for our method, such as fast 

sequencing-independent phylogenomic mapping of a large population, 

reconstruction of the cellular phylogenomic relationships in solid tumor tissues, 
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or estimation of the relation between evolution and geometry in metagenomic 

materials.  

 

5.2 A Refined Model for Genome Evolution 

 
In the previous chapter we studied a simple genome evolution model for non-

overlapping mers that treats each m-mer as an inseparable unit of genome 

structure. Through its simplicity and graphic representability, this model allowed 

us to test its parsimony, and suggests the necessity of all three evolutionary 

processes in the model, especially the deletion process. However, genomic 

sequences are made of contiguous base pairs. Therefore, we have further refined 

our model for genome evolution, in which evolutionary events occur at the level 

of individual base pairs. Genome evolution in this model is a continuous-time 

discrete-state non-stationary Markov process.  

 

Similar to the simple model described in the previous section, in the refined 

model, the three elementary evolutionary processes (substitution, duplication and 

deletion) occur under some lineage-specific constant rate. Therefore, although 

the model is additive or cumulative over time, we do not assume a constant rate 

among different lineages. But in this model, the sizes of the duplicated or deleted 

segments follow certain distributions, i.e. duplications or deletions of 
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different sizes (in base pairs) occur with different probabilities (Figure 23). 

According to Li�s and Graur�s work [67][125], the sizes of the indel (duplication 

and deletion) events most likely follow a power-law distribution, so that the 

occurrence probability of duplications or deletions of a particular size is 

inversely proportional to a polynomial (in a simplest form, a power) of the event 

size. Expressed in mathematical notations: 

t : Evolution time (of an arbitrary unit);  

( )G t : Size of the genome at time t  (bp for nucleotides, and amino acid for 

proteins);  

sp : rate of substitution per bp;  

rp : rate of starting a duplication per bp;  

dp : rate of starting a deletion per bp.  

X : Maximal size of deletion or duplication allowed;  

x : Size of a deletion or duplication event;  

( )rf x : Probability of a duplication size of x , where 
1

( ( )) 1
= :

=∑ rx X
f x ;  

( )df x : Probability of a deletion size of x , where 
1

( ( )) 1
= :

=∑ dx X
f x ;  

( )rf x  and ( )df x  are power-law distribution functions: 

( )rf x = − rb
rc x ; ( )df x = − db

dc x ; 

The probabilities of getting a duplication or deletion event of size x 



 130

at a particular base position are ( )r rp f x  and ( )d dp f x , respectively. 

rL : Average duplication size; 
1

( ( ) )
= :

=∑r rx X
L f x x ; 

dL : Average deletion size; 
1

( ( ) )
= :

=∑d dx X
L f x x . 

g : Genome growth rate ( = −r r d dg p L p L ); 

and we assume that the genome size changes deterministically as: 

( ) (0)= gtG t G e . 

 
 
 
 
 
 
 
 
 

Figure 23. The refined Polya�s Urn model for genome evolution.  

 
 
5.2 Rationale 
 
 

 
 

Figure 24. The evolutionary events on the genomic sequence level can be projected 

onto each individual mer as the changes in their copy numbers. A simple example 

of genome evolution from an ancestral genome C to genome A is demonstrated 

ps pr pd fr(x) fd(x) 

x 

Substitution Duplication Deletion 
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in the figure. Three sequential evolutionary events occurred on the sequence: one 

substitution (sub: A!T), one duplication (dup: GA), and one deletion (del: AAC). 

The copy numbers of the two 2-mers: CT and GA, change accordingly.  

 
The method is designed based on a simple observation: The evolution in the 

genomic sequence can be projected onto each individual mer (Projection), whose 

copy number changes as a stochastic evolutionary process governed by the 

dynamics of the evolutionary events on the sequence level (see Figure 24 for an 

example). Therefore, the sequence evolution and the mer copy number evolution 

are tightly correlated. If we can write down such correlation and the form of the 

mer copy number evolutionary process, we can first estimate the dynamics of 

mer copy number evolutionary process (Estimation), and then estimate the 

corresponding events which happened on the sequence level using the mer copy 

number information (Lifting) (Figure 25).    

 

Figure 25. The development of our method can be summarized in three 



 132

steps: 1) Projection: Based on the genome evolution model, the evolution on the 

genomic sequence level can be projected onto the mer space as the evolution in 

their copy numbers. The relation between the parameters in mer copy number 

evolution and genome evolution are established using mathematical induction. 2) 

Estimation: Given the form of the mer copy number evolution process and the mer 

copy numbers in the two genomes, we can estimate the parameters of the process 

using the maximum likelihood method (ML). 3) Lifting: Once the parameters for 

mer copy number evolution are known, we can compute the evolutionary distance 

on the sequence level based on the relation between the parameters in the two 

processes established in Projection step.  

 

These three steps and a reasonable genome evolution model are necessary for the 

development of a phylogenetic method based on mer-statistics because of the 

following two reasons: First, due to the complicated dynamics of the 

evolutionary process, simple distance metrics, such as Euclidean distance cannot 

provide an appropriate distance measurement from the mer copy numbers. 

Second, even if some of the simple distance functions can be empirically 

generated, it is difficult to assess their generality because of the lack of biological 

interpretation on the nature of the function. 
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5.3 Methods 

 
In our method, we use as a prior the parsimonious genome evolution model we 

proposed previously. Although the model is highly simplified compared to the 

real genomic evolutionary events, it possesses sufficient and necessary power to 

explain the distribution of mer copy numbers in various genomes. In the model 

we assume neutral evolution and homogeneous mutation rate throughout the 

genome. Therefore, the probability of a particular mer getting involved in any 

evolutionary process is proportional to its copy number in the genome.  

 

Based on this model, we will relate the mer copy number evolution process to the 

genome evolution process, and show how to estimate the number of evlutionary 

events from mer copy number statistics from the sequences.  

 

Projection of Genome Evolution onto Mer Copy Number Evolution 

 

Based on our model of genome evolution, we deduce the form of the mer copy 

number evolutionary process. Some of the notations are listed below: 

m : Mer size (bp for nucleotides, and amino acid for proteins);  

N : Number of different mers ( 4= mN  for nucleotids, and 20= mN  for amino 

acids);  
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( )l t : Copy number of a specific mer at time t .  

 

The mer copy number evolutionary process is described as a non-stationary 

Markov process expressed in the parameters governing the genome evolution 

model. The parameters can be estimated from the mer copy number distributions 

in the genomes under comparison using the Maximum Likelihood (ML) 

approach. 

 
Sequences with Uniformly Random Distribution 

We first deal with the simplest case in which the components (mers and sub-mers) 

are randomly distributed in the sequence with uniform base composition. In these 

random sequences, the expected frequency of a mer of length m  is 1
4m  for 

nucleotides and 1
20m  for amino acids. Thus, the expected frequency of a mer only 

depends on its length, and does not depend on the frequencies of other mers or 

the subsequences inside the mer. We also assume that all the point mutation 

patterns have equal rates.  

 

1. Nucleotides  

Since we ignore the inversion events, we treat an oligonucleotide and its reverse 

complement as one mer by adding their copy numbers together. During 

genome evolution, the duplicated DNA segments are inserted randomly 
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into the genome in the forward or reverse direction with equal probabilities. 

Since when the mer size is sufficiently large (and the expected mer frequency is 

thus low), it is highly unlikely to get two copies of the same mer in one short 

sequence, we assume the copy number of a specific mer can change at most by 

one in a short evolutionary time interval ( ∆t ). The conditional probabilities of 

copy number changes can be written as below:  
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After omitting the lower order terms ( )( )
( )

l tO
G t

, the evolution of mer copy number 

can be written as:  

 
( ) ( )
( )

( ) ( )

1 1

1

1 1 1

( ) ( ) 1 ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) 1 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 1 ( ( ) ( )) ( ) ( ) ( )
−

−

+ ∆ = + | , = + ∆

+ ∆ = − | , = ∆

+ ∆ = | , = − + − ∆

P l t t l t l t G t p m l t q m G t t

P l t t l t l t G t p m l t t

P l t t l t l t G t p m p m l t q m G t t

 

The parameters in mer copy number evolution, 1( )p m , 1( )q m  and 1( )−p m , 
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are functions of mer size m , and can be expressed using the parameters in the 

genome evolution model:  

1

1

1
1

1

2 1( ) ( )( 1)
3 3

1( ) 2( 1) 2( 1) 2 2 ( ) 2( 1) ( )

5 5( ) ( ) ( )
3 3

=

−

= =

−

= − − + − +

 = − + − + + + − 
 

= − + − + +

∑

∑ ∑

X

r d r r
x m

m X

r d s r r r r
x x m

r d s d

p m p p p f x x m

q m m p m p p p f x x m p f x
N

p m m p m p mp L
 (5.2) 

 

2. Amino Acids  

There are two major differences between the nucleotide model and the amino 

acid model. First, while the nucleotide model uses a four-letter alphabet, the 

amino acid model uses twenty. Second, while duplicated segments can be 

inserted into the nucleotide sequences in both directions, for amino acids there is 

only one direction since the insertion in the opposite direction can change the 

coded amino acids. These differences lead to small changes in the representation 

of the mer copy number in amino acid evolution. However, the general form is 

not changed. For amino acid:  
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(5.3) 

Therefore, for sequences with uniformly random distribution, the parameter 

1( )p m−  in mer copy number evolution is linearly related to the mer size m, and 

the total mutational rate s r dp p p+ + .  

 
 
Sequences with Correlation 

However, for real biological sequences, the behavior of 1( )p m−  deviates from the 

linear relationship with mer size m  (exhibits a quadratic-like behavior, see Figure 

26), indicating that the random model cannot be naively applied to real biological 

sequences where correlation exists. Such deviation is probably caused by the 

over-simplified assumption in our random model. Namely, the frequency of the 

mers is only dependent on their length, whereas in real sequences it depends on 

the frequencies of its submers and subsequences (see Figure 27). Notice that if we 

use a real genomic sequence as our initial common ancestral sequence in the in 

silico simulation experiments, it counts for part of the deviation in behavior.  
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Figure 26. The relation between estimated 1( )p m−  and the mer size m  according to the 

random sequence model. The upper-most panel shows the result from an in silico 

simulation using purely random sequences as common ancestral genomes. 
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The middle panel shows the result from an in silico simulation using the genomic 

sequence of a bacterial phage (Phi6) as the common ancestral genome. The lower-most 

panel shows the result of comparing two phage genomes (Phi6 and Phi8). 

 

Figure 27. Notations for the copy numbers of the submers and subsequences in a length-

m mer. +  and −  superscripts indicate the direction of the mer as forward or reverse 

complements, respectively. xp : copy number of the length-x prefix submer; xs : copy 

number of the length-x suffix submer; j
xb : copy number of the length-x substring 

starting at position j ; j
xc : copy number of the combined substrings excluding the 

length-x substring starting at position j . 

 

Therefore, we further refined our model for the nucleotides to incorporate the 

correlation in the sequences. In this model, the expected copy number of a mer 

would depend on the copy numbers of its sub-mers and sub-sequences, and the 

conditional probabilities of the copy number changes can be described as: 
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After a series of simiplifications (see Appendix B), we get  
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where  
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Mer Copy Number Evolution Parameter Estimation 

 

The parameters in the mer copy number evolutionary process are estimated using 

Maximum Likelihood method (ML). From the above equations, we can see that 

the evolution of a mer copy number is a non-stationary Markov process. The 

Markov transitional matrix for mers of size m  is a tridiagonal matrix defined by  

1, ( , ) ( ( ) 1| ( ) , ( ));i iP m t P l t t i l t i G t+ = + ∆ = + =  

1, ( , ) ( ( ) 1| ( ) , ( ));i iP m t P l t t i l t i G t− = + ∆ = − =  

The values in the matrix change over time with the genome size ( )G t . The 

formula of 1, ( , )i iP m t+   and 1, ( , )i iP m t−  are listed in (5.1) for non-correlated 

sequences, and in (5.5) for sequences with correlations, respectively. Let 
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( )k tα  denote the probability of a mer evolving into k  copy numbers at time t . 

Then given a small evolutionary time interval ∆t :  

0 0

1 1

2 2

( ) ( )
( ) ( )

( )( ) ( )
. .
. .

t t t
t t t

M tt t t

α α
α α
α α

+ ∆   
   + ∆   
   =+ ∆
   
   
   
   

 

1,0 0,1

1,0 0,1 2,1 1,2

2,1 1,2 3,2

3,2

1 ( , ) ( , ) 0 . .
( , ) 1 ( , ) ( , ) ( , ) . .

( ) 0 ( , ) 1 ( , ) ( , ) . .
0 0 ( , ) . .
. . . . .

P m t P m t
P m t P m t P m t P m t

M t P m t P m t P m t
P m t

− 
 − − 
 = − −
 
 
 
 

 

Over an evolutionary time T :  

0 0

1 1 /

2 2
0

( ) (0)
( ) (0)

, ( )( ) (0)
. .
. .

T t

T T
i

T
T

M M M i tT

α α
α α
α α

∆

=

   
   
   
   = = ∆
   
   
   
   

∏ .     (5.7) 

The optimal parameters 
!
θ  for a pair of genomes (A and B) are those that 

maximize the likelihood of observing the mer copy numbers in one genome (B) 

assuming that they have evolved from the corresponding mer copy numbers in 

the other genome (A) through the nonstationary Markov evolutionary process 

described above.  

 

We denote the copy number of the 1 2, ,.. ,..st nd ith Nth  mer in genome A as 
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1 2{ }= , ,.. ,..!
i Na a a a a , and those in genome B as 1 2{ }= , ,.. ,..

!
i Nb b b b b , respectively. 

Then, the above statement can be written as:  

 ( )arg max ( )= | , .!
!! !P b a Modelθθ  

If we assume that the evolution of different mers are independent of each other, 

then:  

 1

1
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arg max log ( )

=

=

 = | , 
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                (5.8) 

where ( | , ) ( );
ii i bP b a Model Tα=  given TM  and (0)α , in which 

(0) 1
iaα = and (0) 0kα =  and for all ≠ ik a .  

 
During the parameter estimation procedure, we artificially choose a genome 

growth rate g . Given a g  value, the evolution time between two genomes A and 

B is:  

 ( ) ( )| − |= .
| |

A Blog G log GT
g                         (5.9) 

 

GA and GB are the lengths of the sequences A and B, respectively. The artifact 

introduced by an arbitrary g  will be cancelled out during the evolutionary 

distance computation step (discussed later). The log likelihood for a particular set 

of parameters is computed as described above, and the optimal 
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parameter set is chosen by searching for maximum log likelihood using simplex 

method.  

When no correlation in the sequences is considered,  

 1 1 1{ }−≡ , , ;
!

p p qθ  

and when correlation is considered,  

 { }≡ , , , .
!

r d s dp p p Bθ  

 

Estimation of Genome Evolutionary Distance 

 

Notice that for both random nucleotide sequences and amino acid sequences, the 

parameter 1( )−p m  is linearly related to the mer size m , and can be written as:  

 1( ) ( )− = + + +r d sp m p p p m C  

C  is a constant: 5
3 ( )− +d r dL p p  for nucleotides, and 21

19 ( )− +d r dL p p  for amino 

acids. If we estimate the value of 1( )−p m  for different mer sizes m , we can get 

the sum of the mutation rates, ( )+ +r d sp p p , by linear regression between 1−p  

and m . For correlated sequences, we can get the sum ( )+ +r d sp p p directly from 

parameter estimation6. The evolutionary distance between the two genomes can 

                                                 
6 So far, in both methods (with or without consideration of sequence correlation), we 
can only accurately estimate the total mutation rate (ps+pr+pd). The individual rates 
cannot be separately estimated. This is possibly because some of the terms in (5.5) are 
much smaller than the other ones, effectively decreasing the degree of freedom in the 
system. 
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then be estimated by the total number of evolutionary events computed as 

follows:  

 
0

0

( ) ( )

( ) ( )

( ) ( ) ( )

=

=

= + +

= + +

+ += | − |
| |

∫
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T gt
r d st

r d s

D p p p G t dt

p p p G A e dt

p p p G B G A
g                        (5.10)

 

 

Method Summary 

 

 

 
 

Figure 28. The design of our method. The procedures are described in the text. 

The procedures within the frame have already been implemented.  

 
The procedures for estimating the evolutionary distance between two genomes 

are represented schematically in Figure 28: Given two input genomic sequences, 

we first compute the (overlapping) copy numbers of all the mers of a 



 149

particular size. The parameters for the mer copy number evolutionary process are 

estimated by the ML method given the mer copy numbers in the two sequences 

and the model of the mer copy number evolution. Since the neutral evolution and 

homogeneous mutation rate assumptions can be violated in real biological 

sequences, we will perform an outlier detection step after the parameter 

estimation. If most of the mers evolve neutrally and have similar mutation rates, 

the exceptional mers will contribute very low likelihood values given the 

parameters estimated for neutral homogeneous evolution. The parameters are 

reevaluated after these outliers are omitted. These two steps can be performed 

iteratively until it meets a certain convergence criterion. The parameters are 

recorded in accordance to the mer size. The procedures described above are 

repeated for different mer sizes. Finally, the evolutionary distance between the 

two genomes is computed. The detected outliers may be subjected to more 

detailed analysis to determine the reasons leading to its abnormality, for example, 

natural selection, active transposition, etc. The analysis can be applied to the 

coding sequences, but can also be applied to the non-coding sequences if two 

genomes are closely related. 
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5.4 Method Verification 

 
Simulation Data 

 

Pair-wise distance 

To verify and evaluate our method, we estimate the total number of substitution, 

duplication and deletion events that separate two genomes evolved from a 

common ancestral genome in silico. We first create an artificial genome (C). 

Using C as an ancestral genome, we evolve it through two lineages (A and B) 

under a specific set of genome evolutionary rates based on our genome evolution 

model (Figure 29). During the in silico evolution, we record the total number of 

substitution, duplication and deletion events that occurred since the divergence of 

the two lineages. This is the true evolutionary distance between the two genomes 

A and B. We compare the true distance to the distance estimated using our 

method based on the mer copy number statistics in genome A and B.  

 

 

 

 

 

Figure 29. The scheme for in silico evolution simulation. The artificial 

C 

A B

A B

Pair-wise C

A0 B0 

A1 A2 B1 B2 

A1 

A2 

B1 

B2 

Four-branch 
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sequences are evolved from a common ancestral genome (C) following the above 

tree structure, and the number of evolutionary events occurred on each branch is 

recorded. The evolutionary distance between the artificial sequences on the leaves 

of the tree (framed) is estimated using our method based on their mer statistics. 

For the quartet scenario, an unrooted tree is generated using the Neighbor Joining 

Method based on the pair-wise distances. 

 
We first test our method without consideration of the correlation in the sequences 

on artificial sequences with random distributions. Two scenarios are tested: 

homogeneous mutation rates where the mutation rates for genome A and B are 

the same, and lineage-specific mutation rates where the mutation rates for 

genome A and B are different after their divergence from genome C. As seen in 

Figure 30, in both scenarios, the estimation given by our method is quite accurate 

when there is still a detectable level of correlation in the mer copy numbers 

between the two genomes, which corresponds to roughly 35% sequence 

divergence level given the set of mutation rates we used. The test also shows that 

our method is robust against lineage specific events, and does not require 

homogeneous mutation rates among the lineages. The 35% divergence level in 

non-coding regions represents quite closely related evolutionary relationship. 

However, our method can also be applied to coding and protein sequences, in 
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which 35% divergence level will imply species that are quite remotely related.  

 

 

        

 

 
 
 

A 

Actual 

Actual 
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Figure 30. Evaluation of the method without consideration of sequence correlation 

using in silico simulated data. We tested our method under two scenarios: 

homogeneous lineage mutation rate (A) and lineage specific mutation rate (B). 

B 

Actual 

Actual 
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The genome evolution parameters in A are: ps=1x10-6, pr=5x10-7, pd=5x10-7 for both 

lineages; the genome evolution parameters in B are: ps
A=5x10-6, pr

A=5x10-7, 

pd
A=5x10-7; ps

B=1x10-6, pr
B=5x10-7, pd

B=5x10-7. 20 independent simulations are 

performed for each different expected sequence divergence level. The top panel 

shows the actual evolutionary distance and the estimated distance of each 

individual experiment measured by the total number of substitution, duplication 

and deletion events. In the middle panels, each circle represents the average of the 

successful trials out of the 20 simulations, and the horizontal and vertical bars 

represent the corresponding standard deviations in the actual and estimated 

distances respectively. A trial is successful if there is a good linear regression 

between the estimated p-1(m) values and mer sizes (m) (p-value<0.01). The success 

rate (number of successful trials/20) is plotted in the lower panels. As shown in the 

figure, our method can estimate the evolutionary distance quite accurately (fitted 

with the grey line of slope 1) when the sequence divergence level is below 35% 

(dotted line). But when the divergence level goes above 35%, the success rate drops 

dramatically as does the estimation accuracy, thus suggesting a possible limit of 

applicability of our method. This limit coincides with the disappearance of the 

correlation in the mer copy numbers from the two genomes, as shown in the upper 

panels (curve).  

 

We also tested our method with consideration of the correlation in the sequences 

on artificial sequences with random distributions (Figure 31). The accuracy 
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levels of the two different methods are similar, although instead of failing to give 

an estimate, the correlation method starts to underestimate the distance (�long 

branch attraction�) when the divergence level is higher than 35%. However, the 

correlation method behave superior to the un-correlated method on real genomic 

sequences (see the next section). 

         

 

Figure 31. Evaluation of the method after taking into consideration the sequence 

correlation using in silico simulated data. 50 independent simulations are 

   Actual 

   Actual 
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performed for each different expected sequence divergence level. The left panel 

shows the actual evolutionary distance and the estimated distance of each 

individual experiment. The right panels show the comparison between the actual 

evolutionary distance and the estimated distance, measured by the total number of 

substitution, duplication and deletion events. Each circle represents the average of 

the 50 simulations, and the horizontal and vertical bars represent the 

corresponding standard deviations in the actual and estimated distances 

respectively. The correlation method starts to underestimate the evolutionary 

distance (long branch attraction) when the divergence level between the two 

sequences goes above 35% (dotted line). The genome evolution parameters are: 

ps=1x10-6, pr=5x10-7, pd=5x10-7 for both lineages. 

 
Quartet 

Ultimately, we would like to use our method to infer the phylogenomic 

relationship among different genomes in an alignment- as well as sequencing-

independent manner. Before applying our method to real genomic sequence data, 

we first evaluated the ability of our method to recover the correct topology of the 

phylogeny tree using in silico evolution. Artificial sequences that form a four-

branch unrooted tree are generated in our in silico evolution experiments. A 

common ancestral sequence (C) is evolved into two intermediate ancestral 

lineages (A0, B0), and the final sequences (A1, A2, B1, B2) used for 
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evolutionary distance estimation are formed by further evolving each 

intermediate ancestral sequence into two lineages respectively (see Figure 29). 

The number of evolutionary events occurred during artificial evolution on each 

branch is recorded. The pair-wise evolutionary distance between the final 

evolved sequences are estimated using our method, and a phylogeny tree is 

constructed using the Neighbor Joining method.  

 

To estimate the sensitivity of our method in resolving short internal branches in 

the phylogeny trees, we generated quartet datasets with different length ratios 

between the internal and external branches. In our experiments, the method 

recovers the correct topology as well as the branch lengths quite faithfully when 

the internal branch length is at least 25% of the external branches (Table 6), 

suggesting that our method is quite robust.  
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True tree Different 
topology Inferred tree 

 0 (15) 
 

 0 (15) 
 

 
0 (15) 

 

 
0 (15) 

 

 6 (15)  

 

Table 6. The sensitivity of our method evaluated using the in silico evolved quartet 

datasets. The true topology of the four-branch tree is shown in the left column with 

the relative length of the external branch to the internal branch indicated as 

mean±std (standard deviation). The evolutionary distances between each pair of 

external sequences are estimated using our method, and phylogenies are 

constructed. The number of times that the inferred tree has a different topology 

from the true tree out of the total number of experiments (in parenthesis) is 

recorded in the second column. When the correct topology is inferred, the relative 

lengths of the branches in the inferred tree compared to the branch lengths in the 

true trees are computed and listed in the third column, in the form of mean±std. 

All sequences are evolved under the parameters: ps=1x10-6, pr=5x10-7, 

pd=5x10-7 for all lineages. 

11.01±0.07 

12.12±0.18 

13.42±0.23 

14.56±0.43 

15.93±0.41 

1.06±0.08 
1.07±0.12 

1.03±0.09 
1.03±0.09 

1.00±0.10 
0.86±0.26 

1.02±0.06 
0.65±0.36 

0.88±0.08 
0.57±0.41 
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Real Genomic Data 

 

Pair-wise distance 

The statistical structure of the real genomic sequences is much more complex 

than the artificially generated sequences, since they also contain correlations, 

base biases, region-specific rates, etc. To test if our method is applicable to real 

biological sequences, we chose a few pairs of orthologous sequences without 

rearrangements for which global alignment is applicable, and compared the 

estimation given by our methods (with or without the consideration of correlation 

in the sequence) to the results from the sequence alignment method (LAGAN) 

[28]. Since the sequences are chosen to be closely related, we may assume that 

the incidents of convergent or reverse evolution events are rare, and the number 

of mismatches and indels in the sequence alignment results can approximate the 

actual evolutionary events that occurred after the divergence of the two 

sequences. Table 7 lists the estimations using the sequence alignment method and 

our alignment-independent methods with or without consideration of the 

sequence correlation. The numbers of evolutionary events computed from our 

correlation method are quite similar to those from the alignments, suggesting that 

our correlation method is also valid for real biological sequences. Within our 

expectation, because it disregards the correlated structure in the real 
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biological sequences, the method without consideration of the correlation in the 

sequences is ill-behaved when applied to the real sequences, constantly 

underestimating the distance or even failing to estimate in some cases. 

 

 
 

Table 7. Comparison of our methods with the alignment results for closely related 

sequences without rearrangements.  

 

Also observed is that the estimations from our correlation method are always 

slightly higher than the event counts from the alignment results, especially for 

the sequence pairs with slightly higher divergence level such as D. melanogaster 

vs. D. pseudoobscura. This may suggest that the event counts from the 

alignments can be viewed as a weighted parsimonious counting, and 

underestimate the real event number because of the occurrence of convergent or 

reverse evolution. 

 

Number of Events 
Genomes (divergence) 

Alignment Un-correlated Correlated 

D. melanogaster vs. D. pseudoobscura orthologous 

sequence (35%) 
3962 Fail 4543 

Mouse vs. Rat orthologous sequence (11%) 471 457 491 

Human vs. Baboon orthologous sequence (6.2%) 490 380 513 

Human vs. Chimp orthologous sequence (1.6%) 127 101 142 
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Quartet 

We also tested our method on real genomic sequences to determine its efficiency 

on phylogeny tree inference. As benchmark, we chose several orthologous 

regions from the multiple mammalian (human, macaque, mouse and rat) 

sequence alignments generated by MULTI-LAGAN [28]. The divergence level 

between the four species in these aligned regions is roughly as follows: Human 

vs. Macaque: ~5%; Human or Macaque vs. Mouse or Rat: ~35%; Mouse vs. Rat: 

~12%. Unrooted four-branch trees are generated based on the number of event 

counts from sequence alignments or the evolutionary distances estimated by our 

method. The topology of the trees and their branch lengths are compared. In all 

three cases, the method faithfully recovers the topology (Table 8), however, the 

internal branches is slightly underestimated in some cases, mostly because the 

method starts to underestimate the distance when the divergence level in the 

sequence pairs is larger than 35%. 
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Examples Tree built from 
alignment event counts 

Tree built from our 
method 

 
1   

 
2   

 
3 

  

 

Table 8. The phylogeny trees inferred from the orthologous sequences of four 

mammalian species. In the left column, the trees are inferred by the pair-wise 

distance between sequence pairs measured by the total event counts in the 

sequence alignments. The trees in the right column are inferred by the pair-wise 

evolutionary distances estimated by our method. The trees are constructed by 

Neighbor Joining method.  

 

5.5 Study on the Modulation of Substitution and Indel Events 

 
Many investigations have been conducted to examine the variation in the rates of 

different evolutionary events along a genome [157][74][188][140]. In these 

studies, the rates are found to be highly correlated among different 
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mutational processes, including substitution, deletion and duplication. It is now 

well accepted that instead of a universal molecular clock, the substitution rate, as 

well as duplication and deletion rates varies along different evolutionary lineages 

[132]. The differences in these rates contribute to generate different statistic 

composition and structures in various genomes. For example, a higher deletion 

rate has been suggested to be responsible for the smaller size of some genomes 

[131][132], and a higher transposon amplification rate is one of the factors that 

caused human genome expansion [105].  

 

Some studies have been done to examine the correlation between the duplication 

and deletion rates of the functional units (genes or transposons) in the genome 

and the substitution rate. Studies on microbial genomes suggest that the free 

living bacteria with large effective population sizes have a relative higher rate in 

genome rearrangement, including gene duplication and deletion events, relative 

to substitutions [166]. A recent study on alpha�proteobacteria [24] could not find 

any correlation among the rates of gene duplication or deletion and substitution. 

Although the topology of the phylogeny trees built by maximum parsimony (MP) 

based on indel events are usually consistent with the trees built based on 

substitutions [91], to test the consistency on the branch lengths, one would need 

an efficient ML method to estimate the branch length based on indel events. 
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However, currently such a method is lacking. Therefore, in large, whether and 

how the rate of the indel (deletion and duplication) events on various scales 

changes with regard to the substitution rate along the evolutionary history of the 

genome is still a mostly unexplored problem.  

 

Based on our knowledge from molecular biology, the rates of the different 

evolutionary processes may change in many different ways. For example, some 

DNA surveillance machinery [100] can target both mismatches (caused by 

substitutions) and �bubble� structures (caused by indel events). If the relative 

efficiency of the DNA surveillance machinery in eliminating substitutions and 

indels is well conserved during evolution, as well as the relative effect of the 

cellular or environmental factors on the mutational events, the changes in the 

substitution and indel rates should co-vary along the evolutionary time in 

different lineages. The co-variation in the mutational rates can also be caused by 

changes in the effective population sizes. On the other hand, some of the DNA 

surveillance machineries and external factors may be more likely to affect a 

specific type of mutation [76]. If these more specific factors are differentially 

regulated in different lineages, then the relative rate of the substitution and indel 

events can change. However, because of the constraints on how much mutation a 

genome can tolerate without losing its fitness, the total rate of the various 
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evolutionary events may be under strict control. In such a case, the substitution 

and indel rates may not change in a tightly correlated manner, but their sum may 

remain constrained. 

 

The ability of our method to detect evolutionary distance between two sequences 

as the sum of the substitution and indel events makes it possible to study the 

modulation of the substitution and indel rates in different sequences when the 

evolutionary distance estimation from our method is compared to that from the 

methods based on substitution only.  

 

To demonstrate the application of our method in the study of the modulation of 

the substitution and indel events, we simulated different scenarios (Table 9) of 

substitution-indel modulations in a set of quartets. In the first scenario, the 

substitution rates in each lineage remain the same, while the indel rates are much 

larger in two of the lineages. The substitution-based method gives a tree with 

equal branch lengths, ignoring the accelerated indel rates in two of the lineages. 

However, our method generates a tree with longer branches for two of the 

lineages with higher indel rates, because the evolutionary distance estimated 

using our method also incorporates indel events.  In the second scenario, the 

substitution and indel rates vary among different lineages, but 



 166

compensate each other in total mutational rate. In this case, the substitution-

based method generates a tree with unequal branch lengths, while our method 

gives a tree with equal branch lengths. The two scenarios are simulated in the in 

silico evolution, and the trees generated using different methods are compared.  
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 True tree Substitution-based 
method Our method  

0 5 0 A1A2 

2 1 1 A1B1 

0 5 0 A1B2 

1 3 0 A2B1 

0 0 0 A2B2 

 
 

 
1.24±0.14 0 

 

2 

 

 

0 B1B2 

0 5 0 A1A2 

0 1 1 A1B1 

0 5 0 A1B2 

0 4 1 A2B1 

0 0 0 A2B2 

 

 
2.53±0.33 0 

 

 2 

 

 0 B1B2 

0 5 0 A1A2 

0 1 0 A1B1 

0 5 0 A1B2 

0 4 0 A2B1 

0 0 0 A2B2 

 

 
4.05±0.45 0 

 
1 

 

 
0 B1B2 

0 5 0 A1A2 

0 1 0 A1B1 

0 5 0 A1B2 

0 4 0 A2B1 

0 1 0 A2B2 

Scenario 
1 

 

 
5.47±0.43 0 

 

1 

 

 1 B1B2 

 

1 
1 

1.30 

0.77 
1.16 

0.89

1 

1.15 

1 1 

5.88 

3.60 
5.18 

4.33

1 

8.60 

8.45 8.50 

7.49 

1 
1 

2.60 

1.52 2.28 

1.82

1 

2.53 

2.57 2.40 

2.32 

1 1 

4.38 

2.63 3.86 

3.07

1 

6.80 

7.03 

6.35 

1.10 
1.21 

1.26 

7.31 
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 True tree Substitution-based 
method Our method  

5 0 2 A1A2 

0 0 0 A1B1 

5 0 3 A1B2 

4 0 2 A2B1 

0 0 3 A2B2 

 

 

3 

 
 

 
1.02±0.07 0 

 

 

3 B1B2 

5 0 4 A1A2 

0 0 2 A1B1 

5 0 3 A1B2 

2 0 1 A2B1 

0 0 0 A2B2 

 

 

2 

 

2.18±0.15 0 

 

 
0 B1B2 

5 0 4 A1A2 

0 0 0 A1B1 

5 0 3 A1B2 

4 0 2 A2B1 

0 0 0 A2B2 

 

 
3 

 

 
3.35±0.19 0 

 

 
1 B1B2 

4 0 0 A1A2 

0 0 0 A1B1 

4 0 0 A1B2 

4 0 1 A2B1 

0 0 0 A2B2 

Scenario 
2 

 

 
2 

 

 
4.62±0.35 0 

 

 
0 B1B2 

 

 

1 

1

1

1 

2.21 

1.68 
2.13 

2.85 

1 

3.31 

5.78 

3.33 

4.61 

4.41 

4.48 

6.18 

1 

3.21 

4.61 
3.41 

3.84 

1 

4.95 

7.53 
4.76 

6.60 

1 

6.24 

8.13 6.78 

8.59 

1
1 

1.02 

1.68 
1.00 

1.40 

1 

7.71 

1 

1.15 

1.53 
1.06 

1.44 
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Table 9. The two different scenarios of differential modulation of the substitution 

and indel events. The trees inferred based on the substitution in sequence 

alignments using maximum likelihood (ML) method and the tree inferred using 

the evolutionary distances estimated from our method are compared to the true 

tree side by side. Each row represents the average of five independent quartet 

simulations. The average lengths of the external branches relative to the internal 

branches are marked. The internal branch corresponds to approximately 5% 

sequence divergence level. Neighbor Joining method is used to construct the trees 

from the evolutionary distance estimations. The number of trees (out of five trials) 

with significant differences in a particular pair of external branches is listed. Two 

external branch lengths are significantly different if their length ratio falls in the 

upper or lower 2.5% of the ratio distribution empirically computed from 

simulated quartets with expected equal external branches.  

 
Some of the results are listed in Table 9. To measure the significance of the 

length difference among the external branches, we simulated quartet data with 

expected equal length external branches (see Table 6), and computed the 

distribution of the ratios between the external branches from the four-branch 

unrooted tree (Figure 32). The lengths of two external branches are significantly 

different if their ratio falls into the upper or lower 2.5% of the distribution. The 

numbers of trees in each experiment that have significant difference in a 

particular pair of external branches are listed in Table 9.  
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Figure 32. The empirical distribution of the ratio among external branches 

computed from the simulated quartet datasets where equal external branch 

lengths are expected. The dotted lines show the upper and lower 2.5% of the 

distribution, whose explicit values are listed on the upper right part of the plot.  

 

Our method, although tends to underestimated the relative length of the internal 

branch when the divergence level between the sequences increases, is able to 

reconstruct the relative lengths of the external branches quite faithfully to the true 

tree, and effectively incorporates the influence of lineage-specific variations in 

the relative substitution and indel rates. However, the trees constructed using 

substitution-based method cannot reflect the effect of indel events. The 

comparison between the trees in their branch lengths gives an estimate on 
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the relative rate of indel events with regard to substitutions. For example, in the 

second row of scenario 1, according to the true tree, the quartet should have 

equal external branch lengths (no significant branch length difference is detected). 

Consistent with the true tree, in most of the cases there is no significant 

differences between the external branch lengths in the trees inferred using our 

method. However, in the trees inferred by substitution-based method, some of the 

branch pairs are found to be significantly different. For instance, A2 branch is not 

significantly different from the A1 branch based on our method, but is 

consistently longer in the substitution-based trees. Such an observation suggests 

that the substitution rate in A2 lineage is significantly higher than that in the A1 

lineage; however, since there is no difference in their total mutation rates, the 

indel rate in A1 lineage is much higher than that in the A2 lineage. Therefore, our 

method allows one to investigate the difference in the modulation of the 

substitution and indel processes in difference sequences. 

 
 
 
5.6 Summary 

 
From the parsimonious genome evolution model, we have derived an alignment 

and even sequencing-independent method for evolutionary distance estimation 

based on mer statistics. The method treats genome evolution as a non-



 172

stationary Markov process, and the evolutionary distance is measured by the total 

number of substitution, duplication and deletion events since the divergence of 

the two sequences, and estimated by ML given the mer statistics of the two 

sequences. During the development of the method, we first introduced a method 

suitable for sequences with random distributions. To incorporate the correlation 

between the copy number of a mer and its sub-mer and sub-sequences, we 

developed a more complicated but more realistic method applicable to real 

genomic data with complex structures.  

 

Compared with the other alignment-independent methods that are currently 

available [65][78][137][162], our method offers an explanation of why genome 

composition-based method works. In addition, its estimated evolutionary 

distance has explicit biological meanings. Furthermore, since the method allows 

growth or reduction of the genome size, it automatically takes into account the 

mer copy number distribution shifts between genomes of different sizes. 

Whereas most of the other phylogenetic methods do not consider the changes in 

the sequence sizes, it is not clear how well they can scale when the two 

sequences under comparison have very different lengths.  

 

We have evaluated our method using both simulation data and real genomic 
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sequence data to test its ability in recovering both the pair-wise evolutionary 

distance and the topology of the underlying quartet phylogenetic tree. The 

method can faithfully recover the true distance and phylogeny tree topology 

when the divergence level between the sequences is under 35%.  

 

One of the major differences between our method and most of the commonly 

used phylogenetic methods is that our evolutionary distance measurement also 

incorporates the number of indel events besides substitution, while most of the 

other methods are based purely on the substitution changes. Therefore, when 

combined with the substitution-based method, one can use our method to study 

the modulation of the indel events relative to substitutions in different sequences. 

We have demonstrated some examples from in silico evolution. When more 

computationally efficient implementation of the method is available, we can 

apply it to whole-genomic sequences.  

 

Finally, although so far our method has been described based on mer statistics, it 

can be easily generalized to the statistics of other genomic components, such as 

protein domains, gene families, etc., by changing the unit size in the method 

from a small mer to a larger functional unit while keeping the same evolutionary 

model. 
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Chapter 6 

Summary 

6.1 Summary 

 
In this thesis, we have examined the duplication process in genome evolution 

from different angles using various Markov models, including the mechanisms of 

the segmental duplications in the mammalian genomes; the analysis and 

modeling of the duplication effect on the statistical structures of various genomes; 

and the measurement of evolutionary distance incorporating duplication events. 

 

Mechanisms of the Recent Segmental Duplications in Mammalian Genomes 

 

To uncover the mechanisms for the recent segmental duplications in the 

mammalian genomes, we analyzed the duplication flanking sequences with 

various methods in great details, and modeled the evolution of the flanking 

sequences after duplication as a Markov process that incorporates the death and 

birth of the sequence elements involved in the duplication process [194]. From 

our analyses, we found that about 12% of the recent segmental duplications in 

the mammalian genomes were caused by recombination mechanism between 
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homologous interspersed repeats that are most recently active, demonstrating the 

dynamic interaction between duplicated sequences of different scales. We also 

found that a part of the segmental duplications which cannot be explained by the 

repeat recombination mechanism are correlated with physical instabilities around 

their duplication breakpoints. Similar physical properties have been found at the 

fragile sites that usually lead to genetic instabilities [115][118]. On the other 

hand, segmental duplications have also been found to be involved in large scale 

genome rearrangements [11][6][51][85]. The association between such �fragile� 

sites and the duplicated segments suggests a complex interaction between 

duplication and other genome evolutionary events.  

 

Similar processes have also been found in developing cancer cells [106][107][2] 

[134], which may be caused by similar mechanisms. Currently, with techniques 

such as array-CGH, the copy number fluctuations in the cancer genome, i.e. 

duplication and deletion events, can be detected. When enough resolution is 

reached on the breakpoint locations of these events, similar sequence analyses to 

the ones we used here can be applied to suggest their mechanisms and dynamics.  
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Analysis and Modeling of the Duplication Effect on the Statistical Structure 

of the Genomes 

 

The analyses on the statistical structure of a wide range of genomes showed 

confound effect of the duplication process on various scales [193]. The 

distribution of the genome components of different scale and in various genomes 

are all featured by the over-representation of the high-frequency elements. An 

examination on the effect of selection on the mer copy number changes found no 

correlation between the selection pressure and the copy number of the mers in 

the genomes. This suggests that most of the evolutionary events affecting mer 

copy numbers are neutral and the mutational rates are mostly homogeneous 

along the genome. Therefore, the observed statistical structures are likely to be 

explained by the intrinsic dynamics of the various evolutionary processes instead 

of the effect of natural selection.  

 

To explain these observations, we developed a parsimonious genome evolution 

model on the sequence level that has three elementary processes: substitution, 

duplication and deletion [193]. The parsimony of the model, especially the 

necessity of the deletion process has been demonstrated by the difference 

between the full model and the model without the deletion process on their 

ability in explaining the distribution of mers of different sizes. The model was 
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applied to various genomes. The fitted parameters reflect the average relative rate 

of the three processes over the evolutionary history of the genomes.  

 

Alignment-Independent Phylogeny Method 

 

Based on our parsimonious genome evolution model, we further developed an 

alignment-independent method for measuring evolutionary distances, estimated 

as the total number of substitution, duplication and deletion events. Comparing to 

other currently available methods, the independence of our mer statistics based 

method from alignments and even fully assembled sequences makes it applicable 

to sequences with intensive rearrangements, unassembled sequence fragments, or 

even sequencing-independent array-based data.  These features will have 

important applications to large scale phylogeny mapping efforts, such as 

different individuals in a mixed population or cells from different geometric 

compartments of a solid tumor. 

 

We have evaluated our method for its resolution in both pair-wise and quartet 

distance inference using both simulated and real genomic sequences. The method 

recovered the evolutionary distances quite faithfully when the divergence level 

between the sequences is less than 35%, but start to show long-branch attraction 

effect for higher divergence levels. It can consistently resolve the correct 



 178

topology of the quartets when the internal branch length is >25% of the external 

branch lengths. Furthermore, we have demonstrated, using simulated data, that 

by comparing the results from a substitution-based method, one can use our 

method to study the differences in the modulation of the substitution and indel 

events in various lineages. Note that the indel events detected by our method 

include different scales, and are not limited to transposon insertion and deletions. 

Therefore, it provides an unprecedented approach to study how the relative 

frequencies of different mechanisms in the genome evolution process are 

regulated.  

 

In summary, duplication is a multi-mechanism evolutionary process and has a 

positive-feedback dynamics. Its relative rate and scale compared to other 

evolutionary events has a profound effect on the statistical structure of the 

genomes on many different levels. Because of such complexity, one needs to 

consider the dynamics and interactions of the duplication process when studying 

its mechanisms and effects. But with proper models, one can examine these 

problems both qualitatively and quantitatively.  
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6.2 Future Work 

 
Further Examination of the Segmental Duplication Dynamics 

 

Both the clustered distribution of the segmental duplications [193] and the 

�duplication in duplication� mosaic structures in some of the recently duplicated 

segments [8] suggest that a positive feedback dynamics in the duplication 

process. Although such a dynamics can be explained by a Polya�s Urn type of 

model, the actual mechanism is still not completely understood. Apart from the 

recombination mechanism between the amplified homologous repeats that can 

lead to duplications of a larger scale, one of the plausible hypotheses is that the 

presence of older duplications can induce more new duplications by providing 

highly homologous and long recombination seeds. To test such a hypothesis, one 

needs to annotate duplications of a wide range of different ages. Although this 

has been proved to be a very challenging task, it can provide deep insights and 

possible explanations on how the positive feedback dynamics of duplications are 

formed, as well as how they affect other rearrangement events. Therefore, we are 

currently developing a new Bayesian-based comparative genomics approach 

aiming to map out the less recent segmental duplications in the mammalian 

genomes. A Markov model similar to the one we used on the more recent 

duplications can be used to dissect the complicated interaction between 



 180

duplications of different ages and between duplications and other genome 

rearrangement events, such as synteny group formations. Furthermore, when 

duplications of low enough homology level can be detected, one can also start 

examining the effect of duplication on speciation events.  

 

Incorporating Heterogeneous Mutation Rate in the Alignment-Independent 

Phylogeny Method 

 

The alignment-independent method we proposed in this thesis assumes neutral 

evolution and homogeneous mutation rates along the genome. However, in real 

genomic sequences, the mutational rates change from region to region 

[157][74][188][140]. To account for such phenomenon, we plan to extend the 

current method to be hyper-parametric. Similar to what has been done to model 

the region-specific substitution rate, instead of using constants, we can treat the 

observed mutation rates on each mer as drawn from a underlying distribution, 

such as a Gamma distribution [122]. The parameters of the distribution can be 

estimated from a sufficiently large dataset.  
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Bayesian Framework for the Alignment-Independent Phylogeny Method 

 

The current parameter estimation step in our phylogeny method takes a 

maximum likelihood approach because of the lack of the prior knowledge on the 

general distribution of the various mutation rates. However, as the estimations on 

the mutational rates in different lineages start to accumulate, they can be stored 

in a database. A Bayesian approach then can be taken, assuming that the already 

estimated mutational rates provide an approximation to the true global 

distribution, and can be taken as a reasonable prior.  

 

Generalization and Potential Application of the Alignment-Independent 

Phylogeny Method 

 

The mer-based alignment-independent method we developed can be easily 

generalized to model the copy number fluctuations in other genomic components, 

such as protein domains or gene families. Such generalization will provide a 

unifying explanation on how the class of composition-based phylogeny methods 

work, and may lead to a hierarchical method that can compare and combine the 

phylogenetic inferences computed from different levels of genomic structure.  

 

Finally, with our method, one can design array-based experiments to 
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reconstruct the phylogenetic relationships in a mix population. For example, by 

whole genome hybridization, the copy number of different mers in a particular 

genome drawn from a population can be estimated from the signals on the chip, 

from which we can apply our method to estimate the evolutionary distance 

between any individuals in a sequencing-independent way. Similarly, the method 

can be applied to the tumor cells separated from different geometric areas of the 

tumor tissue to find whether there is a relation between the micro-evolutionary 

process in the developing tumor cells and their relative geometric positions in the 

tumor tissue. 
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Appendices 

Appendix A. Choice of Duplication Divergence 

Interval Size 

From empirical studies, we found that the repeat configuration ( )+/+  has the 

lowest frequencies (about 10% ) in each age group. Assuming that the number of 

( )+/+  configurations in each age group follows a Binomial distribution ( ),∼ S N p  

with a true probability p  close to 0.1, we choose a minimal age group size of 

100. This choice makes the probability of getting an estimated frequency �p  that 

is � 0 5< .p p  or � 1 5> .p p  smaller than 0.1. The probabilities are computed as 

0 (1 ) (1 )
(1 ) (1 )

   − −   
   = : − = + :         

⋅ − + −∑ ∑i N i i N iN N
i Np i Np Ni i

p p p p
δ δ

. The error can also be 

bounded from above by a Chernoff Bound [33].    

 

N  0 1 0 5= . , = .p δ 0 1 0 25= . , = .p δ 0 5 0 5= . , = .p δ 0 5 0 25= . , = .p δ
10  0 419.   0 419.   26 54 10−. ×   26 54 10−. ×    
50  0 169.   0 156.   41 98 10−. ×   21 64 10−. ×    
100  29 71 10−. ×   0 126.   73 72 10−. ×   33 31 10−. ×    
500  42 06 10−. ×   22 51 10−. ×   135 96 10−. ×   95 65 10−. ×    
1000 72 83 10−. ×   34 53 10−. ×   133 69 10−. ×   133 70 10−. ×    
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Table 10. The probability of getting an MLE (assuming iid Bernoulli random 

variable) estimation �p  outside a specific error bound δ  of the true probability p , 

i.e. � (1 )< −p p δ  or � (1 )> +p p δ , in a sample of size N .   
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Appendix B. Empirical Simplification of Mer 

Copy Number Evolution 

For most genomes, we observe that the frequency of a nucleotide mer is similar 

to its reverse complementary. Therefore, we assume 1
2( ) ( ) ( )+ −≈ ≈l t l t l t . Similarly, 

( ) ( )+ −
−≈i m ip t s t  and ( ) ( )+ −

− ≈m i is t p t . From empirical observation, we also found that 

the correlation between the copy numbers of the mers and their sub-mers and 

sub-sequences can be modeled by expressing the sub-mer/sequence copy 

numbers as an geometric function decided by the mer copy number and the 

frequency of the end nucleotide in the mer ( 1( )p t  and 1( )−ms t ): 

( ) ( )( ( )) ( ) ( )( ( ))+ + + − − − −= ; − = ;m i m i
i p i pp t l t r t p t l t r t  

 ( ) ( )( ( )) ( ) ( )( ( ))+ + + − −= ; − = ;i i
i s i ss t l t r t s t l t r t  

where  

 
1 1

1 11 1( ) ( )( ) ( ) ( ) ( )
( ) ( )

− −

+ −
+ −

+ −= ; = ;m m
p p

p t p tr t r t
l t l t

 

 
1 1

1 11 1( ) ( )( ) ( ) ( ) ( )
( ) ( )

− −

+ −
+ −− −

+ −= ; = .m mm m
s s

s t s tr t r t
l t l t

 

When the approximations are applied,  

 
1

112 ( )( ) ( ) ( )
( )

−

+
− +≈ ≈ ;m

s p
p tr t r t
l t

1
112 ( )( ) ( ) ( )

( )
−

−
+ −≈ ≈ .m

s p
p tr t r t
l t
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Approximate the base frequency at time t by 

 1 1 1 1( ) (0) ( ( ) (0))+ + + += + − ;tp t p p T p
T

 

 1 1 1 1( ) (0) ( ( ) (0))− − − −= + − ;tp t p p T p
T

 

and approximate 

( ) ( )

( ) ( )

1 1
1 1

1 1

1 1

1 1

1 1
( ) ( )

2 ( ) 2 ( )
1 1( ) ( )

2 ( ) 2 ( )

2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )
1

( ) ( ) ( ) ( )

1 1
( ) ( )

1 ( ) 1 ( )

+ −

− −
+ −

+ + − − + − + −
− −

= =

+ + − −

= =

+ −

−

=

+ = +

≈ ;
−

+ = +

− −
≈ + ;

− −

∑ ∑

∑ ∑

∑

m m

x x

i i i i i m i i m i
i i

x x

i i i i
i i

l t l t
p t p t

l t l t
p t p t

m x

x
j

p t s t p t s t p t p t s t s t

x t
m

p t s t p t s t

p t p t

c

σ

( ) 1( ) ( ))( ( ) ( )) ( )
1

,+ ,+ ,+ ,− − −+ + ≈ .
−

j j j j
x x x

m xt c t b t b t t
m

σ

 

We have  
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( )

1

1

1

1

( ) ( ) 1 ( ) ( )

( 1) ( )( ( ) ) ( )(1 )
( )

( 1) ( ) 2 ( ) ( ) ( )( ( )) ( 1) ( )(1 )
( ) ( )

1 ( )( ( ) )
1 ( )

( )( ( ))
(

=

=

−

=

−

=

+ ∆ = + | ,

 −= − ∆ + 
 

 − −− − − + ∆ + 
 
 

∆ + − 

∑

∑

∑

∑

X

r r
x m

X

r r
x m

m

r r
x

m

r r
x
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m l t t l t tp f x m l t t
G t G t

tp f x x t
m G t

tp f x
G

σ δ

σ

σ

2
1

1

( )( )
) ( )

( )( ( ) ) ( )
( )

( 1) ( ) ( )( ( )) (1 )
( ) ( )

( )

=

=

 
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 
 
− ∆ + 
 
 −− ∆ + 
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