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Abstract

This thesis investigates the design and implementation of automated intelligent agents

suitable for controlling and optimizing the utilization of telecommunication networks.

Since many issues that arise in networking are inherently resource allocation problems,

the mathematical underpinnings of this research are found in economics, particularly,

non-cooperative game theory. Speci�c to this approach is the application of the

theory of repeated games, which emphasizes learning to play equilibrium strategies,

in contexts that model telecommunication network environments. This methodology

is herein referred to as computational game theory.

The main theoretical result derived in this thesis is that rational learning does not

converge to Nash equilibrium in network games without pure strategy Nash equilibria.

This result has important implications for the networking community, where it is often

assumed both that players are rational and that the network operating point is a Nash

equilibrium. In addition, it is observed via simulations that low-rationality learning,

where agents trade-o� between exploration and exploitation, typically converges to

mixed strategy Nash equilibria. In the presence of extreme asynchrony, however,

even if players exhibit low-rationality learning, Nash equilibrium is nonetheless not

an appropriate solution in games that model network interactions.

This thesis is also concerned with the reverse migration of ideas, speci�cally the

application of computational learning in the economic world of electronic commerce.

In particular, the dynamics of interactions among shopbots, who seek to minimize costs

for buyers, and pricebots, who aim to maximize pro�ts for sellers, are researched. As

in network control games, rational learning does not converge to Nash equilibrium;

certain low-rationality learning algorithms, however, do in fact converge to mixed

strategy Nash equilibria in shopbot economics.
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Chapter 0

Introduction

In recent years, there has been a dramatic expansion of the global communications

infrastructure, in terms of the bandwidth of telecommunication links, the degree

of connectivity, and the intelligence embedded in network switches. This growth has

been accompanied by the potential for creating of a new range of network capabilities,

such as software agents that collaboratively mine and warehouse information on the

Internet, multi-media data transfer using shared bandwidth and bu�er space, and

secure �nancial infrastructures supporting electronic commerce.

The challenges associated with these developments, however, are many, primarily

because any realistic resource allocation scheme on this massive a scale cannot rely

on the cooperative behavior of network entities or on complete knowledge of network

properties. Moreover, given the increasingly dynamic nature of large-scale computer

networks | links are constantly coming up and going down, and servers often crash

or need to be rebooted | adaptive control is essential, in order to ensure robustness

and maintain eÆciency in the face of unexpected environmental changes.

This thesis investigates the design and analysis of automated intelligent agents

suitable for control and optimization in telecommunication networks. Since many

networking issues are inherently problems of resource allocation, the mathematical

underpinnings of this research are found in economics, particularly, non-cooperative

game theory. Speci�c to this approach is the application of the theory of repeated

games, which emphasizes learning to play equilibrium strategies, in contexts that

model telecommunication network environments.
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0.1 Economics in Computer Science

Since its inception, the model of computation proposed by von Neumann consisting of

a solitary sequential processor has served as a foundation for the theory of computing.

The explosive growth of the telecommunications industry, however, exempli�ed by

remarkable public interest in the Internet, electronic commerce (e-commerce), and

multi-media, demands techniques for resource allocation and process coordination

that go beyond standard computational methodology. It is argued by Schneider [97]

that computer scientists must re�ne their intuition in order to successfully approach

the problems that arise in decentralized computing:

Distributed systems are hard to design and understand because we lack

intuition for them. . . In any event, distributed systems are being built. We

must develop an intuition, so that we can design distributed systems that

perform as we intend. . . and so that we can understand existing distributed

systems well enough for modi�cation as needs change.

Unlike the �eld of computer science, theories on the interaction of complex agents

in distributed environments form an integral part of mathematical economics. In

particular, economics provides elegant models in which to describe optimal ways of

sharing resources and coordinating behavior in multi-agent systems, where decisions

are often based on local, delayed, and con
icting information. In situations where

traditional computational paradigms fail to yield viable solutions, economics provides

a robust framework in which to study dynamic behavior among intelligent agents in

informationally and computationally decentralized settings.

An expanding body of literature on systems which apply economic ideas to control

and optimization problems in computer science expounds the merit of this point of

view. For example, spawn is a computational economy designed at Xerox PARC

to manage and coordinate distributed tasks on multiple processors [112]. Similarly,

walras is an asynchronous distributed system developed jointly at Michigan and

MIT which operates via a market pricing mechanism [22]. Finally, caf�e (Complex

Adaptive Financial Environment) [34] is a market simulator implemented at NYU in

which it is possible to model ATM networks in an economic environment.
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0.2 Game Theory in Computer Science

Game theory, a �eld whose conception is also attributed to von Neumann, et al. [111],

is the branch of economics which is of particular interest in this thesis. Game theory

is far reaching in its applications to the social sciences: e.g., politics and psychology;

similarly, this work explores an application of game theory in the �eld of computer

science. In particular, game theory is proposed as a model of distributed computation.

The idea of modeling distributed computation as games was suggested previously by

such prominent game theorists as Aumann [5] and Rubinstein [90]. Speci�c to this

approach is the application of computational game theory (i.e., repeated game theory

together with computational learning theory) to the study of network interactions.

Network games are interactions in which (i) players are automated agents, either

mobile or residing on host machines, acting on behalf of human users (ii) strategies are

requests for shared resources, often given by specifying transmission rates and routes,

and (iii) utilities are determined by the collective strategic behavior of all agents,

measured in terms of network properties such as delay, loss, and jitter. For example,

the interactions of Internet users over shared bandwidth and bu�er space yield one

class of network games. Today, most Internet 
ow control decisions are speci�ed by

the tcp protocol, which states that upon detecting congestion, machines should halve

their rate of transmission [62]. Consequently, the eÆcient operation of the Internet

crucially depends upon cooperation on the part of its users. In contrast, game-

theoretic reasoning is based on the assumption of non-cooperative behavior. Given

the scale of today's Internet and its increasing rate of growth,1 non-cooperative game

theory is suited to the study of network interactions [59, 71, 99, 100, 118]. Classical

game theory, however, relies on the assumption that players have complete knowledge

of the underlying structure of games as well as common knowledge of rationality. This

thesis distinguishes itself from other literature on network games by building on the

premise that learning is essential in network games, since complete and common

knowledge of network properties is not generally obtainable.

1 Today the Internet boasts 180 million users [88] with 900 million users expected by the year 2004 [1].

In contrast, around the time of the speci�cation of the tcp protocol, the names and addresses of all the

registered users of the Internet were listed, approximately 24 users per page, in the 680 page Digital Data

Network Directory [28, 105].
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As it is not appropriate to assume guaranteed cooperation on the part of agents

in network interactions, this thesis focuses on the study of networks via game theory;

moreover, since it is also not appropriate to assume unlimited access to knowledge in

network environments, this thesis investigates learning in network games. The subject

of this research is the fundamental question of computational game theory2 in the case

of network games: i.e., What is the outcome of learning in network games? Naturally,

the answer to this question is highly dependent upon the particular assumptions that

are made about the learning behavior of agents, which is closely related to their degree

of rationality. In this regard, the key �ndings of this thesis are as follows:

1. Rational learning does not give rise to Nash equilibrium in network games; on

the contrary, together rationality and learning yield paradoxical outcomes.

2. Low-rationality learning, where agents continually trade-o� between exploration

and exploitation, does converge to Nash equilibrium in network games.

3. Responsive learning, namely low-rationality learning based on �nite histories,

does not lead to Nash equilibrium in network contexts, where play is assumed

to be highly asynchronous.

In short, Nash equilibrium is not the outcome of either rational or responsive

learning in games that model network environments. These results invalidate the

prevailing assumption in the literature on network games which claims that Nash

equilibrium describes the operating point of networks (see, for example, [100]). The

following subsections elaborate on these �ndings in terms of two sample network

games, namely the Santa Fe bar problem and shopbot economics.

0.2.1 Learning

The Santa Fe bar problem (sfbp) was introduced by Brian Arthur [2] in the study of

inductive learning and bounded rationality. This problem and its natural extensions

also serve as abstractions of network games, since they model network 
ow control

and routing problems. Here is the scenario:

2 The fundamental question of computational game theory in general is as follows: What is the outcome

of computational learning in repeated games?
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N (say, 100) people decide independently each week whether to go to a

bar that o�ers entertainment on a certain night . . . Space is limited, and

the evening is enjoyable if things are not too crowded { especially, if fewer

than 60 percent of the the possible 100 are present . . . a person or agent

goes (deems it worth going) if he expects fewer than 60 to show up or stays

home if he expects more than 60 to go.

Choices are una�ected by previous visits; there is no collusion or prior

communication among the agents; and the only information available is

the number who came in past weeks.3

Arthur �rst analyzed sfbp assuming the inhabitants of Santa Fe to be rational

(i.e., optimizing). In particular, he argued intuitively that learning and rationality

are incompatible in sfbp. Consider, for example, Cournot best-reply dynamics [24],

which is a learning mechanism by which agents play a rational strategy in response

to the belief that the other agents' actions at the next time step will mimic their

most recent actions. If attendance at the bar at time t is less than or equal to

capacity, then the Cournot best-reply at time t + 1 is to go to the bar; but then,

attendance at the bar at time t + 1 is greater than capacity, which implies that the

Cournot best-reply at time t + 2 is not to go to the bar, and so on.4 Over time,

the following is the result of learning via Cournot best-reply dynamics in sfbp: (i)

agents' strategies do not converge: i.e., attendance at the bar does not converge,

and (ii) agents beliefs about other agents' strategies never re
ect the others' actual

behavior. In particular, play does not converge to Nash equilibrium. In this thesis, it

is shown that no rational learning algorithm, of which Cournot best-reply dynamics

and Bayesian updating are examples, converges to Nash equilibrium in sfbp. On

the other hand, it is observed via simulations, that low-rationality, non-Bayesian

learning, where agents trade-o� between exploration and exploitation, typically does

yield convergence to Nash equilibrium in sfbp.

3 The problem was inspired by the El Farol bar in Santa Fe which o�ers live music on Thursday nights.
4 Schelling [96] refers to phenomena of this kind as self-negating prophecies.
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0.2.2 Network Games

This thesis is concerned with computational learning in network games. The context

of network games di�ers from the traditional game-theoretic context in four important

ways, which are testimony to the fact that learning is essential in network games. The

four essential properties of network contexts, namely limited information, dynamic

structure, automation, and asynchrony, are described below:

1. Agents have extremely limited information pertaining to the characteristics of

the shared resource; in other words, they do not know the underlying structure

of the game. Moreover, agents are not explicitly aware of the existence of other

agents, as there is no way of directly observing the presence of others, and they

are therefore incapable of accurately modeling their opponents.

2. The structure of the game, in terms of agents, strategies, and utilities, are all

subject to change over time. Shared resources like network links and servers

periodically crash, and often experience other unpredictable changes in their

capabilities, such as upgrades or route changes. Moreover, users of network

resources come and go frequently.

3. Play is often carried out by computer algorithms, rather than by human users.

For instance, congestion control algorithms (e.g., tcp), which are embedded in

operating systems, manage the sharing of network links. Similarly, automated

algorithms are being designed that control the retry behavior for submission of

queries to shared databases.

4. Games are played in an asynchronous fashion, without any notion of de�nable

rounds of play, since the rates at which agents adapt their strategies vary widely.

Due to the geographic dispersion of the Internet, for example, communication

delays to shared resources may di�er by several orders of magnitude; moreover,

processor speeds tend to vary substantially. Agents closer to shared resources,

and those who are privy to faster processors or smarter algorithms, have the

potential to learn more rapidly and more e�ectively.
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The following questions are investigated in this thesis: (i) What sort of collective

behavior emerges via low-rationality, responsive learning among a set of automated

agents who interact repeatedly in network contexts? (ii) Is the asymptotic play of

network games characterized by traditional game-theoretic solution concepts such as

Nash equilibrium? These questions are researched empirically, by simulating a set of

sample responsive learning algorithms, and observing the strategies that are played

in the long-run. The �ndings reported in this thesis suggest that the asymptotic play

of network games is rather di�erent from that of standard game-theoretic contexts.

In particular, Nash equilibrium is not generally the outcome of responsive learning in

asynchronous settings of limited information.

0.2.3 Information Economics

Computational game theory is useful not only in the study of typical problems that

arise in network optimization and control, but moreover, it is applicable to economic

interactions which transpire via networks, such as those that comprise the burgeoning

world of e-commerce. In addition to applying economic principles to network design,

this thesis also concerns the reverse migration of ideas, namely the implementation

of agent technology in the domain of information economics.

Shopbots, agents that search the Internet for advertised goods and services on

behalf of consumers, herald a future in which autonomous agents will be an essential

component of nearly every facet of e-commerce. Moreover, shopbots deliver on one

of the great promises of e-commerce: radical reductions in the costs of obtaining and

distributing information. In the framework of computational game theory, this thesis

proposes and analyzes an economic model of shopbots, and simulates an electronic

marketplace inhabited by shopbots and pricebots, the latter being automated, price-

setting agents that seek to maximize pro�ts for sellers, just as shopbots seek to

minimize costs for buyers. Analysis reveals that like the Santa Fe bar problem,

rational learning in shopbot economics leads to instabilities that manifest themselves

as price wars among pricebots. In contrast, low-rationality learning yields behaviors

ranging from tacit collusion to exponential cycling, with only sophisticated learning

algorithms converging to mixed strategy Nash equilibria.



Chapter 0 Introduction 8

0.3 Thesis Overview

Following this introductory chapter, this thesis continues with an introduction to the

basic formalisms of game theory, providing a mathematical description of normal form

games and the canonical game-theoretic solution concept, namely Nash equilibrium.

The discussion proceeds with the de�nitions of strategies that are rationalizable,

dominated, and overwhelmed, and the corresponding solution concepts that arise via

iterative elimination processes. The notion of information games is then introduced,

in order to make explicit the knowledge and beliefs of players, and to de�ne two

further solution concepts, namely correlated and Bayesian Nash equilibria. Lastly,

the relationships between the various of notions of equilibria that are presented are

described in the framework of information games.

Chapter 2 begins by reviewing a suite of optimality criteria which characterize

degrees of low-rationality. In this chapter, optimality is described in terms of the

fundamental property known as no regret. Intuitively, a sequence of plays is optimal

if a player feels no regret for playing the given strategy sequence rather than playing

any other possible sequence of strategies. The types of optimality which are described

herein, listed in order from weakest to strongest, are as follows: no model-based

regret, no external regret, no internal regret, and no clairvoyant regret. Note that

the material pertaining to optimality in this chapter, while based on existing ideas in

the literature on machine learning, statistics, and stochastic control, is reinterpreted

and presented from a unique perspective in a uni�ed game-theoretic framework.

The second half of Chapter 2 presents sample learning algorithms which satisfy

the various optimality criteria mentioned above and the responsive learning criterion

de�ned by Shenker and Friedman [43]. The responsive learning algorithms that are

presented include responsive learning automata [42] and an algorithm that updates

additively [30]; the mixing method [36] and a multiplicative updating algorithm [39]

satisfy no external regret; no internal regret holds for two algorithms that converge to

correlated equilibrium [37, 57]. Some of these algorithms were initially proposed for

settings quite di�erent than network contexts, where responsiveness is not of interest

and the information level is signi�cantly higher; these algorithms are redesigned here

for use in network contexts. There are no known clairvoyant algorithms.
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Chapter 3 presents a formalization of the intuitive argument given by Arthur that

rationality precludes learning in the Santa Fe bar problem. In particular, it is argued

that rational learning (e.g., Cournot best-reply dynamics and Bayesian updating)

yields unstable behavior in sfbp because rationality and predictivity, two conditions

suÆcient for convergence to Nash equilibrium, are inherently incompatible. This

result has important implications for the networking games community, where it is

often assumed both that players are rational and that the network operating point

is a Nash equilibrium. On the other hand, it is observed via simulations, that low-

rationality, no regret learning, which is non-Bayesian in nature, typically converges

to mixed strategy Nash equilibria in sfbp.

Chapter 4 describes simulations of responsive learning agents in repeated games in

network contexts, which are characterized by limited information and asynchronous

play. Several key questions are addressed, including: (i) What are the appropriate

game-theoretic solution concepts in network contexts? (ii) Is the asymptotic play of

network games characterized by traditional game-theoretic solution concepts such as

Nash equilibrium? (iii) To what extent does the asymptotic play depends on three

factors, namely, asynchronous play, limited available information, and the degree

of responsiveness of learning. The main conclusion of this chapter is that responsive

learning in network contexts does not in general give rise to traditional game-theoretic

solution concepts, such as Nash equilibrium; moreover, this result depends on the

interplay of all three factors considered simultaneously.

The following chapter is concerned with the reverse migration of ideas, speci�cally

the application of computational learning theory in the economic world of electronic

commerce. As shopbots are increasingly being viewed as an essential component of

information economics, this chapter proposes of a model of shopbot economics which

is intended to capture some of the essence of shopbots, and attempts to shed light on

their potential impact on the electronic marketplace. Analysis of this model yields

a negative result on the existence of pure strategy Nash equilibria, which creates

rational learning instabilities similar to those observed in sfbp. No internal regret

learning algorithms, however, converge to mixed strategy Nash equilibria in shopbot

economics; weaker no regret learning algorithms lead to exponential cycles reminiscent

of the behavior of �ctitious play in the Shapley game.
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Chapter 1

Equilibrium Concepts

As a sub�eld of economics, game theory provides a framework in which to model

the interaction of intelligent agents, or players, with di�erent and often con
icting

interests, who make decisions among possible strategies, while aiming to maximize

individual payo�s. In contrast to the extreme cases of monopoly, where a single

entity usurps all market power, and perfect competition, where it is assumed that

individual actions have negligible e�ects on the market, the payo�s of a game are

jointly determined by the strategies of all players.

In accordance with economics, a fundamental assumption of game theory is that

players are rational. Rationality implies that players act so as to maximize their

payo�s. Presently, we develop the classical theory of non-cooperative, non-zero-sum

games in settings of complete information based on the assumption of rationality. In

non-cooperative games, there is a possibility of negotiation prior to play, but there

are no coalitions or binding agreements. In non-zero-sum games, there is in general a

blend of contentious and cooperative behavior { this is in contrast to zero-sum games,

in which the interests of players are diametrically opposed. In games of complete

information, all information relevant to the game is available. While the canonical

game-theoretic solution concept under these strict conditions is Nash equilibrium, this

chapter emphasizes alternative forms of equilibria which generalize that of Nash and

are later shown to arise as a result of various learning processes in repeated games.
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1.1 One-Shot Games

The most well-known game-theoretic scenario is the paradoxical situation known as

the Prisoners' Dilemma, which was popularized by Axelrod [7] in his popular science

book. The following is one (uncommon) variant of the story.1

A crime has been committed for which two prisoners are held incommunicado.

The district attorney questions the prisoners. If both prisoners confess, they will be

punished, but not terribly severely, as the D.A. will reward them for their honesty.

(Associate payo� 4 with this outcome.) If only one prisoner confesses, the confessor

will be severely punished for carrying out the crime singlehandedly (payo� 0), while

the other prisoner will be let o� scot free (payo� 5). Lastly, if neither prisoner

confesses, the D.A. threatens to convict both prisoners, although under a slightly less

severe sentence than a sole confessor receives (payo� 1).

The Prisoners' Dilemma is a two player, strategic (or normal) form game. Such

games are easily described by payo� matrices, where the strategies of player 1 and

player 2 serve as row and column labels, respectively, and the corresponding payo�s

are listed as pairs in matrix cells such that the �rst (second) number is the payo� to

player 1 (2). The payo� matrix which describes the Prisoners' Dilemma is depicted

in Figure 1.1, with C denoting \cooperate" or \confess", and D denoting \defect" or

\don't cooperate."

C

D

4,4 0,5

1,15,0

DC1
2

Figure 1.1: The Prisoners' Dilemma

1 The original anecdote due to A.W. Tucker appears in Rapoport [87]; the latter author is the two-time

winner of the Prisoners' Dilemma computer tournament organized by Axelrod.
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This game is known as the Prisoners' Dilemma because the rational outcome is

(D;D), which yields suboptimal payo�s of (1; 1). The reasoning is as follows. If player

1 plays C, then player 2 is better o� playing D, since D yields a payo� of 5, whereas

C yields only 4; but if player 1 plays D, then player 2 is again better o� playing D,

since D yields a payo� of 1, whereas C yields 0. Hence, regardless of the strategy of

player 1, a rational player 2 plays D. By a symmetric argument, a rational player 1

also plays D. Thus, the outcome of the game is (D;D).

A second well-known example of a two-player game is a game called Matching

Pennies. In this game, each of the two players 
ips a coin, and the payo�s are

determined as follows (see Figure 1.2). Let player 1 be the matcher, and let player 2

be the mismatcher. If the coins come up matching (i.e., both heads or both tails),

then player 2 pays player 1 the sum of $1. If the coins do not match (i.e., one head

and one tail), then player 1 pays player 2 the sum of $1. This is an example of a

zero-sum game where the interests of the players are diametrically opposed; this class

of games is so-called because the payo�s in the matrix sum to zero.

1
2 H T

H

T

1,-1 -1,1

-1,1 1,-1

Figure 1.2: Matching Pennies

Another popular two-player game is called the Battle of the Sexes. A man and a

woman would like to spend an evening out together; however, the man prefers to go

to a football game (strategy F ), while the woman prefers to go to the ballet (strategy

B). Both the man and the woman prefer to be together, even at the event that is not

to their liking, rather than go out alone. The payo�s of this coordination game are

shown in Figure 1.3; the woman is player 1 and the man is player 2.
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1
2 B

B 2,1 0,0

1,20,0F

F

Figure 1.3: Battle of the Sexes

The �nal example of a game that is discussed herein is an ecological game which

was studied by Maynard Smith [103] in his analysis of the theory of evolution in terms

of games (see Figure 1.4). The game is played between animals of the same size who

live in the wilderness and encounter one another in their search for prey. During

an encounter between two animals, each animal has a choice between behaving as

a hawk: i.e., �ghting for the prey; or as a dove: i.e., sharing the prey peacefully.

If both animals decide to play like hawks, then each animal has an equal chance of

winning the value v of the prey or of losing the �ght at cost c, where 0 < v < c;

thus, the expected payo� to both players is (v � c)=2. Alternatively, if both animals

act as doves, then the prey is shared with equal payo�s v=2. Finally, if one animal

behaves like a hawk and the other behaves like a dove, then the hawk gets a payo�

worth the full value of the prey and the other gets nothing. In this game, the animals

prefer to choose opposing strategies: if one animal plays hawk (dove), then it is in

the best interest of the other to play dove (hawk), and inversely, if one animal plays

dove, then it is in the best interest of the other to play hawk.

This section described several popular examples of one-shot { in contrast with

repeated { strategic form games and their probable outcomes, or Nash equilibria.

While Nash equilibrium is generally accepted as the appropriate solution concept in

the deductive analysis of strategic form games, the Nash equilibria in the stated ex-

amples are somewhat peculiar. In particular, in the Prisoners' Dilemma, the Nash

equilibrium payo�s are sub-optimal. Moreover, in the game of Matching Pennies,
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D

DH1
2

H v,0
(v-c)/2
(v-c)/2,

0,v v/2,v/2

Figure 1.4: Hawks and Doves

there is no pure strategy Nash equilibrium; the unique Nash equilibrium is proba-

bilistic. Finally, in the Battle of the Sexes, and in the game of Hawks and Doves, the

Nash equilibrium is not unique. In view of these quirky outcomes, this thesis consid-

ers alternative forms of equilibria which arise as a result of learning in the repeated

play of strategic form games.

1.2 Nash Equilibrium

This section develops the formal theory of �nite games in strategic (or normal) form.

Let I = f1; : : : ; Ig be a set of players, where I 2 N is the number of players. The

(�nite) set of pure strategies available to player i 2 I is denoted by Si, and the set of

pure strategy pro�les is the Cartesian product S =
Q
i Si. By convention, write si 2 Si

and s = (s1; : : : ; sI) 2 S. In addition, let S�i =
Q
j 6=i Sj with element s�i 2 S�i, and

write s = (si; s�i) 2 S. The payo� (or reward) function ri : S ! R for the ith

player is a real-valued function on S; in this way, the payo�s to player i depend on

the strategic choices of all players. This description is summarized in the following

de�nition.

De�nition 1.2.1 A strategic form game � is a tuple

� = (I; (Si; ri)i2I)
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where

� I = f1; : : : ; Ig is a �nite set of players (i 2 I)

� Si is a �nite strategy set (si 2 Si)

� ri : S ! R is a payo� function

Example 1.2.2 The Prisoners' Dilemma consists of a set of players I = f1; 2g, with

strategy sets S1 = S2 = fC;Dg, and payo�s as follows:

r1(C;C) = r2(C;C) = 4 r1(C;D) = r2(D;C) = 0

r1(D;D) = r2(D;D) = 1 r1(D;C) = r2(C;D) = 5

Nash Equilibrium

A Nash equilibrium is a strategy pro�le from which none of the players has any

incentive to deviate. In particular, no player can achieve strictly greater payo�s by

choosing any strategy other than the one prescribed by the pro�le, given that all other

players choose their prescribed strategies. In this sense, a Nash equilibrium speci�es

optimal strategic choices for all players.

In the Prisoners' Dilemma, (D;D) is a Nash equilibrium: given that player 1 plays

D, the best response of player 2 is to play D; given that player 2 plays D, the best

response of player 1 is to play D. The Battle of the Sexes has two pure strategy Nash

equilibria, namely (B;B), and (F; F ), by the following reasoning. If the woman plays

B, then the best response of the man is B; if the man plays B, then the best response

of the woman is B. Analogously, if the woman plays F , the best response of the man

is F ; if the man plays F , the best response of the woman is F .

In the game of Matching Pennies, there is no pure strategy Nash equilibrium. If

player 1 plays H, then the best response of player 2 is T ; but if player 2 plays T , the

best response of player 1 is not H, but T . Moreover, if player 1 plays T , then the best

response of player 2 is H; but if player 2 plays H, then the best response of player 1

is not T , but H. This game, however, does have a mixed strategy Nash equilibrium.

A mixed strategy is a randomization over a set of pure strategies. In particular, the

probabilistic strategy pro�le in which both players choose H with probability 1
2
and

T with probability 1
2
is a mixed strategy Nash equilibrium.
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Formally, a mixed strategy set for player i is the set of probability distributions

over the pure strategy set Si, which is computed via the simplex operator �: i.e.,

�(Si) = fqi : Si ! [0; 1] j
X
si2Si

qi(si) = 1g

For convenience, let Qi � �(Si). The usual notational conventions extend to mixed

strategies: e.g., Q =
Q
iQi and q = (qi; q�i) 2 Q. In the context of mixed strategies,

the expected payo�s to player i from strategy pro�le q is given by:

E [ri(q)] =
X
s2S

ri(s)
IY

j=1

qj(sj)

As usual, the payo�s to player i depend on the mixed strategies of all players.

An implication of the assumption of rationality is that a rational player always

plays an optimizing strategy, or a best response to the strategies of the other players.

De�nition 1.2.3 A strategy q�i 2 Qi is a best response for player i to opposing

strategy q�i 2 Q�i i� 8qi 2 Qi,

E [ri(q
�
i ; q�i)] � E [ri(qi; q�i)]

De�nition 1.2.4 The best response set for player i to strategy pro�le q�i is:

bri(q�i) = fq�i 2 Qi j 8qi 2 Qi; E [ri(q
�
i ; q�i)] � E [ri(qi; q�i)]g

The set bri(q�i) is often abbreviated bri(q). Let br(q) =
Q
ibri(q).

A Nash equilibrium is a strategy pro�le in which all players choose strategies that

are best responses to the strategic choices of the other players. Nash equilibrium is

characterized in terms of best response sets.

De�nition 1.2.5 A Nash equilibrium is a strategy pro�le q� s.t. q� 2 br(q�).

It is apparent from this de�nition that a Nash equilibrium is a �xed point of

the best response relation. The proof of existence of Nash equilibrium utilizes a

fundamental result in topology, namely Kakutani's �xed point theorem2 [64], which

is a generalization of Brouwer's �xed point theorem [18].

2 Every continuous correspondence on a non-empty, convex, bounded, and closed subset of a �nite-

dimensional Euclidean space into itself has a �xed point.
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Theorem 1.2.6 (Nash, 1951) All �nite strategic form games have mixed strategy

Nash Equilibria.

This section formally de�ned the canonical solution concept for strategic form

games, namely Nash equilibrium. The following sections describe equilibria which

generalize that of Nash. The �rst class of such equilibrium concepts arise via the

iterative deletion of sub-optimal strategies, where various de�nitions of sub-optimality

yield various equilibria. Initially, the case of strictly pure strategy equilibria is studied.

Later, the framework is extended to so-called information games, which are strategic

form games equipped with probability spaces (i.e., knowledge and/or belief systems)

that o�er one possible justi�cation for mixed strategies. In this latter framework, the

notions of correlated and Bayesian-Nash equilibria are de�ned.

1.3 Iterative Solutions

The solution concepts described in this section arise as �xed points of monotonic

operators. Consider an elimination operator Ei : 2
S ! 2Si, which is de�ned for i 2 I.

Let E(T ) =
Q
i2I Ei(T ), for T � S. Now de�ne Em(T ) inductively as follows:

E0(T ) = T

Em+1(T ) = E(Em(T ))

If the elimination operator E is monotonic with respect to set inclusion, then the

(greatest) �xed point E1(T ) = \1m=0E
m(T ) exists. The iterative solution concepts

de�ned below, namely R1; D1, and O1, arise according to speci�c choices of the

monotonic elimination operator E.

In classical game theory, two iterative solution concepts prevail, namely the set

of rationalizable strategies (R1) and the set of undominated strategies (D1). In

what follows, the intuition and the theory underlying these ideas is developed as a

prerequisite for understanding the non-traditional solution concept known as O1.

This section restricts attention to pure strategies; the following section extends the

discussion to mixed strategy equilibria in the context of information games.
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R1

The notion of rationalizable strategies was introduced independently by Pearce [85]

and Bernheim [11]. In general, a (possibly mixed) strategy is rationalizable if it is a

best response to some choice of (possibly mixed and possibly correlated) strategies

by the other players. In this section, attention is restricted to strategies which are

themselves pure, and moreover, rationalizable, assuming opposing strategies are pure

as well. In other words, a pure strategy is rationalizable if it is a best response,

as compared to all possible mixed strategies, to some choice of pure strategies by

the opponents. The set R1 is the �xed point that arises as a result of the iterative

deletion of strategies that are not rationalizable.

De�nition 1.3.1 Pure strategy si 2 Si is not a rationalizable strategy for player i

i� 8s�i 2 S�i, 9q
�
i 2 Qi s.t. E [ri(q

�
i ; s�i)] > ri(si; s�i).

1
2 L

T

1 (2)B

M

0

3

R

1 (2) 0

3

Figure 1.5: Rationalizable Strategies

Example 1.3.2 The game in Figure 1.5 is abbreviated; it depicts only the payo�s

for player 2. In fact, this �gure depicts two separate games, one in which strategy

M yields payo�s of 1, and a second in which strategy M generates payo�s of 2. In

this example, strategy M is not a rationalizable strategy for player 2, when M yields

payo�s of 1, because there does not exist a strategy for player 1 to which M is a best

response. In particular, the best response to strategy T is L, while the best response

to strategy B is R.
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In the case where the payo�s achieved by strategy M are equal to 2, however, M

is in fact a best response to the mixed strategy (1
2
; 1
2
) of player 2. In general, the set

of pure strategy best responses to opposing mixed strategies is larger than the set of

pure strategy best responses to opposing pure strategies. A notion of rationalizability

which allows for opposing mixed, as well as pure, strategies is developed in the next

section.

Presently, it is shown that the set of pure rationalizable strategies which arises via

comparison only with pure strategies is equivalent to that which arises via comparison

with both pure and mixed strategies. The following lemma restates the de�nition of

rationalizable in an equivalent form.

Lemma 1.3.3 Pure strategy si 2 Si is not a rationalizable strategy for player i i�

8s�i 2 S�i, 9s
�
i 2 Si, s.t. ri(s

�
i ; s�i) > ri(si; s�i).

Proof 1.3.4

si is not rationalizable

i� 8s�i 2 S�i; 9q
�
i 2 Qi; E [ri(q

�
i ; s�i)] > ri(si; s�i)

i� 8s�i 2 S�i; 9q
�
i 2 Qi;

P
si2Si

q�i (si)ri(si; s�i) > ri(si; s�i)

) 8s�i 2 S�i; 9s
�
i 2 Si; ri(s

�
i ; s�i) > ri(si; s�i)

The converse holds trivially since every pure strategy s�i can be expressed as mixed

strategy q�i with q
�
i (s

�
i ) = 1.

Corollary 1.3.5 Pure strategy s�i 2 Si is a rationalizable strategy for player i i�

9s�i 2 S�i s.t. 8si 2 Si, ri(s
�
i ; s�i) � ri(si; s�i).

The operator Ri eliminates the strategies that are not rationalizable for player i,

and returns the set of rationalizable strategies. Given a set T � S,

Ri(T ) = fs�i 2 Si j 9s�i 2 T�i; 8si 2 Ti; ri(s
�
i ; s�i) � ri(si; s�i)g

where Ti denotes the projection of T onto Si. As usual, R(T ) =
Q
i2I Ri(T ).

De�nition 1.3.6 The set of rationalizable strategies R1 is E1(S) with E = R:
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Theorem 1.3.7 Given a strategic form game �, the set of rationalizable strategies

of the game contains the set of pure strategy Nash equilibria.

Proof 1.3.8 Must show that the set of pure strategy Nash equilibria is contained

in Rm(S) for all m 2 N . If m = 0, then Rm(S) = S; since this is the set of

all strategy pro�les of the game, it surely contains the set of pure strategy Nash

equilibria. Assume m > 0. If the set of pure strategy Nash equilibria is empty,

then the theorem holds trivially. Otherwise, assume there exists pure strategy Nash

equilibrium s� = (s�1; : : : ; s
�
I) 2 Rm(S). All components s�i satisfy the following:

9s��i 2 Rm
�i(S) s.t. s

�
i 2 bri(s

�
�i)

i� 9s��i 2 Rm
�i(S) s.t. 8si 2 Si; ri(s

�
i ; s

�
�i) � ri(si; s

�
�i)

i� s�i 2 Rm+1
i (S)

Thus, s� is contained in Rm+1(S), and the theorem holds.

Remark 1.3.9 Given a strategic form game �, the set of rationalizable strategies

need not equal the set of pure strategy Nash equilibria.

While the set of probability distributions over the rationalizable strategies does

contain the set of Nash equilibria, these two notions do not coincide. In the game of

matching pennies, for example, the set of rationalizable strategies is the entire space

of strategies. If the matcher believes that the mismatcher is playing strategy H,

then strategy H is rationalizable for the matcher. If the mismatcher believes that the

matcher is playing strategy H { presumably because the mismatcher believes that the

matcher believes that the mismatcher is playing strategy H { then the mismatcher

rationalizes playing strategy T . By extending this line of reasoning, strategy T is

rationalizable for the matcher, and strategy H is rationalizable for the mismatcher.

Therefore, the set of rationalizable strategies includes all possible pure strategies. The

unique Nash equilibrium, however, is the mixed strategy (1
2
H; 1

2
T ) for both players.

This section discussed the iterative deletion of pure rationalizable strategies. Next,

the iterative deletion of pure dominated strategies is studied. As it is often diÆcult

to justify the use of mixed strategies, it is of interest to de�ne these concepts in

the realm of pure strategies. It is important to note, however, that while these two

notions di�er in terms of pure strategy equilibria, they agree on mixtures.
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D1

This section describes the set of pure strategies that arises via the iterative deletion

of dominated strategies. A strategy is dominated if there exists another strategic

choice which yields greater payo�s against all possible opposing strategies, both pure

and mixed. Unlike rationalizable strategies, the set of dominated strategies does not

depend on whether opponents play pure or mixed strategies. The set D1 is the �xed

point that arises as a result of the iterative deletion of dominated strategies.

De�nition 1.3.10 Strategy si 2 Si is a dominated strategy for player i i� 9s�i 2 Si

s.t. 8q�i 2 Q�i, E [ri(s
�
i ; q�i)] > E [ri(si; q�i)].

Example 1.3.11 In the Prisoners' Dilemma, strategy C is dominated by strategy D

for player 1, since regardless of which strategy player 2 employs, player 1 is better o�

choosing strategy D. In particular, if player 2 plays C, then D yields a payo� of 5

for player 1, whereas C yields only 4; but if player 2 plays D, then D yields a payo�

of 1 for player 1, whereas C yields 0. By a symmetric argument, strategy C is also

dominated by strategy D for player 2. Thus, by the iterative deletion of dominated

strategies, D1 = f(D;D)g.

The following lemma shows that it suÆces to de�ne dominated strategies with

respect to pure opposing strategies.

Lemma 1.3.12 Strategy si 2 Si is a dominated strategy for player i i� 9s�i 2 Si s.t.

8s�i 2 S�i, ri(s
�
i ; s�i) > ri(si; s�i).

Proof 1.3.13

9s�i 2 Si; 8s�i 2 S�i; ri(s
�
i ; s�i) > ri(si; s�i)

) 9s�i 2 Si; 8q�i 2 Q�i;
P

s�i2S�i
q�i(s�i)ri(s

�
i ; s�i) >

P
s�i2S�i

q�i(s�i)ri(si; s�i)

i� 9s�i 2 Si; 8q�i 2 Q�i; E [ri(s
�
i ; q�i)] > E [ri(si; q�i)]

i� si is dominated

The contrapositive holds trivially since every pure strategy s�i can be expressed as

mixed strategy q�i with q�i(s�i) = 1.
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The operatorDi eliminates the dominated strategies, returning the set of strategies

that are not dominated for player i.

Di(T ) = fs�i 2 Si j 8si 2 Ti; 9s�i 2 T�i; ri(s
�
i ; s�i) � ri(si; s�i)g

As usual, D(T ) =
Q
i2I Di(T ).

De�nition 1.3.14 The serially undominated strategy set D1 is E1(S) with E = D:

Strategies which are dominated are not rationalizable. In particular, if there exists

a strategy that performs better than a given strategy against all possible opposing

strategies, then the given strategy is not a best response to any choice of opposing

strategies. It follows that rationalizable strategies are not dominated.

Lemma 1.3.15 Given T � S, Ri(T ) � Di(T ), for all i 2 I.

Proof 1.3.16

Ri(T )

= fs�i 2 Si j 9s�i 2 T�i; 8si 2 Ti; ri(s
�
i ; s�i) � ri(si; s�i)g

� fs�i 2 Si j 8si 2 Ti; 9s�i 2 T�i; ri(s
�
i ; s�i) � ri(si; s�i)g

= Di(T )

It follows immediately from the above lemma that R(T ) � D(T ), for all T � S.

The following theorem states that R1 � D1.

Theorem 1.3.17 R1 � D1.

Proof 1.3.18 Must show that

8k; 8T � S; Rk(T ) � Dk(T )

The proof is by induction on k. The base case is trivial: R0(T ) � D0(T ), since

T � T . Now assume Rk(T ) � Dk(T ). It follows via monotonicity of the operators

that R(Rk(T )) � R(Dk(T )). Now by the lemma, R(Dk(T )) � D(Dk(T )). Finally,

Rk+1(T ) = R(Rk(T )) � R(Dk(T )) � D(Dk(T )) = Dk+1(T ).
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Remark 1.3.19 There exist games for which R1 � D1.

Consider once again Figure 1.5, where strategy M yields payo� 1 for player 1.

In this example, strategy M is not a rationalizable strategy; thus, R1 = fT;Bg.

Strategy M is also not a dominated strategy, however, and therefore can not be

deleted in the iterative deletion of dominated strategies; thus, D1 = fT;M;Bg.

Remark 1.3.20 [Pearce, 1984] In two player, two strategy games, the notions of

non-rationalizable and dominated strategies coincide.

O1

This section discusses a solution concept due to Shenker and Friedman [43] known as

the set of unoverwhelmed strategies. Recall that the de�nition of dominated strategy

compares the vector of payo�s from one strategy with the vectors of payo�s of the

other strategies, payo� by payo�. In contrast, the de�nition of overwhelmed strategy

compares the entire set of payo�s yielded by one strategy with the entire set of payo�s

yielded by the others. As the natural counterpart of Lemma 1.3.12 holds in the case of

overwhelmed strategies, this discussion proceeds in terms of pure opposing strategies.

The set O1 is the �xed point that arises as a result of the iterative deletion of

overwhelmed strategies.

De�nition 1.3.21 For player i 2 I, the strategy si 2 Si is an overwhelmed strategy

i� 9s�i 2 Si s.t. 8s�i; t�i 2 S�i, ri(s
�
i ; s�i) > ri(si; t�i).

Example 1.3.22 An example of overwhelmed strategies is presented in Figure 1.6;

only player 1's payo�s are depicted. In this game, strategy T overwhelms strategy B,

since the set of payo�s f4; 3g is everywhere greater than the set of payo�s f2; 1g.

The operator Oi eliminates the overwhelmed strategies, and returns the set of

strategies that are not overwhelmed for player i.

Oi(T ) = fs�i 2 Si j 8si 2 Ti; 9s�i; t�i 2 T�i; ri(s
�
i ; s�i) > ri(si; t�i)g

As usual, O(T ) =
Q
i2I Oi(T ).
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1

T

B

4 3

2 1

Figure 1.6: Unoverwhelmed Strategies

De�nition 1.3.23 The set of serially unoverwhelmed strategies O1 is the set E1(S)

with E = O:

Overwhelmed strategies are also dominated strategies, by letting t�i = s�i in

De�nition 1.3.21. Thus, strategies which are not dominated are not overwhelmed.

Lemma 1.3.24 Given T � S, Di(T ) � Oi(T ), for all i 2 I.

Proof 1.3.25

Di(T )

= fs�i 2 Si j 8si 2 Ti; 9s�i 2 T�i; ri(s
�
i ; s�i) � ri(si; s�i)g

� fs�i 2 Si j 8si 2 Ti; 9s�i; t�i 2 T�i; ri(s
�
i ; s�i) � ri(si; t�i)g

= Oi(T )

Theorem 1.3.26 D1 � O1.

Proof 1.3.27 The proof is analogous to that of Theorem 1.3.17.

Remark 1.3.28 There exist games for which D1 � O1.

Consider the game depicted in Figure 1.7, which is a slight variant of that of

Figure 1.6. In this example, T does not overwhelm B, but T dominates B. Thus,

D1 � O1.
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1

T

B

4 2

3 1

Figure 1.7: Undominated vs. Unoverwhelmed

1
2

B

E

A 1

1

C1

D1

1

A 2 B2 C D E22 2

3,3 2,1 1,2 2,2 5,2

0,3 3,0 2,2 0,02,1

1,2 3,0 0,3 2,2 1,1

2,2 2,2 2,2 0,0 1,1

2,5 1,1 0,0 1,1 4,4

Figure 1.8: Di�erentiating Equilibria
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Remark 1.3.29 There exist games for which PNE � R1 � D1 � O1, where PNE

is the set of pure strategy Nash equilibria.

Figure 1.8 depicts a game in which none of the solution concepts de�ned thus far

coincide. First of all, no strategies are overwhelmed; thus, the set of unoverwhelmed

strategies O1 = fA1; B1; C1; D1; E1g� fA2; B2; C2; D2; E2g. The set of undominated

strategies D1
1 (D1

2 ), however, does not contain strategy E1 (E2), since strategy A1

dominates E1 (similarly, strategy A2 dominates E2); thus, D
1 = fA1; B1; C1; D1g �

fA2; B2; C2; D2g. The set of rationalizable strategies R
1
1 (R1

2 ) in addition does not

contain strategy D1 (D2), since D1 (D2) is not a best response to any choice of

strategies for player 2 (1); thus, R1 = fA1; B1; C1g � fA2; B2; C2g. Finally, the

unique pure strategy Nash equilibrium in this game is given by (A1; A2). Therefore,

PNE � R1 � D1 � O1.

This concludes the discussion of iterative solution concepts in terms of solely

pure strategies. The next section extends the formulation of strategic form games to

structures referred to as information games, in attempt to provide justi�cation for

the notion of mixed strategies. In this framework, the connection between iterative

solutions and other equilibrium concepts, including correlated and Bayesian-Nash

equilibria, is explored.

1.4 Information Games

This section redevelops several of the equilibrium notions previously introduced in

terms of information games. Information games are strategic form games equipped

with an information structure in which to describe the knowledge and beliefs held

by individual players. Such games provide a uniform framework in which to relate

the heretofore unrelated solution concepts of correlated equilibrium and rationalizable

strategies. In addition, an extension of information games known as Bayesian games is

introduced in this section, where payo�s depend on an exogenously determined state

of the world. Finally, Bayesian-Nash equilibrium and von Neumann-Morgenstern

equilibrium, which arise in the context of Bayesian games, are de�ned.
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1.4.1 Mixed Strategy Equilibria

An information game is a strategic form game in which players maintain a database

of knowledge and beliefs about the possible outcomes of the game. This database is

stored as a belief system, where beliefs are represented by probabilities, and knowledge

is understood as belief with probability 1. The assumption of probabilistic beliefs

leads to randomizations over the choice of pure strategies; hence, the notion of mixed

strategies. In other words, mixed strategies arise as probability distributions over the

possible states of the world, as is described by belief systems.

De�nition 1.4.1 A belief system B = (
; (Pi; pi)i2I) is a probability space, where

� 
 is a �nite set of possible states of the world (! 2 
)

� Pi � 2
 is an information partition (Pi 2 Pi)
3

� pi : 
! R is a probability measure

An element of information partition Pi at state ! is called an information set for

player i, and is denoted by Pi(!). Intuitively, Pi(!) is an equivalence class consisting

of those states that player i cannot distinguish from !. The function pi induces

a conditional probability on 
 which is measurable with respect to the knowledge

described by information partition Pi s.t. pi(!j!1) = pi(!j!2) whenever !1 2 Pi(!2);

formally, pi[AjPi](!1) = pi[AjPi](!2), whenever !1 2 Pi(!2), for all A � 
.

Example 1.4.2 Consider the state of knowledge today of two players about the price

of ibm stock tomorrow. Assume the possible states of the world are up and down: i.e.,


 = fU;Dg. If neither player knows the state of the world that will obtain tomorrow,

then the information partition of each player is the trivial partition, namely f
g.

The players' beliefs, however, need not agree. For example, player 1 may attribute

equal probabilities to both up and down: i.e., p1(U) = p1(D) = 1
2
; while player 2 may

attribute probability 2
3
to up and 1

3
to down: i.e., p2(U) =

2
3
and p2(D) = 1

3
. These

probabilities induce conditional probabilities as follows:

p1[fUgjP1](U) = p1[fUgjP1](D) = p1[fDgjP1](U) = p1[fDgjP1](D) = 1
2

p2[fUgjP2](U) = p2[fUgjP2](D) = 2
3

and p2[fDgjP2](U) = p2[fDgjP2](D) = 1
3

3 Technically, Pi is a �-�eld.
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Example 1.4.3 In the Battle of the Sexes viewed as an information game, the set of

states of the world consists of all possible outcomes of the strategic form game: i.e.,


 = f(B;B); (B;F ); (F;B); (F; F )g. The woman's knowledge of the world is given

by information partition PW = ff(B;B); (B;F )g; f(F;B); (F; F )gg; in other words,

she is conscious of her own strategic play but is uncertain of the man's decisions.

In contrast, the man's knowledge of the world is described by information partition

PM = ff(B;B); (F;B)g; f(B;F ); (F; F )gg. Some sample probabilities are given by

pW (B;B) = pW (F; F ) = 1
2
and pM(B;B) = pM(B;F ) = pM(F;B) = pM(F; F ) = 1

4
.

These probabilities induce conditional probabilities for the woman, for example, as

follows:

pW [f(B;B); (F;B)gjPW ](B;B) = pW [f(B;B); (F;B)gjPW ](B;F ) = 1

pW [f(B;B); (F;B)gjPW ](F;B) = pW [f(B;B); (F;B)gjPW ](F; F ) = 0

pW [f(B;F ); (F; F )gjPW ](B;B) = pW [f(B;F ); (F; F )gjPW ](B;F ) = 0

pW [f(B;F ); (F; F )gjPW ](F;B) = pW [f(B;F ); (F; F )gjPW ](F; F ) = 1

The above examples consider exogenously and endogenously determined possible

states of the world, respectively. In particular, in Example 1.4.2, the state of the

world is assumed to be independent of the players' decisions, while in Example 1.4.3,

the state of the world is assumed to be fully determined by the players' strategic

decisions. Until otherwise noted, this section proceeds from the point of view that

the state of the world is determined endogenously.

De�nition 1.4.4 An information game �B is a strategic form game � together with

a belief system B and, for all players i 2 I, an adapted strategy Ai : 
! Si: i.e.,

�B = (I;B; (Si; ri; Ai)i2I)

By de�nition, an adapted strategy Ai is measurable: i.e., Ai(!1) = Ai(!2) whenever

whenever !1 2 Pi(!2). This condition implies that identical strategies are played

at indistinguishable states of the world: i.e., strategic decisions depend only on the

information partition Pi. A vector of adapted strategies (Ai)i2I is called an adapted

strategy pro�le.
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Rationality

In information games, the payo� functions are random variables, since the state of

the world ultimately dictates payo�s. Given adapted strategy pro�le A, the expected

payo�s for player i as predicted by player j are based on player j's beliefs, which are

described by probability measure pj:

E j [ri(A)] =
X
!2


pj(!) ri(A(!))

De�nition 1.4.5 Given an information game �B, the adapted strategy A
�
i is rational

for player i i� for all adapted strategies Ai,

E i [ri(A
�
i ; A�i)] � E i [ri(Ai; A�i)]

An adapted strategy A�
i is rational for player i which maximizes i's expectation of i's

payo�s, given i's beliefs. A player is rational who plays rational adapted strategies.

Common Prior Assumption

The common prior assumption implies that people have di�erent probabilities about

the possibility of events occurring because people have access to di�erent information.

In other words, in the absence of di�erences in information, people ascribe the same

probabilities to events. This is in contrast to utility functions, for example, where

people have di�erent utilities simply because they have di�erent preferences (e.g.,

some like co�ee, but some like tea). The common prior assumption holds whenever

pi = pj, for all i; j 2 I.

Correlated Equilibrium

This section introduces a generalization of Nash equilibrium due to Aumann [4] known

as correlated equilibrium, which allows for possible dependencies in strategic choices.

A daily example of a correlated equilibrium is a traÆc light; red (green) traÆc signal

suggests that cars should stop (go), and in fact, these suggestions are best responses

to the simultaneous suggestions for the strategies of others.
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De�nition 1.4.6 Given information game �B, a correlated equilibrium is an adapted

strategy pro�le s.t.:

� All players are rational.

� The common prior assumption holds.

Example 1.4.7 Consider the Battle of the Sexes viewed as an information game

(see Example 1.4.3). Assume the beliefs held by the woman are as given in the

previous example, namely pW (B;B) = pW (F; F ) = 1
2
, and similarly, for the man,

pM(B;B) = pM(F; F ) = 1
2
. The conditional probabilities for the woman are as given

in Example 1.4.3; for the man, they are as follows:

pM [f(B;B); (B;F )gjPM ](B;B) = pM [f(B;B); (B;F )gjPM ](F;B) = 1

pM [f(B;B); (B;F )gjPM ](B;F ) = pM [f(B;B); (B;F )gjPM ](F; F ) = 0

pM [f(F;B); (F; F )gjPM ](B;B) = pM [f(F;B); (F; F )gjPM ](F;B) = 0

pM [f(F;B); (F; F )gjPM ](B;F ) = pM [f(F;B); (F; F )gjPM ](F; F ) = 1

The woman is rational if her adapted strategy prescribes that she is to play B on

f(B;B); (B;F )g and F on f(F;B); (F; F )g; similarly, the man is rational if his

adapted strategy prescribes that he is to play B on f(B;B); (F;B)g and F on

f(B;F ); (F; F )g. This is a correlated equilibrium in which the players abide by the

joint probability distribution 1
2
(B;B); 1

2
(F; F ).

Battle of the Sexes has three Nash equilibria, two of which are pure strategy

equilibria, namely (B;B) and (F; F ), and the mixed strategy (2
3
; 1
3
) for the woman

and (1
3
; 2
3
) for the man, which yields equal expected payo�s of (2

3
; 2
3
) to both. The

correlated equilibrium described in Example 1.4.7, however, yields expected payo�s

of (3
2
; 3
2
). In general, it is possible to achieve correlated equilibrium payo�s as any

convex combination of Nash equilibria. Moreover, it is also possible to achieve payo�s

via correlated equilibrium outside the convex hull of Nash equilibrium payo�s. In the

game depicted in Figure 1.9, for example, the Nash equilibrium achieved via mixed

strategies (1
5
; 4
5
) and (4

5
; 1
5
) for players 1 and 2, respectively, yields expected payo�s

of 4 for both players. In contrast, the correlated equilibrium strategies presented in

Figure 1.9 generate expected payo�s of 41
4
.
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Figure 1.9: Correlated Equilibrium

Subjective Correlated Equilibrium

The notion of correlated equilibrium described in the previous section is sometimes

referred to as objective correlated equilibrium, since, as noticed by Aumann [4], it

is also possible to de�ne a notion of subjective correlated equilibrium in which the

common prior assumption does not hold.

De�nition 1.4.8 Given information game �B, a subjective correlated equilibrium is

an adapted strategy pro�le s.t.:

� All players are rational.

Theorem 1.4.9 The set of objective correlated equilibria (ce) is contained within

the set of subjective correlated equilibria (se).

Proof 1.4.10 The proof follows immediately from the de�nitions of objective and

subjective correlated equilibria, since objective correlated equilibria form a special

case of the class of subjective correlated equilibria.

Example 1.4.11 Consider once again the Battle of the Sexes, as in Example 1.4.7,

where the woman and the man play rational adapted strategies. Assume, however,

that pW (B;B) = 1 and pM(F; F ) = 1. The subjective correlated equilibrium outcome

in this case is (B;F ).
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Tying It All Together

This section brings together the ideas underlying the iterative solution concepts of the

previous section with the notions of correlated equilibria. Initially, it is necessary to

extend the iterative solution concepts to the case of mixed strategies. This discussion

proceeds in terms of the set of serially undominated strategies, since in this case, it is

possible to postpone the consideration of mixtures until after all pure strategies have

been eliminated, without altering the �nal solution. De�ne the following:

D�1
i (D1) = fq�i 2 Qi j 8qi 2 �(D1

i ); 9s�i 2 D1
i ; E [ri(q

�
i ; s�i) � E [ri(qi; s�i)]g

As usual, D�1(T ) =
Q
i2I D

�1
i (T ). Let D�1 � D�1(D1). Of course, D1 � D�1

since every pure strategy si can be described by mixed strategy �i(si) = 1.

It is also possible to de�ne a mixed strategy notion of rationalizable strategies

in which a mixed strategy is rationalizable if it is a best response to some choice of

(possibly correlated) strategies by the other players. It is known, however, that the

solutions R�1 = D�1, as long as opponents' strategies are allowed to be correlated

(see, for example, Fudenberg and Tirole [47]). In particular, in the space of probability

distributions, the order of quanti�ers is no longer of relevance. The proof of this fact is

a variant of the minimax theorem, which in turn is usually proven using the separating

hyperplane theorem. The following theorem relates the various generalizations of

Nash equilibrium that have been de�ned thus far.

Theorem 1.4.12 ce � D�1 = R�1 � se.

Proof 1.4.13 The rationality constraint in the de�nition of correlated equilibrium

ensures that no players will play strategies which are not rationalizable: ce � R�1.

The �nal relationship follows since R�1 � R�1, which is equivalent to se.

1.4.2 Nash Equilibrium Revisited

Nash equilibrium is a special case of correlated equilibrium in which one player's

beliefs about the state of the world is independent of any other's. Independent beliefs

leads to independent randomizations over the choice of pure strategies.
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De�nition 1.4.14 An independent belief system B = (
; (Pi; pi)i2I) is a special case

of a belief system where pi(Pj\Pk) = pi(Pj)pi(Pk), for all Pj 2 Pj, Pk 2 Pk, i; j; k 2 I.

Nash Equilibrium

This section rede�nes Nash equilibrium in the context of information games.

De�nition 1.4.15 Given an information game �B, a Nash equilibrium is an adapted

strategy pro�le s.t.:

� All players are rational.

� The common prior assumption holds.

� B is an independent belief system.

Example 1.4.16 Consider once again the Battle of the Sexes, as in Example 1.4.7,

where pW (B;B) = pM(B;B) = 1
2
and pW (F; F ) = pM(F; F ) = 1

2
. Recall that this is a

correlated equilibrium. This is not, however, a Nash equilibrium, as the independence

property fails. In particular,

pW [f(B;B); (B;F )g]pW [f(B;B); (F;B)g] =
�
1
2

� �
1
2

�
= 1

4
6= 1

2
= pW (B;B)

pW [f(F;B); (F; F )g] pW [f(B;F ); (F; F )g] =
�
1
2

� �
1
2

�
= 1

4
6= 1

2
= pW (F; F )

and similarly for the man. On the other hand, both pW (B;B) = pM(B;B) = 1 and

pW (F; F ) = pM(F; F ) = 1 satisfy the independence property, and are therefore pure

strategy Nash equilibria. Finally, the following probabilities form a mixed strategy

Nash equilibrium:

pW (B;B) = pM(B;B) = 2
9

pW (B;F ) = pM(B;F ) = 4
9

pW (F;B) = pM(F;B) = 1
9

pW (F; F ) = pM(F; F ) = 2
9

since

pW [f(B;B); (B;F )g]pW [f(B;B); (F;B)g] =
�
2
3

� �
1
3

�
= 2

9
= pW (B;B)

pW [f(B;B); (B;F )g]pW [f(B;F ); (F; F )g] =
�
2
3

� �
2
3

�
= 4

9
= pW (B;F )

pW [f(F;B); (F; F )g] pW [f(B;B); (F;B)g] =
�
1
3

� �
1
3

�
= 1

9
= pW (F;B)

pW [f(F;B); (F; F )g] pW [f(B;F ); (F; F )g] =
�
1
3

� �
2
3

�
= 2

9
= pW (F; F )

and similarly for the man.
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Theorem 1.4.17 The set of Nash equilibria is a subset of that of correlated equilibria.

The notion of Nash equilibrium that is de�ned in this section for information

games implies the usual de�nition of Nash equilibrium in (informationless) strategic

form games. Given a Nash equilibrium for an information game, the Nash equilibrium

of the corresponding strategic form game is derived as follows: player i plays strategy

Ai(!) with probability pi[Pi(!)], where pi[Pi(!)] =
P

!02Pi(!) pi(!
0), for all ! 2 
.

It follows immediately from the fact that all adapted strategies are rational at Nash

equilibrium that the induced probabilities in the strategic form game constitute a

Nash equilibrium as well.

Subjective Nash Equilibria

Just as it is of interest to de�ne a subjective notion of correlated equilibrium, it is

similarly possible to de�ne a subjective notion of Nash equilibrium. This de�nition

proceeds as follows:

De�nition 1.4.18 Given an information game �B, a subjective Nash equilibrium is

an adapted strategy pro�le s.t.:

� All players are rational.

� B is an independent belief system.

Theorem 1.4.19 The set of Nash equilibria is a subset of the set of subjective Nash

equilibria.

1.4.3 Bayesian-Nash Equilibrium

In contrast with the games considered thus far which have not accounted for exogenous

in
uences, this section considers games in which the state of the world is determined

exogenously, so-called Bayesian games. The term Bayesian game is also sometimes

used to refer to games of incomplete information in which there are still no exogenous

e�ects, but the players are unaware of one another's payo�s. In this latter case,

players condition on the other players' probable payo�s, just as in the Bayesian games

considered here, where players condition on the probable state of the world.
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De�nition 1.4.20 A Bayesian game �B(!) is an information game �B in which the

payo� functions depend on the state of the world: i.e., ri : S � 
! R.

Example 1.4.21 A well-known example of a Bayesian game is the so-called envelope

paradox. A father o�ers each of his two sons an envelope with either $10m or $10n,

where jm� nj = 1, for 0 � m;n � 6. Each brother can accept his envelope, or chose

to engage in a bet in which he pays the father $1 for the right to swap envelopes

with his brother, provided that his brother has also chosen to engage in this bet.

Otherwise, he simply loses $1.

NB

B NB1
2

10  -1,10  -1,

10  -1

n

m

10  , 10
m n

10  -1,
m

10
n

10  -1
n

10  ,
m

B

Figure 1.10: The Envelope Paradox

The envelope paradox can be modeled as an information game in which the two

brothers have private knowledge regarding the payo�s, but the state of the world

is unknown. In particular, let (m;n) denote the state of the world, where m (n)

is the exponent of the payo� to the �rst (second) brother. The pure strategy sets

of the brothers are bet and no bet. The payo� matrix in Figure 1.10 depicts the

outcomes of the envelope game in terms of the unknown state of the world. The

envelope paradox is so-called because so long as m;n 6= 6, it is in the best interest

of both brothers to accept the bet. Since the probablity that the second brother

receives 10 times as much money as the �rst brother is 1
2
, the expected value of the

second brother's lot, given the information that the �rst brother has about his own

lot, is approximately 5 times greater than the �rst brother's lot. Thus, it is in the

�rst brother's best interest to bet. The reasoning is analogous for the second brother.

This paradox is resolved via the concept of Bayesian-Nash equilibrium.
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Bayesian-Nash Equilibrium

Bayesian-Nash equilibrium is an extension of correlated equilibrium to the class of

Bayesian games.4

De�nition 1.4.22 Given Bayesian game �B(!), a Bayesian-Nash equilibrium is an

adapted strategy pro�le s.t.:

� All players are rational.

� The common prior assumption holds.

The strategy pro�le in which both players do not bet is the unique Bayesian-Nash

equilibrium in the Bayesian information game which describes the envelope paradox.

Suppose the state of the world is (2; 3) and moreover, assume the brothers have

common prior beliefs about the state of the world s.t. p1(2; 3) = p2(2; 3) = 1. Given

this belief structure, the second brother surely should not bet, since he has already

received the greater lot. In addition, given that the second brother should not bet,

the �rst brother also should not bet, since he would incur a loss of $1 otherwise.

These strategic choices form the unique Bayesian-Nash equilibrium. In essence, the

envelope paradox is resolved whenever the common prior assumption is satis�ed; since

the only sets in the information partitions of the brothers which are assigned positive

probabilities are, respectively, f(m�1; m); (m;m+1)g and f(m;m+1); (m+1; m+2)g,

the common prior assumption is only satis�ed when p1(m;m+1) = p2(m;m+1) = 1.

Summary and Conclusions

This concludes the discussion of information games. Information games generalize

strategic form games via explicit use of information structures. While it is by all means

possible to de�ne equilibria solely in terms of strategic form games, the framework of

information games clari�es the relationships among the numerous solution concepts,

and moreover, information games motivate the play of mixed strategies.

4 Nash equilibrium was de�ned in the 50's [83], Bayesian-Nash equilibrium was de�ned in the 60's [56],

but correlated equilibrium was not de�ned until the 70's [4]. Hence, although Bayesian-Nash equilibrium is

in e�ect correlated, it is not so-called, since upon its invention, correlated equilibrium did not exist.
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1.5 Discussion: Repeated Games

This chapter presented an overview of one-shot games and several relevant equilibrium

concepts. In order to determine the domain of applicability of the various solutions,

this thesis is concerned with the dynamics of learning over repeated instances of

one-shot games. Repeated games form a special case of the class of in�nite-horizon,

extensive form games, or game trees. Unlike �nite game trees, however, where there

exists solutions via bottom-up algorithms like dynamic programming and minimax,

in the case of in�nitely repeated games, this would lead to an in�nite regress. Instead,

the learning dynamics studied in this thesis fall into the category of reinforcement

learning algorithms, which experiment among possible strategies and as the name

suggests, reinforce those that yield relatively high payo�s. The following chapter

discusses a suite of optimality criteria and corresponding learning algorithms for which

repeated play converges to various generalizations of Nash equilibrium.



Chapter 2

Optimality and Learning

The ultimate goal of learning in repeated games is to induce optimal behavior. A

learning algorithm which achieves this objective is said to be clairvoyant. More

speci�cally, a clairvoyant algorithm generates a sequence of plays that consists only

of best responses, where a strategy is called a best response if the payo�s achieved

by that strategy are at least as great as the payo�s achieved by any other strategy.

It follows that clairvoyant learning algorithms converge to Nash equilibrium play.

Unfortunately, no clairvoyant algorithms are known to exist. As a result, this thesis

investigates relaxed notions of optimality for which there do in fact exist provably

e�ective learning algorithms for repeated games. Since the optimality concepts that

are studied herein are weaker than clairvoyance, they give rise to learning algorithms

which converge to solution concepts that generalize that of Nash equilibrium.

The �rst half of this chapter presents a suite of optimality criteria which appear

in the literature on game theory, machine learning, and stochastic control. In this

thesis, optimality is described in terms of no regret. Intuitively, a sequence of plays

is optimal if there is no regret for playing the given strategy sequence rather than

playing any other possible sequence of strategies. The types of optimality which are

described herein, listed in order from weakest to strongest, are as follows: no model-

based regret, no external regret, no internal regret, and no clairvoyant regret. The

second half of this chapter presents examples of learning algorithms which satisfy the

aforementioned optimality criteria.
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2.1 Optimality Criteria

Given a sequence of T decisions, clairvoyant algorithms generate best response play

at all times. It follows that the expected cumulative payo�s achieved via a clairvoyant

algorithm after T decisions are at least as great as those that could be achieved by

any other possible sequences of actions. When this rigid criterion is relaxed, it gives

rise to optimality criteria such as no model-based regret, no external regret, and no

internal regret.

No model-based regret is an optimality criterion suggested by stochastic control

theorists, such as Narendra and Thathachar [82]. This type of regret is so-called

because it is dependent on the model of the environment that is under consideration,

which is described by a probability distribution. An algorithm is said to exhibit no

model-based regret if the di�erence between the expected cumulative payo�s that are

achieved by the algorithm and those that could be achieved by any �xed alternative

strategy is insigni�cant, with respect to expectations over the opposing sequence of

plays as determined by the environment.

Whereas stochastic control theory considers expectations of the environment, in

other words average-case performance, machine learning is focused on performance

in the worst case. In particular, machine learning researchers consider the di�erence

between the expected payo�s that are achieved by a given algorithm, as compared

to the payo�s that could be achieved by any other �xed sequence of decisions, with

respect to actual opposing strategy sequences. If the di�erence between sums is

negligible, then the algorithm is said to exhibit no external regret . Early no external

regret algorithms appeared in Blackwell [14], Hannan [53], and Banos [10].

Game theorists Foster and Vohra [37] consider an alternative measure of worst-

case performance. If the di�erence between the cumulative payo�s that are achieved

by a sequence of strategies generated by a given algorithm, in comparison with the

cumulative payo�s that could be achieved by a remapped sequence of strategies, is

insigni�cant, then the algorithm is said to exhibit no internal regret .1 Note that no

internal regret implies no external regret implies no model-based regret.

1 A sequence is remapped if there is a mapping f of the strategy space into itself s.t. for each occurrence

of strategy si in the original sequence, the mapped strategy f(si) appears in the remapped sequence.
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2.1.1 No Model-based Regret

An algorithm is said to exhibit no model-based regret if and only if the di�erence

between the expected cumulative payo�s that are achieved by the algorithm and those

that could be achieved by any �xed alternative strategy is insigni�cant, with respect

to expectations over the opposing sequence of plays. In other words, no model-based

regret is no regret in the average case, given a prespeci�ed model of the environment.

(This and other types of average-case behavior are analyzed in a survey paper by

Narendra and Thathachar [82].2) This type of regret is so-called because it depends

on the model of the opponents, who taken collectively act as the environment. As

the model of the environment is taken as given, model-based regret is applicable in

situations in which it is assumed that the strategic decisions taken by individuals do

not impact the environment. This assumption is reminiscent of common assumptions

in the economic theory of perfect competition.

Regret is a feeling of remorse over something that has happened, particularly as

a result of one's own actions. In game-theoretic notation, the regret felt by player

i whenever strategy si is played is formulated as the di�erence between the payo�s

obtained by utilizing strategy si and the payo�s that could have been achieved had

some other strategy, say �si, been played instead. In particular, if the probability

distribution qt�i serves as a model of the environment at time t, the expected regret

felt by player i at time t is the di�erence between the expected payo� of strategy �si

and strategy si:

E [rt
si!�si

] = E [ri(�si; q
t
�i)� ri(si; q

t
�i)] (2.1)

The cumulative expected regret through time T that is felt by player i from strategy

si towards strategy �si is the summation over the instantaneous values of expected

regret, whenever strategy si is played rather than strategy �si:

E [rT
si!�si

] =
TX
t=1

1fst
i
=sigE [r

t
si!�si

] (2.2)

2 Narendra and Thathachar refer to no model-based regret as �-optimality, but this denomination is

ambiguous in this chapter, which contains a review of optimality criteria. Consequently, this property has

been renamed for the purposes of this exposition.
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where 1fa=bg is the indicator function.
3 Finally, the model-based regret felt by player

i towards strategy �si is the summation over all strategies si 2 Si of the strategic

values of model-based regret:

mr
T
Si!�si

=
X
si2Si

E [rT
si!�si

] (2.3)

De�nition 2.1.1 Given a sequence of plays fstg of length T , the sequence of plays

fstig for player i is said to exhibit no model-based regret i� 8� > 0; 8�si 2 Si,

mr
T
Si!�si

< �T

In words, a sequence of plays exhibits no model-based regret if the di�erence

between the cumulative payo�s that are achieved by the given sequence and those

that could be achieved by any �xed alternative strategy is insigni�cant, with respect

to expectations over the opposing sequence of plays. Thus, it suÆces to compare

the payo�s of the given sequence with the payo�s that could have been obtained by

the best possible �xed strategy, for if the given sequence achieves payo�s that are

comparable with the best alternative, then the given sequence achieves payo�s that

are comparable with all the alternatives. The no model-based regret condition can

be restated in terms of an optimal �xed strategy.

Lemma 2.1.2 Given a model of the environment expressed as a sequence of weights

fqt�ig of length T . Consider a sequence of plays fs�ti g constructed s.t. 8t; s�ti = s�i ,

where s�i is optimal in the following sense:

s�i = argmax
�si2Si

X
si2Si

TX
t=1

1fst
i
=sigE [ri(�si; q

t
�i)]

The sequence of plays fstig for player i exhibits no model-based regret i� 8� > 0,

TX
t=1

E [ri(s
�t
i ; q

t
�i)]�

TX
t=1

E [ri(s
t
i; q

t
�i)] < �T

3 The indicator function is de�ned as follows:

1fa=bg =

(
1 if a = b

0 otherwise

For convenience, in the description of learning algorithms, 1st
i
=si

is written 1
t
si
.
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Proof 2.1.3 The lemma follows directly from the construction of the sequence of

plays fs�ti g and the de�nition of no model-based regret. For arbitrary � > 0,

8�si 2 Si; mr
T
Si!�si

< �T

i� 8�si 2 Si;
P

si2Si

PT
t=1 1fsti=sigE [ri(�si; q

t
�i)� ri(si; q

t
�i)] < �T

i� max�si2Si
P

si2Si

PT
t=1 1fst

i
=sigE [ri(�si; q

t
�i)� ri(si; q

t
�i)] < �T

i�
P

si2Si

PT
t=1 1fst

i
=sigE [ri(s

�
i ; q

t
�i)� ri(si; q

t
�i)] < �T

i�
PT

t=1 E [ri(s
�t
i ; q

t
�i)]�

PT
t=1 E [ri(s

t
i; q

t
�i)] < �T

The optimality criteria discussed in this chapter are useful not only to describe

the properties of sequences of plays, but in addition, they are applicable to sequences

of weights which are often generated via learning algorithms. A sequence of weights

exhibits no model-based regret if the di�erence between the cumulative payo�s that

are achieved by the given sequence and those that could be achieved by any �xed

alternative strategy is insigni�cant, with respect to expectations over the opposing

sequence of weights generated by the environment.

De�nition 2.1.4 Given opposing sequence of weights fqt�ig of length T employed

by the environment, an algorithm is said to exhibit no model-based regret i� it gives

rise to a sequence of weights fqtig s.t. 8� > 0; 8�si 2 Si,

E [mrT
Si!�si

] < �T

Theorem 2.1.5 Let fs�ti g be as de�ned in Lemma 2.1.2. An algorithm that gives

rise to a sequence of weights fqtig of length T exhibits no model-based regret against

opposing sequence of weights fqt�ig i� 8� > 0,

TX
t=1

E [ri(s
�t
i ; q

t
�i)]�

TX
t=1

E [ri(q
t
i ; q

t
�i)] < �T

Proof 2.1.6 The theorem follows via Lemma 2.1.2 and the de�nition of no model-

based regret.
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For arbitrary � > 0,

8�si 2 Si; E [mr
T
Si!�si

] < �T

i� E

hPT
t=1 E [ri(s

�t
i ; q

t
�i)]�

PT
t=1 E [ri(s

t
i; q

t
�i)]

i
< �T

i� E

hPT
t=1 E [ri(s

�t
i ; q

t
�i)]�

PT
t=1 E [

P
si2Si 1fsti=sigri(si; q

t
�i)]

i
< �T

i�
PT

t=1 E [ri(s
�t
i ; q

t
�i)]�

PT
t=1 E [

P
si2Si q

t
i(si)ri(si; q

t
�i)] < �T

i�
PT

t=1 E [ri(s
�t
i ; q

t
�i)]�

PT
t=1 E [ri(q

t
i ; q

t
�i)] < �T

The property of no model-based regret is satis�ed by a suite of additive updating

algorithms, which are described in the second half of this chapter. The following

sections discuss a series of re�nements of the no model-based optimality criterion.

While no model-based regret is an average-case performance measure, the remaining

optimality criteria are measures of performance in the worst-case; more speci�cally,

performance is measured over all possible opposing sequences of plays, rather than

with respect to a speci�c model.

2.1.2 No External Regret

Recall that an algorithm exhibits no model-based regret if it yields no regret in the

average case, with respect to a given model of the environment. The no external regret

property is a strengthening of no model-based regret which measures performance

in the worst case. In particular, no external regret is satis�ed by algorithms that

exhibit no regret with respect to all adversarial strategy sequences. Early no external

regret algorithms were described in Blackwell [14], Hannan [53], Banos [10], and

Megiddo [77]; Recent no regret algorithms appeared in Cover [26] and Auer, Cesa-

Bianchi, Freund, and Schapire [3].

The regret felt by player i at time t is formulated as the di�erence between the

payo�s obtained by utilizing strategy si and the payo�s that could have been achieved

had strategy �si been played instead, given the opposing strategy that is actually

employed by the environment at time t:

r
t
si!�si

= ri(�si; s
t
�i)� ri(si; s

t
�i) (2.4)
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Given sequence of plays fstg, the cumulative regret felt by player i from strategy si

towards strategy �si is computed as the summation over the length of the sequence of

the instantaneous regret felt whenever strategy si is played rather than �si:

r
T
si!�si

=
TX
t=1

1st
i
=sir

t
si!�si

(2.5)

Finally, the external regret felt by player i towards strategy �si arising via the sequence

fstg is the summation over all strategies si 2 Si of the individual strategic regrets:

er
T
Si!�si

=
X
si2Si

r
T
si!�si

(2.6)

De�nition 2.1.7 Given a sequence of plays fstg of length T , the sequence of plays

fstig for player i is said to exhibit no external regret i� 8� > 0; 8�si 2 Si,

er
T
Si!�si

< �T

Lemma 2.1.8 Given a sequence of plays fstg of length T . Consider a sequence of

plays fs�ti g constructed s.t. 8t; s�ti = s�i , where s
�
i is optimal in the following sense:

s�i = argmax
�si2Si

X
si2Si

TX
t=1

1fst
i
=sigri(�si; s

t
�i)

The sequence of plays fstig for player i exhibits no external regret i� 8� > 0,

TX
t=1

ri(s
�t
i ; s

t
�i)�

TX
t=1

ri(s
t
i; s

t
�i) < �T

Proof 2.1.9 The lemma follows directly from the construction of the sequence of

plays fs�ti g and the de�nition of no external regret. For arbitrary � > 0,

8�si 2 Si; er
T
Si!�si

< �T

i� 8�si 2 Si;
P

si2Si

PT
t=1 1fsti=sig[ri(�si; s

t
�i)� ri(si; s

t
�i)] < �T

i� max�si2Si
P

si2Si

PT
t=1 1fst

i
=sig[ri(�si; s

t
�i)� ri(si; s

t
�i)] < �T

i�
P

si2Si

PT
t=1 1fst

i
=sig[ri(s

�
i ; s

t
�i)� ri(si; s

t
�i)] < �T

i�
PT

t=1 ri(s
�t
i ; s

t
�i)�

PT
t=1 ri(s

t
i; s

t
�i) < �T
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De�nition 2.1.10 Given any opposing sequence of plays fst�ig of length T that is

employed by the environment, an algorithm is said to exhibit no external regret i� it

gives rise to a sequence of weights fqtig s.t. 8� > 0; 8�si 2 Si,

E [erT
Si!�si

] < �T

Theorem 2.1.11 Let fs�ti g be as de�ned in Lemma 2.1.8. An algorithm that gives

rise to a sequence of weights fqtig of length T exhibits no external regret against

opposing sequence of plays fst�ig i� 8� > 0,

TX
t=1

ri(s
�t
i ; s

t
�i)�

TX
t=1

E [ri(q
t
i ; s

t
�i)] < �T

Proof 2.1.12 The theorem follows via Lemma 2.1.8 and the de�nition of no external

regret. For arbitrary � > 0,

8�si 2 Si; E [er
T
Si!�si

] < �T

i� E [
PT

t=1 ri(s
�t
i ; s

t
�i)�

PT
t=1 ri(s

t
i; s

t
�i)] < �T

i� E [
PT

t=1 ri(s
�t
i ; s

t
�i)�

PT
t=1

P
si2Si 1fsti=sigri(si; s

t
�i)] < �T

i�
PT

t=1 ri(s
�t
i ; s

t
�i)�

PT
t=1

P
si2Si q

t
i(si)ri(si; s

t
�i)] < �T

i�
PT

t=1 ri(s
�t
i ; s

t
�i)�

PT
t=1 E [ri(q

t
i ; s

t
�i)] < �T

Theorem 2.1.13 No external regret implies no model-based regret.

Proof 2.1.14 The result follows via Theorems 2.1.5 and 2.1.11. In particular, an

algorithm satis�es no external regret i� for arbitrary � > 0,

8�si 2 Si; E [er
T
Si!�si

] < �T

i�
PT

t=1 ri(s
�t
i ; s

t
�i)�

PT
t=1 E [ri(q

t
i ; s

t
�i)] < �T

) PT
t=1 E [ri(s

�t
i ; q

t
�i)]�

PT
t=1 E [ri(q

t
i ; q

t
�i)] < �T

i� 8�si 2 Si; E [mr
T
Si!�si

] < �T

Therefore, the algorithm satis�es no model-based regret. Note that this result follows

directly from the fact that mrTsi!�si
= E [erT

si!�si
].
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Figure 2.1: No External Regret

Remark 2.1.15 No external regret does not ensure convergence inside the set O1.

Figure 2.1 depicts a game which permits a sequence of plays that exhibits no

external regret and employs strategies outside of R1; D1, and O1. In particular, a

sequence of plays which consists of (A; a); (B; b), and (C; c), each appearing 1

3
of the

time, exhibits no external regret. If player 1 were to consider playing strategy A (B)

everywhere, while this would increase the payo�s obtained whenever strategy C is

played, it would equivalently decrease the payo�s obtained whenever strategy B (A)

is played. Thus, the given sequence of plays yields no external regret for player 1, and

similarly for player 2. However, R1 = D1 = O1 = fA;Bg � fa; bg; in particular,

strategies C and c are eliminated. It follows that no external regret learning need not

converge inside the set R1; D1, or O1.

Recall that no external regret implies no model-based regret. It follows that like

no external regret, no model-based regret does not ensure convergence inside the

set of unoverwhelmed strategies. This type of situation cannot arise in sequences of

plays that satisfy no internal regret, since learning via no internal regret converges to

correlated equilibrium, which is contained by the set of undominated strategies. No

internal regret is described in the following section.
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2.1.3 No Internal Regret

Recall that an algorithm is said to exhibit no external regret if the di�erence between

the cumulative payo�s that are achieved by the algorithm and those that could be

achieved by any �xed alternative is insigni�cant. In particular, the no external regret

criterion considers the substitution of all the algorithmic decisions by one unique

strategy. But that strategy, while it may be preferable to some of the algorithmic

choices, need not be preferable everywhere. The no internal regret criterion is a

re�nement of the no external regret criterion in which the only substitutions that are

considered are those which are preferable: i.e., regret is positive, when one strategy

is considered in place of another. This alternative measure of worst-case performance

is due to Foster and Vohra [37].

The mathematical formulation of the no internal regret criterion arises out of a

slight modi�cation of the no external regret condition (see Equation 2.5). Let

ir
T
si!�si

= (rTsi!�si
)+ (2.7)

where X+ = maxfX; 0g, and let

ir
T
Si!�si

=
X
si2Si

ir
T
si!�si

(2.8)

De�nition 2.1.16 Given a sequence of plays fstg of length T , the sequence of plays
fstig for player i is said to exhibit no internal regret i� 8� > 0; 8�si 2 Si,

ir
T
Si!�si

< �T

The no internal regret optimality criterion compares one sequence of plays to a

second in which a given strategy is everywhere replaced by the same strategy if the

replacement strategy yields cumulative payo�s greater than those achieved by the

original. Now consider the following substitution condition: in a sequence of plays,

all occurrences of strategy ai are replaced by a�i , all occurrences of bi replaced by b�i ,

and so on, where x�i is a strategy which achieves maximal cumulative payo�s whenever

strategy xi is played. This latter criterion is equivalent to the original de�nition of

no internal regret, as the following lemma demonstrates.
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Lemma 2.1.17 Given a sequence of plays fstg of length T . Corresponding to every

si 2 Si that appears in the sequence fstig, there exists s�i , which is optimal in the

following sense:

s�i = argmax
�si2Si

TX
t=1

1fst
i
=sigri(�si; s

t
�i)

Consider the comparative sequence of plays fs�ti g which is de�ned s.t. 8t, s�ti = s�i

whenever sti = si. The sequence of plays fstig for player i satis�es no internal regret

i� 8� > 0,

TX
t=1

ri(s
�t
i ; s

t
�i)�

TX
t=1

ri(s
t
i; s

t
�i) < �T

Proof 2.1.18 The lemma follows directly from the construction of the sequence of

plays fs�ti g and the de�nition of no internal regret. For arbitrary � > 0,

8�si 2 Si; ir
T
Si!�si

< �T

i� 8�si 2 Si;
P

si2Si

�PT
t=1 1fsti=sig[ri(�si; s

t
�i)� ri(si; s

t
�i)]

�+
< �T

i� max�si2Si
P

si2Si

�PT
t=1 1fsti=sig[ri(�si; s

t
�i)� ri(si; s

t
�i)]

�+
< �T

i�
P

si2Si

�PT
t=1 1fsti=sig[ri(s

�
i ; s

t
�i)� ri(si; s

t
�i)]

�
< �T

i�
PT

t=1 ri(s
�t
i ; s

t
�i)�

PT
t=1 ri(s

t
i; s

t
�i) < �T

Example 2.1.19 Recall the game considered in Figure 2.1. While the sequence

of plays which consists of (A; a); (B; b), and (C; c), each appearing 1

3
of the time,

exhibits no external regret, this sequence does not exhibit no internal regret. In

particular, whenever (C; c) is played, there is internal regret, since greater payo�s

would be achieved by a sequence which substitutes either A(a) or B(b) everywhere

C(c) appears. In contrast, the sequence of plays (A; b); (B; b) repeated ad in�nitum

exhibits no internal regret for player 2, since player 2, would not achieve greater

payo�s by substituting either strategy a or c everywhere for strategy b. On the other

hand, the sequence of plays for player 1 does not satisfy the property of no internal

regret, since player 1 would achieve greater payo�s by playing strategy B everywhere

in place of strategy A.
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De�nition 2.1.20 Given any opposing sequence of plays fst�ig of length T that is

employed by the environment, an algorithm is said to exhibit no internal regret i� it

gives rise to a sequence of weights fqtig s.t. 8� > 0; 8�si 2 Si,

E [irT
Si!�si

] < �T

Theorem 2.1.21 Let fs�ti g be as de�ned in Theorem 2.1.17. An algorithm that gives

rise to sequence of weights fqtig of length T exhibits no internal regret against opposing

sequence of plays fst�ig i� 8� > 0,

TX
t=1

ri(s
�t
i ; s

t
�i)�

TX
t=1

E [ri(q
t
i ; s

t
�i)] < �T

Proof 2.1.22 The proof follows from Lemma 2.1.17, and is analogous to the proof

of Theorem 2.1.11.

Theorem 2.1.23 No internal regret implies no external regret.

Proof 2.1.24 Note that 8T; 8�si 2 Si; er
T
Si!�si

� ir
T
Si!�si

. Now, since no internal

regret implies that 8si 2 Si, E [ir
T
Si!�si

] < �T , it follows that E [erT
Si!�si

] < �T , for

arbitrary � > 0. Thus, no internal regret implies no external regret.

Theorem 2.1.25 (Foster and Vohra, 1997) Learning that achieves no internal

regret converges to correlated equilibrium.

2.1.4 No Clairvoyant Regret

This section discusses the strongest type of regret described in this chapter, namely

no clairvoyant regret. Intuitively, a sequence of plays is said to exhibit no clairvoyant

regret if it contains only best responses. The mathematical formulation of the no

clairvoyant regret criterion arises out of a modi�cation of the original de�nition of

regret, in the spirit of the no internal regret condition (see Equation 2.4). Let

cr
t
si!�si

= (rtsi!�si
)+ (2.9)

The expressions crTsi!�si
and cr

T
Si!�si

are de�ned as usual.
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De�nition 2.1.26 Given a sequence of plays fstg of length T , the sequence of plays
fstig for player i is said to exhibit no clairvoyant regret i� 8� > 0; 8�si 2 Si,

cr
T
Si!�si

< �T

Lemma 2.1.27 Given a sequence of plays fstg of length T . Consider a sequence of

plays fs�ti g which is constructed s.t. 8t, s�ti = s�i , where at time t, s�i is optimal in the

following sense:

s�i = argmax
�si2Si

ri(�si; s
t
�i)

The sequence of plays fstig exhibits no clairvoyant regret i� 8� > 0,

TX
t=1

ri(s
�t
i ; s

t
�i)�

TX
t=1

ri(s
t
i; s

t
�i) < �T

Proof 2.1.28 The lemma follows directly from the construction of the sequence of

plays fs�ti g and the de�nition of no clairvoyant regret. For arbitrary � > 0,

8�si 2 Si; cr
T
Si!�si

< �T

i� 8�si 2 Si;
PT

t=1

P
si2Si

�
1fst

i
=sig[ri(�si; s

t
�i)� ri(si; s

t
�i)]

�+
< �T

i� max�si2Si
PT

t=1

P
si2Si

�
1fst

i
=sig[ri(�si; s

t
�i)� ri(si; s

t
�i)]

�+
< �T

i�
PT

t=1

P
si2Si

�
1fst

i
=sig[ri(s

�
i ; s

t
�i)� ri(si; s

t
�i)]

�
< �T

i�
PT

t=1 ri(s
�t
i ; s

t
�i)�

PT
t=1 ri(s

t
i; s

t
�i) < �T

De�nition 2.1.29 Given any opposing sequence of plays fst�ig of length T that is

employed by the environment, an algorithm is said to exhibit no clairvoyant regret

i� it gives rise to a sequence of weights fqtig s.t. 8� > 0; 8�si 2 Si,

E [crT
Si!�si

] < �T

Theorem 2.1.30 Let fs�ti g be as de�ned in Theorem 2.1.27. An algorithm that gives

rise to a sequence of weights fqtig of length T exhibits no clairvoyant regret against

opposing sequence of plays fst�ig i� 8� > 0,

TX
t=1

ri(s
�t
i ; s

t
�i)�

TX
t=1

E [ri(q
t
i ; s

t
�i)] < �T
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Proof 2.1.31 The proof follows from Lemma 2.1.27, and is analogous to the proof

of Theorem 2.1.11.

Theorem 2.1.32 No clairvoyant regret implies no internal regret.

Proof 2.1.33 The proof is analogous to the proof of that no internal regret implies

no external regret.

Remark 2.1.34 No clairvoyant regret implies no internal regret, which implies no

external regret, which implies no model-based regret.

Remark 2.1.35 If the players utilize clairvoyant learning algorithms that generate

convergent sequences of weights, then these sequences converge to a Nash equilibrium.

Otherwise, play moves through the space of Nash equilibria ad in�nitum.

2.1.5 Discussion: Adaptive Learning

Milgrom and Roberts [78] de�ned a property of learning that applies to repeated

scenarios in which individual players are rational, but they have no knowledge of

one another's rationality. So-called consistency with adaptive learning is satis�ed if

the only strategies which are eventually played are those which are not dominated

with respect to the recent history of play. Repeated play among individually rational

agents that is consistent with adaptive learning eventually approaches collectively

rational behavior; in particular, such play converges to D1.

2.1.6 Discussion: Responsive Learning

In network contexts, it has been argued [43, 50] that the key property which entails

learning is not optimality, but rather is responsiveness. Responsiveness is the ability

to respond to changes in the environment in bounded time. When the most basic of

optimality criteria, namely no model-based regret, is combined with responsiveness

and a certain monotonicity property, this leads to the class of so-called reasonable

learning algorithms introduced in [43]. It is shown in [43] that the asymptotic play

of a set of reasonable learners lies within O1.4

4 It is conjectured, however, that O1 is not a precise solution concept, only an upper bound (see [43, 50]).
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2.2 Learning Algorithms

The remainder of this chapter describes a suite of learning algorithms which satisfy

the optimality and responsiveness criteria that are described in the �rst half of this

chapter: two additive updating algorithms satisfy the reasonable learning criterion;

learning via the mixing method, which also utilizes additive updating but scales

the payo�s, achieves no external regret; learning via multiplicative updating also

exhibits no external regret; �nally, two algorithms are described which satisfy no

internal regret. Note that all of these algorithms are non-Bayesian, in that players do

not maintain a set of prior probabilistic beliefs with respect to which they optimize

play. In contrast, these algorithms maintain a vector of weights over the set of pure

strategies that serves as a mixed strategy probability distribution during play. The

algorithms are distinguished by their manners of computing this vector of weights.

Most of these algorithms were initially proposed for use in settings quite di�erent

than networking, where responsiveness is not of interest and the available information

level is signi�cantly higher. In what follows, all the algorithms are extended for use in

network contexts. The algorithms which are applicable in high-information settings

are called informed, while those designed for low-information settings are called naive.

Overall, the algorithms are considered in four varieties, depending on whether they

are informed or naive, and whether or not they are responsive. The informed, non-

responsive varieties of the algorithms are described in full detail, followed by the

appropriate modi�cations for the naive and responsive variants.

2.2.1 Notation

Given a repeated strategic form game �t = (I; (Si; ri)i2I)t. The algorithms that follow

are presented from the point of view of player i 2 I, as if player i is playing a game

against nature, where nature is taken to be a conglomeration of all the opponents of

player i. From this perspective, let rtsi denote the payo�s achieved by player i at time

t via strategy si; more speci�cally, rtsi = r(si; s
t
�i), but since s

t
�i is often not known,

it is therefore not denoted. Mixed strategy weights for player i at time t are given by

the probability vector wt
i = (wt

si
)si2Si .
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2.2.2 Responsive Learning Automata

This section describes responsive learning automata, �rst introduced by Shenker and

Friedman [42], which are responsive, as the name suggests, and applicable in naive

settings. This algorithm is an extension of the usual sorts of learning automata (see

Narendra and Thathachar [82] for a survey of the literature) which is (1) responsive,

and (2) handles positive payo�s outside of the range [0; 1]. This discussion includes

a further extension by which the algorithm is modi�ed to handle negative payo�s.

Learning automata are applicable in naive settings. In particular, if strategy si

is employed at time t, then the updating procedure depends only on rtsi . The main

idea of learning automata is to update weights by adding a factor that is based on

the current payo� to the past weight of the current strategy, and subtracting some

fraction of this factor from the past weights of the strategies which are not played.

This is achieved by updating weights as follows, if strategy si is played at time t:

wt+1
si

= wt
si
+ 
rtsi

X
�si 6=si

wt
�si

(2.10)

wt+1
�si

= wt
�si
(1� 
rtsi); 8�si 6= si (2.11)

where 0 < 
 < 1 is a parameter which controls the tradeo� between learning rapidly

(when 
 is close to 1) and accuracy (when 
 is close to 0). The rightmost terms

in these equations are normalization factors. Notice that 0 � wt
si
� 1 requires that

0 � rtsi � 1.

To achieve responsiveness in learning automata, it suÆces to assign some minimal

probability, say 0 < � � 1, to all strategies. Responsive learning automata are de�ned

as follows: for parameter 0 < 
; � � 1, if strategy si is employed at time t,

wt+1
si

= wt
si
+ 
rtsi

X
�si 6=si

wt
�si
at�si (2.12)

wt+1
�si

= wt
�si
(1� 
rtsia

t
�si
); 8�si 6= si (2.13)

where

at�si = min

(
1;
wt
�si
� �


rtsiw
t
�si

)
(2.14)
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The term at�si is derived as follows:

wt
�si
(1� 
rtsi) � �

) wt
�si
��


rtsi
wt
�si

� 1

) at�si = min
�
1;

wt
�si
��


rtsi
wt
�si

�

The term at�si ensures that the probabilities wt
�si
are bounded below by �. More

speci�cally, if wt
�si
(1�
rtsi) � �, then

wt
�si
��


rtsi
wt
�si

� 1, and it suÆces to update probabilities

as usual: i.e., at�si = 1. If this condition is not satis�ed, however, then at�si is de�ned

such that wt
�si
= �. Note that if all the probabilities wt

�si
are bounded below by �, then

the probability wt
si
is bounded above by 1��( jSij�1

jSij
). Notice also that the normalizing

term at�si eliminates the requirement the 0 � rtsi � 1.

The de�nition of responsive learning automata given by Equations 2.12 { 2.13 is

not suitable to handle negative payo�s. While at�si ensures that w
t
�si
� �, in the case

of negative payo�s, it is also necessary to ensure that wt
�si
� 1 � �( jSij�1

jSij
). This is

accomplished via an additional term bt�si which is de�ned as follows.

bt�si = min

8<
:1;

wt
�si
+ �( jSij�1

jSij
)� 1


rtsiw
t
�si

9=
; (2.15)

A further requirement in the case of negative payo�s is that wt
si
� �. The term ctsi

ensures that this condition is satis�ed:

ctsi = min

(
1;

�� wt
si


rtsi
P

�si 6=si a
t
�si
bt�si

)
(2.16)

The �nal version of responsive learning automata which is equipped to handle both

positive and negative payo�s in the range [x; y], for x; y 2 R, is as follows: for

0 < 
; � � 1, if strategy i is played at time t,

wt+1
si

= wt
si
+ 
rtsic

t
si

X
j 6=i2N

wt
�si
at�sib

t
�si

(2.17)

wt+1
�si

= wt
�si
(1� 
rtsic

t
si
at�sib

t
�si
); 8j 6= i 2 N (2.18)

where at�si; b
t
�si
; and ctsi are de�ned in Equations 2.14, 2.15, and 2.16, respectively.
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It is shown in Shenker and Friedman [43] that responsive learning automata are

reasonable learners. It follows that learning via this algorithm converges to O1. The

following two sections describe alternative means of learning via additive updating,

the �rst of which is also reasonable, due to Roth and Erev [30], and the second of

which satis�es no external regret, due Foster and Vohra [37].

2.2.3 Additive Updating

A second example of a reasonable learning algorithm, which also happens to em-

ploy additive updating, is the responsive and naive algorithm of Roth and Erev [30].

In fact, this algorithm can be derived from the corresponding informed and non-

responsive version. Additive updating in informed settings is based on a cumulative

sum of weighted payo�s achieved by all strategies. This weighted sum is computed

as if randomized strategies, or interior points, were attainable. In particular, de�ne

�tsi as follows:

�tsi =
tX

x=0

wx
si
rxsi (2.19)

Now the weight of strategy si 2 Si at time t + 1 is the ratio of the weighted payo�s

achieved by strategy si to the sum of the weighted payo�s achieved by all strategies:

wt+1
si

=
�tsiP

�si2Si �
t
�si

(2.20)

In naive settings, the only information pertaining to payo� functions that is ever

available is the payo� of the strategy that is in fact employed at that time. Thus,

the naive updating rule must utilize an estimate of weighted payo�s which depends

only on this limited information. Such an estimate is given by �̂tsi , which is de�ned

as follows:5

�̂tsi =
tX

x=1

1xsir
x
si

(2.21)

5 Roth and Erev [30] use the following estimate of weighted payo�s: for 0 < � < 1,

�̂
t

si
=

tX
x=1

"
(1� �)1xsir

x

si
+

�

jSij � 1

X
�si 6=si

1
x

�si
r
x

�si

#

Note that this estimator \kills two birds with one stone", since it both estimates payo�s and ensures that

probabilities are non-zero.
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where 1tsi is the indicator function: 1tsi = 1 if strategy si is played at time t, and

1tsi = 1, otherwise. Note that �̂tsi is an accurate and unbiased estimator of �tsi. In

particular, the expected value of this estimator is the actual value of cumulative

weighted payo�s:

E [�̂tsi ] =
tX

x=1

E [1xsi ]r
x
si

=
tX

x=1

wx
si
rxsi

= �tsi

In naive settings, the updating rule given in Equation 2.20 is modi�ed such that

�̂tsi is used in place of �tsi . This update procedure yields a set of weights which must be

adjusted for use in naive settings, in order to ensure that the space of possible payo�s

be adequately explored. This is achieved by imposing an arti�cial lower bound on

the probability with which strategies are played. In particular, let

ŵt
si
= (1� �)wt

si
+

�

jSij (2.22)

Finally, this additive updating rule can be modi�ed to achieve responsiveness in

both informed and naive settings by exponentially smoothing the cumulative payo�s.

This technique, which is inspired by Roth and Erev [30], updates according to ~�tsi in

Equation 2.20, rather than �tsi or �̂
t
si
. In informed and naive settings, respectively,

for 0 < 
 � 1,

~�t+1si
= (1� 
)~�tsi + rtsi and ~�t+1si

= (1� 
)~�tsi + 1tsir
t
si

(2.23)

Note that the algorithm studied by Roth and Erev [30] is precisely the naive and

responsive version of additive updating which is presented in this section. It has

been observed (see [50]) that this algorithm is reasonable in the sense of Shenker and

Friedman [43]; therefore, learning converges to O1. The following sections describe

additive and multiplicative learning rules that satisfy the no external regret optimality

criterion.
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2.2.4 Additive Updating Revisited

This section presents an additive updating rule due to Foster and Vohra, known as the

mixing method [36], which achieves no external regret. This algorithm is presented in

its original formulation, as a non-responsive algorithm applicable in informed settings,

as well as in its responsive and naive variations.

The mixing method updates weights based on the cumulative payo�s achieved by

all strategies, including the payo�s that would have been obtained by strategies which

were not played. The cumulative payo�s obtained at time t for strategy si (notation

�tsi) is computed as follows:

�tsi =
tX

x=1

rxsi (2.24)

Now consider the following update rule, in which the weight of strategy si 2 Si at

time t+1 is the ratio of the cumulative payo�s achieved by strategy si to the sum of

the cumulative payo�s achieved by all strategies:

wt+1
si

=
�tsiP

�si2Si �
t
�si

(2.25)

As it stands, the update rule presented in Equation 2.25 performs poorly; in

particular, it does not exhibit no external regret. For example, consider a one-player

game, where Player has two strategies, say A and B. Suppose the game is such

that strategy A always yields payo�s of 1 and strategy B always yields payo�s of 2

for Player. In this game, �xed strategy B yields average payo�s of 2; however, the

algorithm assigns weights wt
A = 1=3 and wt

B = 2=3, which yields expected payo�s of

only 5=3.

The performance of this algorithm can be improved via a technique known as the

mixing method introduced in Foster and Vohra [36]. In particular, by scaling the

di�erence between payo�s at a rate of
p
t, the mixing method achieves no external

regret. Consider the case of two strategies, say A and B. According to the additive

updating rule given in Equation 2.25,

wt+1
A =

�tA
�tA + �tB

and wt+1
B =

�tB
�tA + �tB

(2.26)
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It follows that

wt+1
A � wt+1

B =
�tA � �tB
�tA + �tB

(2.27)

The mixing method modi�es this straightforward updating procedure by scaling the

di�erence between weights as follows. For � > 0,

wt+1
A � wt+1

B =
�(�tA � �tB)

�tA + �tB
(2.28)

It is shown in Foster and Vohra [36] that the optimal value of � in Equation 2.28

is
p
t, and moreover, this algorithm exhibits no external regret. If the number of

strategies is greater than 2, then the generalized algorithm utilizes pairwise mixing

of strategies via Equation 2.28, followed by further mixing of the mixtures.

The mixing method can be modi�ed for use in naive settings by utilizing an

estimate of cumulative payo�s that depends only on the payo�s obtained by the

strategies that are actually employed and the approximate weights associated with

those strategies. First of all, as in the case of additive updating (see Equation 2.22),

it is necessary to assign minimal probabilities to all strategies in order that the space

of payo� functions be adequately explored. Now let

r̂tsi = 1tsi
rtsi
ŵt
si

(2.29)

In other words, r̂tsi is equal to 0 if strategy si is not employed at time t; otherwise,

r̂tsi is the payo� achieved by strategy si at time t scaled by the likelihood of playing

strategy si. Estimated cumulative payo�s (notation �̂tsi) are given by:

�̂tsi =
tX

x=1

r̂xsi (2.30)

Note that �̂tsi is an accurate and unbiased estimator.

E [�̂tsi ] =
tX

x=1

E [1tsi ]
rtsi
ŵt
si

=
tX

x=1

rxsi

= �tsi

The naive variant of the mixing method uses �̂tsi in place of �tsi in Equation 2.28.
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Finally, the mixing method can be made responsive via exponential smoothing.

In the responsive variant of this algorithm ~�tsi is substituted for either �tsi or �̂tsi ,

depending on whether the setting is informed or naive. In particular, for 0 < 
 � 1,

in informed settings and naive settings, respectively,

~�t+1si
= (1� 
)~�tsi + rt+1si

and ~�t+1si
= (1� 
)~�tsi + r̂t+1si

(2.31)

The naive and responsive variant of the mixing method is also a reasonable learning

algorithm. In fact, it satis�es an even stronger property which could be de�ned

in terms of the no external regret optimality criterion, rather than no model-based

regret, together with responsiveness.

The following section describes learning via multiplicative updating which like

the mixing method exhibits no external regret. The development of the variants of

the multiplicative updating algorithm is analogous to the development of additive

updating.

2.2.5 Multiplicative Updating

This section describes an algorithm due to Freund and Schapire [39] that achieves no

external regret in informed settings via multiplicative updating. The multiplicative

update rule utilizes the cumulative payo�s achieved by all strategies, including the

surmised payo�s of those strategies which are not played. In particular, the weight

assigned to strategy si at time t + 1, for � > 0, is given by:

wt+1
si

=
(1 + �)�

t
siP

�si2Si(1 + �)�
t
�si

(2.32)

The multiplicative updating rule given in Equation 2.32 can be modi�ed in a

manner identical to the mixing method, using r̂tsi and ŵt
si
, to become applicable

in naive settings, and using ~�tsi to achieve responsiveness. A naive variant of this

multiplicative updating algorithm which achieves no external regret appears in Auer,

Cesa-Bianchi, Freund, and Schapire [3]. Like the mixing method, the naive and

responsive variant of multiplicative updating is a reasonable learning algorithm.
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2.2.6 No Internal Regret Learning

This section describes an algorithm due to Foster and Vohra [37] which achieves no

internal regret in informed environments, and a simple implementation due to Hart

and Mas-Colell [57]. In addition, the appropriate naive and responsive modi�cations

are presented. Learning via the following no internal regret algorithms converges to

correlated equilibrium, and therefore converges inside the set D1.

Consider the case of a 2-strategy informed game, with strategies A and B. The

components of the weight vector, namely wt+1
A and wt+1

B , are updated according to

the following formulae, which re
ect cumulative feelings of regret:

wt+1
A =

ir
t
B!A

ir
t
A!B + ir

t
B!A

and wt+1
B =

ir
t
A!B

ir
t
A!B + ir

t
B!A

(2.33)

If the regret for having played strategy �si rather than strategy si is signi�cant, then

the algorithm updates weights such that the probability of playing strategy si is

increased. In general, if strategy si is played at time t,

wt+1
�si

=
1

�
ir

t
si!�si

and wt+1
si

= 1� X
�si 6=si

wt+1
�si

(2.34)

where � is a normalizing term that is chosen s.t.:

� > (jSij � 1)max
�si2Si

ir
t
si!�si

(2.35)

This generalized algorithm is due to Hart and Mas-Colell [57].

As usual in naive settings, an estimate of internal regret is computed which is

based only on the payo�s obtained by the strategies that are actually played and the

approximate weights associated with those strategies, as in Equation 2.22. Recall

from Equation 2.4, the instantaneous regret at time x for having played strategy si

rather than playing strategy �si is given by:

r
x
si!�si

= rx�si � rxsi (2.36)

An estimated measure of expected regret r̂
x
si!�si

is given by:

r̂
x
si!�si

= r̂x�si � r̂xsi (2.37)
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where r̂xsi and r̂
x
�si
are de�ned as in Equation 2.29. The expected value of this estimated

measure of regret is actual regret:

E [r̂
x
si!�si

] = E [1x�si
rx�si
ŵx
�si

� 1xsi
rxsi
ŵx
si

]

= E [1x�si ]
rx�si
ŵx
�si

� E [1xsi ]
rxsi
ŵx
si

= rx�si � rxsi

= r
t
si!�si

Now an estimate of cumulative regret is given by

r̂
t
si!�si

=
tX

x=1

1xsir̂
x
si!�si

(2.38)

and an estimate of cumulative internal regret is given by

îr
t
si!�si

= (r̂
t
si!�si

)+ (2.39)

Finally, weights are updated as in Equation 2.34, with the estimate of cumulative

internal regret îr
t
si!�si

used in place of irtsi!�si
.

Like the additive and multiplicative updating algorithms, the no internal regret

learning algorithm can be made responsive via exponential smoothing of regret. In

the informed and naive cases respectively,

~rt+1si!�si
= (1� 
)~rtsi!�si

+ 1t+1si
r
t+1
si!�si

(2.40)

where r
t+1
si!�si

denotes the instantaneous regret at time t + 1 for playing strategy si

rather than �si, and

~rt+1si!�si
= (1� 
)~rtsi!�si

+ 1t+1si
r̂
t+1
si!�si

(2.41)

where r̂
t+1
si!�si

denotes the approximate instantaneous regret at time t + 1 for playing

strategy si rather than �si. Finally, it suÆces to use

~irtsi!�si
= (~rtsi!�si

)+ (2.42)

as a measure internal regret in the responsive case, where ~rtsi!�si
is given by either

Equation 2.40 or 2.41, depending on whether the setting is informed or naive.
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2.2.7 Summary: Learning, Optimality, and Equilibria

This chapter uni�ed a suite of learning algorithms from the game-theoretic, machine

learning, and stochastic control literature that satisfy a series of related optimality

criteria, which in turn converge to various generalizations of Nash equilibrium. The

results of this survey are summarized in Table 2.1. Simulation experiments of these

algorithms in practical settings are reported in the next several chapters.

Learning Algorithms Optimality Criteria Equilibria

Friedman and Shenker Reasonable O1

Erev and Roth Reasonable O
1

Additive Updating Adaptive Learning D1

Foster and Vohra Adaptive Learning D
1

Freund and Schapire Adaptive Learning D1

Hart and Mas-Colell No Internal Regret ce

Table 2.1: Learning, Optimality, and Equilibria



Chapter 3

Santa Fe Bar Problem

The Santa Fe bar problem (sfbp) was introduced by Brian Arthur [2], an economist

at the Santa Fe Institute, in the study of bounded rationality and inductive learning.

This problem and its natural extensions serve as abstractions of network 
ow control

and routing problems. Here is the scenario:

N [(say, 100)] people decide independently each week whether to go to a bar

that o�ers entertainment on a certain night . . . Space is limited, and the

evening is enjoyable if things are not too crowded { especially, if fewer than

60 [or, some �xed but perhaps unknown capacity c] percent of the possible

100 are present . . . a person or agent goes (deems it worth going) if he

expects fewer than 60 to show up or stays home if he expects more than 60

to go. Choices are una�ected by previous visits; there is no collusion or

prior communication among the agents; and the only information available

is the number who came in past weeks.1

sfbp is a non-cooperative, repeated game. The players are the patrons of the bar.

Their strategy sets consist of two strategies, namely go to the bar or stay at home.

Finally, the payo�s of the game are determined by the total number of players that

choose to go to the bar. In this chapter, it is shown that rational learning does not

converge to Nash equilibrium in sfbp; however, it is also demonstrated that various

forms of boundedly rational learning do in fact converge to Nash equilibrium.

1 The problem was inspired by the El Farol bar in Santa Fe which o�ers live music on Thursday nights.
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3.1 Introduction

sfbp can be viewed as an abstraction of the general problem of sharing resources

of limited capacity, where the only interaction among agents occurs through the

joint use of shared resources. This game-theoretic model is applicable to several

real-world situations, ranging from �shermen �shing in common waters, to farmers

polluting common water supplies, to various other versions of the tragedy of the

commons [55]. Moreover, the set of applications is rapidly expanding, as game-like

scenarios emerge in the telecommunications infrastructure, where network bandwidth

and bu�er space serve as shared resources (see, for example, [33] and [71]) as well as

web sites and shared databases (see, for example, [43, 100]). In contrast to the

recent trend of proposing solutions to network resource allocation problems based on

pricing congestible resources [76], Arthur suggests bounded rationality and inductive

learning as possible mechanisms for generating stable solutions to such problems.

In this chapter, we present a theoretical formalization of an argument that perfect

rationality and learning are inherently incompatible in sfbp. On the practical side,

we demonstrate via simulations that computational learning in which agents exhibit

low-rationality does indeed give rise to equilibrium behavior.

We motivate our theoretical argument with the following intuitive analysis of sfbp

under the standard economic assumption of rationality. De�ne an undercrowded bar

as one in which attendance is less than or equal to c, and de�ne an overcrowded bar

as one in which attendance is strictly greater than c. Let the utility of going to an

undercrowded bar be 1=2 and the utility of going to an overcrowded bar be �1=2;
in addition, the utility of staying at home is 0, regardless of the state of the bar.2

If a patron predicts that the bar will be undercrowded with probability p, then his

rational best-reply is to go to the bar if p > 1=2 and to stay home if p < 1=2.3 Now,

if the patrons indeed learn to predict probability p accurately, then their predictions

2 The de�nition of the utility of staying at home as 0, regardless of the state of the bar, can be replaced,

without changing the argument, by: the utility of staying at home is 1=2, whenever the bar is overcrowded,

and the utility of staying at home is �1=2, whenever the bar is undercrowded.
3 In the case where p = 1=2, the patrons are indi�erent between attending the bar and staying home and

may behave arbitrarily: e.g., go to the bar with probability q. We show that in all but �nitely many cases

this condition is incompatible with learning.
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eventually come to match the actual probability that the bar is undercrowded, as

it is determined by their (possibly randomized) strategic best-replies. Herein lies a

contradiction. If the patrons learn to predict that the bar will be undercrowded with

probability p < 1=2, then, in fact the bar will be empty with probability 1; on the

other hand, if the patrons learn to predict that the bar will be undercrowded with

probability p > 1=2, then the bar will be full with probability 1.4 We conclude that

rational patrons cannot learn via repeated play to make accurate predictions. In

particular, rationality precludes learning.

3.1.1 Logical Implications

This paradoxical outcome in sfbp is arrived at via a diagonalization process in the

spirit of Russell's paradox [91].5 Just as the truth of being in Russell's set depends on

the fact of (not) being in the set, the value of going to the bar depends on the act of

going (or not going) to the bar. For the sake of argument, consider a bar of capacity

1=2 in a world of a single patron.6 If the patron does not go to the bar, then the bar

is undercrowded, in which case her best-reply is to go to the bar. But now the bar

is overcrowded, and so her best-reply is to stay at home. Thus, rationality dictates

that this patron should go to the bar if and only if she should not go to the bar.

The aforementioned paradox similarly arises in the two-player game of matching

pennies, where player 1 aims to match player 2, while player 2 aims to mismatch

player 1. In fact, matching pennies can be viewed as a special case of sfbp in which

there are two players and both positive and negative externalities:7 if player 1 prefers

to go to the bar only when player 2 attends as well, while player 2 prefers to go to the

bar only when player 1 stays at home, then player 1 is the matcher while player 2 is

the mismatcher. In matching pennies, if player 1 prefers heads, then player 2 prefers

tails, but then player 1 prefers tails, at which point player 2 actually prefers heads,

and �nally, player 1 prefers heads once again. It follows that player 1 prefers heads

i� player 1 prefers tails. Similarly, for player 2.

4 Schelling [96] refers to phenomena of this kind as self-negating prophecies.
5 Russell's set is de�ned as the set of all sets that are not elements of themselves: i.e., R = fXjX 62 Xg.

Note that R 2 R i� R 62 R.
6 Similarly, one could consider a bar of capacity 1 and a married couple who act in unison.
7 See Footnote 10 to understand sfbp in terms of solely negative externalities.
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The logical con
ict that arises in the game of matching pennies is closely related to

the fact that this games has no pure strategy Nash equilibria [84]; similarly, sfbp has

no symmetric pure strategy Nash equilibrium, except in degenerate cases. In order to

resolve these paradoxes, game-theorists introduce mixed strategies. The unique Nash

equilibrium in matching pennies is for both players to play each of heads and tails

with probability 1=2; a mixed strategy Nash equilibrium in sfbp, is for all players to

go to the bar with probability p � c=N and to stay at home with probability 1� p.8

3.1.2 Game-Theoretic Implications

This chapter presents a negative result on convergence to Nash equilibrium in sfbp

which formalizes the above diagonalization argument. Two suÆcient conditions for

convergence to Nash equilibrium are rationality and predictivity . By rationality, we

mean that players play best-replies to their beliefs. Predictivity is one way in which

to capture the notion of learning:9 a player is said to be predictive if that player's

beliefs eventually coincide with the truth about which he is predicting. If players learn

to predict (i.e., if beliefs indeed converge to opponents' actual strategies), then best-

replies to beliefs constitute a Nash equilibrium. In what follows, we observe that sfbp

has multiple mixed strategy Nash equilibria, and we argue that if the players employ

predictive learning algorithms, then assuming rationality, play does not converge to

one of these Nash equilibria. Conversely, if play converges to Nash equilibrium, then

play is either not rational or not learned.

In a seminal work by Kalai and Lehrer [65], suÆcient conditions are presented for

predictivity in the form of the so-called Harsanyi hypothesis, or absolute continuity

assumption. In particular, their paper suggests that convergence to Nash equilibrium

is in fact possible. Our negative results complement the recent theorems reported

in Nachbar [81] and Foster and Young [38], who argue that unless rather unusual

conditions hold, any conditions that are suÆcient for prediction are unlikely to hold.

Nachbar shows that unless players' initial beliefs somehow magically coincide with

Nash equilibrium, repeated play of strategic form games among Bayesian rational

8 Technically, this symmetric Nash equilibrium is the solution p to the equation
Pc

x=0

�
N

x

�
px(1�p)N�x =PN

x=c+1

�
N

x

�
px(1� p)N�x, which is roughly c=N .

9 Learning can also be understood in terms of various merging properties; see Kalai and Lehrer [66].
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players does not generally converge to Nash equilibrium. Similarly, Foster and Young

prove that in two-player games of incomplete information with unique mixed strategy

Nash equilibria, rationality is not compatible with predictivity. Our theorems argue

in a similar vein that unless certain strict regularity conditions are satis�ed, no means

of rational learning converges to Nash equilibrium in sfbp, an N player game with

multiple mixed strategy Nash equilibria.

3.1.3 Computer Science Implications

sfbp and its natural extensions serve as abstractions of various congestion control

problems that arise in networking. Many authors who capitalize on the potential for

the theory of repeated games as a model of networking environments do so because of

the diÆculty to enforce cooperation in large-scale networks; instead, it is more realistic

and more general to assume non-cooperative networks. This generality is modeled in

repeated games by assuming that players are rational. Those same authors who study

networking games assuming rationality, however, often also assume that the network

operating point is a Nash equilibrium. One might hope to justify this assumption

on the grounds that Nash equilibrium is the outcome of rational learning. It is the

conclusion of this study, however, that Nash equilibrium is not the outcome of rational

learning in games that model networking environments.

The second half of this chapter aims to resolve the paradoxes of the �rst half via

simulation experiments in computational learning. In particular, it is shown that

low-rationality learning yields equilibrium behavior. Similarly, in Arthur's original

paper, he demonstrated via simulations that boundedly rational agents are capable of

generating collective attendance centered around the capacity of the bar. In contrast

to Arthur's approach, however, the learning algorithms considered in this study are

simple, and are therefore feasible for use in network games. Moreover, we extend our

study to a special case of the so-called New York City bar problem (nycbp) in which

there are exactly two bars, and observe similar convergence results. In summary,

(highly) rational learning does not validate the assumption that Nash equilibrium

describes the solution of network games; however, low-rationality learning indeed

yields Nash equilibrium behavior.
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This next section formalizes sfbp in terms of the theory of learning in repeated

games. In Section 3.2.1, it is shown that best-reply dynamics, a learning algorithm

for which Cournot proved convergence to pure strategy Nash equilibrium in models of

duopoly [24], yields oscillatory behavior in sfbp. Sections 3.2.2 and 3.2.3 contain our

main theoretical results, namely that traditional models of belief-based learning (e.g.,

Bayesian updating) among rational players do not in general give rise to equilibrium

behavior in sfbp. The second half of this chapter, beginning with Section 3.3, presents

the results of simulations, and demonstrates that models of low-rationality learning

in fact give rise to equilibrium behavior.

3.2 Theoretical Investigations

The Santa Fe bar problem is a repeated game of negative externalities.10 We now

formally de�ne both the one-shot strategic form game, and the corresponding repeated

game. The players are the inhabitants of Santa Fe; notation N = f1; : : : ; Ng, with
n 2 N . For player n, the strategy set Sn = f0; 1g, where 1 corresponds to go to the bar

while 0 corresponds to stay home. Let Qn denote the set of probability distributions

over Sn, with mixed strategy qn 2 Qn. The expected payo�s obtained by player n

depend on the particular strategic choice taken by player n, the value to player n of

attending the bar, and a negative externality, which are de�ned as follows.

Let sn denote the realization of mixed strategy qn of player n; thus, s =
P

n2N sn

is the realized attendance at the bar. In addition, let c 2 f0; : : : ; Ng denote the

capacity of the bar. The externality f depends on s and c as follows: if the bar is

undercrowded (i.e., s � c), then E(s) = 0; on the other hand, if the bar is overcrowded

(i.e., s > c), then E(s) = 1. Finally, let 0 � �n � 1 denote the value to player n of

attending the bar, and without loss of generality assume �n � �n+1. Now the payo�

function for player n for pure strategies sn 2 Sn is given by �n(sn; s) = �n � E(s), if

sn = 1, and �n(sn; s) = 0, otherwise: i.e., �n(sn; s) = sn[�n � E(s)].11 As usual, the

10 An externality is a third-party e�ect. An example of a negative externality is pollution; an example of

a positive externality is standardization. Although externalities are so-called because they are external to

the game, it is natural to consider payo�s in terms of externalities when there are large numbers of players.
11 Our results also hold in the case where �n(sn; s) = E(s)� �n, if sn = 0.
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expected payo�s E qn [�n(sn; s)] obtained by player n via mixed strategy qn are given by

E qn [�n(sn; s)] =
P

sn2Sn qn(sn)�n(sn; s). In this formulation, sfbp is a discretization

of an ordered externality game in the sense of Friedman [40, 41].

The one-shot strategic form sfbp is described by the tuple � = (N ; (Sn; �n)n2N ; c),

and the in�nitely repeated sfbp is given by �1. Following Foster and Young [38], a

history ht of length t 2 N is de�ned to be a sequence of t outcomes drawn from the set

S = f0; 1; 2; : : : ; Ng;12 the history ht = (s1; : : : ; st) indicates the number of players

who attended the bar during periods 1 through t. Let h0 denote the null history,

let H t denote the set of all histories of length t, and let H =
S1

0 H t. A behavioral

strategy13 for player n is a function from the set of all possible histories to the set of

mixed strategies for that player: i.e., gn : H ! Qn. Now player n's play at time t is

given by qtn = gn(h
t�1), which is contingent on the history through time t� 1.

A belief-based learning algorithm is a function from the set of all possible histories

to the set of possible beliefs. We assume that beliefs in the repeated sfbp take

the form of aggregate statistics, with a belief as a subjective probability over the

space of possible externality e�ects E = fundercrowded , overcrowdedg.14 The event

undercrowded obtains whenever st � c; otherwise, the event overcrowded obtains. Let

�(E) be the set of probability distributions over the set E . Formally, a belief-based

learning algorithm for player n is a function fn : H ! �(E).15 Since the event space

E is of cardinality 2, the private sequence of probability distributions f(ptn; 1� ptn)g is
denoted simply fptng, where ptn is the probability that player n attributes to the bar

being undercrowded at time t.

12 Implicit in this notion of history is the assumption that players are anonymous: i.e., they cannot

distinguish other players, and moreover, they also cannot distinguish between themselves and others.
13 A behavioral strategy determines one-shot strategies throughout the repeated game. When it is clear

from context that we are referring to strategies of the one-shot game, we omit the word behavioral.
14 Implicit in this belief structure is the assumption that beliefs are deterministic in the sense of Foster

and Young [38]. For example, we do not consider beliefs of the form: with probability P , player n assigns

probability ptn to the bar being undercrowded at time t, while with probability 1 � P , player n assigns

probability p0tn to the bar being undercrowded at time t instead.
15 A belief-based learning algorithm is not a function fn : H ! Q�n, where Q�n �

Q
m6=n

Qm. If it were,

this would violate the assumption that players are anonymous, as players could distinguish their own play

from that of the aggregate. The given de�nition precludes any notion of correlated beliefs, in which players

might attempt to correlate the behavior of an individual, such as oneself, with attendance at the bar.
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The expected payo� for player n at time t is computed in terms of the beliefs that

player n holds at time t:

E ptn [�n(sn; s)] =

8<
:

ptn�n � (1� ptn)(1� �n) if sn = 1

0 otherwise

Let p�n � 1 � �n. Player n is indi�erent between his two pure strategies whenever

ptn = p�n, since this implies that E ptn [�n(1; s)] = E ptn [�n(0; s)] = 0. In order to simplify

notation, in what follows we often write �(qn; s
t) for E qn [�(sn; s

t)] and �(qn; p
t
n) for

E ptn [�(qn; s
t)]. The actual probability that the bar is undercrowded at time t as

determined by the players' strategies is denoted pt0. The existence of such objective

probabilities is implied by the fact that in general players employ mixed strategies.16

De�nition 3.2.1 sfbp is uniform i� for all n;m 2 N , �n = �m � �, and thus,

p�n = p�m � p�.

3.2.1 An Example

This section formalizes an argument pertaining to the oscillatory behavior that is

well-known to arise via Cournot best-reply dynamics [24] in congestion games that

resemble the Santa Fe bar problem. Note that since best-reply dynamics can be

viewed as \as-if" Bayesian learning, the theorem presented in this section follows as

an immediate corollary of the more general results derived in later sections. We begin

by reminding the reader of the assumptions implicit in best-reply dynamics.

De�nition 3.2.2 A strategy qtn 2 Qn is said to be a best-reply for player n at time t

i� qtn 2 argmaxqn2Qn �n(qn; p
t
n): i.e., �n(q

t
n; p

t
n) � maxqn2Qn �n(qn; p

t
n).

In other words, strategy qtn is a best-reply for player n at time t i� it is utility

maximizing. Now player n utilizes best-reply dynamics i� for all times t+1, player n

assumes that the outcome that is realized during round t will again be the outcome

of round t+ 1, and consequently plays a best-reply to the outcome of round t.

16 We often refer to the sequence of actual probabilities fpt0g as objective probabilities, but technically,

this is a misnomer, since these probabilities are not truly independent of the individual players' decisions.

They might rather be termed intersubjective.
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De�nition 3.2.3 A given player n is said to employ best-reply dynamics in sfbp i�

for all times t, player n assumes that

pt+1
n =

8<
:

1 if st � c

0 if st > c

and moreover, player n plays only best-replies to these beliefs. In particular, if player

n utilizes best-reply dynamics, then qtn 2 argmaxqn2Qn
�n(qn; s

t).

Theorem 3.2.4 In the uniform repeated sfbp, best-reply dynamics do not converge:

i.e., 8n, limt;t0!1 j ptn � pt
0

n j 6= 0 and 8n, limt;t0!1 j st � st
0 j 6= 0.

Proof 3.2.5 Assume that all players employ best-reply dynamics. If at time t, st � c,

then pt+1
n = 1 for all n, to which the best response at time t + 1 is pure strategy

st+1
n = 1. But then st+1 > c, so that pt+2

n = 0 for all n, to which the best response

at time t + 2 is pure strategy st+2
n = 0. Now, it follows that st+2 � c and pt+3

n = 1.

This pattern repeats itself inde�nitely, generating oscillatory behavior that is far from

equilibrium. The argument is similar if st > c.

Recall that sfbp falls into the class of ordered externality games. For such games,

if best-reply dynamics converge, then it is known that the serially undominated set is

a singleton [41, 78]. Consistent with this result, the serially undominated set obtained

in the sfbp is not a singleton { on the contrary, it includes all the strategies of the

game { and moreover, best-reply dynamics do not converge. Note, however, that

stability results have been achieved regarding best-reply dynamics for special cases

within the class of ordered externality games, some of which resemble non-uniform

versions of sfbp [41].

3.2.2 A First Negative Result

This section presents a generalization of the results obtained in the previous section.

It is argued that if all players are rational and if they learn according to Bayes'

rule, then play does not converge to equilibrium behavior. In fact, this result is not

contingent on the assumption of Bayesian learning and is readily applicable to any

predictive belief-based learning mechanism in which players are rational.
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De�nition 3.2.6 A belief-based learning algorithm is predictive i� it generates a

sequence of beliefs fptng for player n s.t. limt!1 j ptn � pt0 j = 0.

In words, if player n utilizes a predictive learning algorithm, then the di�erence

between player n's subjective beliefs ptn and the objective probabilities pt0 converges

to zero. Notice that this de�nition does not require that the objective probabilities

themselves converge.

De�nition 3.2.7 A player is rational i� she plays only best-replies to beliefs.

The following theorem states that in the uniform version of the repeated sfbp,

whenever players exhibit rationality and predictivity, strategies converge to p�. It

follows by predictivity that beliefs converge to p� as well. Thus, rational players

who play best-replies to their beliefs, ultimately play best-replies to actual strategies:

i.e., play converges to Nash equilibrium. This intermediate result is later contested

by noting that the assumptions of rationality and predictivity taken together yield

con
icting conclusions.

Theorem 3.2.8 In the uniform repeated sfbp, if players are rational and predictive,

then limt!1 j pt0 � p�j = 0.

Proof 3.2.9 Suppose not. Case 1: Suppose 9� > 0 s.t. pt0 > p� + � in�nitely often

(i.o.). It follows by predictivity that for all n, ptn > p� i.o.. Now by rationality, all

players play best-replies, which for such t is to go to the bar: i.e., for all n, stn = 1

i.o.. But this ensures that the bar will be overcrowded with probability 1, yielding

pt0 = 0 < p� + � < pt0 i.o., which is a contradiction.

Case 2: Now suppose 9� > 0 s.t. pt0 < p� � � i.o.. In this case, it follows by

predictivity that for all n, ptn < p� i.o.. Moreover, rationality implies that all players

stay at home for such t: i.e., for all n, stn = 0 i.o.. But this ensures that the bar will

be undercrowded with probability 1, which implies that pt0 = 1 > p� � � > pt0 i.o.,

which is again a contradiction.

The following corollary states that whenever players are rational and predictive,

beliefs converge to p� as well as strategies. This result follows immediately from the

de�nition of predictivity.
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Corollary 3.2.10 In the uniform sfbp, if players are rational and predictive, then

for all n, limt!1 j ptn � p� j = 0.

Proof 3.2.11 Consider an arbitrary player n. By the de�nition of predictivity,

limt!1 j ptn � pt0 j = 0, and by Theorem 3.2.8, limt!1 j pt0 � p�j = 0. Now by the

triangle inequality, for all t, j ptn� p�j � j ptn� pt0 j+ j pt0� p�j. Thus, by taking limits,

limt!1 j ptn � p�j = 0.

The above theorem and corollary state that in sfbp, if players are rational and

predictive, then both subjective beliefs and objective probabilities converge to p�. It

follows that rational players who play best-replies to their beliefs, ultimately play

best-replies to actual strategies: i.e., play converges to Nash equilibrium. The next

theorem, however, states that in fact, no mechanism of rational, predictive, belief-

based learning (including Bayesian updating) gives rise to objective probabilities that

converge to p�, except in unusual circumstances. As the assumptions of rationality

and predictivity simultaneously give rise to con
icting conclusions, we deduce that

together these assumptions are incompatible.

The next theorem constructs speci�c values of p� for which beliefs and strategies

do in fact converge to p�. In these special cases, rational play indeed converges to

Nash equilibrium. Before formally stating the theorem, we present an example of one

such p�. The negative results in this chapter rely on the assumption that indi�erent

players 
ip a fair coin; if, on the contrary, players were to 
ip a biased coin favoring

one strategy or another, they would not be behaving as if they were truly indi�erent.

Example 3.2.12 Assume f(t) is a monotonically decreasing function of t: e.g.,

f(t) = 1=t.

� Suppose G players (the optimists) hold beliefs p� + f(t). These players' beliefs

converge to p�, but by rationality, these players always go to the bar.

� Let H players (the pessimists) hold beliefs p�� f(t). These players' beliefs also

converge to p�, but by rationality, these players never go to the bar.

� Let I players (the realists) hold beliefs exactly p� at all times t. These players

are indi�erent between going to the bar and not going, so they 
ip a fair coin.
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Given that players' beliefs converge to p�, we now consider the conditions under which

players' strategies also converge to p�. Let the excess capacity of the bar d = c � G

for the I indi�erent players, after accomodating the G players who go to the bar in

every period. Suppose indi�erent players go to the bar i� their coin 
ips show heads.

In this scenario, the probability p that the bar is undercrowded is the probability that

with I 
ips of a fair coin,17 at most d heads appear: i.e.,

p =

8>>><
>>>:

0 if d < 0

1 if d � I
1
2I
Pd

j=0

�
I
j

�
otherwise

(3.2)

Now as t!1, ptn ! p� and pt0 ! p. Thus, if p� = p, then both beliefs and strategies

converge to p�.

Using the layout of Example 3.2.12 and Equation 3.2, it is possible to describe

all possible values of p. At �xed time t, let G denote the number of players who go

to the bar; let H denote the number of players who stay at home; and let I denote

the number of players who are indi�erent and therefore 
ip a fair coin in deciding

whether or not to attend the bar. The following set F describes all the realizable

objective probabilities under these circumstances:

F = fp j 9G;H; I 2 f0; : : : ; Ng s.t. p is de�ned by Equation 3.2g

Note that F is a �nite set since there are only �nitely many possible values of G;H,

and I. The following theorem states that objective probabilities cannot possibly

converge to p� if p� 62 F .

Theorem 3.2.13 In the uniform repeated sfbp, if players are rational and predictive,

then limt!1 j pt0� p�j 6= 0, unless p� 2 F , provided indi�erent players 
ip a fair coin.

17 Mathematically, this result holds in the more general case when players 
ip a coin of bias q. In particular,

Equation 3.2 becomes

p =

8><
>:

0 if d < 0

1 if d � IPd

j=0

�
I

j

�
qj(1� q)I�j otherwise

(3.1)

We do not present this case, however, since this assumption is more diÆcult to justify.
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Proof 3.2.14 Suppose to the contrary that p� 62 F , but limt!1 j pt0 � p�j = 0. Let

Æ = minfd(p�; x) j x 2 Fg. Note that Æ > 0, since p� 62 F . By the assumption of

convergence, 9T s.t. 8t > T; j pt0 � p�j < Æ. But now, since pt0 2 F , it follows that

d(p�; F ) < Æ. Contradiction.

In sfbp, assuming a bar of capacity c, if players are rational and predictive, then

strategies can only converge to p� if p� happens to be an element of �nite set F , but

even then, it is not guaranteed unless beliefs also converge to p�. Thus, it is only on

rare occasions that players exhibit both rationality and predictivity, such that both

beliefs and strategies converge to p�: i.e., play converges to Nash equilibrium. More

often than not, play does not converge to Nash equilibrium in sfbp.

Example 3.2.15 Consider an instance of sfbp in which players are both rational

and predictive. Let N = I = 10, and assume c = 6. In other words, there are 10

players, all of whom are indi�erent and 
ip a fair coin. Now according to Equation 3.2,

if p� � :828, and if in addition beliefs converge to p�, then strategies also converge to

p�. This implies that players are playing best-replies to actual strategies. Thus, in

this particular instance of sfbp, if by chance � = 1� p� � :172, and if beliefs indeed

converge to p�, then play converges to Nash equilibrium.

As Theorems 3.2.8 and 3.2.13 yield contradictory conclusions in all but �nitely

many cases, the next corollary states that their assumptions are more often than not

inconsistent. In particular, there is no rational learning in sfbp.

Corollary 3.2.16 In the uniform repeated sfbp, players cannot be both rational and

predictive, unless p� 2 F .

This concludes the discussion of our �rst negative result in sfbp. It was argued

that two conditions which together are suÆcient for convergence to Nash equilibrium,

namely rationality and predictivity, are incompatible in sfbp. In the next section, a

second negative result is derived; similar analyses appeared in Greenwald, et al. [52]

and Mishra [79].
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3.2.3 A Second Negative Result

This section describes a second negative result which is based on the notion of strong

predictivity. Strongly predictive learning yields instances of sfbp in which there are

no optimists and no pessimists; all players are realists who 
ip a fair coin.

De�nition 3.2.17 A belief-based algorithm is said to be strongly predictive i� it

generates a sequence of beliefs fptng s.t. ptn = pt0 almost always (a.a.).

The next theorem states that no means of rational, strongly predictive learning

gives rise to objective probabilities that equal p�, unless the capacity of the bar

fortuitously lies between N=2� k1
p
N and N=2 + k2

p
N , for certain k1; k2 > 0. This

result is explained intuitively as follows. Assume players are strongly predictive;

then subjective probabilities equal objective probabilities a.a.. By reasoning that

is analogous to Theorem 3.2.8, objective probabilities equal p� a.a.; it follows that

subjective probabilities equal p� a.a.. This implies that the players are indi�erent

a.a., so by assumption, they 
ip a fair coin. Thus, attendance at the bar is likely to

be near N=2 a.a.. The theorem states that unless the capacity of the bar is near N=2,

rational, strongly predictive learning is ine�ectual in sfbp.

Theorem 3.2.18 In the uniform repeated sfbp, given 0 < � < 1, if players are

rational and strongly predictive, then pt0 6= p� a.a., provided that indi�erent players


ip a fair coin18 and that the capacity of the bar c � N=2�
q
[1 + ln(1=(1� �))]N or

c � N=2 +
q
[3 + 3 ln(1=�)][N=2].

Proof 3.2.19 Suppose not: i.e., suppose that pt0 = p� i.o.. Since the players are

strongly predictive learners, for all n, ptn = pt0 a.a.. Together these statements imply

ptn = p� i.o. At such times t, rational players are indi�erent; by assumption, they 
ip a

fair coin. It follows that attendance at the bar is binomially distributed � S(N; 1=2).

Two distinct cases arise, depending on the capacity of the bar. This proof utilizes

the multiplicative variant of the Cherno� bound [23].

18 Mathematically, this result holds for arbitrary probabilities pn; pm s.t. j pn � pm j < Æ, for small values

of Æ > 0, where pn and pm denote the probabilities that players n and m, respectively, go to the bar. We do

not present this case, however, since this assumption is more diÆcult to justify.
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Case 3.2.19.1 Assume that c � N=2�
q
[1 + ln(1=(1� �))]N . In this case,

pt0 = Pr[S(N; 1=2) < c]

� Pr[S(N; 1=2) < f1�
q
[4 + 4 ln(1=(1� �))]=Ng(N=2)]

� e�([4+4 ln(1=(1��))]=2N)(N=2)

= (1� �)=e

< 1� �

Therefore, pt0 < 1� � = p�. Contradiction.

Case 3.2.19.2 Assume that c � N=2 +
q
[3 + 3 ln(1=�)][N=2]. In this case,

1� pt0 = Pr[S(N; 1=2) > c]

� Pr[S(N; 1=2) > f1 +
q
[6 + 6 ln(1=�)]=Ng(N=2)]

� e�([6+6 ln(1=�)]=3N)(N=2)

= �=e

< �

Therefore, pt0 > 1� � = p�. Contradiction.

This concludes the discussion of negative results on rational learning in sfbp. The

remainder of this chapter focuses on positive results in sfbp that are obtained via

low-rationality learning. While the discussion thus far has been purely theoretical,

that which follows is simulation-based.

3.3 Practical Investigations

In the second half of this chapter, we study learning among computational agents

who are not highly rational; instead, they exhibit low-rationality learning, which

is discussed below. We present positive simulation results for which computational

learning based on low-rationality yields convergence to equilibrium behavior in sfbp.

These results are of interest because they demonstrate that learning in repeated games

a�ords solutions to problems of resource allocation in decentralized environments.
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The Santa Fe bar paradigm is applicable in a wide range of practical areas, such

as network control and optimization and �nancial management. For example, sfbp

is analogous to a network 
ow control problem which software agents might face in

deciding whether or not to transmit data over a given communication link. If all the

agents believe that current network delays are minor, then all the agents might decide

to transmit simultaneously, causing congestion to in fact be major; but now, if the

agents believe congestion delays are substantial, then all agents might decide not to

transmit, causing congestion to once again be minimal; and so on. Similarly, sfbp

also parallels an investment scenario which automated trading agents might face in

deciding whether or not to buy a certain security. If the market price is low, then

all the agents might decide to buy, but this increase in demand in turn causes an

increase in market price; now if the market price is high, then all the agents might

decide to sell, but this increase in supply causes the market price to fall once again.

This pattern repeats itself inde�nitely in this naive implementation of computational

investors.

An interesting extension of sfbp, dubbed the New York City bar problem [33, 52]

(nycbp), considers this problem in a city with many bars. In this case, the networking

analog is a routing problem which concerns the choice of route by which to transmit

a �xed amount of data so as to minimize congestion. In �nancial terms, this problem

corresponds to the management of an investment portfolio. This section describes

simulations of both the Santa Fe bar problem in its original form, and the New York

city bar problem in the case of two bars.

3.3.1 Learning Algorithms

The simulation experiments discussed in this section were conducted using low-

rationality (i.e., non-Bayesian) learning algorithms. According to these algorithms,

players do not maintain belief-based models over the space of opponents' strategies

or payo� structures. Instead, these algorithms specify that players explore their own

strategy space by playing all strategies with some non-zero probability, and exploit

successful strategies by increasing the probability of employing those strategies that

generate high payo�s. Simple reinforcement techniques such as those utilized in this
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thesis are advantageous because unlike Bayesian learning, they do not depend on any

complex modeling of prior probabilities over possible states of the world, and unlike

the model of bounded rationality originally introduced by Arthur in his work on sfbp,

they do not depend on non-deterministic beliefs. It is the simplicity of these learning

algorithms that makes them potentially suitable for automated network control.

Speci�cally, the learning algorithms simulated in this chapter include the additive

updating procedure described by Roth and Erev [30] and a simple variant introduced

in Chapter 3, as well as two related multiplicative updating procedures due to Freund

and Schapire [39] and Auer, Cesa-Bianchi, Freund, and Schapire [3]. These learning

algorithms are simulated in two contexts. In the �rst, so-called informed settings,

complete information is available regarding payo�s, including the surmised payo�s

of strategies which are not played; in the second, so-called naive settings, the only

information pertaining to payo� functions that is available at a given time is the payo�

of the strategy that is in fact employed at that time. We now describe simulations of

sfbp (one-bar problem) and nycbp (two-bar problem) in informed and naive settings.

3.3.2 One-bar Problem

The one-bar problem was simulated assuming 100 computational agents and a single

bar of capacity 60. Figure 3.1 depicts the results of simulations of both the additive

and the multiplicative updating schemes by plotting attendance at the bar over time.

(For simulation purposes, � = :5 and � = :01.) Note that attendance centers around

60, which is in fact the capacity of the bar. Speci�cally, the mean is 60.51 and

the variance is 4.91 for the additive updating algorithm, while the mean is 60.04

and the variance is 5.11 for the multiplicative updating algorithm. These learning

algorithms, which do not necessitate perfectly rational behavior, yield equilibrium

outcomes. These results are robust in that they hold regardless of the capacity of the

bar. Figure 3.2 depicts attendance at the bar over time when the capacity of the bar

begins at 60, but at time 1000 it changes to 40, and at time 2000 it changes to 80. In

this scenario, attendance at the bar 
uctuates accordingly19 (see Table 3.1).

19 In fact, this result was obtained for additive updating using a responsive variant of the algorithm

(see [50]) in the spirit of Roth and Erev [30].
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Figure 3.1: Attendance vs. Time in One-bar Problem

Additive Updating Multiplicative Updating

Varied Capacity Mean Variance Mean Variance

Time 1 { 1000 60.51 4.91 60.04 5.11

Time 1001 { 2000 42.24 6.46 41.53 6.00

Time 1501 { 2000 40.50 4.90 40.53 4.92

Time 2000 { 3000 72.12 12.37 76.66 10.03

Time 2501 { 3000 80.02 16.48 80.16 4.04

Table 3.1: Mean and Variance for One-Bar Problem: Varied Capacity

Careful inspection of the mixed strategies which the agents employ reveals that the

additive and multiplicative algorithms converge to (at least) Æ-Nash equilibrium (see,

for example, [47]) in the one-bar problem, and perhaps precisely to Nash equilibrium.

In particular, when the capacity of the bar is �xed at 60, additive updating yields

mixed strategies ranging from (:397; :603) to (:403; :597) (i.e., Æ = :003), while the

multiplicative updating algorithm yields mixed strategies ranging from (:371; :629) to

(:423; :577) (i.e., Æ = :029).20 These algorithms generate a fair solution to the one-bar

problem in which on average, all agents attend the bar 60% of the time.

20 Note that in the multiplicative updating algorithm, the values of these extrema are directly correlated to

the choice of �: e.g., for � = :001, the mixed strategies range from (:392; :608) to (:404; :596) (i.e., Æ = :008).
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Figure 3.2: Attendance vs. Time in One-bar Problem: Varied Capacity

In addition to simulating the uniform Santa Fe bar game, with � = :5 for all

agents, the non-uniform problem was also simulated with the values of �n uniformly

distributed in the range [0; 1]. Figure 3.3 depicts the results of these simulations. In

this scenario attendance once again centers around the capacity of the bar; moreover,

we observe substantially more stability. Speci�cally, for additive updating, the mean

is 60.09 and the variance is 1.59, while the mean is 60.37 and the variance is 1.32 for

multiplicative updating. This is a result of the fact that those agents with small values

of � learn not to attend the bar at all, while those agents with large values � learn to

always attend the bar, and only those on the cusp vary between sometimes going to

the bar and sometimes staying at home. In fact, theoretical results on stability have

been obtained for best-reply dynamics in related non-atomic, non-uniform games [40].

The last set of one-bar simulations considers the problem in a naive setting. The

agents learned via naive versions of the various algorithms (with � = :02.), and they

were provided with incomplete information: they were informed of the attendance

at the bar only if they themselves attended. Naive algorithms approximate informed

algorithms such that play converges to Æ-Nash equilibrium in an informed setting if

and only if play converges to (Æ + �)-Nash equilibrium in the corresponding naive

case. Figure 3.4 (a) depicts the results of learning via naive multiplicative updating

for � = :01 for which attendance once again centers around the capacity of the bar.

(See Table 3.2 for precise values of the mean and variance.)
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Figure 3.3: Attendance vs. Time in One-bar Problem: �n Uniformly Distributed
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Figure 3.4: Attendance vs. Time in One-bar Problem: Naive Case

Naive Setting Mean Variance

� = 0:01 59.96 2.95

� = 0:1 59.66 5.00

Table 3.2: Mean and Variance for One-Bar Problem: Multiplicative Updating, Naive Setting
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Finally, it is interesting to note that in naive settings, for alternative choices

of � in the multiplicative updating algorithm, it is possible to decrease variance

and thereby increase stability (see Table 3.2). In particular, if the agents' rates of

learning are increased, learning becomes less accurate, and some number of (say m)

agents stop attending the bar while (say l) others settle on always attending the bar.

The remaining N � m � l agents consequently adjust their behavior as if the total

population were N � m and the capacity of the bar were c � l, which yields lower

variance in the attendance (see Figure 3.4 (b) where � = 0:1). After a while, however,

since the agents are continually experimenting, agents who were once �xed on a certain

strategy learn that their payo�s could be improved by altering their strategy, and they

do so. Thus, in the long-run, all agents attend the bar an equivalent number of times,

as in the informed setting.

3.3.3 Two-bar Problem

In this section, we discuss simulations of the two-bar problem. We show that in spite

of the additional complexity of this problem, the equilibrium behavior observed in the

one-bar problem extends to the two-bar problem because of the robust nature of the

computational learning algorithms. The �rst scenario which we consider is analogous

to the one-bar problem; in particular, there is excess demand. Figure 3.5 depicts the

attendance at two bars, say bar A and bar B, each of capacity 40, with a population of

100 agents who learn according to the informed version of multiplicative updating.21

Note that attendance in each of the bars centers around 40, with about 20 agents

choosing to stay at home each round. This is once again a fair solution in that each

agent attends each bar 40% of the time and stays at home 20% of the time.

In the two-bar problem, in addition to the study of excess demand, it is also of

interest to consider the case of excess supply: e.g., two bars, each of capacity 60,

and a population of 100 agents. Figure 3.6 depicts the results of simulation of this

scenario where agents learn according to the informed version of additive updating.

In this case, agents learn to play mixed strategies of approximately (1=2; 1=2), and

21 No qualitative di�erences between additive and multiplicative updating were observed in simulations of

the two-bar problem. Consequently, we present results in this section which depict attendance at two bars,

rather than attendance resulting from two algorithms.
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consequently each agent attends each bar approximately 50% of the time. The space

of equilibria, however, in this instantiation of the two-bar problem with excess supply,

ranges from 40 agents at bar A and 60 agents at bar B to 60 agents at bar A and 40

agents at bar B.
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Figure 3.5: Attendance vs. Time in the Two-bar Problem: Excess Demand
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Figure 3.6: Attendance vs. Time in the Two-bar Problem: Excess Supply
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In naive settings, equilibria other than the symmetric outcome which is achieved

in informed settings can persist. Figure 3.7 depicts the results of simulations of naive

additive learners who experiment until they arrive at a situation in which they appear

satis�ed, namely 40 regular attendees at bar A, and 60 regular attendees at bar B, and

there they seem to remain. In fact, the population at bar B is slightly declining over

time, while the attendance at bar A is correspondingly increasing ever so slightly,

because of the downward pressure which exists when attendance at bar B exceeds

capacity. It is likely that attendance at each bar would ultimately settle close to 50,

but this warrants further investigation.
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Figure 3.7: Attendance vs. Time in the Two-bar Problem: Naive Case

Finally, in the case of excess supply, naive multiplicative learners who learn quickly

(� = 0:1) arrive at a stable solution in which the variance is quite low (see Figure 3.8).

In contrast with the observed behavior that results via learning according to the

additive updating algorithm, naive multiplicative learners experiment until they arrive

at a situation in which they are satis�ed, namely 40 regular attendees at bar A, and 60

regular attendees at bar B, and there they remain. In this case, it seems less likely that

further iterations will ultimately lead to equal attendance in both bars, since the lower

variance eliminates some of the downward pressure which was apparent in Figure 3.7.

The precise values of the variances for the various algorithms in simulations of the

two-bar problem appear in Table 3.3.
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Figure 3.8: Attendance vs. Time in the Two-bar Problem: Naive Case

Bar A Bar B

Two-Bar Problem Mean Variance Mean Variance

Excess Supply 46.86 5.13 47.17 5.12

Excess Demand 40.03 4.94 40.33 4.97

Naive: Additive 36.32 4.19 57.44 4.44

Naive: Multiplicative 40.56 3.17 58.36 3.34

Table 3.3: Mean and Variance for Two-Bar Problem

3.4 Conclusion

The �rst half of this chapter demonstrated that it is inconsistent to conclude that

belief-based learning among rational players in the Santa Fe bar problem exhibits

properties of learning. In light of this negative result, it appeared necessary to relax

the assumption of rationality in order that learning might converge to equilibrium

behavior, as Arthur did in his original work on this problem, in the study of bounded

rationality, and inductive learning. In the second half of this chapter, we simulated

low-rationality learning behavior, and we found that such learning indeed yields stable

outcomes in sfbp. This work aids in our understanding of the process by which agents

collectively learn through repeated interactions, particularly in the non-stationary

environments that prevail when multiple agents endeavor to learn simultaneously.



Chapter 4

Network Experiments

4.1 Introduction

While much of classical game theory relies on the assumption of common knowledge,

there are many contexts in which this assumption does not apply. Correspondingly, in

recent years there has been increased interest in the process by which a set of initially

naive agents learn through repeated play of a game. The central question concerns

the nature of asymptotic play; what set of strategies do the agents learn to play in

the long-time limit? (The recent review by Fudenberg and Levine [46] provides an

overview of the literature.)

In this chapter we focus our attention on learning that occurs in what we call a

network context. In network contexts, agents interact through the common use of

a resource, such as a communication link or a shared database, which is accessed

over a network. The interactions of Internet congestion control algorithms where

agents share network bandwidth, as described in [100], is perhaps the most studied

example of a repeated game in a network context. As the Internet continues to grow,

and more resources are shared by remote users, we expect the network context to

become increasingly common. As discussed in [43], the network context di�ers from

the traditional game-theoretic context in four important ways.

I. First, agents have very limited a priori information. In general, agents are not

aware of the underlying characteristics of the shared resource. In other words, they

do not know the payo� structure of the game; they know neither their own payo�
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function, nor that of the other players. In addition, agents are not explicitly aware

of the existence of other players. While agents are aware that there may be other

agents simultaneously using the shared resource, they do not have any way of directly

observing their presence and, consequently, they know nothing about the number or

the characteristics of their opponents. In particular, this implies that players cannot

observe the actions of other players, a standard assumption in many classical models

of learning in economics.

II. Second, the payo� function and the agent population are subject to change

over time. Shared resources like network links and computer servers periodically

crash, and often experience other unpredictable changes in their capabilities, such as

upgrades or route changes. In addition, users of these shared resources come and go

quite frequently. Thus, when an agent detects a change in his payo� while keeping

his own strategy �xed, the agent cannot tell whether this change is due to changing

strategies of the other players, changes in the players themselves, or variations in the

characteristics of the shared resource.

III. Third, in many cases, learning is actually carried out by an automated agent,

rather than a human user. For instance, congestion control algorithms (e.g., TCP)

embedded in a computer's operating system control the sharing of network links.

Similarly, automated algorithms can control the retry behavior for query submission

to a database. Consequently, the learning that takes place in these contexts is speci�ed

in the form of a well-de�ned algorithm. Moreover, these algorithms are intended

to be quite general in nature, and do not depend on the detailed speci�cs of any

particular situation. In particular, this means that Bayesian learning algorithms are

inappropriate, because the initial beliefs depend on the speci�c context. In any event,

the complexity of prior probabilities is such that it is not possible to use Bayesian

updating in any realistic network setting.

IV. Fourth, in network contexts, games can be played in an asynchronous fashion.

There need not be any notion of de�nable \rounds of play"; users can update their

strategies at any time. Moreover, the rates at which agents update their strategies

can vary widely, although in general these rates are determined by circumstances and

are not a strategic variable. Due to the geographic dispersion of users of the Internet,

for example, there can be varying communication delays to a shared resource, which
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in turn can lead to updating rates that di�er by several orders of magnitude.1 In

addition, automated agents can learn at very di�erent rates, depending on processor

speeds and the nature of the learning algorithms. Thus, asynchrony does not arise

from Stackelbergian-type strategic manipulation, but rather from inherent properties

of communication and computation. Agents closer to the shared resource or those

who have faster processors have the potential to learn more rapidly and e�ectively.

We focus on contexts that have these four properties: low information content,

non-stationary payo�s, automated learning, and asynchrony. We are interested in

what happens when a set of automated agents play a game repeatedly in such a

context, and we investigate this behavior empirically. We consider a small sampling

of learning algorithms, some of which have been well-studied in the literature; for

each algorithm we numerically simulate a set of agents using that algorithm and

we observe the set of strategies played in the long-time regime. Our simulation

experiments can be seen as a natural counterpart to human economic experiments;

in particular, Chen [21] investigates some issues closely related to those considered

here using human subjects rather than automated learning algorithms.2

We concentrate on the extent to which the asymptotic play depends on the amount

of information available to the agents, the degree of responsiveness of the learning

algorithm, and the level of asynchrony of play. Of particular interest is the extent

to which the asymptotic play is contained in the various solution concepts including

Nash equilibria, the set of serially undominated strategies (D1), and less traditional

concepts such as serially unoverwhelmed strategies (O1) and serially Stackelberg-

undominated strategies (S1) which are discussed below. Our �ndings suggest that

the asymptotic play of games in network contexts can be quite di�erent from that in

standard contexts, where play is typically contained within D1. These results have

important implications for the networking community, where it is often assumed that

players are rational and that the network operating point is Nash equilibrium (see,

for example, Shenker [100]).

1 As discussed in [43], standard control theoretic results imply that the frequency at which strategies

are updated should not be greater than the inverse of the round-trip communication delay to the shared

resource; otherwise, instability may result.
2 Although our present focus is solely on automated agents, experimental evidence (see [21], [30], and [80])

suggests that our results are also relevant in describing human/human and human/machine interactions.
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4.1.1 Learning Algorithms

The literature is replete with learning algorithms, but not all of them are applicable in

network contexts. Because knowledge of the payo� structure and the other agents is

extremely limited, games in a network context are, from a single agent's perspective,

most naturally modeled as games against nature in which each strategy has some

random (and possibly time-varying) payo� about which the agent has no a priori

knowledge. Consequently, in contrast with belief-based approaches to learning (e.g.,

Bayesian updating) adopted in much of the literature, learning algorithms for network

contexts typically utilize simple updating schemes that do not rely on any detailed

assumptions about the structure of the game. Instead, these algorithms employ \trial-

and-error" experimentation in an attempt to identify optimal strategies: i.e., these

algorithms seek to optimize given the trade-o� between exploration and exploitation.

The learning algorithms which we simulate are distinguished �rst of all by their

varying degrees of experimentation; for convenience, we denote by parameter � 2 [0; 1]

this level of experimentation. In static environments, where the payo� structure and

the set and characteristics of the other agents is �xed, it may be reasonable to decrease

the level of experimentation over time, with experimentation ceasing in the in�nite-

time limit (i.e., � ! 0 as t ! 1). 3 Many learning algorithms proposed in the

literature have this property. In network contexts, however, the environment is not

static; the underlying payo� structure, and the population of agents, are subject

to change at any time without explicit noti�cation. As a result, agents should be

prepared to respond to changing conditions at all times, and should do so in a bounded

amount of time. This requires that a non-zero level of experimentation be maintained

in the long-time limit, and that future play be more heavily in
uenced by payo�s

obtained in the recent, rather than the distant, past. This second point can be

achieved via a parameter 
 2 (0; 1] which dictates the rate (and typically inverse

accuracy) of learning. We call the ability to respond to changes in the environment in

bounded time responsiveness, and posit that this property is fundamental to learning

in network contexts. As we shall see, responsiveness has important implications for

the resulting asymptotic play.

3 This is apparent in decision problems such as classic bandit problems [48, 65].
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The learning algorithms we discuss also di�er in the particular criteria that they

are designed to satisfy. Perhaps the simplest criterion is that, when playing a static

game-against-nature, the algorithm rapidly learns to play (with high probability)

the strategy with the highest average payo�.4 When combined with responsiveness,

and a certain monotonicity property, this leads to the class of so-called reasonable

learning algorithms introduced in [43]. One example of such an algorithm is the

stage learning algorithm. Stage learners partition a repeated game into stages, which

consist of 1=
 rounds of a game. At each round of play, a stage learner chooses its

strategy at random based on the probabilities, or weights, it has assigned to each of

its strategies. Weights are updated upon termination of each stage, with weight 1� �

assigned to the pure strategy that obtained the highest average payo�s during the

previous stage, and weight �=(n�1) assigned to all other strategies. Another example

of a reasonable learning algorithm, so-called responsive learning automata introduced

in [42], is a responsive version of simple learning automata (see, for example, Narendra

and Thathachar [82]). This algorithm updates weights after every round of play using

quite a di�erent method. Another reasonable learning algorithm (for certain choices

of parameters) is de�ned by Roth and Erev [30], and has been used to model human

behavior in game-theoretic experiments.

A second criterion, which is a worst-case measure of performance, involves the

concept of regret. Intuitively, a sequence of plays is optimal if there is no regret for

playing a given strategy sequence rather than playing another possible sequence of

strategies. Regret comes in two forms: external and internal. A sequence of plays

is said to exhibit no external regret if the di�erence between the cumulative payo�s

that are achieved by the learner and those that could be achieved by any other pure

strategy is insigni�cant. The no internal regret optimality criterion is a re�nement

of the no external regret criterion where the di�erence between the performance of a

learner's strategies and any remapped sequence of those strategies is insigni�cant. By

remapped we mean that there is a mapping f of the strategy space into itself such

4 The formal de�nition of probabilistic converge in �nite time is described in [43]. In this paper we do not

formally de�ne convergence, but take a more pragmatic approach which is appropriate for simulations. That

is, we say that play has converged when the numerical properties are unchanged by additional iterations as

evidenced by simulations.
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that for every occurrence of a given strategy s in the original sequence the mapped

strategy f(s) appears in the remapped sequence of strategies. The learning procedures

described in Foster and Vohra [37] and Hart and Mas-Colell [57] satisfy the property

of no internal regret. Some early no external regret algorithms were discovered by

Blackwell [14], Hannan [53], and Banos [10], and Megiddo [77]; recently, no external

regret algorithms appeared in Cover [25], Freund and Schapire [39], and Auer, Cesa-

Bianchi, Freund and Schapire [3].

We investigate six learning algorithms: the reasonable learners discussed above

(see [42, 43, 30]), two based on external regret (see [3, 36]), and one which exhibits

no internal regret (see [57]). Some of these algorithms were initially proposed for

quite di�erent settings, in which responsiveness is not necessary and the level of

information is signi�cantly higher (e.g., agents know their own payo� function). We

have extended these learning algorithms for use in network contexts. We call the

versions designed for low-information settings naive, and those designed for higher

information contexts informed. We also consider both responsive and non-responsive

variants. Lastly, each agent has a time-scale parameter A that determines the rate at

which it updates its strategies. A player updates its strategy (i.e., runs its learning

algorithm) only every A rounds, and treats the average payo� during those A rounds

as its actual payo�. We are interested in how the asymptotic play depends on whether

agents are responsive, whether they are informed, and on the degree of asynchrony

(di�erences in the A values) among the agents.

4.1.2 Solution Concepts

In order to describe the asymptotic play, we introduce several solution concepts.

We begin with some notation. Throughout this chapter, our attention is restricted

to �nite games. Let N = f1; : : : ; Ng be a �nite set of players, where N 2 N is

the number of players. The �nite set of strategies available to player i 2 N is

denoted by Si, with element si 2 Si. The set of pure strategy pro�les is the Cartesian

product S =
Q

i Si. In addition, let S�i =
Q

j 6=i Sj with element s�i 2 S�i, and write

s = (si; s�i) 2 S. Finally, the payo� function �i : S ! R for player i is a real-valued

function de�ned on S.
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Recall that strategy si 2 Si is strictly dominated for player i if there exists some

strategy s�i 2 Si such that �i(si; s�i) < �i(s
�
i ; s�i) for all s�i 2 S�i. Let D1 denote

the serially undominated strategy set: i.e., the set of strategies that remains after

the iterated elimination of strictly dominated strategies. Milgrom and Roberts [78]

show that the asymptotic play of a set of adaptive learners { learners that eventually

learn to play only undominated strategies { eventually lies within D1. In addition, it

is shown in [42] that certain responsive learners playing synchronously also converge

to D1. The set D1 is widely considered to be an upper bound in terms of solution

concepts; that is, it is commonly held that the appropriate solution concept that

arises via learning through repeated play is a subset of the serially undominated set.5

This may indeed be true in standard game-theoretic contexts.

In [42, 43], however, it is shown that in network contexts, where there is the

potential for asynchrony and responsive learning, play can asymptotically remain

outside the serially undominated set. A more appropriate solution concept for such

settings is based on the concept of overwhelmed strategies. We say that strategy

si 2 Si is strictly overwhelmed if there exists some other strategy s�i 2 Si such that

�i(si; s�i) < �i(s
�
i ; s

0
�i) for all s�i; s

0
�i 2 S�i. Let O1 denote the set of strategies

that remains after the iterated elimination of strictly overwhelmed strategies. It is

shown in [43] that the asymptotic play of a set of reasonable learners lies within O1,

regardless of the level of asynchrony. However, it is conjectured that O1 is not a

precise solution concept, only an upper bound.

A re�nement of O1, called S1 is de�ned in [43]. Because it is rather cumbersome,

we do not present the precise de�nition of S1, but here is some intuition. The set

S1 extends the set D1 by allowing for the possibility that play is asynchronous,

rather than synchronous as is standard in repeated game theory. In particular, domi-

nated strategies are iteratively deleted, assuming all possible orderings among player

moves. In two player games, for example, this amounts to three orderings, those in

which each of the two players plays the role of leader, while the other follows, as

well as the ordering in which both players move simultaneously. More formally, the

computation of S1 is as follows: pick a speci�c (non-strict) ordering of the players

5 Note that this also holds for one-shot games with common knowledge, as the set D1 contains all the

rationalizable strategies [11, 85].
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and construct the extensive form game arising from players moving according to that

order; now compute the set of actions which survive the iterated deletion of strictly

dominated strategies in the new game; �nally, take the union of these actions for all

orderings. Since the selected ordering is non-strict, asynchronicity de�ned in this way

incorporates synchronicity, from which it follows that D1 � S1 � O1.

Another result of great interest, due to Foster and Vohra [37], is that a set of no

internal regret learners converges to a correlated equilibrium. Note that the support

of a set of correlated equilibria is a subset of D1; in other words, correlated equilibria

do not assign positive probabilities to strategies outside D1, but neither do they

necessarily converge to Nash equilibria. In contrast, the asymptotic play of a set of

no external regret learners need not remain inside D1, as is shown in Chapter 2. Note

that this remark pertains only to the no external regret criterion, but says nothing

about the convergence properties of speci�c algorithms which are de�ned to satisfy

this criterion, such as those considered in this study.

In the remainder of this paper, we present the result of simulations of the six

learning algorithms on various games. We ask whether the asymptotic play of these

games in network contexts converges within the sets D1, S1, or O1. Recall that

the term convergence is used informally, both because of experimentation, which

precludes true convergence, and our interest in achieving results in �nite time. We

are interested in determining which of these concepts, if any, represents an appropriate

solution concept for games in network contexts.

4.2 Simulations in Network Contexts

We consider three sets of games: simple games (two players, two or three strategies),

the congestion game (two players, many strategies), and an externality game (many

players, two strategies). The simulations were conducted with varying degrees of

asynchrony, ranging from synchronous play to extreme asynchrony with one player

acting as the leader (i.e., we vary the value of A from 1 to 10,000 for the leading player

and we set A = 1 for all other players). The degree of responsiveness is determined

by parameters � and 
.
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4.2.1 Simple Two-Player Games

This subsection presents the results of simulations of four simple two-player games

with either two or three strategies per player. The row player is taken to be the leader.

The parameter 
 was set to :01 for all algorithms, while the degree of experimentation

� was set to :025 for the reasonable learning algorithms and :05 for the no-regret

algorithms.6 In addition, the no-regret algorithms depend on tuning parameters; for

the mixing method, � = 100, for multiplicative updating, � = 1, and for the no

internal regret algorithm, � = 2.7 Unless otherwise stated, the simulations described

in this chapter were run for 108 iterations.8 Initially, all strategies were assigned equal

weights.

Game D

The game depicted in Figure 4.1 is referred to as Game D since it is D-solvable, but it

is not S-solvable or O-solvable: i.e., D1 6= S1 = O1. More speci�cally, the set D1

is a singleton that contains only the strategy pro�le (T; L), which is the unique Nash

equilibrium. On the other hand, S1 = O1 = fT;Bg � fL;Rg. Note that (B;R) is

a Stackelberg equilibrium in which the row player is the leader.

The graph depicted in Figure 4.2 describes the overall results of simulations of

Game D, assuming responsive learning in a naive setting. In particular, Figure 4.2

(a) plots the percentage of time in which the Nash equilibrium solution arises as

the degree of asynchrony varies. Asynchrony of 100, for example, implies that the

column player is learning 100 times as fast as the column player; thus, the row player

is viewed as the leader and the column player the follower. Notice that when play is

synchronous, all the algorithms converge to the unique Nash solution. However, in

6 The choice of parameter values re
ects the trade-o� between exploration and exploitation. Increasing the

rate of responsiveness 
 and the rate of experimentation � leads to increased error in stationary environments,

but increased accuracy in non-stationary environments. In our experience, the results are fairly robust to

small changes in parameter settings, although we have not formally measured this robustness.
7 These parameters represent the learning rates in the no regret algorithms. As usual, slower learning

rates correspond to higher degrees of accuracy in stationary environments; in non-stationary environments,

faster learning rates induce more responsive behavior.
8 Although play generally converged in far fewer iterations, this rather lengthy simulation time eliminated

the transient e�ects of initial conditions in the �nal long-run empirical frequency calculations.
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1,2 3,0

2,10,0

RL1
2

Figure 4.1: Game D

the presence of suÆcient asynchrony, play does not converge to the Nash solution for

any of the algorithms studied. Instead, play converges to the Stackelberg equilibrium,

as depicted in Figure 4.2 (b). These results demonstrate that D1 does not always

contain the asymptotic play. Note that these results are robust; in particular, the

results are unchanged even when the game is studied with \noisy" payo�s �̂i, where

�̂i = �i � Æ, for small Æ > 0.

The transition from Nash to Stackelberg equilibrium depicted in Fig. 4.2 is rather

abrupt. This observation prompted us to conduct further simulations at a series of

intermediate values to more precisely determine the impact of asynchrony. For the

reasonable learning algorithms, the transition between equilibria takes place when A

falls between 100 and 1000; for the no regret algorithms, this transition takes place

when A lies between 10 and 100. Fig. 4.3 depicts the details of these transitions in

the respective ranges of asynchrony for the two sets of algorithms. Only reasonable

learning algorithms ever clearly exhibit out-of-equilibrium behavior; the no regret

algorithms transition directly from one equilibrium to the other.

Recall that (B;R) is the Stackelberg equilibrium in Game D. Fig. 4.4 plots the

changing weights over time of strategy B for player 1 and strategy R for player 2 for

the no external regret algorithm due to Freund and Schapire. The individual plays

are also plotted; marks at 100 signify play of Stackelberg strategies, and marks at

0 signify play of Nash strategies. For comparison purposes, the synchronous case,
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Figure 4.2: Convergence to Equilibria in Game D. (a) Percentage of time during which

Nash equilibrium arises as the degree of asynchrony varies. (b) Percentage of time during

which Stackelberg equilibrium arises.
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Figure 4.3: Detail of Convergence to Stackelberg Equilibrium in Game D.
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Figure 4.4: Convergence to Equilibria in Game D: Algorithm due to Freund and Schapire.

(a) Weights of the Stackelberg equilibrium strategies over time when A = 1; play converges

to Nash equilibrium. (b) Weights when A = 100; play converges to Stackelberg equilibrium.
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where play converges to Nash equilibrium, as well as the asynchronous case with

A = 100, where play converges to Stackelberg equilibrium, are depicted. Notice that

play converges in the former case after roughly 300 iterations, while it converges in

the latter case after roughly 1000 iterations (for the given settings of parameters � and


). In Fig 4.4(b), the leader (player 1) slowly learns to play the Stackelberg solution,

and because the follower (player 2) is responsive, his weights follow the leader's plays.

This behavior is representative of all the learning algorithms considered.

Game O

The next game that is studied in this section is depicted in Figure 4.5. This game

is referred to as Game O, since it is O-solvable. In this game, f(T; L)g is the unique

Nash equilibrium and f(T; L)g = D1 = S1 = O1.

T

B

3,1

0,01,3

RL1
2

2,2

Figure 4.5: Game O

Simulations of all the algorithms, for levels of asynchrony ranging from 1 to 10,000,

show that Nash equilibrium is played over 95% of the time. In particular, play does

not diverge from the Nash equilibrium solution in this O-solvable game, as it did in

Game D, regardless of the degree of asynchrony. It has been established that, for

reasonable learners, O1 is an upper bound on the solution concept. Our data is

consistent with the same result holding for the other classes of algorithms considered,

although this is far short of a proof that the O1 solution concept applies to them
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as well. The next game addresses the question of whether the O1 solution concept

might in fact be too large a set.

Prisoners' Dilemma

This section presents the results of simulations of the repeated Prisoners' Dilemma

(see Figure 4.6). In this game, f(D;D)g is the unique Nash (as well as Stackelberg)

equilibrium, and f(D;D)g = D1 = S1 6= O1, since O1 is the entire game. The

Prisoner's Dilemma provides a simple test of the conjecture that the outcome of

responsive learning in network contexts is described by the S1 solution concept,

rather than the larger solution set O1.

C

D

2,2 0,3

1,13,0

DC1
2

Figure 4.6: Prisoners' Dilemma

Simulations of all the algorithms, for levels of asynchrony ranging from 1 to 10,000,

show that in this game the Nash equilibrium is played over 95% of the time. Since

play does not diverge signi�cantly from the Nash (and Stackelberg) equilibrium, the

asymptotic play is not spread throughout O1; on the contrary, it is con�ned to S1.

Game S

The last simple two-player game that is studied is a game in which the players have

three strategies. The game is depicted in Figure 4.7, and is referred to as Game

S. In Game S, D1 = fT; Lg; S1 = fT; Lg � fB;Rg; and O1 is the entire game;
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thus, D1 6= S1 6= O1. The results of simulations of Game S resemble the results

of simulations of Game D. 9 Figure 4.8 shows that the learning algorithms do not

converge to the Nash equilibrium solution of this game when there is asynchrony.

Instead, play converges to the Stackelberg equilibrium, as in Game D. This game

provides a second test of the conjecture that the outcome of responsive learning in

network settings is a strict subset of O1.

T 2,2 4,0

3,31,1

CL1
2

M

B 0,0 3,0 1,1

0,2

2,0

R

Figure 4.7: Game S

4.2.2 Externality Games

To test whether similar results apply to games with more than two players, we also

experimented with externality games. An externality game, as de�ned in [40], is

one in which each agent can choose either to participate or not to participate (in

some joint venture) and where the payo�s obtained by a given player depend only

on whether that player participates and on the total number of participating players.

We now study a related class of games which are D-solvable and, for certain choices

of the parameters, the games in this class are S-solvable and O-solvable as well.

9 Note that in these simulations, the reasonable learning algorithms utilized � = :1667.



Chapter 4 Network Experiments 103

0

20

40

60

80

100

1 10 100 1000 10000

Pe
rc

en
ta

ge
 T

im
e 

at
 N

as
h 

E
qu

ili
br

iu
m

Asynchrony

Game S: Naive, Responsive

Stage Learner
Responsive LA
Roth and Erev

Foster and Vohra
Freund and Schapire
Hart and Mas-Colell

(a) Nash Equilibrium

0

20

40

60

80

100

1 10 100 1000 10000

Pe
rc

en
ta

ge
 T

im
e 

at
 S

ta
ck

el
be

rg
 E

qu
ili

br
iu

m

Asynchrony

Game S: Naive, Responsive

Stage Learner
Reponsive LA
Roth and Erev

Foster and Vohra
Freund and Schapire
Hart and Mas-Colell

(b) Stackelberg Equilibrium

Figure 4.8: Convergence to Equilibria in Game S. (a) Percentage of time during which Nash

equilibrium arises as the degree of asynchrony varies. (b) Percentage of time during which

Stackelberg equilibrium arises.
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The class of games which we consider (class EG) is a discretization of the non-

atomic games discussed in [41]. The set of players N = f0; : : : ; N � 1g, with i 2 N .

The players have two possible strategies, namely 0 and 1, where 1 corresponds to

participation, and 0 corresponds to non-participation. The number of participants,

therefore, is given by �(s) =
P

i2N si, where si denotes the strategic choice of player

i. Payo�s are determined as follows. The value to player i of participation is vi 2 R,

and the cost of participation is Ci(�), where Ci is a nondecreasing function of the

externality. Thus, if player i participates, then si = 1 and �i(1; s�i) = vi � Ci(�(s)).

Otherwise, if player i does not participate, then si = 0, and �i(s) = ��i(1; s�i), for

� 2 [0; 1). Intuitively, � measures the extent to which players can opt out.

Note that the parameter � does not a�ect the standard strategic elements of a

given game in this class, such as best-replies or dominated strategies. In particular,

if the game is D-solvable for � = 0 then it is D-solvable for all � 2 [0; 1). Similarly,

varying � does not change the set of Nash equilibria. Moreover, it is straightforward

to show that when � = 0, if the game is D-solvable, then it must also be O-solvable

(and therefore, also S-solvable). In contrast, for � suÆciently close to 1, the game is

not S-solvable (and therefore, not O-solvable). Thus, by varying � we can create a

class of games which are D-solvable but not necessarily S-solvable or O-solvable.10

In our simulations, we consider eight players (i.e., N = f0; : : : ; 7g), and we set

vi = i and Ci(�) = �=�, for � 2 R. In the �rst set of simulations, we choose � = 1:9;

we call this Game EG1:9. This game is D-solvable and therefore has a unique Nash

equilibrium. Moreover, this implies that for � = 0, this game must also be O-solvable;

however, for � suÆciently close to 1, it is neither S-solvable nor O-solvable. More

speci�cally, when � > 6=11 = :54, Game EG1:9 has a Stackelberg equilibrium with

player 2 as the leader which di�ers from the Nash equilibrium: the Nash equilibrium

for all � 2 [0; 1) is s = (0; 0; 0; 1; 1; 1; 1; 1), while the Stackelberg equilibrium (with

player as the 2 leader and � > 6=11) is s = (0; 0; 1; 0; 1; 1; 1; 1).

Simulations of Game EG1:9 were conducted using the naive, responsive variants of

the no-regret learning algorithms.11 The convergence results in the asynchronous case

10 Proofs of these claims appear in [50] for the class of games considered.
11 The payo�s were translated by N=� in simulations of responsive learning automata and the algorithm

due to Roth and Erev in order to avoid negative payo�s.
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(for A = 5; 000) are listed in Table 4.1, for � = :02 and 
 = :002. 12 Simulations of

all algorithms show rapid convergence to the Nash equilibrium (ne) for all values of

� in the synchronous case, and to the Stackelberg equilibrium (se) when � = :6 and

� = :9 in the asynchronous case. In particular, in Game EG1:9, for certain choices of

the parameters, the asymptotic play is not contained in the set D1.

Algorithm � = 0 � = :5 � = :6 � = :9

Foster and Vohra ne ne se se

Freund and Schapire ne ne se se

Hart and Mas-Colell ne ne se se

Table 4.1: Game EG1:9 : 
 = :002; A = 5; 000

Another game which we simulated in the class EG is Game EG2:1; this game is

identical to Game EG1:9, except � = 2:1. Like Game EG1:9 this game is D-solvable.

This implies that for � = 0, this game is also O-solvable; however, for � suÆciently

close to 1, this game is not O-solvable. Lastly, unlike Game EG1:9, Game EG2:1,

is S-solvable. This game was simulated assuming all the same parameter values as

the previous set of simulations, as well as some additional choices for 
. Selected

results of these simulations appear in Table 4.2. Notice that regardless of the values

of 
 and �, and even in the presence of extreme asynchrony, play converges to Nash

equilibrium. Thus, as D1 = S1 6= O1, this game provides further evidence for the

conjecture that asymptotic play of learning in network contexts is contained in S1.

Algorithm � = 0 � = :5 � = :6 � = :9

Foster and Vohra ne ne ne ne

Freund and Schapire ne ne ne ne

Hart and Mas-Colell ne ne ne ne

Table 4.2: Game EG2:1 : 
 2 f:01; :005; :002; :001g; A = 10; 000

12 In the algorithm due to Foster and Vohra, � = 1; 000; in the algorithm due to Freund and Schapire,

� = 1; �nally, in the algorithm due to Hart and Mas-Colell, � = 5.
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4.2.3 Congestion Games

Thus far, we have considered games with relatively small strategy spaces. In this

section, we experiment with a larger strategy space, using an example that arises in

computer networks. Consider several agents simultaneously sharing a network link,

where each agent controls the rate at which she is transmitting data. If the sum of

the transmission rates is greater than the total link capacity, then the link becomes

congested and the agents' packets experience high delays and high loss rates. The

transmission rates are controlled by each agent's congestion control algorithm, which

vary the rates in response to the level of congestion detected.

One can model the interaction of congestion control algorithms as a cost-sharing

game where the cost to be shared is the congestion experienced. That is, we can model

this as a game where the strategies are the transmission rates ri and the outcomes are

the pairs (ri; ci), where ci is the congestion experienced as function of the strategy

pro�le r. The allocations must obey the sum rule
P

i ri = F (
P

i ci), where F is a

constraint function (i.e., the total congestion experienced must be a function of the

total load).

Most current Internet routers use FIFO packet scheduling algorithms, which result

in congestion proportional to the transmission rate: ci = [ri=
P

j rj]F (
P

j cj). FIFO

implements the average cost pricing (ACP) mechanism. In contrast, the fair queuing

packet scheduling algorithm can be modeled as leading to allocations such that ci

is independent of rj as long as rj � ri (this condition, plus anonymity, uniquely

speci�es the allocations). Fair queuing implements the Serial mechanism (see [100]

for a detailed description).

Chen [21] studies the two-player congestion game de�ned under the following

conditions: (1) linear utility functions Ui(ri; ci) = �iri � ci, (2) quadratic congestion

F (x) = x2, and (3) discrete strategy space Si = f1; 2; : : : ; 12g. For parameters

�1 = 16:1 and �2 = 20:1, the game de�ned by the ACP mechanism is D-solvable,

but it is not S-solvable or O-solvable. The unique Nash equilibrium is (4; 8) and the

Stackelberg equilibrium with player 2 leading is (2; 12). In contrast, the game de�ned

by the Serial mechanism is O-solvable, with unique Nash equilibrium (4; 6).
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We conducted simulations of both the Serial and the ACP mechanism using the

naive and responsive variants of the no-regret learning algorithms, with the degree

of experimentation � = :02. 13 In our simulations of the Serial mechanism, all of

the learning algorithms concentrate their play around the Nash equilibrium. In the

ACP mechanism, when play is synchronous, the asymptotic behavior again centers

around the Nash equilibrium. However, in the presence of suÆcient asynchrony (e.g.,

A = 5; 000, when 
 = :002), play converges to the Stackelberg equilibrium.

4.2.4 Discussion

Our results thus far indicate that when responsive learning algorithms play repeated

games against one another, their play can reach outside the serially undominated

set, given suÆcient asynchrony. In our examples, however, the outcome is either

largely inside the serially undominated set, or with suÆcient asynchrony, converges

to the Stackelberg equilibrium. We did not observe more general behavior, with

probabilities spread over a wider set of strategies, although, based on work by Foster

and Vohra [37], we conjecture that such behavior arises in more complex games.

4.3 Simulations in Non-network Contexts

Network contexts di�er from standard learning contexts considered in the literature

in three important ways, namely, responsive learning, limited information access, and

asynchronous play. In previous sections, we have looked at how varying asynchrony

a�ects the convergence properties of learners. In this section, we brie
y consider the

remaining two properties of learning in network contexts.

First we augment the information structure by considering contexts in which play

is informed; in other words, in informed settings, learners know the payo�s that

would have occurred had they chosen an alternative action. This typically arises

when players (i) know the payo� matrix, and (ii) can observe the actions of the other

players. Not surprisingly, in this setting play is con�ned within D1. Unfortunately

13 In the algorithm due to Foster and Vohra, � = 5; 000; in the algorithm due to Freund and Schapire,

� = 1; �nally, in the algorithm due to Hart and Mas-Colell, � = 2; 000.
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in network contexts, informed learning is not an option; the basic structure of the

Internet is such that learning is inherently uninformed.

Our second consideration, namely responsiveness, is not inevitable, but instead

re
ects a common (and appropriate) design choice on the Internet. We �nd the

behavior of naive and non-responsive learners, in the presence of asynchrony, to be

complex and do not claim to understand such asymptotic behavior; for example, we

do not know whether play always converges to D1. We demonstrate some of this

complexity through simulations of the Shapley game, a classic example for which

�ctitious play does not converge. Irrespective of these complexities, non-responsive

learning is not viable in network contexts due to the non-stationarity of payo�s.

The simulation results in this section show that the seemingly obvious conjecture

that asynchrony alone leads to Stackelberg behavior is not true in general. In our

simulations, this conjecture only when we consider naive and responsive learning

algorithms, as are relevant for network contexts. If the algorithms are informed, or

non-responsive, we do not observe Stackelbergian behavior.

4.3.1 Informed Learning

Recall that the simulations that lead to asymptotic play outside D1 utilize the naive

and responsive variants of the set of learning algorithms. In our simulations of Game

D (see Figure 4.1), responsive but informed learning does not lead to play outside

D1, even in the presence of extreme asynchrony, for enhanced versions of reasonable

learning that utilize full payo� information and the original no regret algorithms.

Speci�cally, for levels of asynchrony between 1 and 10,000, simulations of responsive

and informed algorithms show that Nash equilibrium is played over 95% of the time.14

Intuitively, this occurs because the set of informed learning algorithms compares

the current payo� with the potential payo�s of the other strategies, assuming that the

other agents keep their strategies �xed. The key to the Stackelberg solution is that the

leader evaluates his payo� in light of the probable responses of other agents. Naive

learners, when learning at a slow rate, do this implicitly; that is, they only receive

14 The simulations of Game D discussed in this section and the next depend on the same set of parameter

values as in Section 4.2.1; speci�cally, 
 = :01 for all algorithms, while � = :025 for the reasonable learning

algorithms and � = :05 for the no-regret algorithms.



Chapter 4 Network Experiments 109

their payo�s after the other players respond to their play. The informed learning

algorithms which we consider do not take this reaction into account.

If informed and responsive learning algorithms do indeed converge in general to

D1, this might be seen as an argument to consider only informed learning algorithms.

However, in network contexts this is not an option; the information about other

payo�s is not available and so we are forced to use naive learning algorithms. However,

agents do have a choice as to whether to use responsive or non-responsive learning

algorithms, a subject to which we now turn.

4.3.2 Non-responsive Learning

We now consider naive but non-responsive learners. Simulations of Game D (see

Figure 4.1) using non-responsive algorithms, for levels of asynchrony between 1 and

10,000, show that the Nash equilibrium is played over 99% of the time for the set of

informed algorithms and over 95% of the time for the naive set. In particular, the

behavior of informed but non-responsive learners is similar to that of informed and

responsive learners, in that they learn to eliminate dominated strategies, resulting in

convergence to D1. This seems reasonable because the informed and non-responsive

algorithms which we study are approximately adaptive in the sense of Milgrom and

Roberts [78], who prove that such adaptive learners converge to D1.

The case of naive, non-responsive learners is slightly more complicated. What

appears to be happening is that while initially the follower responds to the play of the

leader, eventually the follower becomes less responsive and therefore stops following,

which causes the leader to lose its advantage. Figure 4.9 depicts the weight over time

of strategy B for player 1 and strategy R for player 2 in simulations of the no external

regret learning algorithm due to Freund and Schapire with level of asynchrony 100.

Note that values are recorded only every 500 rounds. Notice that player 1 (the leader)

is inclined to increase his weight, but in the absence of a noticeable response from

player 2 (the follower), player 1 is forced to settle at the Nash equilibrium.

While in our simulations of relatively simple games, the asymptotic play of non-

responsive learning algorithms is con�ned to D1, we have no proof at present that

naive and non-responsive learning algorithms must remain inside D1. This subject



Chapter 4 Network Experiments 110

0

20

40

60

80

100

0 200 400 600 800 1000

W
ei

gh
t o

f 
St

ac
ke

lb
er

g 
St

ra
te

gi
es

Time

Game D: Freund and Schapire, Asynchrony = 100

Player 1
Player 2

(a) Informed Version

0

20

40

60

80

100

0 20000 40000 60000 80000 100000

W
ei

gh
t o

f 
St

ac
ke

lb
er

g 
St

ra
te

gi
es

Time

Game D: Freund and Schapire, Asynchrony = 100

Player 1
Player 2

(b) Naive Version
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and Schapire. (a) Stackelberg equilibrium strategy weights in informed case; play quickly
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warrants further study. Regarding network contexts, however, the analysis of such

questions is moot, since non-responsive learners are unsatisfactory for a much simpler

reason: their performance is sub-optimal in non-stationary settings.

Non-stationary Environments

Consider a simple, one-player two-strategy game where the payo�s initially are 1 for

strategy A and 0 for strategy B. We simulate a non-stationary version of this game

where the payo�s are reversed every 5,000 rounds, and we compare the performance

of responsive and non-responsive learning algorithms.

Figures 4.10 and 4.11 (a) plot the cumulative percentage of time spent playing the

optimal strategy in simulations of sample reasonable learning algorithms.15 All the

reasonable learning algorithms { namely stage learning, responsive learning automata,

and the algorithm due to Roth and Erev { spend over 90% of their time at the current

optimal strategy in the simulated quasi-static environment. In addition, the resulting


uctuations in the weight of strategy A in this game are depicted in (b); observe that

the weight of strategy A changes with the state of the environment.

In contrast to the reasonable learning algorithms, the non-responsive, no-regret

algorithms (both the naive and informed versions) perform poorly in non-stationary

environments. Figure 4.12 plots the cumulative percentage of time spent playing

the Nash equilibrium for Freund's and Schapire's no external regret algorithm, in

both its responsive and non-responsive forms.16 Note that the non-responsive version

of the algorithm spends only about 50% of its time playing the currently optimal

strategy. This behavior is representative of all the no-regret algorithms studied. This

is because the non-responsive no-regret algorithms �xate on one strategy early on

{ the one that is initially optimal { and are unable to adjust to future changes in

environmental conditions.

Thus, the criterion of no-regret, while perhaps appropriate for learning in static

environments, is not suÆcient for learning non-stationary payo� functions. Since

network contexts are typically non-stationary and since this non-stationarity can be

15 The algorithmic parameters for the reasonable learning algorithms were chosen as follows: � = 
 = :01.
16 For simulation purposes, in the algorithm due to Freund and Schapire, � = 1, and in the responsive

case, 
 was set equal to .01.
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Figure 4.12: Algorithm due to Hart and Mas-Colell in Quasi-static Environment. Non-

responsive vs. responsive learning.



Chapter 4 Network Experiments 115

detected only via experimentation (one cannot observe the change in the structure of

the game directly), the learning algorithms employed should be responsive.

Shapley Game

In this section, we compare the behavior of responsive and non-responsive learners

in the Shapley game (see Figure 4.3.2), a well-known game in which �ctitious play,

an informed, non-responsive algorithm, does not converge. In this game, �ctitious

play results in cycling through the cells with 1's in them (cells 1, 2, 5, 6, 7, and 9

in Figure 4.3.2), with ever-increasing lengths of play in each such cell [98]. One is

led to conjecture that this fascinating behavior arises because of the clear-cut choices

made by �ctitious play { the strategy with the highest expected payo� is chosen with

probability 1, leading to abrupt transitions in the trajectory of play.

T

CL1
2

M

B

R

1,0 0,1 0,0
1 2 3

0,0 1,0 0,1

1,00,00,1

5 6

7 8 9

4

Figure 4.13: Shapley Game

Surprisingly, in our simulations,17 we observe behavior which is similar to that of

�ctitious play for most of the non-responsive learning algorithms18 { both informed

17 The graphs present the results of simulations of the algorithm due to Foster and Vohra with � = :03.
18 The only exception is the algorithm of Hart and Mas-Colell which is known to converge to correlated
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(see Figures 4.14 (a) and 4.15 (a)) and naive (see Figure 4.14 (b) and 4.15 (b)) { even

though these algorithms do not in general induce discrete changes. In particular,

Figure 4.14 plots the cumulative percentage of time player 1 plays each of the three

strategies; although not depicted, the behavior patterns of player 2 are identical. In

addition, Figure 4.15 depicts the joint empirical frequencies of the various strategy

pro�les after 106 iterations, where the x-axis is labeled 1,. . . ,9 corresponding to the

cells in Figure 4.3.2. Via this joint perspective, we see that both informed and naive,

non-responsive learners spend very little time playing in cells without a 1 in them.

Speci�cally, in the informed case, the likelihood of play in cells 3, 4, and 8 approaches

0, and in the naive case this likelihood approaches �=N .

In contrast, the responsive algorithms, while they do display the same cycling

behavior, the duration of play in each cell does not continue to grow. Instead the

responsive algorithms spend equal amounts of time in each of the distinguished cells.

This is depicted in Figure 4.16 (a) (the informed case) and Figure 4.16 (b) (the naive

case), which plot the cumulative percentage of time player 1 spends playing each of

the three strategies. Notice that these graphs converge to 33% for all strategies. In

addition, Figure 4.17 depicts the joint empirical frequencies of the various strategy

pro�les after 106 iterations. One interesting feature of the set of responsive learning

algorithms is that their empirical frequencies converge to that of the fair and Pareto

optimal correlated equilibrium; in particular, both players have expected average

payo� of 1=2. This follows from the bounded memory of these algorithms.

4.4 Related Work

There is a vast body of economics literature on learning through repeated play of

games, and we make no attempt here to provide a detailed review; for a comprehensive

discussion, see the review by Fudenberg and Levine [46]. There is also substantial

interest within the arti�cial intelligence community in the area of multi-agent learning;

see the recent special issue ofMachine Learning on this topic. In this section, we place

our work in the context of the varying approaches to learning taken by economics and

arti�cial intelligence researchers.

equilibrium, and in fact converges to the mixed strategy Nash equilibrium in the Shapley game.
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player 1 plays each of his strategies assuming non-responsive learning.
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4.4.1 Relevance to Economics

Economic research on learning falls roughly into two camps. The \high-rationality"

approach involves learning algorithms that aim to predict their opponents' strategies,

and optimize with respect to those predictions. The prediction methods might be

for example, Bayesian (as in Kalai and Lehrer [65]), calibrated (as in Foster and

Vohra [37]), or consistent (as in Fudenberg and Levine [45, 44]). Typically, the

asymptotic play of high-rationality learning is either correlated or Nash equilibrium.

Since these algorithms depend on knowledge of the underlying structure of the game,

however, they are not applicable in network contexts.

In contrast, the features of \low-rationality" approaches to learning are similar

to those which concern us here; in particular, agents have no information about the

game other than the payo�s they receive. Examples of such work include Roth and

Erev [89], Erev and Roth [31], Borgers and Sarin [15], Mookerji and Sopher [80],

and Van Huyck et al. [61]; most of these algorithms as they were initially proposed

are not responsive, but as we show in Chapter 2, they can be made responsive via

slight modi�cations. The focus of these papers is typically on matching the results

of human experiments, whereas we focus instead on the nature of the asymptotic

play. Chen [21], however, performed experiments on the congestion game discussed

in Section 4.2.3 in which she compared synchronous and asynchronous play, as well

as learning in full information one-shot games (zipper design, where play is repeated,

but is against di�erent opponents) versus naive learning in repeated games.

4.4.2 Relevance to Arti�cial Intelligence

In the context of arti�cial intelligence research, the present study is related to work

in machine learning, where our sample set of algorithms classify as reinforcement

learning schemes. Our angle is unique, however, since we consider multi-agent learning

in network contexts. Recall that such contexts are characterized by naivet�e regarding

payo� information, non-stationary environments, and asynchronous interactions.

Traditional reinforcement learning algorithms (see survey by Kaelbling, et al. [63]

and text by Sutton and Barto [106]) were designed for single agent learning that took

place in stationary environments where payo�s are determined by state. Like learning
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in network contexts, reinforcement learning is naive in the sense that complete payo�

information is not assumed to be available to the learner. In contrast with learning in

network contexts, however, reinforcement learning algorithms are not designed for use

in non-stationary environments and therefore aim to maximize the discounted sum of

expected future returns, whereas the algorithms considered here behave myopically.

The theoretical bounds that are known for reinforcement learning algorithms such

as Q-learning [113] do not apply in the non-stationary settings that are typical of

network contexts.

More recently, reinforcement learning research has expanded its focus to multi-

agent learning. Such learning, however, can be tricky simply because as agents learn,

their actions change, and therefore their impact on the environment changes, often

leading to non-stationarities. For simplicity, most studies in multi-agent learning

consider settings where payo�s are either negatively correlated, as in zero-sum games

(see, for example, Littman [73]), or positively correlated, as in coordination games

(see, for example, Shoham and Tennenholtz [102]). Two notable exceptions include

Wellman and Hu [114], who describe theoretical results on multi-agent learning in

market interactions, and Sandholm and Crites [95], who conducted empirical studies

of multi-agent reinforcement learning in the Prisoners' Dilemma. Similarly, this work

considers multi-agent learning in positive sum games.

The results described here on convergence to Stackelberg equilibria were largely

a result of the asynchronous nature of play and learning. Empirical investigations of

asynchronous Internet interactions have been reported by Lukose and Huberman [75],

but their studies concern time correlations that arise from such behavior rather than

focus on convergence properties. The convergence of asynchronous machine learning

algorithms where players' moves are determined by discrete random processes have

recently been investigated in pricing models for electronic commerce by Greenwald

and Kephart [51].

Finally, regarding theoretical computer science, the algorithms which we refer to as

satisfying no regret optimality criteria, are also often described as achieving reasonable

competitive ratios. Borodin and El-Yaniv [16] present a thorough discussion of the

competitive analysis of on-line algorithms.
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4.5 Conclusion

This chapter presented the results of simulation experiments conducted using six

learning algorithms which embody three distinct notions of optimality: one average-

case performance measure, and two worst-case performance measures. In the suite

of relatively simple games examined here, all the algorithms exhibited qualitatively

similar behavior. Thus, it seems that in network contexts, the key property is not

which type of optimality is achieved, but rather, responsiveness. In low-information

settings, where learners are necessarily naive and thus cannot detect changes in the

structure of the game directly, algorithms should be able to respond to changes in

environmental conditions in bounded time. It is shown in this chapter that when

such naive and responsive learning algorithms operate in asynchronous settings, the

asymptotic play need not lie within D1. The question of whether play outside D1

arises for naive but non-responsive players in asynchronous environments remains

open, but presumably such behavior would only arise in games with more players and

larger strategy sets than have been studied in this chapter.

It has been established previously that for reasonable learning algorithms the

asymptotic play is contained within O1, and it was further conjectured that such

play is contained within the smaller set S1. Our experimental results are consistent

with this conjecture. While these simulation results are suggestive, they are in no way

conclusive, and so we are left with the open question of what the appropriate solution

concept is for naive and responsive learning algorithms in asynchronous settings.



Chapter 5

Shopbot Economics

5.1 Introduction

Shopbots, programs that search the Internet for advertised goods and services on

behalf of consumers, herald a future in which autonomous agents will be an essential

component of nearly every facet of e-commerce [20, 32, 68, 70, 109]. In response

to a consumer's expressed interest in a speci�ed good or service, a typical shopbot

queries several dozen web sites, and then collates and sorts the available information

for the user | all within seconds. For example, www.shopper.com claims to compare

1,000,000 prices on 100,000 computer-oriented products! In addition, www.acses.com

compares the prices and expected delivery times of books o�ered for sale on-line,

while www.jango.com and webmarket.junglee.com o�er everything from apparel to

gourmet groceries. Shopbots can out-perform and out-inform even the most patient,

determined consumer, for whom it would otherwise take hours to obtain far less

coverage of available goods and services.

Shopbots deliver on one of the great promises of the Internet and e-commerce: a

radical reduction in the cost of obtaining and distributing information. Freer 
ow of

information is expected to profoundly a�ect market eÆciency, as economic frictions

will reduce signi�cantly [49, 72, 74]. Transportation costs, shopping costs, and menu

costs (the costs of evaluating, updating, and advertising prices) should all decrease,

as a consequence of the digital nature of information and the presence of autonomous

agents that �nd, process, collate, and disseminate information at little cost.
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In today's electronic marketplace, however, shopbots are a conundrum. On one

hand, they are clearly a useful weapon for consumers; armed with up-to-the-minute

information, consumers can demand that �rms behave more competitively. Many

of us would be happy to purchase our goods from the lowest-priced, highest-quality

dealer, if only the cost and e�ort of obtaining complete and accurate information

were not so monumental. Some vendors have responded to this threat by deliberately

blocking automated agents from their sites; other vendors welcome shopbots as a

means of attracting consumers who otherwise might not have known about them, or

might not have thought to purchase from them [74]. Some of the vendors in this

latter class even sponsor shopbots, by paying for the opportunity for their products

to be listed on shopping sites such as www.shopper.com.

As the XML standardization e�ort gains momentum [107], one of the major bar-

riers preventing the mass-production of shopbots is likely to be overcome | the

headache associated with parsing the idiosyncrasies of individual vendor's .html �les.

Some vendors who oppose the use of shopbots are embedding their prices in text im-

ages, but there has been substantial research on the automated detection and recogni-

tion of such text, which aims to provide enhancements to commercially available OCR

technology [117]. The outcome of progress in standardization and text extraction re-

search may well be a great proliferation of shopbots, emerging as representatives of

all forms of goods and services bought and sold on-line. What are the implications

of the widespread use of shopbots? What sort of sellbots might �rms implement to

combat the increasing presence of shopbots, and how might the dynamic interplay

of shopbots and sellbots evolve? In general, what is the expected impact of agent

technology on the electronic marketplace?

DeLong and Froomkin [74] qualitatively investigate the ongoing emergence of

shopbots; in particular, they note that short of violating anti-trust laws, �rms will be

hard pressed to prevent their competitors from sponsoring shopbots, in which case

those who do not partake are likely to experience decreased sales. In this chapter, we

utilize quantitative techniques to address the aforementioned questions. We propose,

analyze, and simulate a simple economic model that captures some of the essence of

shopbots, and aims to shed light on the potential impact of shopbots on markets.

Looking ahead, we project that shopbots will evolve into economic entities in their
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own right (i.e., utility maximizers), interacting with billions of other economically-

motivated software agents. Moreover, we predict the emergence of pricebots, a form

of sellbots that set prices so as to maximize pro�ts for �rms, just as shopbots seek

to minimize costs to consumers. Along these lines, we study adaptive price-setting

algorithms, which pricebots might use to combat the growing community of shopbots,

in a full-
edged agent-based electronic marketplace.

This chapter is organized as follows. The following section presents our model

of shopbot economics. Section 5.3 analyzes this model from a game-theoretic point

of view, proving �rst that there is no pure strategy Nash equilibrium, and then

deriving the symmetric mixed strategy Nash equilibrium.1 Section 5.4 describes a

variety of adaptive price-setting algorithms and the results of their simulation under

the prescribed model. An underlying theme throughout is whether or not adaptive

learning yields the derived game-theoretic solution. A discussion of a possible future

evolution of shopbots and pricebots follows in Section 5.5, while in Section 5.6, related

work is described in which economists long ago predicted the emergence of today's

shopbot-like services. Finally, concluding remarks and ideas for future research appear

in Section 5.7.

5.2 Model

We consider an economy (see Figure 5.1) in which there is a single homogeneous good

that is o�ered for sale by S sellers and of interest to B buyers, with B � S. Each

buyer b generates purchase orders at random times, with rate �b, while each seller s

reconsiders (and potentially resets) its price ps at random times, with rate �s. The

value of the good to buyer b is vb, while the cost of production for seller s is rs.

A buyer b's utility for a good is a function of its price as follows:

ub(p) =

8<
: vb � p if p � vb

0 otherwise
(5.1)

1 The material presented Sections 5.2 and 5.3 is closely related to well-known economic results; however,

our work deviates from standard economic approaches (exceptions include Hopkins and Seymour [58] and

Diamond [27]) in Section 5.4, where we consider price adjustment processes.
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Figure 5.1: Shopbot Model

which states that a buyer purchases the good from a given seller if and only if the

seller's o�ering price is less than the buyer's valuation of the good; if price equals

valuation, we make the behavioral assumption that a transaction occurs. We do not

assume that buyers are utility maximizers; instead we assume that buyers use one

of the following �xed sample size search rules in selecting the seller from which to

purchase:2;3

1. Any Seller: buyer selects seller at random, and purchases the good if the price

charged by that seller is less than the buyer's valuation.

2 It is also possible to consider all buyers as utility maximizers, with the additional cost of searching

for the lowest price made explicit in the buyer utility functions. In particular, the search cost for bargain

hunters is taken to be zero, while for those buyers who use the any seller strategy, its value is greater than vb.

The relationship between the exogenous model of the buyer distribution and the endogenous model which

incorporates the cost of information acquisition and allows for explicit buyer decision-making is further

explored in Section 5.6 on related work.
3 In the economics literature (see, for example, Burdett and Judd [19]), buyers that employ strategies of

this nature are said to use search rules of �xed sample size i; in particular, for buyers of type A, B, and C,

respectively, i = 1, i = S, and i = 2.
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2. Bargain Hunter: buyer checks the o�er price of all sellers, determines the seller

with the lowest price, and purchases the good if that lowest price is less than the

buyer's valuation. (This type of buyer corresponds to those who take advantage

of shopbots.)

3. Compare Pair: buyer selects two di�erent sellers at random, determines which

one is o�ering the good at the lower price, and purchases the good from that

seller if that price is less than the buyer's valuation. (Ties are broken randomly.)

The buyer population is exogenously given as a mixture of buyers employing one of

these strategies; speci�cally, fraction wA using the Any Seller strategy, fraction wB

using the Bargain Hunter strategy, and fraction wC using the Compare Pair strategy,

where wA + wB + wC = 1. Buyers employing these respective strategies are referred

to as type A, type B, and type C buyers.

The pro�t function �s for seller s per unit time as a function of the price vector ~p

is expressed as follows:

�s(~p) = (ps � rs)Ds(~p) (5.2)

where Ds(~p) is the rate of demand for the good produced by seller s. This rate of

demand is determined by the overall buyer rate of demand, the likelihood of buyers

selecting seller s as their potential seller, and the likelihood that the chosen seller's

price ps will not exceed the buyer's valuation vb. If � =
P

b �b, and if hs(~p) denotes the

probability that seller s is selected, while g(ps) denotes the fraction of buyers whose

valuations satisfy vb � ps, then Ds(~p) = �Bhs(~p)g(ps). Note that g(ps) =
R
1

ps 
(x)dx,

where 
(x) is the probability density function describing the likelihood that a given

buyer has valuation x. For example, suppose that the buyers' valuations are uniformly

distributed between 0 and v; then the integral yields g(ps) = 1� ps=v. Alternatively,

if vb = v for all buyers b, then 
(x) is the Dirac delta function Æ(v � x), and the

integral yields a step function g(ps) = �(v � ps) as follows:

�(v � ps) =

8<
: 1 if ps � v

0 otherwise
(5.3)

Without loss of generality, de�ne the time scale s.t. �B = 1. Now Ds(~p) = hs(~p)g(ps),

and �s is interpreted as the expected pro�t for seller s per systemwide unit sold.
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The probability hs(~p) that buyers select seller s as their potential seller depends

on the distribution of the buyer population, namely (wA; wB; wC). In particular,

hs(~p) = wAhs;A(~p) + wBhs;B(~p) + wChs;C(~p) (5.4)

where hs;A(~p); hs;B(~p); and hs;C(~p) are the probabilities that seller s is selected by

buyers of type A, B, and C, respectively. It remains to determine these probabilities.

Given that the buyers' strategies depend on the relative ordering of the sellers'

prices, it is convenient to de�ne the following functions:

� �s(~p) is the number of sellers charging a higher price than s,

� �s(~p) is the number of sellers charging the same price as s, excluding s itself,

and

� �s(~p) is the number of sellers charging a lower price than s.

Note that �s(~p) + �s(~p) + �s(~p) = S � 1, for all s.

The probability that a buyer of type A select a seller s is independent of the

ordering of sellers' prices; in particular, hs;A(~p) = 1=S. Buyers of type B, however,

select a seller s if and only if s is one of the lowest price sellers: i.e., s is s.t. �s(~p) = 0.

In this case, a buyer selects a particular such seller s with probability 1=(�s(~p) + 1).

Therefore,

hs;B(~p) =
1

�s(~p) + 1
Æ�s(~p);0 (5.5)

where Æi;j is the Kronecker delta function, equal to 1, whenever i = j, and 0, otherwise.

Lastly, we determine the probability that a buyer of type C select a seller s. This

probability is the product of the probability that seller s is one of the two sellers

randomly selected by the buyer and the conditional probability that ps < ps0, given

that the random pair is s and s0. The probability that seller s is one of the two sellers

randomly selected by the buyer is simply the number of pairs including seller s divided

by the number of ways in which two sellers can be chosen: i.e., (S � 1)=
�
S
2

�
= 2=S.

Now the probability that ps < ps0, given that the random pair is s and s0, is given by:

1

 
�s(~p)

S � 1

!
+
1

2

 
�s(~p)

S � 1

!
+ 0

 
�s(~p)

S � 1

!
(5.6)
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In words, this expression states that the probability that seller s is selected depends

on three underlying probabilities as follows: (i) the probability that ps < ps0, namely

�s(~p)=(S� 1), in which case seller s is selected with probability 1, (ii) the probability

that ps = ps0, namely �s(~p)=(S� 1), in which case seller s is selected with probability

1=2, and (iii) the probability that ps < ps0, namely �s(~p)=(S� 1), in which case seller

s is selected with probability 0. Therefore,

hs;C(~p) =
2

S

"
�s(~p)

S � 1
+
1

2

 
�s(~p)

S � 1

!#
=

2�s(~p) + �s(~p)

S(S � 1)
(5.7)

The preceding results can be assembled to express the pro�t function �s for seller s

in terms of the distribution of strategies and valuations within the buyer population.

In particular, assuming all buyers have the same valuation v, such that g(ps) is a step

function, if all sellers also have the same cost r, then

�s(~p) =

8<
: (ps � r)hs(~p) if ps � v

0 otherwise
(5.8)

where

hs(~p) = wA
1

S
+ wB

1

�s(~p) + 1
Æ�s(~p);0 + wC

2�s(~p) + �s(~p)

S(S � 1)
(5.9)

In the next section, we present graphical representations of Eqs. 5.8 and 5.9 under

varying assumptions about the distribution of the buyer population.

5.2.1 Pro�t Landscapes

With the goal in mind of deriving the price vectors that arise when all sellers aim to

maximize pro�ts (i.e., the game-theoretic equilibria), we now discuss the topography

of pro�t landscapes. A pro�t landscape is an S-dimensional plot of the sellers' pro�t

functions, as computed in Eqs. 5.8 and 5.9, given the distribution of buyer demand.

For example, letting S = 5 yields a 5-dimensional pro�t landscape of which Fig. 5.2

depicts 1-dimensional projections. These plots are generated by assigning 4 of the 5

sellers random prices, and then computing the pro�ts of the remaining seller at all his

possible price points given the others' prices and given various buyer distributions:

(wA; wB; wC) 2 f(1; 0; 0); (1=2; 1=2; 0); (1=4; 1=4; 1=2)g.
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Figure 5.2: 1-dimensional projections of pro�t landscapes; v = 1:0; r = 0:5, S = 5, and

(wA; wB ; wC) = (a) (1,0,0); (b) (1/2, 1/2, 0); (c) (1/4, 1/4, 1/2).

In Fig. 5.2(a), where all buyers are random shoppers, there is a unique maximum,

implying that it is in the seller's best interest to charge the buyers' valuation v,

since none of the buyers bother to search for lower prices. Fig. 5.2(b) depicts the

pro�t landscape given that half the buyer population uses shopbots, buying only

from lowest-priced sellers, while the other half buys from any seller. This �gure

reveals that the seller in question does well to set its price just below the lowest-

priced among the others, but in fact such a price yields pro�ts below those that are

obtained by simply setting its price at v. Finally, Fig. 5.2(c) considers the presence

of compare pair buyers in the market, in addition to shopbots and random shoppers.

Such buyers create incentives for sellers to charge middle-of-the-road prices, since a

seller need not be priced strictly below all others to attract buyers of this nature, as

described by Eq. 5.7. In this diagram, pro�ts are maximized by just undercutting the

second lowest-priced alternative seller.

In the next section, we derive the price vectors that comprise the game-theoretic

equilibria, given an exogenously determined buyer distribution. Later, we consider a

series of learning processes by which the sellers' prices may or may not converge to

these game-theoretic equilibrium prices.
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5.3 Analysis

In this section, we determine the game-theoretic equilibrium price vectors, under

various assumptions about the exogenous distribution of the buyer population. Recall

that B � S; in particular, the number of buyers is assumed to be very large, while

the number of sellers is a great deal smaller. In accordance with this assumption,

it is reasonable to consider the strategic decision-making of the sellers alone, since

their relatively small number suggests that the behavior of individual sellers indeed

in
uences market dynamics, while the large number of buyers renders the e�ects of

individual buyers' actions negligible. We �rst argue that there is no pure strategy

Nash equilibrium, and we then derive the symmetric mixed strategy Nash equilibrium.

A Nash equilibrium is a vector of prices ~p � at which sellers' pro�ts are maximized

given the other sellers' prices; in particular, no seller has any incentive to deviate

from its said price [83]. We consider the case in which the number of sellers S > 1

and all sellers have identical production costs given by r. Moreover, we assume all

buyers have the identical valuations v, with v > r. Throughout this exposition, we

adopt the following notation: ~p = (ps; p�s), which distinguishes the price o�ered by

seller s from the prices o�ered by the remaining sellers.

Traditional economic models consider the case in which all buyers are bargain

hunters: i.e., wB = 1, and wA = wC = 0. In this case, prices are driven down to

marginal cost; in particular, p�s = r, for all sellers s. (For an explanation of this

phenomenon, see, for example, Tirole [108]). Similarly, in the event that wC = 1

and wA = wB = 0, the equilibrium price vector that results is again p�s = r, for all

sellers s. Clearly, no seller sets its equilibrium price below c, since doing so yields

negative pro�ts. Moreover, no two sellers set their prices at either equal or unequal

prices strictly greater than c at equilibrium. If, on the one hand, p�s = p�s0 > c,

then �s(p
�

s � �; p�
�s) > �s(p

�

s; p
�

�s), for small, positive values of �,4 and similarly for s0,

thereby negating the assumption that either p�s or p
�

s0 are equilibrium prices. On the

other hand, if p�s > p�s0 > c, then �s(p
�

s0 � �; p�
�s) > �s(p

�

s; p
�

�s), which implies that p�s

is not an equilibrium price. Therefore, if either wB = 1 or wC = 1, then all sellers set

their equilibrium prices at cost, and earn zero pro�ts.

4 Unless otherwise noted, � is assumed to be small and positive: i.e., 0 < � < 1.
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In contrast, consider the case in which all buyers are of type A, meaning that

they randomly select a potential seller: i.e., wA = 1 and wB = wC = 0. In this

situation, tacit collusion arises, in which all sellers charge the monopolistic price equal

to buyer valuations in the absence of explicit coordination; in particular, p�s = v, for

all sellers s. The argument is straightforward. First note that p�s � v, for all s, since

if p�s < v for some s, then �s(p
�

s + �; p�
�s) > �s(p

�

s; p
�

�s), in which case p�s does not

maximize pro�ts. On the other hand, p�s � v, for all s, since if p�s > v for some s,

then �s(v; p
�

�s) > �s(p
�

s; p
�

�s) = 0, in which case again p�s does not maximize pro�ts.

Therefore, the monopolistic price p�s = v prevails as the equilibrium price charged by

all sellers.

Of particular interest in this study, however, are the price dynamics that result

from a mixture of buyer types. In the following section, we consider the special case

in which 0 < wA; wB < 1, but wC = 0; in other words, there are bargain hunters

and there are buyers who consider sellers at random, but there are no compare pair

buyers. Knowing that buyers of type A alone results in all sellers charging valuation

v, we investigate the impact of buyers of type B, or shopbots, on the marketplace.

We �nd that there are no pure strategy Nash equilibria in such an economy.5 There

does, however, exist a symmetric mixed strategy Nash equilibrium, which we derive

in Section 5.3.2. The average equilibrium prices paid by buyers of various types

are analyzed in Section 5.3.3. Although equilibrium prices remain above cost, the

presence of shopbots in the marketplace leads to decreases in average prices for all

buyers. We conclude that by decreasing the cost of obtaining information, shopbots

have the potential to ameliorate market ineÆciencies.

The material in this chapter is limited to endogenous decisions on the part of the

sellers (either game-theoretic or via adaptive learning), with the behavior of buyers

determined exogenously. In related work [67], we analyze endogenous buyer and seller

decisions from a game-theoretic perspective. In future work, we intend to study the

dynamics of interaction among adaptive buyers and sellers.

5 The general case in which wA; wB ; wC > 0 is treated in Appendix A, where it is shown that there are

again no pure strategy Nash equilibria in an economy of buyers of types A, B, and C.
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5.3.1 Special Case: No Compare Pair Buyers

We begin our analysis of the special case which excludes compare pair buyers with the

following observation: at equilibrium, at most one seller s charges p�s < v. Suppose

that two distinct sellers s0 6= s set their equilibrium prices to be p�s0 = p�s < v, while

all other sellers set their equilibrium prices at the buyers' valuation v. In this case,

�s(p
�

s��; p
�

�s) = [(1=S)wA+wB](p
�

s���r) > [(1=S)wA+(1=2)wB](p
�

s�r) = �s(p
�

s; p
�

�s),

which implies that p�s is not an equilibrium price for seller s. Now suppose that two

distinct sellers s0 6= s set their equilibrium prices to be p�s0 < p�s < v, while all other

sellers set their equilibrium prices precisely at v. In this case, seller s prefers price v

to p�s, since �s(v; p
�

�s) = [(1=S)wA](v � r) > [(1=S)wA](p
�

s � r) = �s(p
�

s; p
�

�s), which

implies that p�s is not an equilibrium price for seller s. Therefore, at most one seller

charges p�s < v.

On the other hand, at equilibrium, at least one seller s charges p�s < v. Given

that all sellers other than s set their equilibrium prices at v, seller s maximizes its

pro�ts by charging price v � �, since �s(v � �; p�
�s) = [(1=S)wA + wB](v � � � r) >

[(1=S)(wA +wB)](v � r) = �s(v; p
�

�s). Thus v is not an equilibrium price for seller s.

It follows from these two observations that at equilibrium, exactly one seller s sets its

price below the buyers' valuation v, while all other sellers s0 6= s set their equilibrium

prices p�s0 � v. Note, however, that �s0(v; p
�

�s0) = [(1=S)wA](v� r) > 0 = �s0(v
0; p�

�s0),

for all v0 > v, if wA > 0, implying that all other sellers s0 maximize their pro�ts by

charging price v. Thus, the unique form of pure strategy equilibrium which arises in

this setting requires that a single seller s set its price p�s < v while all other sellers

s0 6= s set their prices p�s0 = v.

The price vector (p�s; p
�

�s), with p�
�s = (v; : : : ; v), however, is not in fact a Nash

equilibrium. While v is an optimal response to p�s, since the pro�ts of seller s0 6= s

are maximized at v given that there exists low-priced seller s, p�s is not an optimal

response to v. On the contrary, �s(p
�

s; v; : : : ; v) < �s(p
�

s + �; v; : : : ; v). In particular,

the low-priced seller s has incentive to deviate. It follows that there is no pure

strategy Nash equilibrium in the proposed model of shopbot economics, whenever

0 < wA; wB < 1 and wC = 0.
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5.3.2 General Case: Symmetric Nash Equilibrium

There does, however, exist a symmetric mixed strategy Nash equilibrium, which we

derive presently. We resort to the more general economic nomenclature in which

buyers of type i (0 � i � S) search among i sellers chosen at random, and we derive

the symmetric mixed strategy Nash equilibrium given an exogenous buyer distribution

(w1; : : : ; wS). Let f(p) denote the probability density function according to which

sellers set their equilibrium prices, and let F (p) be the corresponding cumulative

distribution function. Following Varian [110], we note that in the range for which it

is de�ned, F (p) has no mass points, since otherwise a seller could decrease its price

by an arbitrarily small amount and experience a discontinuous increase in pro�ts.

Moreover, there are no gaps in the distribution, since otherwise prices would not be

optimal | a seller charging a price at the low end of the gap could increase its price

to �ll the gap while retaining its market share, thereby increasing its pro�ts.

The cumulative distribution function F (p) is computed in terms of the probability

hs(~p; ~w) that buyers select seller s as their potential seller. This quantity is the

weighted sum of hs;i(~p) over 0 � i � S. The �rst component hs;0(~p) = 0. Consider

the next component hs;1(~p). Buyers of type 1 select sellers at random; thus, the

probability that seller s is selected by such buyers is simply hs;1(~p) = 1=S. Now

consider buyers of type 2. In order for seller s to be selected by a buyer of type 2,

s must be included within the pair of sellers being sampled | which occurs with

probability (S � 1)=
�
S
2

�
= 2=S | and s must be lower in price than the other

seller in the pair. Since, by the assumption of symmetry, the other seller's price is

drawn from the same distribution, this occurs with probability 1 � F (p). Therefore

hs;2(~p) = (2=S) [1� F (p)]. In general, seller s is selected by a buyer of type i with

probability
�
S�1
i�1

�
=
�
S
i

�
= i=S, and seller s is the lowest-priced among the i sellers

selected with probability [1 � F (p)]i�1, since these are i � 1 independent events.

Thus, hs;i(~p) = (i=S)[1� F (p)]i�1, and moreover,6

hs(p) =
1

S

SX
i=1

iwi[1� F (p)]i�1 (5.10)

6 In Eq. 5.10, hs(p) is expressed as a function of seller s's scalar price p, given that probability distribution

F (p) describes the other sellers' expected prices.
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The precise value of F (p) is determined by noting that a Nash equilibrium in mixed

strategies requires that all pure strategies that are assigned positive probability yield

equal payo�s, since otherwise it would not be optimal to randomize. In particular,

the expected pro�ts earned by seller s, namely �s(p) = hs(p)(p � r) are constant

for all prices p. The value of this constant can be computed from its value at the

boundary p = v; note that F (v) = 1 because no rational seller charges more than any

buyer is willing to pay. This leads to the following relation:

hs(p)(p� r) = hs(v)(v � r) =
1

S
w1(v � r) (5.11)

Combining Eqs. 5.10 and 5.11, and solving for p in terms of F yields:

p(F ) = r +
w1(v � r)PS

i=1 iwi[1� F ]i�1
(5.12)

Eq. 5.12 has several important implications. First of all, in a population in which

there are no buyers of type 1 (i.e., w1 = 0) the sellers charge the production cost

c and earn zero pro�ts; this is the traditional Bertrand equilibrium. On the other

hand, if the population consists of just two buyer types, 1 and some i 6= 1, then it is

possible to invert p(F ) to obtain:

F (p) = 1�

"�
w1

iwi

� 
v � p

p� r

!# 1

i�1

(5.13)

The case in which i = S was studied previously by Varian [110]; in this model, buyers

either choose a single seller at random (type 1) or search all sellers and choose the

lowest-priced among them (type S).

Since F (p) is a cumulative probability distribution, it is only valid in the domain

for which its valuation is between 0 and 1. As noted previously, the upper boundary

is p = v; the lower boundary p� can be computed by setting F (p�) = 0 in Eq. 5.12,

which yields:

p� = r +
w1(v � r)PS

i=1 iwi

(5.14)

In general, Eq. 5.12 cannot be inverted to obtain an analytic expression for F (p). It is

possible, however, to plot F (p) without resorting to numerical root �nding techniques.

We use Eq. 5.12 to evaluate p at equally spaced intervals in F 2 [0; 1]; this produces

unequally spaced values of p ranging from p� to v.
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Figure 5.3: (a) CDFs: 2 sellers, w1+wS = 1. (b) CDFs: 5 sellers, w1 = 0:2, w2+wS = 0:8.

Fig. 5.3 depicts the cumulative distribution functions that arise as the symmetric

mixed strategy Nash equilibrium of the prescribed model under varying distributions

of buyer strategies. For buyer valuation v = 1 and seller cost r = 0:5, Fig. 5.3(a)

plots 5 CDFs for 5 values of w1 and w2, assuming 2 sellers, while Fig. 5.3(b) plots

3 CDFs given w1 = 0:2 and w2 + wS = 0:8 assuming 5 sellers. We now turn our

attention to the probability density function f(p); after deriving and plotting the

corresponding PDFs we include further explanation of the distinguishing features of

this Nash equilibrium.

Di�erentiating both (extreme) sides of Eq. 5.11 with respect to p, and substituting

Eq. 5.10, we obtain an expression for f(p) in terms of F (p) and p that is conducive

to numerical evaluation:

f(p) =
w1(v � r)

(p� r)2
PS

i=2 i(i� 1)wi[1� F (p)]i�2
(5.15)

The values of f(p) at the boundaries p� and v are as follows:

f(p�) =

hPS
i=1 iwi

i2
w1(v � r)

hPS
i=2 i(i� 1)wi

i and f(v) =
w1

2w2(v � r)
(5.16)
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Figure 5.4: PDFs: w1 = 0:2, w2 + w20 = 0:8.

Fig. 5.4(a) and 5.4(b) depict the PDFs in the prescribed model under varying

distributions of buyer strategies | in particular, w1 = 0:2 and w2 + wS = 0:8 |

when S = 5 and S = 20, respectively, given v = 1 and r = 0:5. In both �gures,

f(p) is bimodal when w2 = 0, as is derived in Eq. 5.16. Most of the probability

density is concentrated either just above p�, where sellers expect low margins but

high volume, or just below v, where they expect high margins but low volume. In

addition, moving from S = 5 to S = 20, the boundary p� decreases, and the area of

the no-man's land between these extremes diminishes. In contrast, when w2; wS > 0,

a peak appears in the distribution. If a seller does not charge the absolute lowest

price when w2 = 0, then it fails to obtain sales from any buyers of type S. In the

presence of buyers of type 2, however, sellers can obtain increased sales even when

they are priced moderately. Thus, there is an incentive to price in this manner, as is

depicted by the peak in the distribution.

Recall that the pro�t earned by each seller is (1=S)w1(v � r), which is strictly

positive so long as w1 > 0. It is as though only buyers of type 1 are contributing

to sellers' pro�ts, although the actual distribution of contributions from buyers of

type 1 vs. buyers of type i > 1 is not as one-sided as it appears. In reality, buyers

of type 1 are charged less than v on average, and buyers of type i > 1 are charged

more than r on average, although total pro�ts are equivalent to what they would be

if the sellers practiced perfect price discrimination. In e�ect, buyers of type 1 exert

negative externalities on buyers of type i > 1, by creating surplus pro�ts for sellers.
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5.3.3 Shopbot Savings

We now analyze the equilibrium distributions of prices paid by buyers of various types

and their corresponding averages in order to quantify the bene�t to buyers of shopbots

in the marketplace. Recall that a buyer who obtains i price quotes pays the lowest of

the i prices. (At equilibrium, the sellers' prices never exceed v since F (v) = 1, so a

buyer is always willing to pay the lowest price.) The cumulative distribution for the

minimal values of i independent samples taken from the distribution f(p) is given by

Yi(p) = 1� [1� F (p)]i (5.17)

Di�erentiation with respect to p yields the probability distribution:

yi(p) = if(p)[1� F (p)]i�1 (5.18)

The average price for the distribution yi(p) can be expressed as follows:

�pi =
Z v

p�
dp p yi(p)

= v �
Z v

p�
dp Yi(p)

= p� +
Z 1

0
dF

(1� F )i

f
(5.19)

where the �rst equality is obtained via integration by parts, and the second depends

on the observation that dp=dF = [dF=dp]�1 = 1=f . Combining Eqs. 5.12, 5.15, and

5.19 would lead to an integrand expressed purely in terms of F . Integration over

the variable F (as opposed to p) is advantageous because F can be chosen to be

equispaced, as standard numerical integration techniques require.

Fig. 5.5(a) depicts sample price distributions for buyers of various types: y1(p),

y2(p), and y20(p), when S = 20 and (w1; w2; w20) = (0:2; 0:4; 0:4). The dashed lines

represent the average prices �pi for i 2 f1; 2; 20g as computed by Eq. 5.19. The blue

line labeled Search{1 , which depicts the distribution y1(p), is identical to the green

line labeled w2 = 0:4 in Fig. 5.4(b), since y1(p) = f(p). In addition, the distributions

shift toward lower values of p for those buyers who base their buying decisions on

information pertaining to more sellers.
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Figure 5.5: (a) Buyer price distributions: 20 sellers, w1 = 0:2; w2 = 0:4, w20 = 0:4. (b)

Average buyer prices for various types: 20 sellers, w1 = 0:2, w2 + w20 = 0:8.

Fig. 5.5(b) depicts the average buyer prices obtained by buyers of various types,

when w1 is �xed at 0:2 and w2 + w20 = 0:8. The various values of i are listed to the

right of the curves. Notice that as w20 (i.e., the number of shopbot users) increases,

the average prices paid by those buyers who perform relatively few searches increases,

rather dramatically for large values of w20. This is because w1 is �xed, which implies

that the sellers' pro�t surplus is similarly �xed; thus, as more and more buyers perform

extensive searches, the average prices paid by those buyers decreases, which causes

the average prices paid by the less diligent searchers to increase. The situation is

slightly di�erent for those buyers who perform more searches but do not search the

entire space of sellers: e.g., i = 10 and i = 15. These buyers initially reap the bene�ts

of increasing the use of shopbots, but eventually their average prices increase as well.

Given a �xed portion of the population designated as random shoppers, Fig. 5.5(b)

demonstrates that searching S sellers is a superior buyer strategy to searching only

1 < i < S sellers. Thus, there are savings to be had via price searches. Moreover,

shopbots o�er added value in markets in which there exist buyers who are willing to

purchase from any seller.
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5.4 Simulations

When suÆciently widespread adoption of shopbots by buyers forces sellers to become

more competitive, it seems likely that sellers will respond by creating pricebots that

mechanically set prices in attempt to maximize pro�tability. It is unrealistic, however,

to expect that pricebots will simply compute the mixed strategy Nash equilibrium and

distribute their prices accordingly. The business world is fraught with uncertainties

that undermine the validity of traditional game-theoretic analyses: sellers lack perfect

knowledge of buyer demands, and have an incomplete understanding of competitors'

strategies. In order to be pro�table for sellers, pricebots will need to continually adapt

to changing market conditions. In this section, we present the results of simulations

of various adaptive pricing strategies, and we compare the resulting price and pro�t

dynamics with the game-theoretic equilibrium.

5.4.1 Simple Adaptive Pricing Strategies

We introduce three simple adaptive pricing strategies, each of which makes di�erent

demands on the required levels of informational and computational power of agents.

GT The game-theoretic strategy is designed to reproduce the mixed strategy Nash

equilibrium computed in the previous section, provided that it is adopted by all

sellers. It makes use of full information about the buyer population, and assumes

that its competitors also use the GT strategy. It therefore generates a price

chosen randomly from the probability density function derived in Section 5.3.2.

MY The myoptimal7 (myopically optimal) strategy [70, 68, 92] makes use of full

information about all characteristics that factor into buyer demand, as well

as the competitors' prices, but makes no attempt to account for competitors'

pricing strategies. Instead, it is based on the assumption of static expectations:

even if one seller is contemplating a price change under myoptimal pricing,

this seller does not assume that this will elicit a response from its competitors;

instead it is assumed that competitors' prices will remain �xed.

7 In the game-theoretic literature, this adaptive strategy is known as Cournot best-reply dynamics [24].
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The myoptimal seller s uses all of the available information and the assumption

of static expectations to perform an exhaustive search for the price p�s that

maximizes its expected pro�t �s. In our simulations, we compute �s according to

Eqs. 5.8 and 5.9, as is depicted in Fig. 5.2. The optimal price p�s is guaranteed to

be either the valuation v or � below some competitor's price, where � is the price

quantum, or the smallest amount by which one seller may undercut another, set

to 0.002 in these simulations. This limits the search for p�s to S possible values.

DF The derivative-following strategy is less informationally intensive than either the

myoptimal or game-theoretic pricing strategies. In particular, this strategy can

be used in the absence of any knowledge or assumptions about one's competitors

or the buyer demand function. A derivative follower simply experiments with

incremental increases (or decreases) in its price, continuing to move its price in

the same direction until the observed pro�tability level falls, at which point the

direction of movement is reversed. The price increment Æ is chosen randomly

from a speci�ed probability distribution; in the simulations described here the

distribution was uniform between 0.01 and 0.02.

Simple Price and Pro�t Dynamics

We have simulated an economy with 1000 buyers and 5 sellers employing various

mixtures of pricing strategies. In the simulations described below, a buyer's valuation

of the good v = 1:0, and a seller's production cost r = 0:5. The mixture of buyer types

is wA = 0:2, wB = 0:4, and wC = :4: i.e., 20% of the buyers visit sellers randomly,

40% are bargain hunters,8 and the remaining 40% are compare pair shoppers.

The simulation is asynchronous: at each time step, a buyer or seller is randomly

selected to carry out an action (e.g., buying an item or resetting a price). The chance

that a given agent is selected for action is determined by its rate; the rate �b at which

a given buyer b attempts to purchase the good is set to 0.001, while rate �s at which

sellers reconsider their prices is set to 0.00005 (except where otherwise speci�ed).

Each simulation was iterated for 10 million time steps, during which time we observe

a total of approximately 9.9975 million purchases and 500 price adjustments per seller.

8 Recall that bargain hunters in this model represent the use of shopbots.
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Figure 5.6: 1000 buyers and 5 MY sellers; (wA; wB ; wC) = (0:2; 0:4; 0:4). (a) Price vs. time.

(b) Pro�t vs. time.

GT Pricing Strategy

Simulations verify that, if agents are game-theoretic strategists, then the cumulative

distribution of prices closely resembles the derived F (p) (to within statistical error).

Moreover, the time-averaged pro�t of the sellers is �� = 0:0202 � 0:0003, which is

nearly the theoretical value of 0.02. (Not shown.)

MY Pricing Strategy

Figure 5.6(a) illustrates the cyclical price wars that occur when all 5 sellers use the

myoptimal pricing strategy.9 Regardless of the initial value of the price vector, it

quickly settles into a pattern in which all prices are initially near the monopolistic

price v = 1, followed by a long episode during which the sellers successively undercut

one another by �. During this phase, no two prices di�er by more than (S � 1)�,

and the prices fall linearly with time. Finally, when the lowest-priced seller is within

� above the value p� = 0:5�3, the next seller �nds it unpro�table to undercut, and

instead resets its price to v = 1. The other sellers follow suit, until all but the lowest-

9 The simulations depicted in Figure 5.6 were run for 1 million time steps, with �s = 0:0002, yielding

roughly 200 price adjustments per seller.
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priced seller are charging v = 1. At this point, the lowest-priced seller �nds that it

can maintain its market share but increase its pro�t per unit dramatically | from

p� � :5 = 0:0�3 to 0:5� � | by raising its price to 1� �. No sooner does the lowest-

priced seller raise its price than the next seller who resets its price undercuts, thereby

igniting the next cycle of the price war.

Cyclical price wars and generalized price/product wars have been observed in

other models of software agents in information economies [54, 69]. Analysis ascribes

this behavior to the topography of the pro�t landscape (see Section 5.2.1). Price

wars and price/product wars occur whenever landscapes contains multiple peaks and

agents behave myoptimally. Indeed, the model of shopbots adopted herein gives rise

to pro�t landscapes �s(~p) that are multi-peaked, due to the dependence in Eq. 5.9

upon the functions �s(~p), �s(~p), and �s(~p), which are discontinuous at any point where

two or more sellers set their prices to be equal.

Fig. 5.6(b) depicts the average pro�ts obtained by myoptimal sellers. The expected

average pro�t over one price war cycle is given by the following expression:

�mys =
1

S

�
1

2
(v + p�)� r

�
(5.20)

In other words, on average each seller is expected to receive its fair share of a pie

which ranges in value from p��r to v�r. The upper points in Fig. 5.6 correspond to

the pro�ts obtained by the sellers who are �rst to abandon the low prices that prevail

near the end of price wars. In fact, these values appear to be roughly 0:2667, which is

precisely (1=2)[(v + p�)� r] for the stated parameters. The linear decrease in pro�ts

which follows these peaks re
ects the corresponding price dynamics. Throughout,

the bulk of the sellers' pro�ts fall below 0:05, but even in this region prices decrease

linearly. This is indicative of an attempt by sellers who su�er from low market share

to rectify their position in exchange for lower margins.

Since prices 
uctuate over time, it is also of interest to compute the distribution of

prices. Fig. 5.8(a) plots the cumulative distribution function for myoptimal pricing.

This cumulative density function, which is obtained via simulation, has precisely

the same endpoints p� = 0:5�3 and v = 1 as those of the derived mixed strategy

equilibrium, but the linear shape between those endpoints (which re
ects the linear

price war) is quite di�erent from what is displayed in Fig. 5.3(b).



Chapter 5 Shopbot Economics 145

0 2 4 6 8 10
0.5

0.6

0.7

0.8

0.9

1.0

Derivative Followers

Time (Millions)

P
ric

e

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5
Derivative Followers

Time (Millions)
P

ro
fit

Figure 5.7: 1000 buyers and 5 DF sellers; (wA; wB ; wC) = (0:2; 0:4; 0:4). (a) Price vs. time.

(b) Pro�t vs. time.

DF Pricing Strategy

Figure 5.7 shows the price dynamics that result when 5 derivative followers are pitted

against one another. Recall that derivative followers do not base their pricing decisions

on any information that pertains to other agents in the system | neither sellers' price-

setting tendencies nor buyers' preferences. Nonetheless, their behavior tends towards

what is in e�ect a collusive state in which all sellers charge nearly the monopolistic

price. This is tacit collusion,10 so-called because the agents do not communicate

at all and there is consequently nothing illegal about their collusive behavior.11 By

exhibiting such behavior, derivative followers accumulate greater wealth than any of

the sellers examined thus far. According to Fig. 5.7(b), the seller that is lowest-priced

for a time earns pro�ts roughly 0.25, while the others earn pro�ts in the ranging from

0.01 to 0.05; this lower range contains linear pro�t regions due to the presence of

compare pair buyers in the market. On average, the pro�t per time step for each of

the �ve derivative followers is 0.075.
10 See, for example, in Tirole [108]
11 It has similarly been observed in Huck, et al. [60] that derivative followers tend towards a collusive

outcome in models of Cournot duopoly.
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Figure 5.8: (a) CDF for 5 MY sellers. (b) CDF for 5 DF sellers.

How do derivative followers manage to collude? Like myoptimal sellers, derivative

followers are capable of engaging in price wars; such dynamics are visible in Fig. 5.7(a).

These price wars, however, are easily quelled, making upward trends more likely than

downward trends. Imagine for simplicity that wA+wB = 1, and suppose that X and

Y are the two lowest-priced sellers engaged in a mini-price war. Assume X's price

is initially above Y 's, but that X soon undercuts Y . This yields pro�ts for seller X

obtained from the entire population of type B buyers while it is lower-priced, and

from its share of type A buyers all throughout. Now suppose Y undercuts X, but soon

after X again undercuts Y . This yields pro�ts for seller X once again obtained from

the entire population of type B buyers during the period in which it is lower-priced,

and from its share of type A buyers all throughout. In other words, given equivalent

rates of price adjustment for both sellers, market share remains �xed during mini-

price wars of this kind. Thus, the only variable in computing pro�ts is price, leaving

sellers with the incentive to increases prices more often than not. In the case in which

wC > 0, there is a tendency for sellers other than the two lowest-priced to engage in

mini-price wars, but these price wars are once again easily quelled. The tendency of a

society of DF sellers to reach and maintain high prices is re
ected in the cumulative

distribution function, shown in Fig. 5.8(b).
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Figure 5.9: 1000 buyers, 1 MY + 4 DF sellers; (wA; wB ; wC) = (0:2; 0:4; 0:4). (a) Price vs.

time. (b) Pro�t vs. time.

MY + DF Pricing Strategies

The fact that a group of derivative followers is able to extract a larger pro�t than

groups of more clever and informed agents (both game-theoretic and myoptimal) may

seem paradoxical. How is it that it could be so smart to be so ignorant? Fig. 5.9, in

which one of the derivative followers is replaced by a myoptimal seller, suggests that in

fact ignorance may not be bliss. During the simulation, the myoptimal seller averages

a pro�t of 0.14! In contrast, 2 of the 4 derivative followers receive an average pro�t

of 0.028, hovering around an average price near v during the bulk of the simulation.

The remaining sellers have more interesting experiences: they (separately) engage in

head-to-head combat with the myoptimal seller, managing in the process to do better

than their cohorts, one obtaining an average pro�t of 0.047, and the other obtaining

an average pro�t of 0.063. At time approximately 3 million, one of the derivative

followers deviates from the established upward trend, �nding that remaining lowest-

priced in fact yields greater pro�ts. The myoptimal agent immediately follows suit.

For the next roughly 4 million time steps, the derivative follower is undercut regularly;

however, this is more than compensated for by the additional pro�t that it achieves

during those times when it cashes in by undercutting the myoptimal seller.
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Figure 5.10: 1000 buyers, 1 DF + 4 MY sellers; (wA; wB ; wC) = (0:2; 0:4; 0:4). (a) Price vs.

time. (b) Pro�t vs. time.

On the other hand, Fig. 5.10 depicts the results of simulation of one derivative

follower competing with four myoptimal sellers. The presence of even one derivative

follower in the market leads to lower pro�ts for the myoptimal sellers than in the

case in which all sellers are myoptimal because the derivative follower forms an upper

bound that is generally less that v, above which no myoptimal seller is inclined to

price. Thus, myoptimal sellers in this simulation do not achieve pro�ts described by

Eq. 5.20; they accumulate slightly less wealth, depending on the residing price of the

derivative follower at the times in which price wars conclude.

5.4.2 Sophisticated Adaptive Pricing Strategies

In this section, we investigate the behavior of adaptive pricing strategies that �t

into the regime of low-rationality learning de�ned in Chapter 2. These algorithms

specify that players explore their strategy space by playing all strategies with some

non-zero probability, and exploit successful strategies by increasing the probability of

employing those strategies that generate high payo�s. Of particular interest in this

study are the no external regret algorithm of Freund and Schapire [39] and the no

internal regret algorithm of Foster and Vohra [37].
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Figure 5.11: 1000 buyers, 2 NER sellers; (wA; wB ; wC) = (0:2; 0:4; 0:4). (a) Price vs. time.

(b) Price vs. time, responsive learning.

No External Regret Learning

As described in Chapter 2, there are several algorithms that satisfy the no external

regret optimality criteria: e.g., Foster and Vohra [36] and Freund and Schapire [39].

This section discusses simulations of the latter in shopbot economics. We consider

2 no external regret sellers, with learning rate � = 0:1, given buyer distribution

(wA; wB; wC) = (0:2; 0:4; 0:4). We �nd that although this algorithm has been observed

to converge to Nash equilibrium in games of two strategies (e.g., the Santa Fe bar

problem, see Greenwald, et al. [52]), play cycles exponentially in this game of many

strategies12 (see Fig. 5.11(a)). In fact, the outcome of play of no external regret

learning in the prescribed model is reminiscent of its outcome, and the similar outcome

of �ctitious play, in the Shapley game (see Greenwald, et al. [50]). Fig. 5.11(b) depicts

simulations of no external regret learning in which we limit the length of the cycles

via a responsiveness parameter, namely 
 = 0:00005. For appropriate choices of 
,

the long term empirical frequency of plays is indeed near-Nash equilibrium.

12 Technically, there a continuum of pricing strategies is the prescribed model of shopbot economics. For

the purposes of simulating no regret learning, this continuum was discretized into 100 equally sized intervals.
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Figure 5.12: 1000 buyers, wA + wB = 1. (a) Price vs. time, 2 NIR sellers. (b) Price vs.

time, 1 NER seller and 1 NIR seller.

No Internal Regret Learning

Learning that satis�es the no internal regret optimality criteria is known to converge

to correlated equilibrium [37]. In this section, we investigate the properties of no

internal regret learning in shopbot economics, and we observe convergence to the

symmetric mixed strategy Nash equilibrium, one particular solution contained within

the set of correlated equilibria. Despite several negative theoretical results on the

rational learning of Nash equilibrium (e.g., Foster and Young [38], Nachbar [81], and

Greenwald, et al. [52]), in practice, sophisticated low-rationality algorithms tend to

learn Nash equilibrium. Fig 5.12(a) depicts the results of simulations of the no internal

regret learning algorithm due to Foster and Vohra [37]. In these simulations, there are

2 no internal regret sellers, and the buyer distributions range from (wA; wB; wC) =

(0:1; 0:9; 0:0) to (wA; wB; wC) = (0:9; 0:1; 0:0); there are no compare pair buyers.

These plots match the theoretical Nash equilibria depicted in Fig. 5.3(a). Similarly,

the plots depicted in Fig 5.12(b), which convey the results of simulations of 1 no

external regret learner and 1 no internal regret learner also match the theoretical

Nash equilibria. It remains to further investigate the collective dynamics of myoptimal

behavior, derivative following, and no regret learning.
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Figure 5.13: 1000 buyers, 1 Fast MY + 4 MY sellers; (wA; wB ; wC) = (0:2; 0:4; 0:4). (a)

Price vs. time. (b) Pro�t vs. time.

5.5 Discussion: Evolution of Shopbots and Pricebots

We now revisit the situation in which all �ve sellers utilize the myoptimal pricing

strategy, but we allow one of the sellers to reset its price 5 times as quickly as the

others. These price dynamics are illustrated in Fig. 5.13(a). As in Fig. 5.6(a), the

sellers engage in price wars; in this case, however, they are accelerated, which is

apparent from the increased number of cycles that occur during the simulation. The

plots in Fig. 5.13(b) reveal that the fast myoptimal agent accumulates substantially

more wealth than the others. The reason for this is simply that it undercuts far more

often than it itself is undercut, and therefore maintains substantial market share.

It is evident from Fig. 5.13(b) that myoptimal sellers prefer to reset their prices

faster rather than slower, particularly given a large proportion of shopbots: i.e.,

bargain hunters. This could potentially lead to an arms race, in which sellers re-

price their goods with ever-increasing frequency, resulting in arbitrarily fast price-war

cycles. This observation is not speci�c to myoptimal agents. In additional simulations,

we have observed suÆciently fast derivative followers who obtain the upper hand

over slower myoptimal agents. In the absence of any throttling mechanism, it is

advantageous for all types of sellers to re-price their goods as quickly as possible.
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Let us carry the arms race scenario a bit further. In a world in which sellers reset

their prices at ever-increasing rates, a human price setter would undoubtedly be too

ineÆcient, and would quickly be replaced by a pricebot, perhaps a more sophisticated

variant of one of the seller strategies proposed in Section 5.4. Almost certainly, this

strategy would make use of information about the buyer population, which could be

purchased from other agents. Even more likely, however, the strategy would require

knowledge of competitors' prices. How would the pricebot obtain this information?

From a shopbot, of course!

With each seller seeking to re-price its products faster than its competitors do

so, shopbots would quickly become overloaded with requests. Imagine a scenario in

which a large player like amazon.com were to use the following simple price-setting

algorithm: every 10 minutes, submit 2 million or so queries to a shopbot (one for each

title carried by amazon.com), then charge 1 cent below the minimum price obtained for

each title! 13 Since the job of shopbots is to query individual sellers for prices, it would

in turn pass this load back to amazon.com's competitors: e.g., barnesandnoble.com,

kingbooks.com, etc. The rate of pricing requests made by sellers could easily dwarf

the rate at which similar requests would be made by human buyers, eliminating the

potential of shopbots to ameliorate market frictions.

One solution to an excess demand for shopbot services would be for shopbots to

charge users for the information they provide. Today, shopbots tend to make a living

from advertising revenues. This appears to be an adequate business model so long as

requests are made by humans. Agents are unwelcome customers, however, because

they are are not generally in
uenced by advertisements; as a result, agents are either

barely tolerated or excluded intentionally. As economically-motivated agents who

charge for the information services they provide, shopbots would create the proper

incentives to deter excess demand. Such shopbots would gladly welcome business

from humans as well as all kinds of autonomous agents, even those acting on behalf

of the competition.

13 It has been argued that shopbots could potentially increase the position of large market players and

monopolists, who by utilizing such a strategy could limit the pro�tability of smaller players [101]. In the

Internet domain, however, where small players boasting innovative technologies are springing up regularly,

such a strategy would likely be deemed unpro�table.
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If shopbots were to begin charging for pricing information, it would seem natural

for sellers | the actual owners of the desired information | to themselves charge

the shopbots for the use of their information. In turn, the pricing of this pricing

information may itself involve the use of dynamic price-setting strategies by a related

breed of pricebots. This scenario illustrates how the need for agents to dynamically

price their services could quickly percolate through an entire economy of software

agents. The alternative is a \meltdown" due to overload which could occur as agents

become more prevalent on the Internet. Rules of etiquette followed voluntarily today

by web crawlers and other autonomous agents [29] could be trampled in the rush for

competitive advantage.

5.6 Related and Future Work

The study of the economics of information was launched in the seminal paper by

Stigler [104] in 1961. In this research, Stigler cites several examples of observed price

dispersion, which he attributes to costly search procedures faced by consumers. As a

result, he notes the utility of trade journals and organizations that specialize in the

collection and dissemination of product information, such as Consumer Reports and,

of course, shopbots. Stigler reminds us that in medieval times, localized marketplaces

thrived in spite of heavy taxes that were levied on merchants, demonstrating how

worthwhile it was for sellers to participate in localized markets rather than search

for buyers individually. Similarly, shopbots today serve as local marketplaces in the

global information superhighway, and accordingly, we �nd sellers sponsoring shopbots

and paying commissions on sales, as they essentially pay for the right to participate

in the shopbot marketplace. This encapsulates the current business model of �rms

such as www.acses.com that design shopbots.

Since the seminal work of Stigler, many economists have developed and analyzed

formal models that attempt to explain the phenomenon of price dispersion.14 In

contrast with our model that assumes an exogenous distribution of buyer types, many

authors consider models in which buyers are viewed as rational decision-makers, with

14 We mention only a handful of papers that make up this large body of literature, but refer the reader to

the bibliography included in Hopkins and Seymour [58] for additional sources.
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the cost of search de�ned explicitly, thereby giving rise to endogenous search behavior.

For example, assuming buyers are rational, Burdett and Judd [19] �nd that if buyers

use �xed sample size search rules, where cost is linear in the size of search, then if

0 < w1 < 1, the dispersed price equilibrium that arises is such that w1 + w2 = 1; in

other words, buyers optimize by searching only once or twice. The assumption that

cost increases linearly in the size of a search is not valid in today's world of shopbots,

however. In related work [67], we study endogenous buyer decisions assuming non-

linear search costs, and we �nd that if 0 < w1 < 1, one dispersed price equilibrium

that arises is such that w1+w2+w3 = 1. Moreover, if we impose a �xed lower bound

on the proportion of random shoppers in the population, then depending on initial

conditions, the possible equilibria that arise include w1+wi = 1, for 2 � i � S, given

linear search costs. In the future, we plan to extend our model allowing shopbots

themselves to act as economic agents, charging users for the information services

they provide. This implies an additional strategic variable, namely the cost of search,

to be determined dynamically by shopbots attempting to maximize pro�tability.

Salop and Stiglitz [93] consider a model of monopolistic competition15 in which

buyers are rational decision-makers, and there are two classes of buyers, depending

on whether their associated search costs are low or high. In the non-degenerate case,

the authors arrive at a two-priced equilibrium in which buyers with low search costs

always search, buyers with (suÆciently) high search costs never search, and sellers

charge either the competitive price c or the monopolistic price v. In addition, Wilde

and Schwartz [115, 116] present a kind of equivalence theorem between a model in

which buyers are rational decision-makers and a model in which the distribution of

buyers types is exogenous. In particular, they argue that for all equilibria in the

exogenous model, there exist information acquisition costs which \rationalize" the

exogenous buyer distribution given the endogenous equilibrium prices. Their results

lend some justi�cation to the exogenous model that is studied in this chapter, which

fails to account for buyer rationality.

15 Monopolistic competition assumes an in�nite number of �rms who can freely enter and exit the market.

In such a scenario, pro�ts are driven to zero, since �rms do not enter if doing so would yield negative pro�ts,

while if a �rm, say A, earns positive pro�ts, then another �rm with lower production costs would enter the

market and charge lower prices than A, thereby driving �rm A out of business.
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The aforementioned literature addresses the issue of spatial price dispersion. On

the other hand, Varian [110] considers temporal price dispersion in the marketplace

(i.e., sales), and he provides an intuitive justi�cation of this phenomenon as perhaps

corresponding to mixed strategy Nash equilibria. In fact, his model closely resembles

that which we have studied in this paper in that he assumes an exogenous buyer

distribution (without compare pair buyers), but di�ers in that we do not assume

monopolistic competition, and we consider only a �nite number of �rms. Moreover, we

simulate the dynamics of pricebots who engage in price-setting behavior on the part of

�rms, and we �nd that the dynamics of sophisticated learning algorithms converge to

the derived mixed strategy Nash equilibrium, thereby reproducing the phenomenon

of sales in agent interactions. Other models of the dynamic price adjustment process

are discussed in Diamond [27] and Hopkins and Seymour [58].

Another recent work of relevance which considers the potential impact of reduced

buyer search costs on the electronic marketplace is Bakos [9]. This model is in some

sense more general than ours in that it allows for product di�erentiation, but it does

not allow for varying types among buyers. It remains to incorporate features of

product di�erentiation within the present model of shopbot economics.

5.7 Conclusion

A well-known result in the theory of industrial organization, the so-called Bertrand

paradox [12], states that the unique equilibrium price in an economy in which several

�rms produce non-di�erentiated goods is the marginal cost of production. This result

is based on the assumption that in the absence of other forms of product distinction,

consumers prefer the lowest-priced good. Our model of shopbot economics depends

on more general assumptions in that we allow for the possibility that some consumers

purchase from producers at random, or choose the lower-priced between two randomly

selected producers; perhaps these consumers are impeded by the cost of searching

for the lowest-priced good. These alternative assumptions provide a solution to the

Bertrand paradox in which competition does not in fact drive prices down to marginal

cost. Instead, �rms achieve strictly positive pro�ts, which provides some justi�cation

for their appearance in markets.
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In addition to analytically computing equilibrium prices, our research program is

also concerned with the the learning behavior exhibited by computational agents who

employ price-setting algorithms on behalf of �rms. In particular, do computational

agents learn to set prices at or near the derived equilibrium, and do they generate

strictly positive pro�ts for the �rms which they represent? This chapter investigated

several simple and sophisticated price-setting schemes, and concluded that indeed

computational agents do learn to price goods in such a way as to yield positive

pro�ts, sometimes well above the pro�ts obtained at equilibrium. The situations in

which pro�ts are above equilibrium pro�ts, however, are not likely sustainable since

such price-setting schemes invite competition. It is our conjecture that in a realistic

electronic marketplace inhabited by diverse learning agents, pro�ts would inevitably

be driven down to equilibrium pro�ts. In future work, we intend to consider more

diversity in the learning algorithms of agents, in an attempt to resolve this issue.

Finally, in this chapter we have investigated some of the likely consequences of a

dramatic increase in the amount of information which is readily available to buyers

via agentry. It is also of interest to consider the impact of a dramatic increase in the

information available to sellers via agentry. Much of the relevant economic literature

is highly dependent on the assumption that sellers are unable to distinguish among

their various customers (see, for example, Salop and Stiglitz [94]). Companies like

amazon.com, however, can readily build databases of customer pro�les which classify

not only likes and dislikes, but moreover, willingness to pay. It would be of interest to

study the impact on the marketplace of increasing the information available to sellers

via, say, tastebots.

A Appendix

In this appendix, it is shown that in the case of buyers of types A, B, and C, there

is no pure strategy Nash equilibrium. More speci�cally, we assume 0 < wA < 1; if

wA = 1, then the unique equilibrium is the monopoly price, while if wB + wC = 1,

then the unique equilibrium is the competitive price. We proceed by deriving the

unique form of a possible pure strategy Nash equilibrium, if one were to exist, but we

argue that this is in fact not an equilibrium.
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Suppose that the sellers are ordered s1; : : : ; sj; : : : ; sS such that the indices j < j+1

whenever equilibrium prices p�j � p�j+1. First, note that equilibrium prices p�j 2 (r; v],

since pj < r yields strictly negative pro�ts, while pj = r and pj > v yield zero pro�ts,

but pj = v yields strictly positive pro�ts. The following observation describes the

form of a pure strategy Nash equilibrium whenever wA > 0: at equilibrium, no two

sellers charge identical prices.

Case A.1 Initially, suppose that two distinct sellers o�er an equivalent lowest price:

i.e., r < p�1 = p�2 < p�3 < : : : < p�S � v. In this case, seller 1 stands to gain by

undercutting seller 2, implying that p�1 is not an equilibrium price. In particular,
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Case A.2 Now suppose that two distinct sellers o�er an equivalent intermediate

price: i.e., r < p�1 < : : : < p�j = p�i+1 < : : : < p�S � v. In this case, seller j stands

to gain by undercutting seller j + 1, implying that p�j is not an equilibrium price. In

particular,
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Case A.3 Finally, suppose that two distinct sellers o�er an equivalent highest price:

i.e., r < p�1 < : : : < p�S�1 = p�S � v. In this case, seller S stands to gain by

undercutting seller S � 1, implying that p�S is not an equilibrium price. In particular,
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Further, we now observe that seller S charges price v at equilibrium, since for all

p�S�1 < pS < v, �S(v; p
�

�S) =
1
S
wA(v�r) > 1

S
wA(pS�r) = �S(pS; p

�

�S). Therefore, the

relevant price vector consists of S distinct prices with r < p�1 < : : : < p�S�1 < p�S = v.
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The price vector (p�1; : : : ; p
�

j ; : : : ; p
�

S), however, is not a Nash equilibrium. While

p�S = v is in fact an optimal response to p�
�S, since the pro�ts of seller S are maximized

at v given that there exists lower priced sellers 1; : : : ; S � 1, p�S�1 is not an optimal

response to p�
�(S�1). On the contrary, �S�1(p

�

1; : : : ; p
�

S�1; p
�

S) < �S�1(p
�

1; : : : ; p
�

S��; p
�

S).

In particular, seller S � 1 has incentive to deviate. Similarly, �S�2(p
�

1; : : : ; p
�

S) <

�S�2(p
�

1; : : : ; p
�

S�1 � �; p�S�1; p
�

S), which implies that seller S � 2 also has incentive to

deviate, and so on. It follows that there is no pure strategy Nash equilibrium in the

proposed model of shopbots, given buyers of type A, B, and C.
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Summary and Conclusions

In the last twenty years, there has been a merging of computer science, �nance, and

economics, exempli�ed by the development of program trading systems, real-time

arbitraging, and sophisticated market models. These and related applications form

an emerging �eld known as Computational Economics, in which numerical methods

from scienti�c computing are applied to problems in �nancial economics. The reverse

migration of ideas is also possible, namely the application of �nance and economics to

computer science, but the potential in this direction has not yet been fully exploited.

Indeed, breakthroughs in computer science often arise from insights in related �elds.

A few noteworthy examples come to mind: Turing machines (mathematics), DNA-

based computers (biology), Chomsky's hierarchy (linguistics), and neural networks

(neuroscience). This thesis looked to ideas from economics { speci�cally, the theory

of games { as inspirations for new computational paradigms. John Quarterman [86],

an Internet statistician, describes several features of the Internet, which sum up the

motivation for learning to play network games:

The Internet is distributed by nature. This is its strongest feature, since

no single entity is in control, and its pieces run themselves, cooperating

to form the network of networks that is the Internet. However, because

no single entity is in control, nobody knows everything about the Internet.

Measuring it is especially hard because some parts choose to limit access to

themselves to various degrees. So . . . we have various forms of estimation.
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Chapter 1

Chapter 1 presented an overview of one-shot games, including a number of game-

theoretic equilibrium concepts. In order to determine the domain of applicability of

the various solutions, this thesis considered the dynamics of learning during repeated

games. Foster and Young [38] demonstrated that under traditional game-theoretic

assumptions, including rationality, play either converges to Nash equilibrium in �nite

time, or play does not converge at all; in other words, there is no learning. In a

similar vein, Nachbar [81] showed that repeated play of strategic form games among

rational players does not generally converge to Nash equilibrium, unless players' initial

beliefs coincide with a Nash equilibrium. In light of these negative results, Chapter 2

discussed a suite of optimality criteria and corresponding learning algorithms for

which repeated play converges to various generalizations of Nash equilibrium.

Chapter 2

Chapter 2 described a sampling of so-called low-rationality learning algorithms found

in the literature on game theory, machine learning, and stochastic control. Moreover,

(responsive or non-responsive, and naive or informed) varieties of these algorithms

were introduced in order to render these learning algorithms applicable in network

games. In spite of their diverse origins, the algorithms were presented in a uni�ed

framework based on a series of no regret optimality criteria. In some cases, it is

known that algorithms which satisfy one kind of no regret converge to some particular

generalization of Nash equilibrium. It was shown, however, that other criterion do

not correspond in any natural way to game-theoretic solution concepts. Nonetheless,

it seems likely that some of the algorithms do converge to game-theoretic solutions.

It remains to further investigate the properties of these learning algorithms in terms

of the theory of games. Furthermore, it remains to extend the framework due to

Milgrom and Roberts [78] of consistency with adaptive learning to consistency with

responsive learning, in order to more accurately describe the properties of learning

algorithms which are suitable in network domains.
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Chapter 3

Chapter 3 was an investigation of the Santa Fe bar problem from both a theoretical

and a practical perspective. Theoretically, it was argued that belief-based learning

(e.g., Bayesian updating) yields unstable behavior in this game. In particular, two

conditions suÆcient for convergence to Nash equilibrium, rationality and predictivity,

are inherently incompatible. This result complements the earlier research of Foster

and Young [38] and Nachbar [81]. On the practical side, it was shown via simulations

that low-rationality learning algorithms do indeed give rise to equilibrium behavior.

These con
icting outcomes are of particular interest in the design of computational

agents for dissemination on the Internet; the negative theoretical results suggest that

straightforward implementations of autonomous agents can give rise to outcomes far

from the desired equilibrium. It remains to prove mathematically that low-rationality

learning necessarily converges to Nash equilibrium in the Santa Fe bar problem.

Chapter 4

Chapter 4 reported on experimental simulations of learning in network contexts. The

following questions were investigated: (i) what sort of collective behavior emerges via

low-rationality, responsive learning among a set of automated agents who interact

repeatedly in network contexts? (ii) do traditional game-theoretic solution concepts

such as Nash equilibrium appropriately characterize the asymptotic play of network

games? (iii) to what extent does the asymptotic play depend on three factors, namely

the amount of information available to agents, the degree of responsiveness of learning,

and the level of asynchrony of play? These questions were researched empirically, by

simulating a sampling of responsive learning algorithms, and observing the set of

strategies that was played in the long-run. The �ndings reported suggest that the

asymptotic play of network games is rather di�erent from that of standard game-

theoretic contexts. In particular, Nash equilibrium is not generally the outcome of

responsive learning in asynchronous settings of limited information. It remains to

determine an appropriate solution concept with which to capture the outcome of

learning in network contexts.
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Chapter 5

Chapter 5 was a study of shopbot economics. This thesis proposed and analyzed an

economic model of shopbots, and simulated an electronic marketplace inhabited by

shopbots and pricebots, the latter being automated, price-setting agents that seek

to maximize pro�ts for sellers, just as shopbots seek to minimize costs for buyers.

Analysis revealed that like the Santa Fe bar problem, rational learning in shopbot

economics leads to instabilities that manifest themselves as price wars. In contrast,

low-rationality learning yields behaviors ranging from tacit collusion to exponential

cycling, with only sophisticated learning algorithms converging to mixed strategy

Nash equilibrium. One possible extension to this research would be the study of the

dynamics a full-
edged electronic marketplace, including adaptive shopbots as well

as pricebots, the former acting as economic agents who dynamically charge users for

the information services they provide.

Conclusions

This thesis advocated game theory and economics as frameworks in which to model

the interactions of computational agents in network domains. On the one hand, the

collective dynamics that arise in populations of learning agents were studied, where

computational interactions were described via the theory of games. Understanding

the collective behavior of agents is essential to the design of networking mechanisms

that satisfy globally desirable properties. In the course of these investigations, the

behavior of agents was mathematically prescribed by algorithms, as opposed to being

described by hypotheses, as is often the approach in experimental economics. Having

done so, this thesis came full circle, applying algorithmic ideology to game theory in

the domain of shopbot economics. That which was learned by tailoring economics

to computational interactions is readily applicable in the rapidly expanding world of

e-commerce. Suddenly, the range of applications of computational game theory seems

in�nite.
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