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Abstract

Let G = (V;E) be a graph with time-dependent edges where the cost

of a path p through the graph is determined by a vector functions F (p) =

[f1(p); f2(p); : : : ; fn(p)]
T , where f1; f2; : : : ; fn are independent objective func-

tions. Where n > 1 there is no clear idea of what a \best" solution is, instead

we turn to the idea of Pareto-optimality to de�ne the eÆciency of a path.

Given the set of paths P through the network, a path p0 is Pareto-optimal

if for every p 2 P , ^i2[1;n](fi(p) � fi(p
0)).

The problem of planning itineraries on a transportation system involves

computing the set of optimal paths through a time-dependent network where

the cost of a path is determined by more than one, possibly non-linear and

non-additive, cost function. This thesis introduces an algorithmic toolkit for

�nding the set of Pareto-optimal paths in time-dependent networks in the

presence of multiple objective functions.

Multi-criteria path optimization problems are known to be NP-Hard,

however, by exploiting geometric and periodic properties of the dynamic

graphs that model transit networks we show that it is possible to compute

the Pareto-optimal solutions sets rapidly without using heuristics. We show

that we can solve the itinerary problem in the presence of response time

constraints for a large scale graph.
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Chapter 1

Introduction

If the technological advancements that ushered in the \information age" led

only to the creation of vast libraries of data and the means to distribute

them eÆciently our lives would not have changed as dramatically as they

have in recent years. Perhaps the most signi�cant advance that we have

made in interacting with our new technology has been its impact on the

way we make decisions. Our digital assistants have become tools for creating

precise, highly re�ned information on which we base our actions.

Decision making, whether human or automated, is often a matter of

answering a question that starts with the words \What is the best...". It

is in the evaluation of \what is best" over large data sets that computers

have an advantage over us and have made their biggest impact on our lives.

Optimization problems, those problems that focus on �nding the best are

among the most studied problems in computer science and, the most studied

among the optimization problems are shortest path problems. Since the
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end of the 1950s there have been more than two thousand publications on

shortest path problems in many application areas and the literature shows

many interesting approaches to solving this class of problems. In shortest

path problems, the notion of best is limited to one criterion. Evaluating what

is best on multiple criteria simultaneously involves a class of optimization

problems which is much larger and harder to solve.

The World Wide Web, arguably the largest collection of information that

we have assembled, has many sites that are prime examples of how we use

decision making services in our everyday lives. The Google search engine

with over a billion pages in its database answers the question, \What are

the best web pages if I'm looking for the following topics?" by producing a

small subset of the pages on the web that match our search criteria. The

MapQuest service is used to search for the best routes from one address to

another. A large database of street information forms the knowledge base

on which the MapQuest route optimization algorithms operate. Routing

problems are in essence shortest path problems. In the MapQuest model,

intersections become vertices in a graph, roads become edges, weighted by

their lengths.

1.1 A motivating example

We have chosen to create a direction service, not unlike MapQuest's, for

transit itinerary planning. Unlike the MapQuest service which is essentially

a single criteria optimization, the length of the journey, transit planning in-
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Option Carrier Route Time Fare

1 Amtrak New York ! Philadelphia 1h 50 m $85

2 Commuter Rail New York ! Trenton ! Philadelphia 2 h 12 m $14

3 Bus New York ! Philadelphia 2h 20 m $20

Table 1.1: Three options for traveling from New York to Philadelphia by public

transport.

volves evaluating the \best" routes over many criteria simultaneously. Con-

sider optimizing when the criteria are the cost of the journey (fare) and

the duration of the journey (time) of the journey. The idea of \best", in

this problem, is less intuitive than for a single criteria problem. To give an

example of what is \best" in a multi-criteria setting consider the following

example.

A passenger trying to go from New York to Philadelphia using only public

transportation. There are three options available, the �rst, to take Amtrak,

the second to use the commuter rail services that serve Philadelphia and

New York, both of which happen to intersect at Trenton, and the third

option to take a bus from one city to another. The times of journey and

their costs are shown in �gure 1.1

Clearly the option 1 is the fastest, and if speed were our single criterion

for optimization, option 1 would would be our only choice. Option 2 is the

cheapest and is therefore the best solution if spending as little money as

possible were the only criterion for deciding we were \What is the best way

to get from New York to Philadelphia if I want to save as much money as
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possible?".

If we ask the question \What is best way to get from New York to

Philadelphia if I want to get their quickly without spending too much money?"

we now have no clear best choice. In fact, we have no immediately intuitive

meaning for what best is when dealing with more than one optimization cri-

terion. We turn to the work of Pareto, the 19th century welfare economist

who �rst introduced the idea of multi-criteria optimization, for a de�nition.

The idea of best according to Pareto is, simply put, not worse than any

other. To understand what this means consider option 3. On both our cri-

teria option 3 is worse than both option 1 and option 2, but both options 1

and 2 are no worse than each other on both criteria simultaneously. Accord-

ing to Pareto, both options 1 and 2 are best solutions. Calculating the best

solution in the multi-criteria problem involves �nding the Pareto-optimal set

of non-worse solutions. This gives us some idea of why multi-criteria prob-

lems are typically harder for computers to solve. Solutions to multi-criteria

problems are seldom single values, in fact they are sets of solutions, sets,

that can grow very large.

Now that we know what the Pareto set is it becomes clear when we make

decisions based on many factors we balance the importance of the various

criteria that we are considering. Often we �nd that there may be more than

one solution that is appealing. If in the end we pick only one it is either

because we have picked one at random or have then decided that all things

being equal we would rather emphasize one of the criteria over the others. If
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we decided that cost was more important to us in the above example option

2 would have been the choice. Our goal in the research presented here is to

solve the multi-criteria optimized problem and produce the Pareto-optimal

set of solutions. We leave in the hands of a user the �nal decision of which

solution is best.

Other itinerary planners have been implemented in the past. Some are

currently used on the world wide web. Surprisingly, none of the systems

currently available aim to solve the problem in a truly multi-criteria way.

Some reduce the independent criteria to a combined function and others use

heuristics to get reasonable solutions to the problem.

1.2 Problem Statement and Our Approach

This thesis focuses on the problem of planning itineraries through the public

transport systems of the North East Corridor in the United States. The goal

is to produce a set of algorithms that can answer the question \What is the

best way to go from A to B?" using public transportation.

Transportation has proved to be an interesting area in the study of short-

est path problems. Many of the techniques focus on time-dependent versions

of the classical shortest path problem. Interestingly, apart from a few early

attempts on this variant of the problem in 1966 by Cooke and Halsey [8] and

subsequently by Dial [11], there are almost no references in the literature

until the 1980s when there was a renewed interest in this variant of the prob-

lem. Another interesting aspect of shortest-path problems in transportation
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is that the presence of non-additive and non-linear path costs.

The approach we take is to extend the classic Bellman-Ford-Moore short-

est path techniques to solve multi-criteria problem on networks with time-

dependent edges and non-linear path costs. While the multi-criteria com-

binatorial optimization problem is known to be NP-Hard we demonstrate

that for this problem solutions can be eÆciently computed in practice.

To solve the itinerary problem we introduce a domination predicate that

allows us to compare solutions and arrive at a set of \best" solutions. A

common theme in the algorithms that are presented here is that the most

of the variants of the itinerary problem presented are solved by altering the

domination predicate and the sets of solutions on which it is applied.

Another theme in this thesis is the use of graph reductions to both reduce

the complexity of the algorithms and to allow the same algorithm to solve

the di�erent variants of the itinerary problem.

In addition, we look at solving the itinerary problem in the presence of

a soft real-time constraint. For the algorithms here to be useful in decision

making, a response should be provided in a short amount of time.

We aim to implement the algorithm in as general a fashion as possible.

This helps us solve problems in inter-modality, where di�erent parts of the

graph can have di�erent behavior. In the transit arena this happens nat-

urally due to the presence of di�erent transit providers and the ways that

they levy fares for using their systems.
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1.3 Thesis outline

This rest of this thesis is organized as follows.

Chapter 2: This chapter surveys the literature for approaches taken

to solving the component parts of the itinerary problem. The topics cov-

ered are: the class of shortest path list algorithms focusing on how to im-

prove their performance. Time-dependency, the problem of how to model

time-dependence in networks and the new problems and algorithms that

time-dependence introduces to the classical shortest path algorithm. Inter-

modality, the problem of moving between di�erent carriers and how it can

increase the complexity of the problem. Non-linear and non-additive cost

functions and how they impact the general Bellman-Ford-Moore framework.

Real-Time constraints, the problem of adding real time constraints to the

algorithm. Finally, we introduce the area of multi-criteria optimization and

touch upon a few of the techniques used to solve problems in this area.

Chapter 3: This chapter states the itinerary problem formally.

Chapter 4: This chapter describes how to construct a dynamic graph

to model transit networks, introduces the general framework for solving

the itinerary problem and starts to discuss the issues involved in using the

domination predicate.

Chapter 5: This chapter introduces the idea of performing static anal-

ysis on the graph to meet the real time goals of an itinerary planner. We

also introduce a new variant of the algorithm to aid in the precomputation

necessary. Results on the performance of the variants of the algorithm are

7



discussed.

Chapter 6 (Conclusion): The techniques introduced in this thesis, their

strengths and shortcomings are discussed along with future directions for

this work.

8



Chapter 2

Shortest Path Problems in

Transportation Models

This chapter surveys material on combinatorial optimization in order to

frame and solve the path optimization problems that are the focus of this

thesis. At the core of most path optimization problems in transportation

models lies the traditional Bellman-Ford algorithm. The literature on this

one topic is substantial and for over forty years di�erent variants of this

algorithm have been studied for a myriad of applications. Transportation

problems are particularly interesting in this respect because they solve prob-

lems on graphs that originate from real networks and in the transportation

domain this usually involves focusing on large time dependent graphs that

have unusual cost functions. The problem that is central to this thesis is

�nding optimal paths in a large scale time dependent network where there

are multiple cost functions.

9



This chapter surveys the techniques used in the literature to address the

following topics:

� Complexity, variants of the Bellman-Ford scheme are studied, all of

which aim to reduce the complexity of the search for optimal solutions

in large graphs.

� Time dependence, the idea of time-dependent edges in a graph is in-

troduced along with a few core algorithms that solve time-dependent

graph problems.

� Modality, a problem which addresses moving between di�erent trans-

port carriers and the associated costs of doing so.

� Non-additive and non-linear cost functions, here traditional techniques

based on the Bellman conditions break down and other ways to solve

graph problems where paths have non-linear and non-additive costs are

introduced.

� Multicriteria optimization, �nding optimal solutions when there is more

than one cost function is introduced.

2.1 The Shortest Path Tree Problem

Let G = (N;A) be a simple directed graph where N is a set of nodes of

cardinality n and A a set of edges of cardinality m. Let c : A! R be a cost

labeling function that assigns a cost cij to each (i; j) 2 A. For a node i 2 N ,
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let FS(i), be the forward star of node i, i.e. the set of outgoing, adjacent

arcs to node i given by, FS(i) = f(i; j) 2 Ag, and let Adj[i] be the set of

vertices adjacent to i. Also, for a node i 2 N , let BS(i), the backward star

of node i be given by BS(i) = f(j; i) 2 Ag.

Given a root node r 2 N , the Shortest Path Tree (SPT) problem is to

�nd a directed tree T such that for each i 2 N that is connected to r, the

only path from r to i in T is one of the shortest paths from r to i in G.

Nodes i and j are said to be connected if and only if there exists a path from

i to j in G. If each i 2 G is connected to r then T is also a spanning tree

denoted by T �.

A well known result is that a �nite solution exists for the SPT problem

if and only if there is no directed cycle of negative cost in G.

2.1.1 Primal algorithms for SPT.

Most of the algorithms proposed to solve the SPT problem follow a primal

approach. These algorithms work by growing a directed spanning tree T

rooted at a node r by expanding paths from r along the tree. In reality they

start with a �ctitious minimum cost tree T and iteratively update the tree

until a minimum cost path tree T � is found.

Let C = fC1; C2; : : : Cng be a set of cost labels Ci that represent the cost

of the path from r along the spanning tree T to each node i. At all times

the label Ci provides a upper bound on the cost of the minimum cost path

from r to i. Let �[i] : N ! N be the predecessor function where �[i] is given
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by �[i] = fjj(i; j) 2 Tg. The function � provides an implicit description of

T allowing the path from r to i to be reconstructed easily.

During each iteration, in a process known as scanning, a node i is selected

and the algorithms check that for the entire forward star of i the Bellman

condition,

Cj � Ci + cij; 8(i; j) 2 A

holds.

The reduced cost of an arc with respect to the label set C is a function

�c : A! R de�ned by

�c(i;j) = cij + Ci � Cj

There is an equivalence between the non-negativity of the reduced cost

function and Bellman's condition holding. Where the reduced cost function

is negative �c(i;j) < 0 the label of node i is improved [Cj  Ci + cij] and

the tree is modi�ed by replacing arc (�[j]; j) with arc (i; j), [�[j]  i]. If

Ti = (N;A) is the subtree of the current tree T rooted in i, and if for all

the nodes in Ni their cost labels decreased by ��c(i;j) then all the arcs in T

verify the Bellman conditions with respect to the edges processed so far and

the minimum cost path from r to i using only the processed edges is given

by the cost of the unique path from from r to i on T [9].

To compute the SPT of a graph G the algorithms typically maintain a set

of candidate nodes Q along with the label set C, which is typically initialized

with Cr = 0 and Ci =1, for all i 6= r. Initially the set Q contains only the
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node r. At each iteration a candidate node i is selected from Q, scanned,

and where necessary the labels and predecessors of i are updated. The

algorithm terminates when Q is empty and the Bellman conditions hold for

all the arcs in T ; the node labels now contain the minimum path costs and

the predecessors describe a shortest path tree T �.

GenericSPT()

1 InitializeSPT(Q)

2 while Q.NotEmpty()

3 do i Q.Select()

4 for j 2 Adj[i]

5 do if Ci + cij < Cj

6 then Update(i; j)

7 Q.Enqueue(j)

Figure 2.1: The GenericSPT Algorithm.

A familiar version of the Update procedure of T is shown below but

it is important to note that this is the most na��ve version. Update may

update labels of nodes other than the current node. In some algorithms the

update is propagated over the entire subtree and in others the entire tree

substructure may be modi�ed.

More eÆcient approaches do not propagate label settings on subtrees, but

instead maintain a record of the updated labels, using Q, and later check

the Bellman conditions on their forward star. At any given time, the node

13



Update(i; j)

1 Cj  Ci + cij

2 �[j] i

Figure 2.2: A simple Update function.

labels are an upper bound on the path cost from r on T . Since scanning a

node is a wasted e�ort if its label is not exact, most algorithms implement

a strategy to reduce the number of wasted scanning operations [21].

The many variations of these primal algorithms di�er in the handling

of Q and in particular how to implement a selection rule for the candidate

nodes in Q and how to update the shortest path tree.

In order to analyze the behavior of the various shortest path algorithms

a few de�nitions are necessary.

� Ci, the label of node i, represents an upper bound to the cost of the

current path from r to i on T . If Ci is the cost of the path in the

current tree T it is an exact label.

� C�
i , the minimum label of all possible Ci, is a permanent label.

� The tree T described by the predecessor function � is the current tree

and when T = T � it is optimal.

� Nodes never inserted into Q are unreached and those currently in Q

are known as candidates.
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� Nodes are scanned if they are selected from Q and removed from Q.

A node remains scanned until it is reinserted in Q.

� Discarded nodes are those nodes that are selected and removed from

Q but are not eligible for examination.

There is a relationship between the current tree T and the label set C.

A node i with an exact label only has arcs with zero reduced cost on the

path from r to i on T . If the node has an inexact label, there is scope

for improving the label and therefore at least one arc must have a negative

reduced cost. No arc with a positive reduced cost belongs to T and if a

node has an inexact label then one of its ancestors in T must belong to Q.

Scanned nodes with permanent labels will never be reinserted into Q.

2.1.2 SPT S Algorithms

SPT algorithms that select the minimum distance label in choosing a node

to scan are known as shortest-�rst search algorithms, label-setting, or SPT

Setting (SPT S) algorithms. Dijkstra [12] proposed the �rst of these algo-

rithms. In label setting algorithms the node exiting Q is the node with the

minimum cost value over all nodes in Q. In the GenericSPT algorithm

above the Q:Select simply selects the node with the minimum distance

label and the Q.Enqueue operation does nothing, since a node, once it has

exited Q, need never reenter Q.

Properties of the graph on which the algorithms can be run and the

choice of the data structures that implement Q determine the correctness
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and computational complexity of these algorithms. For example, in the case

that G contains no arcs with negative costs and the candidate nodes are

kept in a simple linked list the computational complexity of the algorithm is

O(n2) time. In the general case, where negative arc weights are allowed the

algorithm runs in O(n2n) time [18]. Implementing the candidate set as a

binary heap, the SPT S-Heap algorithm on a graph with with non-negative

cost arcs reduces the running time toO(m lgn) time; this is the most familiar

form of Dijkstra's algorithm. The fastest strongly polynomial algorithm in

the case of nonnegative arc costs, discovered by Tarjan [34], uses Fibonacci

heaps to implement Q and has a running time of O(m+ n lgn) .

2.1.3 SPT L Algorithms

The other major class of algorithms, the label-correcting algorithms, are

also known as SPT L, Shortest Path Tree - List, algorithms. Typically these

algorithms are used when the problems being solved deal with larger classes

of cost functions.

SPT L algorithms allow a node v to enter the set Q multiple times. In

general, nodes are inserted and dequeued from the candidate set in O(1)

time. At each iteration the top node from Q is removed. The algorithms

di�er in choosing an appropriate position to insert a node i into Q.

In the Bellman-Ford-Mooremethod, the simplest label correcting method,

the candidate set, a single list, implements a �rst-in/�rst-out(FIFO) queue

Q. The Q:Enqueue and Q.Select functions of the GenericSPT simply
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become an insert at the end of a list and remove from the beginning of the

list respectively. The �rst pass of the algorithm consists of scanning the root

of the tree r and for each of the subsequent k passes the algorithm scans

the nodes added to Q during the k � 1 pass. The method can be shown to

require at most O(mn) iterations, independent of the sign of the arc costs.

This is because each node can only be scanned once for each pass and at

most n passes are needed, each pass costing O(m) time. In practice the

larger number of iterations, when compared to typical label-setting algo-

rithms, is o�set by the smaller overhead per iteration due to the trivial node

selection strategy; nodes are simply dequeued from the front of a list, an

O(1) time operation. Where G is acyclic the number of iterations is exactly

n, the same as for Dijkstra's method. Remarkably, after over forty years

of study, this algorithm still provides the minimum known complexity for

�nding shortest paths on graphs with arbitrary cost arcs.

As stated earlier, improvements to the SPT L class come fromminimizing

the number of scan operations. Gains can be made by trying to anticipate

the updating of inexact labels of the nodes currently in Q before they are

actually scanned. Since inexact labels may arise only once a node has been

reinserted in Q for the �rst time, the D'Esopo-Pape (SPT L-Dequeue)[28]

method places a node that enters Q for the �rst time at the bottom of the

queue and a node that reenters Q it is placed back at the top of the queue.

In the worst case the number of iterations has been shown to be �(2n) [19]

even when the arc weights are nonnegative. The stack (LIFO) nature of
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nodes reentering a queue is the cause of the exponential time complexity. It

is possible that a node may be selected and scanned 2(n�2) times in the same

pass. In practice, however, the D'Esopo-Pape algorithm performs very well,

often outperforming Bellman-Ford-Moore on sparse graphs.

In a second variant of this algorithm (SPT L-2Queue), the queue Q is

partitioned into two queues Qfirst and Qreentering. A node exiting the list of

nodes to be considered is removed from the top of Qreentering. If Qreentering is

empty the node is removed from the top of Qfirst. A node that enters Q for

the �rst time is queued at the bottom of Qfirst, a node that re-enters Q is

placed at the bottom of Qreentering. This second variant of the D'Esopo-Pape

algorithm has roughly the same performance in practice as the single queue

variant but the algorithmic running time can be shown to be O(n2m) since

a node can be selected and scanned no more than n times in a single pass.

Both variants can be thought of as implementing Q as two lists connected in

series. In the �rst algorithm, Qreentering is a list with last in/�rst out (LIFO)

behavior and Qfirst a simple FIFO queue as before. In the second variant,

both lists follow a FIFO strategy for enqueuing and dequeuing vertices.

Other algorithms use disjoint queues to enqueue and dequeue nodes with

the aim of increasing the probability of selecting nodes with permanent

labels. Glover, Glover and Kingman [13] use a thresholding strategy that

e�ectively turns the two disjoint lists into a set of dynamic buckets. A

threshold s is chosen, often by experiment, and the Q is implemented as a

pair of disjoint queues partitioned as follows, if a node i being queued has
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a label Ci � s the node is placed in the queue Q�s, otherwise the node is

placed in the queue Q>s. Nodes are dequeued from Q�s until this queue is

empty. When the queue is empty, the threshold value is changed and all the

nodes left in Q>s with a threshold lower than s are moved to Q�s.

When the arcs have nonnegative edge weights the algorithm requires

only n2 iterations with O(n2) operations. The threshold algorithm performs

extremely well on randomly generated problems but its performance is sen-

sitive to the threshold adjustment scheme. For non-negative arcs if,

s � minfCiji 2 Qg+minfcijj(i; j) 2 Ag

i.e. the threshold values are too small, the algorithm reduces to the naive

Dijkstra's algorithm. When the threshold values are initially too large, i.e.

s > (n � 1)maxfcij 2 Ag the nodes are all inserted directly into Q�s, and

if that queue is implemented as a simple FIFO list the algorithm reduces to

the Bellman-Ford-Moore algorithm. Finding a threshold selection policy for

a given class of graphs may need a considerable amount of experimentation

and one may even be unable to �nd an e�ective adjustment scheme although

there are schemes for �nding a threshold for broad classes of randomly gen-

erated problems.

Based on the hypothesis that for many types of problems, the number of

iterations of a label correcting method strongly depends on the average rank

of the node exiting Q, where nodes are ranked in terms of the size of their

labels (small labels correspond to lower ranks), Bersekas proposes a much

simpler heuristic for node selection, the Small Label to Front (SPT SLF)
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strategy. In this strategy when a node j enters Q its label cj is compared

with the label of the top node i in Q. If cj < ci, node j is entered at the top

of Q, otherwise j is entered at the bottom of Q.

Combining this strategy with the thresholding strategy discussed above

yields the SPT SLF-threshold label correcting method for �nding shortest

paths. Here the queue Q is partitioned into two queues, Q�s and Q>s, where

s is once again a threshold value. When a node j enters the queue for the

�rst time it is placed at the top of Q�s if cj � ci and cj > ci, where i is

the top node of Q�s. The same policy is used when a node enters Q>s and

when a node is transferred from Q>s to Q�s. When Q�s becomes empty the

nodes in Q>s are checked sequentially and if a node j satis�es the test for

entry into Q�s the node is moved to that queue.

In an alternate versions of the SPT SLF-threshold algorithmwhen a node

j is already in either Q and the label is decreased one can compare the new

label cj with the label ci of the top node of the queue. If ci < cj the node

is moved to the front of the queue. This version requires that the queue be

implemented as a doubly linked list to keep the queue eÆcient. While this

restriction imposes more overhead, experimental results show that it leads

to a further reduction in the number of iterations.

The complexity of the SPT SLF-threshold algorithm is not well estab-

lished but some variants can be shown to run in O(nm) time for non-negative

arc lengths. Whether the SLF-Threshold algorithms are in general polyno-

mial remains an open question. However, in many classes of graphs, the
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SLF-Threshold algorithm has been shown experimentally to be extremely

eÆcient, requiring many fewer iterations than the Bellman-Ford-Moore al-

gorithm and is considerably faster than two list algorithm of D'Esopo-Pape.

This improvement has been shown to be due to the high correlation between

the number of iterations of a label correcting method and the average rank

of the node exiting the queue.

Tarjan [33] proposed a single queue variant of the SPT L algorithm where

only nodes with exact labels are scanned, discarding candidate nodes with

inexact labels as soon as they arise. The inexact labels are collected by

exploring the subtree Ti after the label Ci has been updated. At each iter-

ation, when i is selected and scanned, if the Bellman condition is violated,

i is updated and its descendant labels become inexact. At this point, Ti is

traversed and every node except i is discarded and is marked for removal

from Q. Node i is then inserted at the tail of a FIFO list, Q, if it is not

already in Q. T contains only nodes with exact labels. To collect nodes with

inexact labels from T a subtree disassembly strategy is used. The tree struc-

ture is implemented using the usual predecessor function as well as a �rst

child and adjacent child function, representing next and previous relation-

ships respectively. This allows the traversal of Ti with a linear complexity

but more importantly allows tree modi�cation in constant time. As with

the Bellman-Ford-Moore algorithm the disassembling queue variant runs in

O(mn) time. At most n passes are necessary and a node is scanned at most

once for each pass.
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Q.Select()

1 while Q 6= ; and i = �rst(Q) is marked discarded

2 do Q Q�fig

3 return i

Figure 2.3: The SPT L Dissasembling Q.Select function

Q.Enqueue(i)

1 traverse Ti and mark discarded all nodes 6= i

2 if i =2 Q

3 then Q = Q+ i

Figure 2.4: The SPT L Dissasembling Q.Enqueue function

Goldberg and Radzik [15] suggest a heuristic improvement to the Bellman-

Ford-Moore algorithm based on visiting the nodes in a graph in a topological

scan in order to radically reduce the number of nodes scanned while building

the shortest path tree.

An edge e is admissible if �c(e) < 0. Extending this de�nition, GSA =

(N; �A), is the partial graph with arcs of non-positive reduced cost, i.e. �A is

the set of all admissible edges. GSA is known as a strictly admissible graph

with respect to a root node r. GA is known as an admissible graph with

respect to r if all the arcs in the graph have a non-negative reduced cost

function.
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If two nodes i and j are labeled and �c(i;j) < 0 it is better to scan i before

j, since when we scan i the label Cj will improve and j will become labeled.

The node i is improvable by a new node j if in the admissible graph, i is

connected to j by a path for which there is at least one arc in GA. Nodes in

the set of labels C are in a topological order if every node always follows all

other nodes by which it is improvable. The topological scanning algorithm

alters the order in which candidate nodes in Q are processed, placing them

in a topological order. It does so by implicitly visiting the graph GA.

The algorithm topological-scan maintains two queues, Qordered, nodes to

be scanned on an iteration, and Qvisited, a set of visited candidate nodes to

build Qordered from. Each node can only be in one set at a time. Initially

Qordered = fg and Qvisited = fsg. Each iteration of the algorithm starts,

when Qordered = ;, by populating the queue Qordered, choosing nodes in

Qvisited.

Computing the set of nodes to be scanned from the candidate set is

performed as follows. Remove all nodes i 2 Qvisited with no outgoing arcs

with negative reduced cost. Mark all the nodes that are reachable from

Qvisited in GA as labeled and place them in Qordered. Topologically sort

Qordered so that for every pair of nodes i and j with an edge (i; j) in GA, i

should precede j forcing i to be scanned before j.

To construct Qordered fromQvisited eÆciently, in a single depth �rst search,

both sets are implemented as stacks. Popping nodes fromQvisited one by one,

if i has already been visited by the current depth �rst search it is ignored, if i
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has not been visited but has no outgoing edges with a negative reduced cost

i is marked as scanned, and if i has not been visited and has an outgoing

edge that can be traversed with a negative reduced cost the algorithm visits

in depth �rst order all nodes that are reachable from i in GA which have not

been previously visited. At the end of the visit of node i it is marked visited

and pushed onto Qordered. By taking care to implement the procedure so that

nodes are only considered from Qvisited at the beginning of each iteration or

from Qordered at the end of each iteration the algorithm makes sure that each

node is visited exactly once.

Q.Select()

1 if Qordered 6= ;

2 then i Qordered.pop()

3 return i

4 else while Qvisited 6= ;

5 do i Qvisited.pop()

6 DFS Visit(i)

Figure 2.5: SPT L Topological Ordering Q.Select function

In [15, 7] the algorithm is proved to run in worst case O(mn) time. A

variant of the algorithm, with the same running time, also due to Goldberg

[15] makes sure that labels are immediately updated, during the topological

ordering, to enlarge the visited graph. The DFS visit is performed on the

current strictly admissible graph GSA that is produced by each label update
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DFS Visit(i)

1 for j 2 Adj[i]

2 do if Ci + cij � Cj

3 then //Only DFS visit j if the edge (i; j) is in the admissible graph.

4 DFS Visit(j)

5 if i =2 Qordered

6 then Qordered.push(i)

Figure 2.6: SPT L Topological Ordering DFS Visit function. The DFS Visit

algorithm implicitly visits the admissible graphGA by using the Bellman condition

as a guard for deepening the search. In practice this is usually implemented using

a stack instead of the recursion as shown above.

Q.Enqueue(i)

1 if i =2 Qvisited

2 then Qvisited.push(i)

Figure 2.7: SPT L Topological Ordering Q.Enqueue function

in C. The implementation details can be found in [21]. It is also shown that

if G is acyclic, the ordering performed in the �rst iteration is a topological

order forG and so the time complexity for this variant is linear in the number

of arcs [34].

Over the years there has been a large amount of experimental testing

of algorithms in the classes SPT L and SPT S. All the SPT L algorithms
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behave well with sparse graphs, especially when the arc costs have a close

relation to the topology of the graph. This often arises in graphs constructed

to represent real world networks, where the cost functions represent quanti-

ties like distances, costs, and travel-times. The basic Bellman-Ford-Moore

algorithm has, on average, the worst running time, not surprisingly, as it

performs the largest amount of inexact label scanning. Variants of the ba-

sic SPT L algorithm all try to minimize the number of inexact scans. The

SPT L Threshold and SPT L Topological Ordering perform well

on average on a large classes of graphs. Pallottino et al. [21] describes vari-

ants of the Tarjan disassembling technique and the Goldberg-Radzik topo-

logical reordering techniques, benchmarking the di�erent variants against a

large class of graphs.

2.2 Dynamic Shortest Path Problems

A vast majority of the literature on shortest paths is dominated by networks

which have a �xed topology and �xed linked costs. Of late, due to interest

in graphs that model transportation systems, there has been a renewal of

interest in a class of problems known as dynamic shortest path problems.

In the literature, when referring to shortest path problems, the term \dy-

namic", has two meanings. The �rst, which is not the focus of this thesis,

involves the problem of computing the shortest path in a graph where at

any given time the edge weights and the topology may change, altering the

properties of paths through the graph. The goal of much of the research in
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this case is to tackle the problem of computing the e�ects of incremental

changes in the graph on the property being optimized. For example, if after

computing the shortest paths from a root node to all other nodes, a single

edge changes then, where possible, it is desirable that calculating the change

in the spanning tree should on average take substantially less time than the

initial computation of the shortest path spanning tree.

This thesis is concerned with the second meaning of \dynamic" in the

literature. Here the task at hand is to model the time dependency of edges

in the graph and in particular, to study the impact of this dependency on

�nding optimal paths. Edges in \dynamic" graphs are labeled with time

properties that determine \when" an edge can be traversed and \how long"

it takes to traverse the edge.

It should be noted that in this second category the behavior of time can

be modeled as part of a set of continuous values [25, 26] or in a discrete way

[4, 6, 27]. The discussion here considers only the discrete model.

For graphs that model time dependency, under the discrete time model,

the algorithms and the analysis of their performance typically center around

the use of an expanded static version of the network where the time de-

pendencies of edges and their interactions with the nodes that they connect

are represented. It is this underlying space-time network that is central to

much of the discussion that follows. While it is not the best approach to

explicitly use the expanded space-time networks many of the properties that

they expose about dynamic graphs are used to design better algorithms.
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2.2.1 Space-Time Networks

Modeling the properties of time dependency in a graph where time is treated

discretely needs to address the issues of when an edge can be traversed and,

what the cost of traversing a link is at a given time.

More formally, in a dynamic graph G = (N;A), every arc (i; j) has an

associated delay cost or travel time dij. Thus if t is the departure time

from a node i along an arc (i; j) then the t + dij(t) is the arrival time at

j. In addition the cost function cij(t) for an arc is the cost associated with

traversing (i; j) at time t.

In the discrete model of the dynamic shortest path problem the values

that the time variable can take belong to the discrete set T = ft1; t1; : : : tqg

and the delay function dij : T ! T, is de�ned on the set T. To model the

behavior of waiting at a node i there is a waiting cost function wi(t) for each

node i. For the rest of this discussion all the arcs are assumed to have a

non-negative travel time.

d
12

(t) = [1, 1, 3, 3, 3, 3, 3, 3, 3, 3]

d
13

(t) = [2, 3, 3, 3, 3, 3, 3, 3, 3, 3]

d
23

(t) = [1, 1, 1, 1, 2, 2, 2, 2, 2, 2]

d
24

(t) = [1, 1, 3, 3, 2, 2, 2, 2, 2, 2]

d
34

(t) = [1, 1, 1, 1, 2, 2, 2, 2, 2, 2]

1 4

3

2

Figure 2.8: An example of a dynamic network

The Space-Time Network R = (V;E) of a dynamic graph G = (N;A)
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under the discrete model is de�ned by,

V = fihji 2 N; h 2 [1; q]g

E = f(ih; jk)j(i; j) 2 A; th + dij = tk; h 2 [1; q]; k 2 [1; q]; h < kg
(2.1)

The cost for each arc (ih; jk) is given by cij(th). The cost of waiting,

introduced by the wait function wi(t) is modeled by adding arcs to E of the

form (ih; ih+1) with h 2 [1; q).

R is now a standard acyclic graph with a pseudo-polynomial size with

respect to G from which it was constructed. The sizes of the vertex and

edge sets are given by jV j = nq and jEj � (m + n)q respectivly. Every

chronological visit of the nodes in R, the nodes with non-decreasing values

of time, provides a topological visit on R.

An arc (i; j) 2 A in a dynamic graph is said to be a FIFO arc (�rst-

in/�rst-out) if leaving a node i earlier guarantees that one will arrive no

later at j along (i; j).

th + dij(th) � tk + dij(tk) ; th < tk (2.2)

A dynamic graph is a FIFO graph if all its arcs are FIFO arcs. The

implication of the FIFO property is that waiting at node i before traversing

(i; j) will never cause an earlier arrival at j. For example, if a traveler waits

at i for a period of time and then starts traversing an arc, the traveler may

spend less time traversing (i; j), but because of the FIFO property, will never

arrive at j sooner, had the traveler left i without waiting.

Where waiting at a node is permitted a similar property can be imposed

on the arc costs. If departing i earlier along an edge (i; j) does not cost more
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Figure 2.9: An example of a space-time network

than departing later the arc is cost consistent (CC ).

A graph is a cost consistent graph if all its arcs are also cost consistent.

Let tu = th + dij(th) and tv = tk + dij(tk), for th < tk then,

� (i; j) is a FIFO arc (tu � tv); here it is also CC if for any th < tk;

cij(th) +
v�1X
z=u

wj(tz)(tz+1 � tz) � cij(tk): (2.3)
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1

3

2

6

5

4

Figure 2.10: If the delays on all the arcs are equal to 1 and the time period

T = ft1; t2; t3; t4; t5; t6g the graph is FIFO.

� (i; j) is a not a FIFO arc (tu > tv). Here it is a CC arc if, for th < tk;

cij(th) � cij(tk) +

u�1X
z=v

wj(tz)(tz+1 � tz): (2.4)

ih
hcij ju

jvik

(t  )

kcij (t  )

uwj (t  )

hcij

jv

ju

(t  )

kcij (t  )

uwj (t  )

ik

ik

Figure 2.11: CC arc (i; j): (a) (i; j) is FIFO (u � v). (b) (i,j) is not FIFO (u > v)

As stated earlier, for most problems involving dynamic graphs it is pos-

sible to work on the space-time network R implicitly by using a topological

visit on R since R is acyclic. In addition, only the non-redundant part of R

need be considered.
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Figure 2.12: The non-redundant portion of the space-time network

2.2.2 The Minimum Cost Dynamic Path Problem.

The Minimum Cost Dynamic Path Problem looks for a path from a node r

to every other node i 6= r, leaving at a time t in a dynamic graph G.

Computing a shortest path tree with topological ordering in R using a

bucket list B = fB1; B2; : : : ; Bqg [11] to eÆciently implement the chrono-

logical visit of R, where Bh denotes nodes to be visited at time th; h 2 [1; q],
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yields the Chrono-SPT algorithm. Initially, if departing from a node r at

time t = tp then Bp = frg and the other buckets are empty. The algorithm

terminates when all the buckets are empty and all the labels are set to the

optimum path from r to every other node i. At each iteration the shortest

path tree is expanded using the Chrono-SPT operation for a node v and

a time h.

Chrono-SPT(i; h)

1 (typical iteration)

2 select i from Bh;Bh  Bh � fig

3 for each edge (i; j) 2 FS[i]

4 do tk  th + dij

5 if Ci(tk) + cij(th) < Cj(th)

6 then Cj(tk) Ci(th) + cij(th)

7 if j =2 Bk

8 then Bk  Bk [ fjg

9 if Ci(th) + wi(th)(th+1 � th) < Ci(th+1)

10 then Ci(th+1) Ci(th) + wi(th)(th+1 � th)

11 if i =2 Bh+1

12 then Bh+1  Bh+1 [ fig

Figure 2.13: The code above is for a typical iteration of the Chrono-SPT. Lines

7-10 in the Chrono-SPT code deal with the case where waiting at i is allowed.

By considering nodes in R chronologically, i.e. �rst consider nodes with
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time t1, then t2 and so on, the shortest path tree with topological ordering in

R is generated. This strategy implicitly generates the non-redundant portion

of R. It is easy to see that Chrono-SPT runs in time �(q + jE�j) where

E� � E is the non-redundant set of arcs implicitly generated by Chrono-

SPT. Since jE�j � mq in the worst case the algorithm's time complexity is

O(mq)

If a dynamic graph is both FIFO and cost consistent the local properties

can be exploited to solve the SPT problem using stronger assumptions. If G

is both cost consistent and FIFO, i.e. leaving along any arc (i; j) at an earlier

time causes one to arrive no later than before and at a cost that is no higher

than before, then the property of \dominated labels" can be introduced and

exploited. Suppose we have visited two di�erent paths from the given origin

node r to a node i, and suppose that the two paths arrive at i at time th and

at time tk such that th < tk with the costs of the paths being Ci(th) and Ci(tk)

respectively, with Ci(th) � Ci(tk). In this case there is no need to extend

the path that arrives at time tk as this expansion will not yield a minimum

cost path going through node i. The label Ci(tk) is the dominated label for

node i, and can be ignored. For a given node i the set of non-dominated

labels Ci = fCi(th1); Ci(th2); : : : ; Ci(thz)g then if th1 < th2 : : : < thz then it

must be the case that Ci(th1) > Ci(th2) > : : : > Ci(thz).

The Chrono-SPT procedure can be modi�ed to maintain only the set

of non-dominated labels. Using the bucket implementation as before domi-

nance need only be checked when a label Ci(th) is selected from the current
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bucket. It is enough to compare Ci(th) to the last selected non-dominated

label, last-labeli.

Chrono-SPT (FIFO and CC)(i; h)

1 (typical iteration)

2 select i from Bh;Bh  Bh � fig

3 if Ci(th) < last-labeli

4 then last-labeli  Ci(th)

5 for each edge (i; j) 2 FS[i]

6 do tk  th + dij

7 if Ci(tk) + cij(th) < Cj(th)

8 then Cj(tk) Ci(th) + cij(th)

9 if j =2 Bk

10 then Bk  Bk [ fjg

Figure 2.14: If the test on line 2 of Chrono-SPT (FIFO) fails the label Ci(th)

is dominated and immediately discarded. In the case that the test succeeds the

algorithm proceeds to expand the SPT by traversing outbound edges from i.

Minimum Arrival Time Dynamic Path Problem

Another problem of particular interest is the minimum time dynamic path

problem for a speci�c departure time , where after specifying the root node,

we wish to �nd the earliest arrival time to any other node i 6= r. In this

version of the problem the weights of the arcs in the space-time network
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can be ignored and the problem is now reinterpreted as a connectivity prob-

lem. In this case, the Chrono-SPT is reduced to the classic Dial's algo-

rithm [11] with bucket-list implementation. In this case the complexity is

O(m + minfq; n logng) Once again, the algorithm works implicitly on R.

The algorithm runs as before ignoring the cost function. Once each node

i 6= r has been visited the algorithm terminates. It is trivial to show that

if the graph is FIFO then only one non-dominated node is associated with

each node.

2.2.3 Train Graphs

Train graphs [24, 14] are a specialization of a space-time network in the

context of transportation problems. An event, or vertex, in the train graph

represents every time a train enters or leaves a station. Two events, v and w

are connected by an arc from v to w if v represents the departure of a train

from a station and w represents the arrival of the same train at the next

station. Successive events at the same station are connected by an edge in

the positive time direction, there is also an arc from the last event, at a given

station, to the �rst event. Hence all the events at a station are connected

by a simple cycle.

Clearly the train graph addresses the same issues in modeling the time

dependent behavior of railway networks as the space time network does.

However the explosion in the number of vertices is much smaller, in fact it is

now exactly 2m� 1. The number of edges in the train graph is also exactly
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2m.

Station A

Station B

Station C

Figure 2.15: A train graph.

With one extra addition the train graph model can also be used to capture

the number of train changes. When a train T leave a station a at some event

u, and stops next at a station b at event v1 then continues on to station c

with event v2 where it arrives with event w the arcs (u; v1) and (v2; w) are

split into chains of two arcs by introducing intermediate train nodes Tb and

Tc and an arc (Tb; Tc). The arcs (u; v1), (v2; w) and, (Tb; Tc) models the act

of entering a train, leaving a train and staying on a train respectively. By

assigning a weight of 1 to all entering arcs and 0 to all others the process of

counting the number of transfers on a path is now computable by a simple

additive cost function.

2.2.4 Timetables and Time Dependent Networks

One of the many uses of dynamic shortest path problems is to solve the

itinerary problem. Given a graph based on a real transportation system

and a departure source and time, �nd an optimal itinerary. Standard tech-
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Station A

Station B

Station C

entering a train

leaving a train

staying in train/

     at station

Figure 2.16: Train graph with transfer edges.

niques that use the approaches outlined above are often unacceptably slow

for use in their intended application in traveler information systems. Many

modern day systems use inexact heuristic solvers that make no guarantees

about producing optimal results although they do tend to be fast. In the

case where exact results are necessary working with the space-time network

model, either implicitly or explicitly, is unacceptably slow.

An approach which moves away from using either space-time networks or

train graphs is that of the time dependent network [4]. In a time dependent

network the properties of an edge are determined by the time at which the

link is used. The delay of an edge, an the time at which it is traversable is

therefore dependent on the path that is used to reach the edge as well as

the departure time.

As in the discrete model of the space-time network above time is modeled

as a set of discrete values T, the elements of which are well ordered. In

addition, there is a well de�ned addition function + : T ! T.

A time-table T is a set of edge connections. Edges are valid for a period
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known as the time-horizon which is an interval of T: Constructing a space-

time network or a train graph from T is a trivial exercise. Events, as before,

are arrivals and departures from stations, and the weights on the arcs, for

time, are implicitly given by the time di�erence on the events. Taking train

information into account, a proper train graph with transfer information can

be easily constructed with arc weights re
ecting the cost of a transfer. If the

time table needs to model repetition in the time table an edge is introduced

from the last event before the end of the period modeled at a node i to the

�rst event at that node.

A time-dependent network is a directed graph G = (V;E), where every

edge e has a link-traversal function fe : T ! T and let f : T ! T. f

has a non-negative delay if f(t) � t for all t. Also, f is monotonic if

t � t0 , f(t) � f(t0).

A timed path p in G is a sequence of nodes (i1; i2; : : : ; ik) in the graph and

a sequence of times (t1; t2; : : : ; tk), with ti 2 T, where each edge e = (ij; ij+1)

is an element of the arc set A and t(j+1) = fe(tj). Node i1 is the departure

node and ik the arrival node. tk is the arrival time.

This model allows one to use variants of the SPT S and SPT L algorithm

to eÆciently compute the minimum arrival question if there is an eÆcient

way to evaluate the link traversal function and perform comparison on T.

The pseudo-code for MinumumArrivalTime is simpli�ed to demon-

strate the eÆciency of time dependent networks. As stated earlier, the

eÆciency of this code depends primarily on the eÆciency of implementing
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MinimumArrivalTime(G = (V;E); fE : T! T; s; t)

1 InitializeSPT()

2 while Q 6= 0

3 do (u; t0) Q.ExtractMin()

4 Scanned Scanned [ fug

5 for (u; v) 2 E and u =2 Scanned

6 do if Cu > t0

7 then t00  f(u;v)(Cu)

8 Q.Insert(Q; v; t00)

9 Cv  t00

10 �[v] u

Figure 2.17: The above algorithm calculates the minimum arrivals to all nodes as

it would in a normal SPT problem. The labels Cv are the minimum arrival times

taken to reach a vertex v. Given an additional input d for a destination node,

the algorithm could be forced to terminate if the search ever tried to expand the

spanning tree beyond d. fE is the link-traversal function for the set of edges E.,

G the input graph, s the source, and t the time of departure.

the link-traversal function.

2.2.5 Time Dependent Intermodal Networks

Often �nding least-time paths on a dynamic network is extended to �nding

the least-time paths through a series of time-dependent graphs each with
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di�erent cost functions. Edges between the sub-graphs represent the time-

dependent behavior of transferring, as well as the other costs associated

with following an edge from one sub-graph to another. These are known as,

switching costs . For example, in planning a route from one city to another,

a passenger will almost always be forced to consider using many di�erent

modes of transportation. Perhaps using public transport to and from major

transportation hubs within a city and long distance carriers to move between

the cities. From an optimization perspective diÆculties arise in computing

paths on multimodal networks due to a number of factors. Some of these

factors are, the discontinuities of the �xed schedule lines, the fact that modes

consist of many transit lines each on its own network and with its own cost

functions, the cost of delays when switching between networks and violations

of the FIFO rule on links.

A common approach to solving path problems in intermodal networks

is to annotate the links with properties. For example one set of attributes

might describe the various cost functions, which sub-graph the link belongs

to and what type the link might be of. The highly annotated graph is then

reduced to a simpler, in terms of composition, but highly expanded graph,

much like the reduction of a dynamic graph to the space-time network de-

scribed above, and then traditional SPT algorithms may be run on the ex-

panded graph. This is seldom practical on real networks however due to the

sheer size of the expanded graph in real world networks and the time nec-

essary to compute these networks. Even algorithms that implicitly work on
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these graphs are infeasible in practice. In general a jV j-node, jAj-arc graph

with jM j-modes and , jT j discrete time intervals will result in a jV jjT jjAj

node network with jAj(jT j � 1)jM j arc static network plus jV j(jM jjT j)2 to

represent switching options at the nodes [36]. A network with 2,000 nodes,

10,000 arcs, 100 modes and �xed schedule lines, and 1,000 time intervals

during rush hour could result in a network with O(1013) nodes and O(109)

arcs. Path computation on the expanded network can be carried out, using

the traditional SPT methods, or implicitly traversing the expanded graph

as in the Chrono-SPT technique.

Real transit graphs may also have non-FIFO edges. It may be possi-

ble to wait at a station for an express, or take a di�erent provider with

faster, but perhaps a more expensive service. This means that all of the

time replications for a node need to be searched to �nd the smallest marked

time-node that corresponds to the optimal path. The computation e�ort

required drastically increases as the number of time intervals and modes

increases. Ziliaskopoulos et al. [37] introduce the Time Dependent Inter-

modal Least-Time Path (TDILTP) algorithm that computes optimum paths

without expanding the network. The TDILTP is stated as follows, on the

graph G compute the least time paths from every origin node, mode and

departure time to a destination node, considering all modes available and

the switching costs involved between modes. TDILTP runs in O(jT j2jV j5)

time. The algorithms computational complexity of this algorithm is inde-

pendent of the number of modes. The key observation used to reduce the
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complexity is that while travel times on di�erent optimum paths may di�er

many of these paths, for a given origin destination pair are topologically

the same. The algorithm takes advantage of this fact by simultaneously

updating topologically similar paths.

2.3 Shortest Path Problems in the Presence of Re-

sponse Time Constraints

The bulk of the literature on speeding up shortest paths utilizes on one

of two basic techniques. The �rst, is reducing the number of computation

through guiding the search for shortest paths in order to reduce the amount

of scanning that takes place. The disjoint queue methods discussed in sec-

tion 2.1.1 are good examples of this. The other predominant branch in the

literature to speed up the computation of the shortest path tree focuses on

choosing an eÆcient heap structure that implements node selection. The

fastest known implementation of Dijkstra's algorithm, using a Fibonacci

heap runs in O(m+ n logn) time.

In the presence of these constraints, there are other issues involved in

using algorithms, like Dijkstra's algorithm, in practical situations. For ex-

ample, in any moderately sized graph, a run of a naive Dijkstra may exceed

the available space available to the process. There are many situations where

space consumption is not an issue but the speed in which a solution is found

is of importance. There may be soft real time restrictions, where the av-
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erage response time is more important than that maximum response time,

which may be the case when designing a centralized query engine to provide

routing information to many clients and has to process a large number of

queries.

The approach to building faster SPT algorithms is usually heuristic.

Heuristics often perform well in observing the time constraints but they

may not guarantee optimality but instead produce near optimal solutions.

Where globally optimal solutions are needed heuristic algorithms are gen-

erally avoided. A number of techniques used to improve the response time

without losing the optimality of solutions are discussed in [14] and specif-

ically deal with building an advanced traveler information system. Many

of these techniques exploit the fact that computing the entire shortest path

tree is not necessary to �nd a route from a source node s to a destination

node d. Rather a subset of the shortest path tree that contains the paths is

all that needs be generated. Other techniques rely on large scale expensive

precomputation of properties on the graph that may be used to speed the

search, making it easy to reduce the response time of a query. This level of

preprocessing on the graph is acceptable in practice. It may not be possible

to store all the precomputed information, as that may take too much space

but it may in fact be possible to keep some form of the result to guide future

searches.

The �rst, and most basic of the techniques to speed up computation is

early termination. Once the shortest path from a s to d has been found
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terminate the algorithm.

It may be possible to make safe, but not provable, assumptions about

the transit network that yield a considerable speedup. One such assumption

might be that the shortest path between two nodes does not deviate too

much from the straight line segment from a source node s to a destination

node d. In this case only nodes and edges between them that fall within

an ellipse with focii at s and d need be considered in the graph, essentially

restricting the search horizon [35] of the computation. The ellipse may

even change dynamically during computation depending on the intermediate

results by alternating and extending the shortest path tree and choosing the

ellipse that bounds the supposed area of interest.

Another technique for restricting the explored portion of the transit net-

work relies on the geographical coordinates associated with the stations on

a network. In a preprocessing step Dijkstra's algorithm is run from an event

to all other stations. For space reasons the actual results are not stored,

instead only two values � and � for each edge. There are only 2m of these

values to store. The values represent angles in the plane. If (v; w) is an edge

and s the station associated with event v and s0 the station associated with

event w then the the values � and � de�ne a circular segment centered at s

that contains all the edges that go from s to a s0. Using these precomputed

values, if an edge does not lie in the circular segment when computing a

path from event v to the station w it may be ignored.

Another interesting approach outlined in [14] is to perform a graph reduc-
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tion [32] on the train graph. The technique is common in transport routing

applications and is motivated by work on searching massive graphs [1]. Cer-

tain stations transit hubs are deemed more important that others in transit

networks based on their \centrality" in the transport network. Intuitively,

these are the stations at which transfers are most likely to occur. Events in

the train graph that occur at stations in the set of transit hubs are linked

by a directed edge if and only if there is a path in the train graph such that

no internal node, non-hub stop, occurs in the path from one hub node to

another. In essence, each set of stops on a path between two selected hub

events, including the hub events, is a connected component and is replaced

in the reduced graph by a directed graph de�ned on the neighboring selected

stations.

The length l(v; w) of an edge (v; w) in the reduced graph is de�ned as

the optimal length path from v to w along a path with no nodes related

to transit hubs, in the train graph. Both the reduced graph and the edge

weights are constructed in a simple preprocessing step. Each edge in the

reduced graph can be annotated with the events (stations and times) along

the path it represents in the train graph. This highly compact form can then

be used to generate routes from one component to another by performing the

search in the more compact reduced graph. Shortest paths in the reduced

graph correspond to shortest paths in the train path.

The selection of stations and their events involves some care. There

is a trade-o� involved. Selecting a small number of stations increases the
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size of the connected components and worse still it increases the number of

neighboring connected components in the graph. The number of edges is de-

pendent on the number of neighboring components and grows quadratically

in the number of stations. The improvement from reducing the number

of stations is quickly o�set by increasing number of edges. Fortunately,

there is a way to curtail the growth in the number of edges between com-

ponents. If u, v and w are three events for transit hubs and there are edges

(u; v); (v; w); and; (u; w) in the reduced graph satisfying the triangle inequal-

ity, l(u; v) + l(v; w) � l(u; w) then in constructing the auxiliary graph the

edge (u; w) is removed. It is trivial to see that this still preserves the opti-

mality. In the case of transit graphs, the number of edges now grows at a

much slower rate than before.

2.4 Nonadditive Cost functions in Shortest Path Prob-

lems

Among the di�ering types of cost functions found in solving with routing

problems through networks are non-additive cost functions and nonlinear

cost functions. These arise naturally in many situation, routing through

transit networks, through telephone networks, 
ow control in water pipes

and in abstract areas such as scheduling activity on networks and evolution

in organizational networks. In addition to being non-additive, path costs

may also be non-linear. For example in dealing with the notion of 'travel-
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time' in a transportation network it may be unreasonable to expect that a

traveler has a single �xed value for time. It is far more realistic that a traveler

places little value on small savings of time and a far greater value on larger

savings of time. At �rst glance this may not seem to be too large an issue

but where the costs are non-linear functions of that nature, it frequently

leads to result in the Bellman's conditions for optimality to be violated.

2.4.1 Nonadditive cost functions.

2

3

1

a: 2, 1

b: 1, 5

c: 10, 3

Figure 2.18: A simple network with Nonadditive paths.

In the 3-node 3-link network shown above[30], the �rst number next to

each link represents the time and the second a toll. The aggregate cost on a

path is given by the time squared plus tolls. Observe that the cheapest path

between nodes 1 and 3 uses arcs b and c. The cost on this path is $129 vs

$148 on the path that uses arcs a and c. Bellman's Principle, would guide us

to using arc b as part of the cheapest path from node 1 to 2 but this is not

the case. The cost on arc a is $5 and the cost of arc b is $6, the minimum

cost from node 1 to 2 is actually arc a.

Because the Bellman's conditions are violated, solving non-linear or non-
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additive problems using direct labeling techniques is no longer possible. One

obvious way to address this problem is to resort to `brute force' approaches.

A search could �nd the minimum time path and see if it checks for tolled

links. If a tolled link is found, the link can be removed and the algorithm

re-run. The process is repeated until all the toll-free minimum paths are

removed from consideration or the inclusion and exclusion of all tolled links

in the network have been considered. If there are T tolled links in the

graph then there are 2T paths, some of which include tolled links that have

already been considered in prior iterations. Other direct approaches can be

considered to solve the above problem, many of which are computationally

expensive. Another way to tackle the problem is as an integer program using

branch and bound techniques.

2.4.2 The Inherited Constraint Algorithm

In [30] an inherited constraint algorithm is presented that solves problems

in this category. Their method, while still non-polynomial in the worst case

manages to �nd optimal solutions to many real world problems in only a

few iterations.

Once again G = (N;A) is a network of arcs but this time with a cost

function c : An ! R which associates a cost with the vector of arc 
ows
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x 2 An. A = 1; : : : ; n is the arc incidence matrix de�ned as follows:

aij =

8>>>><
>>>>:

1 if arc j is directed out of node i

�1 if arc j is directed into node i

0 otherwise:

(2.5)

Let c = (cj : j = 1; : : : ; n) be the cost of all arcs in the graph and assume

the path cost are additive. Thus the cost of a path is given by

C(x) = cTx (2.6)

Thus the minimum cost shortest path problem can be formulated as

follows:

minx cTx

s:t: Ax = b

x 2 f0; 1gn

(2.7)

Assume now that the cost of a path corresponding to x is given by

C(x) = v(tTx) + �Tx (2.8)

where t 2 Rn
+ and � 2 Rn

+ are the vectors of `times' and `tolls'. v : Rn
+ ! R+

denotes a cost function for the value of time.

minx v(tTx) + �Tx

s:t: Ax = b

x 2 f0; 1gn

(2.9)

This is known as the ICA iterative process.
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When v(x) = tTx this is a simple minimum cost path problem with a

composite cost vector c = t + �

To consider the case where v is non-linear assume that there is a solution

to (2.9) above denoted by x�. x� is a solution of Eq.(2.9) if and only if it is

a solution of

minx v(tTx)

s:t: Ax = b

�Tx = �Tx�

x 2 f0; 1gn

(2.10)

This implies that x� is a solution of Eq. (2.9) if an only it is a solution

of

minx tTx

s:t: Ax = b

�Tx = �Tx�

x 2 f0; 1gn

(2.11)

Their is no nice solution to Eq. (2.9), since if there were, Eq. (2.11)

would be of no importance. However educated guesses for x� might allow

the design of an algorithm that approaches an optimal solution.

To understand this better let Z denote the value of �Tx�, the toll on the
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optimal path. The problem then becomes:

minx tTx

s:t: Ax = b

�Tx = Z

x 2 f0; 1gn

(2.12)

The �rst guess, say x0, should be pessimistic to avoid overlooking any

potential solutions. This can be accomplished by ignoring the toll constraint

and solving for the minimum path time. The solution is illustrated in the

�gure above. Since x0 is the minimum time path, there are no feasible

solutions to the left of x0 on the plane. Also, solutions above x0 on the plan

are dominated by x0 since they have a larger time, or a larger toll both of

which imply a larger composite cost. Therefore one only needs to consider

solutions below and to the right of x0.

In order to generate a set of these solutions consider the following prob-

lem.

minx tTx

s:t: Ax = b

�Tx < Zj

x 2 f0; 1gn

(2.13)

This generates the set of solutions that have tolls less than that on x0.

Since a strict inequality cannot be represented directly the equations
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Time
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0
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Figure 2.19: The initial solution makes a pessimistic assumption to avoid over-

looking any potential solutions.

become:

minx tTx

s:t: Ax = b

�Tx � Zj � �

x 2 f0; 1gn

(2.14)

Where � is an arbitrarily small di�erence in the tolls on the network.

This is the CSP j problem.

The process iterates producing minimum time paths under increasingly

strict toll constraints inherited from the previous iteration; each solution

dominating other paths in the restricted search space with respect to time.

When a path is found, with a toll equal to the minimum toll on the network
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Figure 2.20: � is introduced to rewrite the inequality as a strict inequality.

the algorithm can terminate and evaluate the objective function in (2.9)

using each of the candidates to produce an optimal solution.

In general the iteration process described still may take a great many

iterations to �nd the solutions but in many cases the performance can be

dramatically improved by recognizing when it is possible to terminate the

search early. By constructing a set of time-toll pairs that have the same

composite cost as xj, de�ned by:

I(xj) = f(a; b)jv(a) + b = v(tTxj) + �Txj; a � tTxj; b � �T y0g; (2.15)

where �Ty0 is the minimum toll on all paths between the origin and the

destination.

Using the fact that minimum toll on all paths may not be zero, y0 can
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Figure 2.21: ICA Iterations

be found by solving the minimum toll path problem:

minx �Tx

s:t: Ax = b

x 2 f0; 1gn

(2.16)

Let �t(xj) denote a point in I(xj) with the maximum time given by:

�t(xj) = maxfaj(a; b) 2 I(xj) for some bg (2.17)

If a solution xj+1 with tTxj+1 � �t(xj) then the algorithm can terminate

since x(j+1) dominates all subsequent candidate solutions with respect to

time.

Naturally, it may be that this technique does not reduce the space at all,

i.e. when �t(xj) � tTy0
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Figure 2.22: Terminating the algorithm.

In this case it may be possible to work from y0 to reduce the search. To

do so a mirror of the CSP j problem is formulated and used repeatedly to

solve a minimum toll problem subject to a time constraint.

At any given iteration the search space may not be reduced, although in

practice it often is and the worst case complexity of this inherited constraint

algorithm is the same as that of a brute force method, i.e. super-polynomial.

2.5 Multi-criteria Optimization in Graph Problems

The �eld of multi-criteria optimization has its roots in late nineteenth-

century welfare economics in the works of Edgeworth and Pareto. Single
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criterion optimization problems, such as the single source shortest path

problem discussed above, often yield single solutions. In the SSSP the single

solution may be the fastest path, cheapest path, shortest path, etc. where

the single solution is the result of optimizing on a single criterion. Unfortu-

nately, when arcs in a graph are labeled with two weighting functions, such

as cost and time, there may not be a single solution that is both the cheap-

est and the fastest. In fact, the notion of \optimality" does not apply in

the multi-objective domain directly. Solving a multi-objective optimization

problem usually involves �nding multiple eÆcient solutions, the Pareto op-

timal set, with with the property that one of the criteria on which a solution

was found may be improved but only at the cost of the other criteria.

2.5.1 Pareto Optimal Solutions

Formally, the multi-criteria optimization problem is stated as being the prob-

lem of �nding a vector of decision variables �x� = [x�1; x
�
2; : : : ; x

�
n]
T which

optimizes the vector function F (�x) the elements of which are the objective

functions.

F (�x) =

0
BBBBBBB@

f1(x)

f2(x)

...

fn(x)

1
CCCCCCCA

where n � 2, over the space S that represents range of the decision
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variables. The goal is to �nd the set of x�1; x
�
2; : : : ; x

�
n which yields optimum

values over all the objective functions.

A point �x� 2 S is Pareto optimal if for every �x 2 S either

^i2I(fi(�x) = fi(�x
�);

or, for at least one i 2 I such that.

fi(�x) > fi(�x
�):

That is, �x� is Pareto optimal if there exist no other vector �x that would

decrease some criterion without simultaneously increasing the value of an-

other. The set of points in the space S that is Pareto optimal is known

as the Pareto optimal set and it is rare that this set contains only a single

solution. Solutions s that belong to S are known as eÆcient, non-inferior

or non-dominated solutions.

Locally Pareto optimal points are a weaker set of optima, for which the

de�nition is the same as the one just given, except that the optimality is

restricted to a feasible neighborhood of �x� That is if B(�x�; Æ) denotes a ball

of radius Æ around the point �x� then there is no x 2 S \ B(�x�; Æ) such that

fi(x) � fi(�x
�) with at least one inequality.

The multi-criterion optimization problem, is in general, NP-Hard. It is

also worth noting that the solution set to multi-criteria optimization prob-

lems can contain exponentially many points. Multi-criteria solution sets can

grown exponentially with the number of criteria as well as exponentially

with the problem size even when the number of criteria is �xed [29]. It is
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this factor that decides the tractability of a problem. Moreover, the number

of solutions grows exponentially over all the visited nodes in a graph and this

is crucial in deciding whether an algorithm can in fact compute the Pareto

optima for a given problem.

In some cases the multi-objective optimization can be solved using pseudo-

polynomial time algorithms. An algorithm runs in pseudo-polynomial time

if it solves any instance in time polynomial in the size of the instance and

in the value of the largest integer in the instance description. The existence

of a pseudo-polynomial time algorithm is necessary when considering ap-

proximation approaches [22]. Interestingly if P 6= NP this condition is not

suÆcient, in fact, for multi-objective optimization problems a fast approx-

imations scheme exists only if a value-pseudo polynomial VPP algorithm

exists [29].

2.5.2 The Bicriterion Shortest Path Problem

The bicriterion shortest-path problem, one of the simplest of the multi-

criterion optimization problems, is de�ned as follows. Let G = (N;A) be

a simple directed graph where there are two objective functions cij and wij

associated with each arc (i; j) 2 A. Call cij and wij the cost and weight of

an edge, respectively. Let p be the set of arcs on a path between a given

origin and destination and F (p) and G(p) be the cost and weight of the the

arcs on the path p.

F (p) = f(fcijj(i; j) 2 pg) (2.18)
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G(p) = g(fwijj(i; j) 2 pg) (2.19)

Let Pij is set of all paths from from i to j. A path p 2 Pij is a dominated

path if there is a path p0 2 Pij such that F (p) � F (p0), G(p) � G(p0), and

at least one inequality holds, otherwise p is non-dominated. The Bicriterion

Shortest Path (BSP) is to �nd the set P�ij � Pij formed by all the non-

dominated paths from i to j.

In general the bicriterion shortest path problem is NP-hard [17]. However

in certain cases, depending on the functions f and g, the problem can be

solved in polynomial time.

In some cases it is even possible to solve the BSP problem with exact

methods. In the bicriterion analog to the SSSP, i.e. �nd all the optimal paths

from a root node r to all other nodes i 6= r in the graph if for one of the

measures, say the path weight, the list of all possible path weights, say G =

fG1; G2; : : : ; Gkg is known a priori andGj < Gj+1 for j = 1; 2; : : : ; k�1 then

with these constraints the problem can be solved using a pseudo-polynomial

time algorithm.

Associate k di�erent labels with each node i 2 N . Ci(Gj) is the current

minimum cost of the paths from r to i with weight Gj. If one keeps a

set Ci of the non-dominated labels associated with i then for every pair of

non-dominated labels for a given node i, say Ci(Gj) and Ci(Gk)

Gi < Gk , Ci(Gj) > Ci(Gk) (2.20)

Based on the set of labels G and the concept of dominance, there are

two di�erent approaches to solving BSP, the �rst a multi-labeling approach,
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the second a topological approach.

A Multi-Labeling approach. Without loss of generality let the functions

F and G in Eq(2.18) above be simple summations of the path costs of the

edges and to further simplify the argument here let the arc labels f and g

always be non-negative. Given a node, suppose the non-dominated labels

associated with this node are listed according to one index, say the 'weight'

index, and then the other. Due to the non-dominance condition for entry

into this set, these labels are also ordered but in the reverse order.

When a node i is selected and the leaving arc (i; j) is analyzed, each

candidate label Ci(Wh)+ cij is compared with the label Cj(Wh+wij). Since

wij is constant for the arc the weight of non-dominated labels for node i is

shifted with respect to the weight index and the labels are increased by the

same value cij The candidates still follow the dominance ordering property

2.20 and can be merged with Cj producing a new list of non-dominated

labels (dominated labels are removed during the merge).

A Topological Approach. This approach is an adaptation of the Chrono-

SPT which maintains a set of non-dominated labels. Here a bucket list B

stores the sets of non-dominated labels, with the hth bucket Bh storing the

set of non-dominated labels Ci(Wh); for i 2 N . At each step, the current

label is selected from the lowest non-empty bucket (weights are considered

according to their non-decreasing ordering) and is processed in a manner

similar to that described in the Chrono-SPT. The topological approach

�nds the non-dominated paths according to the non-decreasing ordering of
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the path weights.

In transportation algorithms the topological approach is very eÆcient.

For example, given a network with arc costs, the problem is to �nd the min-

imum cost paths from a given origin to other nodes subject to the constraint

that the number of transfers does not exceed a maximum given number, say

k. Here the 'transfer number' is the weight associated with the arcs, transfer

arcs have a weight of 1 and non-transfer arcs a weight of 0. The number of

transfers, limited to k is used as the index both for the labels and for the

buckets. When the labels are selected from the hth bucket Bh; 0 � h � k all

the previous buckets have been emptied while the buckets Bh+2; : : : ; Bk are

still empty. Then, the wrap-around handling of the bucket list limits their

physical number to two. It is therefore possible to implement the bucket

list as two lists, Qnow and Qnext which are Bh and Bh+1 respectively. As

in Chrono-SPT dominance is checked relative to the last selected non-

dominated label relative to node i, the last-labeli.

A typical iteration selects a node i from Qnow with its corresponding

label Ci�now = Ci(Wh). If Ci�now � last-labeli, then it is discarded since

it is dominated. Otherwise for each arc in the forward star of i that is not

a transfer arc the candidate label Ci�now + cij is compared to Cj�now. If

Ci�now < Cj�now then Ci�now is decreased and if j is not in the now queue

it is added to it along with its label. In the case where (i; j) is a transfer arc

then Ci�now + cij is compared to the Cj�next and when necessary inserted

into Qnext.
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When Qnow is empty all the minimum cost paths with no more than h

transfers have been found and the algorithms swaps Qnow and Qnext and

processes the non-dominated labels relative to the h + 1 transfer number.

When h = k and Qnow is empty the algorithm will terminate. The time

complexity is O(mk).

Finding Pareto shortest paths is often feasible in practice. Often prob-

lems involving graphs with multiple-optimization functions based on real

world problems produces a small number of Pareto optima [24], this is in

sharp contrast to the worst case. Many real world graphs produce a total

number of Pareto optima that is small enough to make the problem eÆ-

ciently tractable from a practical standpoint.
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Chapter 3

The Itinerary Problem

The impetus for this research came from trying to generate intelligent multi-

modal itineraries for passengers traveling on �xed route transit systems.

While it has been possible to plan itinereraries using airfares, and choose

�ghts using mulitple criteria, i.e. cost and time constraints, this service has

not been available for planning trips using public transports. Flight plan-

ners, until recently, were run on large mainframes. The Orbitz system was

the �rst to move away from the mainframe model and move to serving cus-

tomers using clusters of Pentium class computers [10]. Itinerary planners

for public transportation deal with sparser but far larger graphs than airline

planners and until recenty, prior to the spread of the World Wide Web, had

generated no interest or demand. Other intelligent passenger advisory sys-

tems (IPA) for the public transport domain, like the one described in this

thesis, have been built both in academic settings and by commercial soft-

ware companies. Of the more interesting IPA systems deployed already are
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the TransStar system built by Transcom, and Hafas built by HaCon Inge-

nieurgesellschaft mbH. The Transcom system, commissioned by the State of

California to o�er a multi-modal itinerary system for the transit systems in

Southern California is now being deployed in a number of cities around the

United States. The Transcom system, while being multi-modal optimizes

journeys based on time only, searching only for the shortest way to get a

passenger from one location to another. HaFas users are Railtrack, a com-

pany that runs the railway infrastructure in Great Britain and DeutcheBahn,

the German railway provider. Much of the work behind the HaFas servers

is documented in [14, 35, 24]. This system currently provides multi-modal

itineraries for most European railway networks. While the HaFas system

includes price information, it does not currently optimize on the fares of

journeys taken. To date, none of the systems that the author is aware of

have attempted to solve the Pareto optimum paths problem for large scale

dynamic networks using exact methods.

The problem to be solved here is that of providing reasonable itineraries

to a user of an IPA system. The goal is to present the user with all \good"

solutions to the question, \How do I get from A to B if I leave A at time T?".

The assumption made in designing this system is that the Pareto optimal

set represents all \good" solutions to a user query. By optimizing simulta-

neously on the time of journey, the cost of the journey and the directness

of a journey (the number of vehicle changes involved in going from A to

B) a \good" solution is a Pareto optimal path through the transit systems
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Option Carrier Route Time Fare

1 Amtrak New York ! Philadelphia 1h 50 m $85

2 Commuter Rail New York ! Trenton ! Philadelphia 2 h 12 m $14

3 Bus New York ! Philadelphia 2h 20 m $20

4 Limo New York ! Philadelphia 2h 30 m $195

Table 3.1: The travel time and fare for traveling from New York City to Philadel-

phia.

from A to B and no non-Pareto optimal path is ever returned to a user of

the system. Consider the following example, if a passenger tries to get from

New York City to Philadelphia using public transport the choices are cur-

rently, take an Amtrak train directly from Penn Station in New York City

to 30th Street Station in Philadelphia, take a bus from the Port Author-

ity to Philadelphia or, travel from Penn Station to Trenton on New Jersey

Transit, the New Jersey regional commuter line, and then continue on from

Trenton to Philadelphia via SEPTA, (South-Eastern Pennsylvania Transit

Authority) the Pennsylvania regional commuter line. The costs and travel

times are listed in �gure [3].

Clearly, a case can be made for using all of the �rst three solutions,

depending on whether cost, time or directness was important to a user. No

passenger would opt for the fourth solution, which takes longer than the

Amtrak and costs more, if they were to base their decision on the three

objective functions, cost, duration of journey and directness.
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Unfortunately, Pareto optimal paths are expensive to compute. As stated

earlier multi-criteria optimization problems are NP-Hard, in fact even the

simplest of the multi-criteria optimization problems, the bicriterion opti-

mization problem is NP-Hard. The approaches taken in solving multi-

criteria optimization problems are described in chapter 2. The most favored

approach, due to its computational eÆciency, is to solve the Pareto shortest

paths problem using heuristics but in many cases heuristic solvers are not

acceptable as they are not guaranteed to compute the correct solution set.

Fortunately, computing Pareto paths using exact methods (that is methods

that are guaranteed to generate the set of solutions) is possible in practice

[24]. When considering the Pareto optimal path problem, it is possible to

construct arti�cial networks where the number of Pareto paths found to ev-

ery vertex is exponentially large in both the size of the input graph and the

number of criteria being optimized, however real world graphs often have

built in properties that cause the number of Pareto paths to be small. For

example, the nearly FIFO nature of transit networks implies that if a train

runs along a track it seldom, if ever, catches up with the train that left

before it. This ensures that when constructing solutions, waiting at a node

will seldom generate a new solution that outperforms leaving earlier.

This thesis describes the algorithms and key implementation features

that will solve the problem of generating Pareto paths in large scale dynamic

networks using the Itinerary Problem as a device to explore the issues in-

volved. Given the problem is NP-Hard but is tractable in practice the design
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goals are that the algorithms should be able to present a user with answers

in a short period of time on commodity hardware.

In generating itineraries a key issue is that the networks being represented

are multi-modal. Previous work [36, 37] in modeling multi-modal networks

create an exponential explosion in the size of the graph. The dynamic graph

that represents the transit systems of the north-east corridor represents 77

di�erent transit systems from long range passenger trains to local subways

and ferries. This is the largest multi-modal transit network modeled. The

graph has over 3000 stops and 3.5 million edges connecting them.

The strategy adopted in this work is to create a dynamic multi-graph

that models the properties of each transit provider and then adds transfer

arcs to connect the components together. Computing an itinerary is now a

matter of �nding the set of Pareto optimal paths in this multi-graph. The

resulting multi-modal graph is roughly the size of the component graphs,

with only a handful of edges added to represent the change between modes.

This simple strategy has a number of advantages over most of the other

approaches in the literature these will be outlined below as the dynamic

multi-graph structure is formalized.

3.1 The Pareto Itinerary Problem

The itinerary problem that this thesis aims to solve is the Pareto itinerary

problem.

Let G = (V;E) be a dynamic multi-graph where V is the set of vertices
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and E the set of edges representing a single vehicle that goes between two

stops stopping at no other stop along the way.

In this problem all time values are discrete, along the lines of [6, 27, 37],

and belong to the set T. T, in this problem, is equivalent to the set of

positive integers Z+.

The set of vertices V is partitioned into disjoint subsets called fare regions

that represent the di�erent fare structures associated with a journey across

transit systems. For example the best way to go between two cities using

public transport may be to use a mass transit system to get to a major

station, an inter-city long distance carrier to the destination city and then

another mass transit system to �nally reach the destination. Each carrier

has its own fare structure and path costs under these fare structures are

seldom based on a simple additive cost function. Let FR be the set of fare

regions and Vi be the set of vertices in fare region i then,

V =
[
i2FR

Vi

Each edge e 2 E describes a segment of a journey between two stops.

More formally the edge e can be written as (u; v; tDEP; tDUR; transport) where

the u and v are the source and destination vertices, tDEP and tDUR represent

the time of departure along that edge and the duration of the journey re-

spectively, and �nally transport is an identi�er for the vehicle that the edge

represents.

For an edge e = (u; v; tDEP; tDUR; transport) we de�ne the following func-

tions:
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� src(e) = u

� dst(e) = v

� departure(e) = tDEP

� duration(e) = tDUR

� arrival(e) = tDEP + tDUR

� transport(e) = transport

Since the vertex subsets representing the fare regions are disjoint, special

edges known as transfer edges are added to E to connect the fare regions

together. Transfer edges may also be added between two stops in the same

fare region. When a transfer edge has a source and destination vertex in

di�erent fare regions and the vertices u and v are known as transfer points.

Transfer edges have the property that they may be traversed at any time,

that is the tDEP for each transfer edge is any value in the set T. The departure

time for a transfer edge is represented by the special value�. If u is a transfer

point then the set of transfer times T is the set of arrival times of non-transfer

edges to u. If u and v are transfer points and (u; v;�; tDUR; transport) is a

transfer edge it is plain to see that a transfer edge could be rewritten as a

set of normal edges in the following manner,

(u; v;�; tDUR; transport) =
[
t2T

(u; v; t; tDUR; transport)

Many timetables are periodic, that is all information about the transit

systems repeat after a set time interval. The time-horizon of the timetable

70



is the value of time at which the timetable repeats itself. For example if

the time values in T are meant to represent minutes, and the timetable is

a weekly timetable then the time horizon is 10080, the number of minutes

in a week. To allow paths to be computed where the departure times or

arrival times are greater than the time-horizon the value of tDEP of an edge

e is actually the remainder of the actual time of departure ~tDEP modulo the

time horizon.

tDEP = ~tDEPmod time-horizon

Let a path p in the graphG be a sequence of connected edges he1; e2; : : : ; eni

in the G. The arrival time of p is given by the arrival time of the last edge in

the path. For an edge to extend a path the edge must have a departure time

that is at or after the arrival time of the path. To illustrate this point further,

given a path p = he1; e2i if departure(e1) + duration(e1) > departure(e2)

the departure time of e2 is departure(e2) + time-horizon.

For a path p = he1; e2; : : : ; eni we de�ne the following functions:

� src(p) = src(e1)

� dst(p) = dst(en)

� departure(p) = departure(e1)

� arrival(p) = arrival(en)

The cost functions on which a journey is optimized are the duration of

journey fT, the monetary cost (fare) for a journey fC, and the directness of

the journey fXFR.
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De�nition 3.1.1 The starting time of an itinerary tSTART, is the time after

which the �rst edge of any solution found may start.

Given a path p through the graph, the costs functions are de�ned as

follows.

De�nition 3.1.2 The duration of the path fT(p) , is given by the di�erence

between the time of arrival of the path and the starting time of the itinerary.

fT(p) = arrival(p)� tSTART

De�nition 3.1.3 The directness of the path, fXFR(p) is a measure of how

many di�erent vehicles are used along a path p. This is simply a count of

the number of distinct transports that occur when traversing a path using

non-transfer edges. Note that transfer edges do not contribute to the value

of fXFR(p).

Almost all transit providers publish a fare table that determines the cost

of every journey on their transit system. Usually, the fare is based on the

source station s, the destination station d, and the time at which the journey

was taken. This time-dependence is mainly due to peak and o� peak fare

structures common to many mass transit systems.

De�nition 3.1.4 The intra-regional cost of a path p in a fare region i is

given by fCi : V � V � T ! R and is dependent only of the source and

destination in that fare region and the time at which the �rst edge within the

fare region is departed.
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fCi (p) is implemented by means of a lookup function.

Let p = hp1; e(1;2); p2; : : : ; e(n�1;n); pni where pi and pj are path segments

through fare region i and j respectively and e(i;j) is a transfer edge from fare

region i to fare region j.

De�nition 3.1.5 If a path p travels through multiple fare regions the inter-

regional cost of the path, fC(p) is given by the sum of the costs of the paths

through each of the fare regions.

fC(p) =
X
i2I

fCi

where I is the set of fare regions through which p passes.

Of these cost functions only one, the directness of the journey, fXFR is

linear and additive.

De�nition 3.1.6 Let Pv be the set of Pareto optimal paths that reach a

vertex v and P be the set of all Pareto optimal paths.

We can now de�ne the Pareto itinerary problem.

De�nition 3.1.7 Given a multi-modal dynamic network G = (V;E) and

set of source vertices S � V , and destination vertices D � V and a starting

time tSTART for a journey and an vector function F (p) = [fT; fC; fXFR]T the

Pareto itinerary problem is to �nd the set of Pareto optimal paths P from S

to D leaving at a time tSTART in G that is dominating in the vector function

F (p).
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The Pareto itinerary problem is NP-Hard, as explained earlier. If the

Pareto itinerary problem were to optimize only on two objective functions,

F (p) = [fT; fC]T the problem is immediately the bicriterion shortest path

problem and remains NP-Hard.
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Figure 3.1: Identical edge sets lead to an exponential number of solutions. As

the path grows each pair of edges doubles the number of solutions at the previous

node.

The complexity of the problem is also easy to illustrate by example.

Consider a graph G that has pairs of identical edges between each vertex

as illustrated in �gure 3.1. Assuming the start vertex is 1 the sets of un-

dominated paths at each vertex is shown below each vertex. The number

of non-dominated solutions grows exponentially as the path is extended. In

practice however the dynamic network that models transit systems will have

properties that cause the number of non-dominated paths at each node to

be small.

Now that we have de�ned the itinerary problem we can turn our attention

to �nding eÆcient ways to generating Pareto optimal itineraries. While the
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problem remains NP-Hard we can in practice solve it for our real network.

In the next chapters we will see how to solve the Pareto problem in the

framework of the general Bellman-Ford-Moore algorithm, extending it from

a single objective shortest path tree problem to a more general Pareto set

problem. The domination of paths is an important factor in keeping the

practical running time low. We will see how to expand Pareto optimal

paths from a vertex to its neighbors and then apply a domination check,

based on F (p) to reduce the number of optimal paths at any given vertex.

We will also show how to extend F (p) to solve problems that while not

typical optimization problems, are of interest to us.
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Chapter 4

Computing Pareto Paths

In this chapter we make a �rst attempt at solving the itinerary problem by

modifying the Bellman-Ford-Moore algorithm to simultaneously optimize

solutions based on the objective functions for the duration of a path p,

fT(p) and its cost fC(p). This basic algorithm is in many ways, analogous

to the ChronoSPT algorithm from chapter 2. We then describe how to

add the directness measure fXFR(p) to the vector of objective functions.

In order to construct the ParetoPath algorithm we must �rst describe

the dynamic network on which it is run and how it is constructed from the

various sources of transit data. Since the problem is to be solved on large

scale networks, once the graph grows large enough, resulting from adding

many transit provider, it can no longer be stored in main memory, instead,

the graph is stored in a database. In the discussion that follows we shall

simply refer to this as \the database". The database that describes the

graph may reside in main memory or on disk, depending on whether there
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is enough room in main memory. Where it is important, we will discuss the

impact of disk performance on the algorithm. To implement the database

we use the B-tree data structure from the BerekleyDB system, this system is

embeddable in the program so performance of the algorithm can be analyzed

without needing to factor in the database management overhead of other

more relational systems.

4.1 Building the Dynamic Network from Transit Data

The dynamic multi-graphs used to represent the intra-regional transit net-

works are built from three di�erent sources of information, transit maps,

timetables and fare tables. The information from the timetables is used by

the time and transfer cost objective functions, fT and fXFR. The fare tables

and the timetables are used to create lookup tables for the time dependent

cost function fC.

The vertex set for each intra-regional network is determined by exam-

ining the set of transit maps that each provider publishes. Every station

on a transit providers map becomes a vertex in the transit network. Every

vertex is also geocoded, i.e. there is a longitude and latitude associated with

every stop, and this information, while not central to the algorithms pre-

sented below, is used to determine the set of source and destination vertices.

Geocoding information is also useful for heuristics, like those described in

[35], to guide the search through the network.

The edge set in the intra-regional network is determined from the timetable
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information published by each provider. As described earlier in chapter 3

every edge represents a segment of a journey on a particular vehicle. Two

consecutive timetable entries, say for a train A departing stop u at time

t1 and then departing a stop v at time t2 represents an edge that leaves a

stop u to a stop v, leaving at time t1 with duration t2 � t1. Under ideal cir-

cumstances this is all that needs to happen to derive an edge set. However,

anyone who has ever looked at a timetable will know that there is often a

plethora of additional information on every timetable. For example, in some

cases a train will stop only to drop o� a passenger, whereas in other cases

a train will stop only to pick-up passengers. Modi�cations to the edge set

based on constraints imposed by the transit providers on the use of their

system is often necessary and part of a post-processing phase. In addition

to this additional information, transit providers present their timetable in-

formation in di�erent ways. In reality conversion of timetable information

into an edge set is largely an ad hoc process that cannot as yet be performed

automatically.

The fare function fC is based on creating look-up tables from the transit

providers fare tables. This is because there are no �xed rules as to how

individual providers decide to charge for a journey. In the case of some mass

transit systems, like the subways and buses in New York fares are 
at fares,

in other cities, mass transit systems base their fares on track miles traveled,

and in many cases fares are determined on a zone-to-zone basis.

The approach taken here is to model all fares for every provider as a
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point-to-point fare function. The stop set is partitioned into disjoint subsets

of fare zones and the fare zones of two stops is used to determine the fare

structure. Where the providers fare structure is based on a zoning system

the fare zone of a stop is given by the published information. In the case

of 
at fare systems like the subway all the stops are placed in a single fare

zone and the fare table has a single entry. Lastly, if the fare structure of a

transit provider is based on a distance function each stop is assigned to a

unique fare zone.

The fare function is also time dependent. Thus the fare table is indexed

on the source fare zone, destination fare zone and the time of journey. This

is due to peak and o� peak fares on many commuter systems. Peak fare

structures are often a result of policy decisions made to reduce the number

of riders during rush hours. Often peak fares are asymmetric. Coming into a

city center stop during the morning rush may carry an additional surcharge

whereas leaving a city center during the the morning rush hours does not

carry a surcharge. Leaving a city center during evening rush may also carry

a surcharge. The fare tables, when they are constructed, need to re
ect

this behavior. Consider the following example, on the NYC MTA Metro

north service to and from Grand Central Terminus (GCT), a peak fare on

Metronorth, according to the MTA website, is de�ned in the following way,

\weekday trains arriving GCT between 5 AM and 10 AM and departing GCT

between 4 PM and 8 PM." In the case of the morning rush into GCT the

fare table, while being indexed on the departure time tDEP needs to re
ect
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peak behavior for all the trains that arrive at GCT in the peak region. A

journey that leaves before 5 AM but arrives at GCT 7 AM will be assigned

a peak fare.

Src Zone Dst Zone T START T END Fare

1 2 0 420 $11.50

1 2 420 720 $13.50

1 2 720 1440 $12.50

1 3 0 420 $11.50

Figure 4.1: An example of a few fare table entries. Notice there may be more

than one fare for every pair of fare zones vertices, this typically occurs when there

are peak and o� peak fare structures.

The construction for the graph so far creates a set of disjoint graphs,

each representing a single fare region. We connect the intersections together

using transfer edges at intersections.

The �nal stage in constructing the transit network is to add the transfer

edge information. Intersections are identi�ed manually and the transfer

edges are added to the graph connecting the individual graphs. Transfer

edges may also be added between stops in the same fare region. Every

member of an intersection is connected directly, by a transfer edge, to every

other member.

Many transit system have certain stations at which they limit passengers

to either boarding a train only, but not getting o�, or disembarking only but

will accept no passengers. In these cases it is necessary to examining the
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kFR

jFR

iFR

Transfer

Figure 4.2: The dynamic graph we construct is a collection of individual graphs,

each representing a di�erent fare region, connected by transfer edges

transit graph and modify the edge set to re
ect the constraints placed upon

stops by the providers. The �gures 4.4(a)-4.4(c) below show the rewiring

operations that need to be performed.
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New HavenHarlem

42nd Street Station

Grand Central Station

Hudson

S 

 6 4  5

GCT New Haven

GCT INTERSECTION

GCT Hudson

GCT Subway

GCT Harlem

Figure 4.3: An example of how physical stops get represented as intersections. In

this example there are four vertices representing Grand Central Station, one for

each fare region.

82



b ca

b ca

(a) Limiting embarkation

b ca

b ca

(b) Limiting disembarkation

b ca

b ca

(c) Skipping stops

Figure 4.4: Graph reductions for stations where passenger may or may not be

allowed to embark or disembark.
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Figure 4.4(a) shows the case where a passenger may only embark at b

but not disembark. The reduction performed is:

EmbarkationOnly(v)

1 for e 2 BS(v)

2 do for e0 2 FS(v)

3 do duration duration(e) + duration(e0)

4 E  E [ f(src(e); dst(e0); departure(e); duration; transport(e))g

5 E  E nBS(v)

Figure 4.4(b) shows the case where a passenger may only disembark at

b. The reduction here is:

DisembarkationOnly(v)

1 for e 2 BS(v)

2 do for e0 2 FS(v)

3 do duration duration(e) + duration(e0)

4 E  E [ f(src(e); dst(e0); departure(e); duration; transport(e))g

5 E  E n FS(v)

Figure 4.4(c) illustrates the case when a stop needs to be skipped.

SkipStop(v)

1 for e 2 BS(v)

2 do for e0 2 FS(v)

3 do duration duration(e) + duration(e0)
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4 E  E [ f(src(e); dst(e0); departure(e); duration; transport(e))g

5 E  E n FS(v)

6 E  E nBS(v)

All these reductions can be made time dependent, i.e. a stop may need

to be skipped only on the weekends or passengers may not be allowed to get

on a train at a station during rush hours.

4.2 Stop selection and prioritization

The itinerary problem requires a set of source and destination stops as its

input. Choosing stops properly impacts the quality of the results yielded by

an algorithm. A common scenario for a user of an IPA system is a request

for directions using street address at the source and destination. Using

geocoding software the source and destination addresses are converted into

their longitude and latitude co-ordinates. With this geocode information

a set of stops is chosen near the start and destination address. There are

subtle issues in choosing a stop set that become clear when itineraries are

generated.

To generate reasonable itineraries, the starting set often needs to contain

more than one vertex to re
ect the fact that often there is more than one

stop near a starting address. In urban areas, there may be many stops in

a given radius while in rural areas there may be a few. Given a starting

address it is easy to �nd the set nearest stops. This can be achieved in a
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number of ways, although the fastest and most eÆcient way is to �nd nearest

neighbors in a Cartesian plane is to use one of the many R-Tree indexing

schemes in the literature. [16, 31]. Stop locations are stored in an R-Tree

and the tree structure is queried to produce a set of nearby stops. R-Trees

can be queried in a number of ways, and in this context the more obvious

choices are to �nd the k-closest stops, a question that is more applicable in

rural areas, or to �nd all the stops in a given radius, a strategy that yields

better results in urban areas where the stop density is relatively high.

The other issue with stop selection comes from the presence of intersec-

tions. Intersections are typically stops that are so close to one another that

starting at one stop in given intersection set makes as much sense to a user

as starting from another stop in the same set. If the stop a from fare region

FRa is chosen as the start stop and is a member of an intersection then

it is possible that the �rst stage of an itinerary generated is to transfer to

another stop in that intersection, say b from fare region FRb. To avoid this

problem, stops are selected according to the following rule, if a starting stop

is a member of an intersection then all the other members of the intersection

should be included in the starting set as well.

Another issue involved in choosing stops is caused by solutions from one

stop in the source set dominating all other starting conditions. To see how

this issue arises consider the following, two stops are chosen as the two

closest points to a starting address. One stop, stop A, is much closer to

the starting address than the second stop, stop B. If the two stops are on

86



the path of a single train but B happens to be closer to the destination on

the path that the train traverses then, in the set of itineraries generated, all

solutions involving stop A will, in most circumstances, be dominated.

Starting 
point

b

a

Destination

Figure 4.5: Stop selection example

To a user however, getting on at station A is often the most logical option.

The strategy taken, to avoid domination of nearby stops, is to associate a

priority level with every stop in the starting set and use the priority level

in testing for domination when generating the Pareto-paths. This way no

Pareto-path that starts with a higher stop priority will ever be dominated by

one with a lower priority. We introduce a fourth cost function to determine

the paths priority in generating solutions.

De�nition 4.2.1 The priority of a path p, fPRIORITY(p), is given by the pri-

ority of the source stop on the path p.

Starting 
point

b
a

DestinationPriority = 0

Priority = 1

Figure 4.6: Stop selection example
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4.3 A na��ve algorithm to compute itineraries

This section outlines a na��ve algorithm that will compute itineraries based

on the cost functions fT, fC, and fPRIORITY in order to demonstrate how the

basic algorithm will solve the itinerary problem and that the dynamic graph

structure presented here is suÆcient to solve the problem directly without

relying on a traversal, explicit or implicit, of a space-time network. For

reasons that will be explained shortly we do not include fXFR in this version

of the algorithm.

Computing the Pareto-optimal paths can no longer be thought of as

expanding a shortest path spanning tree as no notion of \shortest" exists.

The labeling strategy is still useful however, as in the genericGenericSPT,

but each label is now Pv the set of Pareto-optimal solutions at each node.

The na��ve ParetoPath algorithm is shown in �gure 4.3.

The call to Q.InitializeSPT places the elements of the starting set

S into Q. This e�ectively turns the single source problem into a multiple

source problem by simulating the �rst set of iteration from a virtual source

vertex connected by arcs, with no cost, on any of the objective functions,

and departing at tSTART to every source in the source set.

As before the algorithm iterates through the queue scanning each ver-

tex as it is selected. Unlike the GenericSPT label correcting algorithm,

updating a label set does not involve simply replacing a label if it violates

the Bellman conditions, instead, a new labels are added to the set of solu-

tions and then dominated labels are removed. As it is presented on lines
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ParetoPath(G;S;D; tSTART)

1 Q.InitializeSPT(S)

2 while Q.NotEmpty

3 do i Q.Select()

4 for j 2 Adj[i]

5 do P �
j  Extend(Pi; j)

6 Pj  RemoveDominated(Pj ; P
�
j )

7 if 9p 2 Pj s.t. p is not marked scanned

8 then Q.Insert(j)

9 MarkScanned(Pi)

10 PD  RemoveDominated([k2DPk)

11 return PD

5-6 in �gure 4.3 the domination check RemoveDominated can be delayed

and performed at once on all the new solutions introduced by extending

the paths. RemoveDominated simply performs an O(k2) computation,

where k is the number of Pareto paths at a vertex, comparing each element

in the two sets against each other. Domination is checked using a domina-

tion predicate dom(p; p0), in our case we say a path p is said to dominate p0,

if the domination condition, given below in equation 4.1, holds.

dom(p; p0) , (fC(p) < fC(p0))

^ (fT(p) < fT(p0))

^ (fPRIORITY(p) > fPRIORITY(p0))

(4.1)
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Every path p in a solution set is marked as scanned or unscanned. Once

a node i has been scanned all the solutions for the label set of the node,

Pi are marked as scanned. Even though i may be reinserted into the Q

there is no need to try to extend these solutions. The procedure Extend,

shown in �gure 4.3 extends the paths from a node i, to a neighboring node j

extending only those paths in i that are not marked as scanned. If after the

RemoveDominated call the set P �
j has added new undominated solutions

to Pj then j is reinserted in the queue and will eventually be scanned again.

As in the Bellman-Ford-Moore algorithm, the algorithm terminates when

there are no more vertices left in Q to be scanned. Since we are looking

for the Pareto optimal solution set from S to D we need to return the

undominated set of solution that reaches D. Line 10 in �gure 4.3 computes

this set.

Extend(Pi; j)

1 extended fgfor each p 2 Pi s.t. p is not marked

2 do for each (i; j; tDEP; tDUR; transport) 2 E

3 do extended extended [Concatenate(p; (i; j; tDEP; tDUR; transport))

4 return extended

The proof of correctness is by a simple induction on the length of the

paths formed.

The ParetoPath algorithm has a complexity 2O(n), where n the number

of vertices in the dynamic graph G. This is easily shown by considering the
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following example. In the case where we have two identical trains, v1 and

v2 running down a track at the same time with the same cost (a situation

that never occurs in practice) the number of solutions at the �rst stop is 2

as neither solution is dominated by the other. At the next stop down the

track there are 4 solutions and so on until the nth stop where there are 2n

solutions. Therefore it is possible to have an exponential number of solutions

in n. If there are k identical trains the complexity is O(kn).

{} { a 

B

A 1 2 3

n

1

b }1

a 1

1

a 2

2

a 3 a n-1

a n-1

1 2 3 n

n

b 1 b 2 b 3 b n-1

{ a  a ,, ,1 2{ a  a ...
b n-1,1 2 a  a ...

b n-1

n-1

}1 2 b  b ...
...

1 2 a  b ,
1 2 b  a ,
1 2 b  b }

2 4 21

Figure 4.7: Duplicate edges cause worst case behavior

In practice however we never see two trains running down the same track

at the same time.

One may be tempted to add fXFR to the domination predicate in order

to allow ParetoPath to solve the itinerary problem as shown below.

dom(p; p0) , (fC(p) < fC(p0))

^ (fT(p) < fT(p0))

^ (fXFR(p) < fXFR(p0))

^ (fPRIORITY(p) > fPRIORITY(p0))

(4.2)
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The problem with the domination predicate above can be seen from the

example in �gure 4.8. In this example, consider two identical train v1 and v2

running down the same track at di�erent times. Train v1 departs from stops

a, b, c, and d at times t1, t2, t5, t7, respectively while train v2, an express

train, departs a, c and e at times t1, t4 and t6. For this example let the cost

in terms of fC of getting to the stops be identical and let t1 < t2 : : : < t7.

b 

b 

t1

c1 c2

c4 c5

c3

t2 t3

1

t4 t5 t6

t7

Vehicle 1

Vehicle 2

p

1
p

c

c d

d

START

a 

a 

Figure 4.8: The most direct path to stop d will never be found. The dom predicate

will remove the vehicle 1 solution to c.

The label that corresponds to v1 reaching c will be dominated by the

label for v2 reaching c. When it comes time to scan the vertex c to expand

paths further the path corresponding to train v1 will no longer be considered

for expansion. In order to get to d the path that will be expanded is the path

using v2 and then a transfer to v1 at c, and while there is nothing wrong with

that solution, the solution that represents staying on v1 to reach d, incurring

no transfer costs, is eliminated from the Pareto set thereby preventing the

algorithm from discovering the complete set of solutions.

In the next chapter we will show how to reintroduce edges fXFR to the
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domination predicate correctly.

4.4 Special cases of the ParetoPath algorithm

If we reduce the set of objective functions to just costs fT and fC the

queue may be implemented using any of the schemes discussed in chapter

3. Pallottino et al in [27] suggest that for problems in the transportation

domain where networks have non-negative arc costs, are quasi-planar, sparse,

and structured the simplest version of the Bellman-Ford-Moore algorithm

implementing a FIFO queue often does the best due to the constant time

cost queuing and dequeuing vertices. This improved behavior is due to the

overhead associated with insert and selection operations in a priority queue.

In this case however since we are optimizing on the objective functions fT

and fC a shortest search approach can be taken to minimize the amount

of scanning if we take note of the fact that as we add edges to a path the

cost of the path, with respect to fT, can only increase. Naturally, to be a

shortest �rst algorithm Q must be a priority queue.

If we assume that no optimal journey through the transit graphs takes

more than some constant maximal amount of time, TMAX then Q may be

implemented as an array of buckets, one bucket for each time interval. Time

becomes the measure on which priorities in Q are established and the array

implementation avoids the overhead typically associated with inserting and

removing elements from a queue. Since every departure and duration on

the transit graph takes less than the time-horizon, it is safe to assume that
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there will be no itinerary that takes more than twice that amount of time to

arrive. In our case the time-horizon is 10080, therefore an array with 20160

buckets is assumed to be adequate for generating itineraries. The priority at

which a vertex i is inserted is simply the weight of the earliest arrival times

of the paths in Pi.

Implementing a shortest �rst variant now becomes a matter of maintain-

ing a counter to index the queue. This counter represents the minimum

weight of elements in the queue. Each Q.Select operation now becomes

a matter of incrementing the counter until the �rst non-empty bucket is

reached and then dequeuing the �rst element (vertex) in that bucket from

the queue. As the minimum weight will only increase monotonically, since

paths can only grow with respect to fT, once the counter has been incre-

mented no element will ever be enqueued in a bucket with a lower weight.

Sweeping through the array ensures an amortized constant time cost for the

queue operations.

In another variant of the above algorithms to solve the minimum arrival

time problem. If we consider the array based queue implementation above

but are only interested in the fT as the sole objective function, it is easy

to see that ParetoPath reduces to the simple Dijkstra's algorithm, where

the minimum cost element of a queue never decreases, and the running time

of this variant is O(m+ n).
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4.5 Transfer minimization

The last section discussed a new implementation of the ParetoPath algo-

rithm that performs a domination check on three of the four desired dom-

ination criteria. This section discusses how to reintroduce the directness

criteria, fXFR.

Adding fXFR to do the domination predicate, i.e.

dom(p; p0) , (fC(p) < fC(p0))

^ (fT(p) < fT(p0))

^ (fXFR(p) < fXFR(p0))

^ (fPRIORITY(p) > fPRIORITY(p0))

(4.3)

implies that we will prune paths that while dominated are still needed to

extend the path correctly. Recall the example illustrated in �gure 4.8. One

approach to �xing this problem would be to mark dominated paths and

continue to expand all paths, dominated and undominated at each node.

This is an exhaustive search and is impractical, the number of solutions,

dominated and non-dominated would grow exponentially with the number

of vertices on the path. Instead a new class of edges called direct edges, is

used to reintroduce direct paths where they exist.

De�nition 4.5.1 A vertex v is directly reachable from u if there is a path

p formed by concatenating edges in E that have the same transport.

De�nition 4.5.2 A direct path p is a path that connects two directly reach-

able vertices to each other.
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De�nition 4.5.3 A direct edge eD(p) is an edge between two directly reach-

able vertices u and v constructed to represent the departure time tDEP, dura-

tion tDUR and transport transport of a direct path p.

Let p is a direct path between two vertices u and v then the direct edge

eD between the vertices is given by eD where

eD(p) = (u; v; departure(p); duration(p); transport(p))

4.5.1 Creating the set of direct edges

The set of direct edges can be precomputed for each vertex in the graph. A

na��ve way to perform this computation is shown in �gure 4.5.1. Each direct

edge is simply the transitive closure of the edges in the train starting from

every stop that a train visits.

4.5.2 Using direct edges to minimize transfers

Consider the example from �gure 4.8 again. By augmenting the graph with

direct edges as shown in 4.5.2 we can now see how when calling Extend

searching for the direct edge d1 allows the construction of a more direct

Pareto path from a to d.

When extending a path to u by an edge (u; v) the ParetoPath needs

to account for the fact that a path that may lead to a more direct solution

was removed by the domination predicate 4.3. Paths that are more direct

are introduced to the set of paths to be extended from Pu by searching for

direct edges, however these paths are not members of the Pareto set. To
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MakeDirectEdgeSets(G)

1 E = GetEdges(G)

2 Transports MakeTransportSequences(E)

3 for each transport seq 2 TransportSequences

4 do last edge in path GetLastEdge(t)

5 l length(transport seq)

6 for i = 1 to l

7 do first edge in subpath transport seq[i]

8 src = source(first edge in subpath)

9 dep = departure(first edge in subpath)

10 for j = i+ 1 to last edge in path

11 do dst = destination(transport seq[j])

12 dur = arrival(transport seq[j]) � dep

13 transport = transport(transport)

14 WriteDirectEdgeToDB(src; dst; dep; dur; transport)

15

Figure 4.9: The MakeDirectEdgeSets algorithm iterates through each trans-

port sequence creating a new direct edge for every stop it encounters. Note: Line

10 requires that there are no direct edges representing paths that consist of a

single edge.

�nd more direct paths for a path p a search is performed by following the

predecessor edges on a path looking for vertices from which a direct edge
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Direct edge
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Figure 4.10: Augmenting the graph with direct edges allows a direct path to be

found to d. The direct edge reintroduces the vehicle 1 solution at c.

can be used. The search need not continue past a predecessor edge that

is a transfer between fare-regions, this is because direct edges are intra-

regional in nature. In addition, the search for a more direct path need only

be carried out when a transfer from one vehicle to another in the same fare

region occurs as this is the only time at which the directness measure fXFR

can improve by the introduction of a direct edge.

To take advantage of the direct edges the Extend procedure must be

modi�ed to introduce these `more direct', but otherwise dominated, paths

to the set of paths being extended for a vertex. The new version of Extend

is shown in �gure 4.5.2. The ParetoPath algorithm remains unchanged.

The proceduresDoesAMoreDirectPathExist andCreateMoreDi-

rectPaths can be implemented fairly inexpensively as follows. As stated

earlier the predicate DoesAMoreDirectPathExist need only scan back-

ward along a path p 2 Pu as far as the �rst global transfer edge. In addition,

by maintaining a pointer at each path to the �rst transfer along the route, the
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Extend(Pi; j)

1 extended fg

2 P  Pi

3 for each p 2 P s.t. p is not marked

4 do if MoreDirectPathExists(p)

5 then D  CreateMoreDirectPaths(p)

6 P  P [D

7 for each (i; j; tDEP; tDUR; transport) 2 E

8 do extended extended [Concatenate(p; (i; j; tDEP; tDUR; transport))

9 return extended

Figure 4.11: Extend for similar edge sets.

search for more direct connections can avoid testing to see if the u is directly

reachable from the current vertex. A predicate DirectlyReachable is

easily implemented by maintaining an adjacency list derived from the di-

rect edges. If DirectlyReachable indicates that u is directly reachable

from some vertex w then CreateAMoreDirectPath simply performs a

concatenation of the paths in Pw with the �rst directly reachable edge (w; u).
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Chapter 5

A Faster way to compute

Pareto paths

The ParetoPath algorithm presented in the previous chapter demon-

strates that it is possible to compute Pareto-optimal paths on dynamic

networks derived from transportation models. The problem with the al-

gorithm presented however is its long running time in practice. In engi-

neering a system for use as a web service the searches need to be executed

rapidly. In addition, the ParetoPath algorithm fails to incorporate the

transfer cost objective function fXFR, as one of the criterion on which the

Pareto-optimality of a path is evaluated. This chapter introduces new algo-

rithms, variants of the basic ParetoPaths algorithm, to solve the itinerary

problem for large scale networks. The algorithms presented in this section

describe how to eliminate the redundant searches through the graph, how

to incorporate the directness measure, fXFR in the set of objective functions
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and how to utilize precomputation on the graph to improve the response

time of the algorithm. Finally this section touches upon some of the more

important implementation details necessary to implement a fast and scalable

system.

Issues of scalability play an important part in the design of an improved

ParetoPath algorithm. As the dynamic networks become larger, it be-

comes harder to store the entire graph in main memory making it necessary

to store the the graph structure on disk. As always, when working with large

data structures on disk, large performances can be made by minimizing disk

access. A typical disk access on modern commodity hardware today costs

between 10-12 ms, in comparison, main memory access takes between 2 to

200 clock cycles depending on whether the information being sought is in a

cache (L1 or L2), or in main memory. In the discussion below, minimizing

disk access quickly becomes an important part of the focus, even if it means

performing a comparatively large amount of work in main memory. To ac-

complish the goal of minimizing disk access, various levels of static analysis

on the graph are used to accomplish the performance goals. This approach

is common in speeding up shortest path algorithms and good examples of

these techniques in practical transportation and direction �nding systems

can be found in [20, 14, 35].
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5.1 Similar Edge Sets

In the basic ParetoPath algorithm most of the computation is spent

in scanning a vertex to extend the solution set. This is fairly typical for

Bellman-Ford-Moore type algorithms and is the reason why reducing the

number of scanning operations is the central focus in improving the perfor-

mance of SPT L algorithms in the literature [3, 6, 7, 13, 15, 9, 21, 28]. While

the ParetoPath algorithm can certainly bene�t from the above strategy

the approach taken here is to perform an analysis of the graph ahead of

time and use this information to reduce the complexity of the scanning op-

eration. This is because the cost of scanning, in the ParetoPath algorithm

is even more severe as each adjacent pair of vertices may have hundreds of

edges between them for the intervals that typically represent the periods of

time-tables.

When at a vertex v the ParetoPath algorithm tries to extend the

path by adding every edge e 2 FS(v) and then removing all the dominated

solutions from the label at that node. In transportation networks due to the

physical and economic constraints, vehicles often traverse the same route

many times in a given time period. Recognizing this similarity leads to a

variant of the core algorithm that greatly reduces the amount of work done

in solving the itinerary problem. This section de�nes a similarity relation on

edges and then explores how to use the relation to implement an improved

version of the ParetoPath algorithm.
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5.1.1 An equivalence relation for similarity

Consider the following example. Two vehicles v1 and v2 travel down a path

making the same stops along the way. The vehicles behave identically with

respect to the time taken to traverse the path and the cost of traveling along

the path. The only way in which they di�er is that v2 leaves at some time

after v1. In expanding a path p from a vertex to an adjacent vertex there

may be many possible edges (vehicles traveling between two stops) to choose

from, however, if two of these edges have the same impact on the cost of

the path but one leaves later and takes the same amount of time to travel

between vertices, the path extended by the edge that leaves earlier will be

dominant. Recognizing similar edges proves a way to improve the basic

ParetoPath algorithm by preventing the call to Expand from creating

paths that we know ahead of time will be dominated.

Recall that each non-transfer edge e 2 E is given by an tuple of form

(u; v; tDEP; tDUR; transport).

De�nition 5.1.1 A transport set is the set of all edges in E with the same

transport label.

De�nition 5.1.2 A transport path is a path formed by concatenating all

the edges in a transport set.

De�nition 5.1.3 If P = he1; e2; : : : ; eli is a transport path then Subpath(P )
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is the set of all in P , i.e.

Subpath(P ) =
l[

i=1

l[
j=1

hei; : : : ; eji

De�nition 5.1.4 Two transport paths P1 and P2 are similar i�

1. The two paths are time equivalent i.e.

8p1 2 Subpath(P1)

9p2 2 Subpath(P2) s:t:

fT(p1)� departure(p1) = fT(p2)� departure(p2)

2. The two paths are cost equivalent i.e.

8p1 2 Subpath(P1)

9p2 2 Subpath(P2)s.t.

fC(p1) = fC(p2)

If we write P1 SP P2 to mean the transport paths P1 and P2 are simi-

lar then it is easy see that S is re
exive, symmetric, and transitive and is

therefore an equivalence relation.

De�nition 5.1.5 Two edges e1 and e2 are edge similar, e1See2, if they are

members of similar transport paths and travel between the same source and

destination stops. More formally, if p1 and p2 are transport paths,

e1 Se e2 , p1 SP p2

^ e1 Se e2

^ source(e1) = source(e2)

^ destination(e1) = destination(e2)
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It is easy to see that Se is an equivalence relation. We can use Se to

partition the set of edges E into disjoint sets of similar edges.

Let dom(p; p0) mean that a path p1 dominates p2 according to the domi-

nation criteria

dom(p; p0) , (fC(p) < fC(p0))

^ (fT(p) < fT(p0))

Lemma 5.1.1 If two similar edges extend a path then either one of the

extended paths must be dominated by the other or the two edges have the

same time of departure. More formally, let p be a path through G and let Æ

be the path concatenation operator,

e Se e
0 ) dom(p Æ e; p Æ e0) _ dom(p Æ e0; p Æ e)

_ departure(e) = departure(e0)

Proof: If e Se e
0

� Case1: When e departs before e0. p Æ e must dominate p Æ e0 since it

arrives earlier, hence has a lower fT but the objective function fC

remains unchanged.

� Case 2: When e0 departs before e, dom(p Æ e; p Æ e0) by symmetry with

Case 1.

� Case 3: If neither case 1 or 2 holds then clearly e:tDEP = e0:tDEP.

�

Lemma 5.1.1 implies that given as set of similar edges we need only pick

one edge from the set to extend a Pareto path. Picking more than one
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edge from a given set will automatically result in one of the two edges

being dominated. By adopting a strategy that picks only one edge from

each similar edge set we reduce the amount of work done in a scanning

operation signi�cantly.

5.1.2 Building similar edge sets

Partitioning of the edges in the graph E into equivalent edges is done by

the MakeSimilarEdgeSets algorithm shown in 5.1.2. The algorithm is

straight forward, the edges in the graph are assembled into transport

paths, the transport paths are then partitioned based on the path

similarity relation and are �nally similar edge sets are written to disk.

MakeSimilarEdgeSets(G)

1 E = GetEdges(G)

2 Transports MakeTransportPaths(E)

3 SortTransportSequences(TransportCompare; T ransports)

4 SimilarTransports Partition(Transports; SP )

5 WriteSimilarEdgeSetsToDisk(SimilarTransports)

Figure 5.1: The MakeSimilarEdgeSets algorithm

MakeTransportSequences creates transport sequences out of the edge

set by appending the edges for a single transport to get the path which

uses the most edges. This corresponds to the route that the vehicle takes.

The transport sequences are then sorted using the comparison operation in
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5.1.2, placing transports with identical stop sequences in a contiguous

region in an ordered collection of transport sequences.

TransportCompare(seq1; seq2)

1 if length(seq1) < length(seq2)

2 then return TRUE

3 if length(seq1) > length(seq2)

4 then return FALSE

5 length length(seqq)

6 for i 0 to length

7 do if src(seq1[i]) < src(seq2[i])

8 then return TRUE

9 if src(seq1[i]) > src(seq2[i])

10 then return FALSE

11 if dst(seq1[i]) < dst(seq2[i])

12 then return TRUE

13 else return FALSE

Figure 5.2: A comparison operation to sort transport sequences

Partition creates the equivalence classes of the transport paths by

scanning through the paths in the set and grouping them based on

similarity, as de�ned by SP . The most obvious implementation of this is

O(n2) in the number of transport sequences, i.e. simply scanning though

the collection of transport sequences and slotting each transport into the
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appropriate group based on the path similarity relation SP

Finally, WriteSimilarEdgeSetsToDisk splits a transport sequence

into its component edges and for every set of similar edges, as de�ned by

Se stores the edges to disk. For eÆciency a B-Tree data structure from the

BerekleyDB system is used to create a fast disk eÆcient search tree,

although in theory any indexing scheme could be used. If the similar edge

sets were to be placed in main memory only, other data structures, such as

a hash table, might be more appropriate. After MakeSimilarEdgeSets

has run each adjacency in the transit graph forms an index in the B-Tree,

and at each index there is a set of similar edge sets. The similar edge sets

need not be in any particular order but the edges represented within the

sets are sorted in order of their departure time to allow binary searches to

be performed when seeking a particular edges by departure time.

The partitioning is performed as a precomputation on G. The reduced

multi-graph GR, is used to implement a variant of the ParetoPath

algorithm that exploits edge similarity.

5.1.3 Using similarity in the ParetoPath algorithm

As stated earlier Lemma 5.1.1 implies that only one edge need be

considered from each similar edge set when extending paths along a given

adjacency. Given a path p 2 Pi the edge selected from each set is the �rst

edge that leaves after arrives(p). Since edges are ordered by departure

time this edge can be found eÆciently using a binary search. The
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Figure 5.3: Reduced multi-graph for similar sets.

algorithm Extend is shown in 5.1.3.

Extend(Pi; j)

1 extended fg

2 S  GetSimilarEdgeSets(i; j)

3 for each p 2 Pi s.t. p is not marked

4 do for each s 2 S

5 do tARR  arrives(p)

6 e FindFirstEdgeThatLeavesAfter(s; tARR)

7 extended extended [Concatenate(p; e)

8 return extended

Figure 5.4: Extend for similar edge sets.

Extend must select one edge from each similar edge set. The e�ect using
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similar edge sets for routing can easily been seen as a reduction of the

transit graph. Instead of viewing the transit network as a dynamic

multi-graph with one edge for each vehicle that travels between two

vertices, the graph can be thought of as being a dynamic multi-graph

where each edge has a labeling function that alters only the time of

departure along the edge.

Lemma 5.1.2 ParetoPath using similar edge sets is correct.

Proof: From lemma 5.1.1 the algorithm Extend (Fig. 5.1.3) will create

only one path from each similar edge set. Any other path created by

selecting more than one edge from a single similar edge set will ensure that

one of the two paths is dominated. �

The e�ect of using similar edge sets on the performance of ParetoPath

is dramatic, especially in mass commuter systems where trains run

frequently. In the north-east corridor transit graph for 77 di�erent transit

providers, the total number of edges in the transit graph is approximately

2.7 million edges. In the reduced graph there are still 2.7 million edges but

these edges are represented by only 5,892 similar edge sets. Apart from the

savings in the cost of creating and checking dominance the reduced edge

set representation also reduces the cost of disk activity.
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5.2 The All Times Single Source Pareto Path

Problem

Calculating the Pareto-path in the itinerary setting is time dependent and

the ParetoPath needs to take the time of embarkation of a journey, the

tSTART parameter, into account. For the precomputations this implies that

solutions need to be generated for every time of day that a vehicle leaves a

destination. The na��ve approach, to generate an itinerary for every time of

day that a vehicle leaves a source vertex would certainly work but there

are deteriorating performance implications to this approach.

The following sections concentrate on speeding up the ParetoPath

algorithm by performing more static analysis of the transit graph. The

analysis requires an examination of sets of paths from one stop to another

starting at all times of day. While it is possible to perform this analysis by

repeated calls to the ParetoPath algorithm this section presents a more

elegant solution, one that computes the Pareto paths from a given source

at all departure times. In addition to being more eÆcient, running the

AllTimesParetoPath e�ectively avoids some of the problems that arise

when merging the results from the individual runs. For a given source and

destination two di�erent times of departure lead to the same time of

arrival. This can, and frequently does happen because waiting is allowed at

vertices. Consider the example in �gure 5.2. Vehicle A leaves a vertex s at

a time t1 while B leaves s some time later at t2. At some stage during the
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path a switch is made to C and both paths arrive at a vertex d at time t3.

It is possible that both paths are in the Pareto path set for Pd. Clearly one

of these paths is redundant. If there is no advantage to leaving earlier then

the the path that starts at t1 need not be in the solution set. When

merging the solution sets for runs performed at di�erent times the

redundant solutions would need to be eliminated.

An alternative is to use a simple graph reduction, one that take the time of

departure into account and solves the problem on this new graph with a

modi�ed version of the ParetoPath algorithm. If s is the source transfer

vertex, then for every non-transfer edge e that departs from s at a time t

create a new virtual vertex vt with a starting time of 0, a duration of time

departure(e) and a transport �eld with the same value as e. In addition, a

new start vertex is connected to each of the new virtual vertices by a

transfer edge.

Pseudo-code to perform this reduction is shown in �gure 5.2.

The reduction performed by AllTimesReduction e�ectively transforms

the Pareto optimal path problem into a single source problem. Let G0 is

the new graph returned by running AllTimesReduction on G. Running

ParetoPath as it is currently on G0 with a starting time of 0 would not

generate the Pareto paths for all departure times. Paths generated from

earlier departure times will, in most cases, dominate paths from later

departure times, in addition the domination check at the end of the

ParetoPath algorithm would remove solutions from the Pareto set
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Figure 5.5: The new virtual source is connected to a set of new vertices, each

representing an edge departing the source vertex s.

AllTimesReduction(G = (V;E); s)

1 V 0  V [ vstart

2 for each e 2 E s:t: src(e) = s ^ not a transfer(e)

3 do t departure(e)

4 V 0  V 0 [ vt

5 E  E [ f(s; vt; 0; t; transport(e)); (vstart; vt;�; 0; 0)g

6 return (V 0; E)

Figure 5.6: The single source problem is turned into an all times single source

problem by creating a new source, one for each time of departure

.

incorrectly. The domination predicate that follows the call to Expand

should only be applied to two paths if they start by traveling to the same
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virtual vertex.

The domination predicate dom is now given by equation 5.1.

dom(p; p0) , (fC(p) < fC(p0))

^ (fT(p) < fT(p0))

^ (fXFR(p) < fXFR(p0))

^ (first vertex(p) = first vertex(p0))

(5.1)

In addition, if two paths share the same predecessor edge and are identical

in all their cost functions then the path with the earlier departure time is

redundant and should not be inserted into the Pareto set.
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Departs at  t=1

Departs at  t=2

Figure 5.7: The space-time network above illustrates when two solutions are 'com-

parable' under domination and when we can prune the redundant solutions

The algorithm AllTimesParetoPath is shown in �gure 5.2.

This version of the AllTimesParetoPath algorithm solves the problem

for a single source. It is trivial to extend this version for a set of sources.
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AllTimesParetoPath(G; s)

1 S  AllTimesReduction(G; s)

2 Q.InitializeSPT(S)

3 while Q.NotEmpty

4 do i Q.Select()

5 for j 2 Adj[i]

6 do P �
j  Extend(Pi; j)

7 P �
j  RemoveDominated(Pj ; P

�
j )

8 Pj  RemoveRedundant(P �
j )

9 if 9p 2 Pj s.t. p is not marked scanned

10 then Q.Insert(j)

11 MarkScanned(Pi)

12 return fPD n fPs [ PSgg

Figure 5.8: Line 1 performs the reduction. The set S returned is the starting

set of virtual starting vertices. Thus making the problem the same as starting

the search from multiple sources as before. This version of the ParetoPath

algorithm uses the dom predicate described in equation 5.1. RemoveRedunant

compares paths that have an identical predecessor edge to see if they are equal

on all the cost functions. If they are the path with the earlier departure time is

removed. A domination check is not performed between all destinations in the

last step as before.
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5.3 Generating itineraries for large server loads

In designing a Passenger information systems there are soft real-time

requirements that need to be met, responses to queries need to be returned

to travelers in relatively short periods of time. Under high loads the core

algorithm in the system needs to be extremely fast at computing the

Pareto solution set. This section presents a strategy to implement a

passenger information system that solves the itinerary problem online.

While this strategy works well in coping with very high server loads the

execution of it fast becomes impractical. In a later section similar strategy

is presented that helps reduce the online response time. Both strategies

involve using precomputation of Pareto routes through the dynamic graph.

The �rst strategy involves precomputing and storing solutions to small

subsets of vertices and then uses these precomputed solutions to generate

itineraries. The second approach focuses on using the precomputed

solutions to guide the online search.

5.3.1 The two tier itinerary generation strategy

In theory, given that the entire graph structure is static and all departure

times are known in advance, a possible approach to scaling the itinerary

problem would be to precompute the solution set for all pairs of vertices at

all times of the day. In practice, this approach would require far too much

space to store the results of such a computation. The two tier approach

instead aims to precompute and therefore store a smaller set of solutions
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that can be used to reduce the online response time.

The transit graph naturally decomposes into its individual sub-graphs, one

for each fare-region. The two tier approach aims to reduce the online

computation to �nding the quickest way between the source and

destination fare regions. This is in essence a more aggressive version of the

component routing method independently discovered by [14]. In the two

tier method paths from every transfer point, a vertex connected to a global

transfer arc, to every other vertex in the same fare region as the transfer

point. The resulting set of paths is compressed into a set path edges, one

for each Pareto path generated. This set of edges, combined with the

global transfer edges and the transfer points forms a graph that is used to

compute the Pareto optimal paths from fare regions to fare regions. These

solutions are stored in a database as well. Given that we have already

computed the Pareto-paths from every transfer point to every other vertex

in its fare region, we can store these solutions in a database as well. To

generate a Pareto-path from any vertex to any other vertex online now

becomes a simple matter of computing, using the transit graph for the

starting fare region, a set of solutions to every transfer point in the fare

region and then performing two database look ups, the �rst to �nd the

Pareto optimal solutions to each of the destination fare regions, and the

second to �nd the Pareto-optimal solutions from the transfer points in the

destination fare regions to the �nal destinations.

It is possible to remove the �rst stages call to the ParetoPath problem
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Figure 5.9: Only the �rst stage of the two tier generation strategy involves a call

to ParetoPath. Stages two and three are simple database lookups.

when online by precomputing all the paths from every stop in a fare region

to the fare-region's transfer point, but this would be a far more expensive

precompute. In fact, the second set of database lookups could well have

been a call to the ParetoPath algorithm. The reason it is a database

query however is due to the single source nature of the ParetoPath

algorithm. Even if the strategy was to only precompute the Pareto paths

from a transfer point in a fare region to the other transfer points in the

same fare region the algorithm, short of a set of stopping conditions to

terminate the algorithm after all paths to the destinations have been

found, would have to compute the set of paths to all the other vertices in

the fare region. Since this computation is already being performed, the

result are stored and used to speed up the �nal stage, generating a path
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from the reduced graph to the destinations.

5.3.2 Generating the second tier graph

Generating the second tier graph is performed by �rst running the

AllTimesParetoPath on each transfer point in every fare region and

storing the results of this computation in the database. Every path

between two transfer points in this database will now be represented by an

edge in the reduced inter-regional transit graph.

De�nition 5.3.1 An inter-regional edge is an edge that represents a path

from an exit point to an exit point in the transit graph. An edge between

two vertices u and v has the following attributes, the time of departure tDEP,

the duration of the journey tDUR, the cost fC of the journey and the number

of transfers on this journey fXFR.

More formally, if p is a path between two exit points u and v in a fare

region then e the edge that represents p in the inter-regional transit graph

is given by

e = (u; v; departure(p); duration(p); fC(p); fXFR(p))

Let P be the set of all Parter paths computed at all times from exit point

to exit point in the transit graph G = (V;E). The inter-regional transfer

graph is given by G� = (V �; E�) where:

V � = the set of all transfer points in G.

E� =
S

p2P (src(p); dst(p); departure(p); duration(p); f
C(p); fXFR(p))
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+ All transfer edges in G

Calculating the Pareto optimal paths from the exit points of one fare

region to another becomes a matter of calling AllTimesParetoPath on

G� for every vertex v 2 V �. Because the edges in G� carry the costs fC

and fXFR for the paths that they represent the concatenation operation in

Expand is additive on each of the objective functions and there is no need

for a fare lookup table in this computation. The results from this stage of

the computation are saved in a database and are known as the tier two

paths.

5.3.3 Generating an online response

Generating an online response is now a matter of �nding a Pareto path

from a source vertex to the transfer points in the same fare region, an

online call to the ParetoPath algorithm and then performing a series of

lookups, one set to get to the destination fare regions, the next set to get

from the transfer points of those fare regions to the actual destinations.

Since there may be more than one source and destination running the �rst

stage of computation, the call to ParetoPath algorithm, will need to be

carried once for each fare-region. The call to ParetoPath for a

fare-region will take only the intra-regional component and the sources in

the fare-region as its arguments. The destinations are the transfer points

in each fare region. These calls to ParetoPath are independent of each

other and are usually executed in parallel to further reduce the response
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time. After the paths to the exit points of each fare region have been

computed a lookup on the tier two path database will in single step obtain

a path from the transfer points of the source fare region. The rest of the

computation is performed by concatenating the look-ups from the tier two

database, and then �nally the tier one database. The process is shown in

�gure 5.3.3

5.3.4 Performance of o�ine computation

The response time of this algorithm is very good. On a set of 1000

randomly chosen routes the average response time was 0.04 seconds

through the entire transit graph. A multi-threaded implementation of the

ParetoPath algorithm responded to the �rst stage requests in parallel,

the second and third stages are rapid BerekleyDB accesses.

The problem with this approach however is that the precomputation while

large requires storing a vast amount of data to disk. In terms of the �le

sizes of the tier one and tier two databases for long distance trains the �le

sizes are 21 Gb for a large system like the New York Subway, and 43 Gb

for the tier two computes.

The o�ine precomputation stage takes a very long time to complete. In a

graph representing the transit network in the Greater Boston and New

York City area the precomputation stage took 28 hours on cluster with 20

machines, each with a 1 GHz Pentium III CPU. Surprisingly, writing the
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data to the database took 37 hours. With a graph that included all local

bus lines, the size of the databases would be drastically larger, in the order

of terabytes. This would be the case even if one were to not store the tier

one solutions but just the tier two paths.

5.4 Speeding up online response using Fare Region

restriction

The two-tier system described above works very well online. However it

has several disadvantages that make it an unworkable system for practical

use. There is a middle ground where once again precomputation can help

in improving the response time of the ParetoPath algorithm. The

problem with the previous approach is that it attempted far too much

precomputation and storage of data. A second approach, along the lines of

restricting the search horizon as in [35, 14] is described in this section.

The transit graph G naturally decomposes into its constituent sub-graphs

on a fare region by fare region basis. Its resemblance to

Bellman-Ford-Moore implies every vertex in the graph is scanned at least

once, although for a given source and destination, many vertices will never

contribute to a Pareto path. The approach taken to speeding up the online

algorithm here is to prevent exploration in fare regions that can never lead

to a Pareto path.

Using AllTimesParetoPath algorithm on G for every transfer point in
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the graph, we can learn, in short order, which fare regions are involved in

generating Pareto paths from one fare-region to another. We store, in a

table, for every source and destination fare region, the set of all

fare-regions traversed when computing the Pareto paths. If the number of

fare-regions in G is n then the table has n2 entries. If u and v are

fare-regions then each entry (u; v) is a guiding set containing the values of

the fare-regions traversed in creating a Pareto-path from fare-region u to

fare-region v. The ParetoPath algorithm uses these guiding sets in

determining when to call Expand. It is only necessary to check the

guiding set table when the call to expand is about to consider edges that

are global transfer edges. The modi�ed version of the ParetoPath

algorithm using guiding sets is shown in �gure 5.4

This approach drastically reduces the amount of scanning and hence disk

usage necessary to generate itineraries. The search horizon of the

algorithm can be further restricted using any of the techniques discussed in

the papers referenced above. One of the reasons that the two tier approach

was initially explored was that for a large number of itineraries requested,

there are usually more than two fare regions involved. This implies that

the ParetoPath algorithms spends a fair amount of time making its way

from one exit point to another. During the precomputation stage that

creates the guiding sets, the AllTimesParetoPath algorithm could also

save the sets of vertices along a the Pareto paths between two fare regions.

With this information, when there are more than two fare regions involved
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ParetoPath(G;S;D; tSTART)

1 Q.InitializeSPT(S)

2 while Q.NotEmpty

3 do i Q.Select()

4 for j 2 Adj[i]

5 do if fare region(i) 6= fare region(j)

6 then if fare region(j) =2 GuidingSets(S;D)

7 then continue

8 P �
j  Extend(Pi; j)

9 Pj  RemoveDominated(Pj ; P
�
j )

10 if 9p 2 Pj s.t. p is not marked scanned

11 then Q.Insert(j)

12 MarkScanned(Pi)

13 PD  RemoveDominated([k2DPk)

14 return PD

Figure 5.10: The guided ParetoPath algorithm uses the GuidingSets proce-

dure to steer the search away from fare-regions that are never used in generating

a Pareto path.

in generating the Pareto paths a GuidingVertices predicate could also

guide the search through intermediate fare regions. Storing this set of

vertices in memory is simple enough and the size of these guiding vertex

sets is relatively small.
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This chapter has shown how to e�ectively solve the itinerary problem and

a number of its variants. The technique described, for the most part, leaves

the basic ParetoPath algorithm largely unchanged. The use of the

domination predicate is central to allowing the algorithm to adapt to the

di�erent tasks at hand as the technique of de�ning paths to be equivalent

under a similarity relation is de�ned by the notion of dominance. Together

these concepts allow paths to be expanded optimistically and subsequently

pruned back to ensure correctness. The similarity relation, for example, is

implicitly used to determine which paths are comparable under domination

when solving the all times Pareto path problem. In another example, it is

possible to solve the transfer minimization variant of the problem without

resorting to reintroduction of more direct solutions, if the similarity

relation for edges was based on where a path might lead along an edge.

However that approach was not explored because it would have led to too

many intermediate, non-dominated, solutions.

For a high capacity server the best approach is currently to use the guided

variant of the ParetoPath algorithm. It is easily optimized and can take

advantage of a number of search-horizon restricting techniques to speed its

search. Avoiding the large amounts of o�ine computation needed by the

two-tier approach allows the service to adapt to real-time updates in the

data. Also, since the algorithm is sensitive to poor data, which is all too

common when constructing graphs from many di�erent sources, correcting

errors often means rerunning the o�ine computation. Since there are two
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stages of o�ine runs this can take a long time [2]. For example, where an

edge weight has changed in a fare region, the GuidingSets predicate

could choose to be cautious and force search through redundant fare

regions.

5.5 Other Issues

The section focuses on two other techniques used to further improve the

performance of the ParetoPath algorithm.

5.5.1 Reducing disk activity

Since disk activity a�ects the performance of the system more than any

other operation in the ParetoPaths algorithm we aim to prevent as

much redundant exploration through the graph as possible. In transit

graphs for every pair of vertices i and j that are adjacent to each other

there are edges in both directions. Exploiting this fact we guard against

expanding a path p toward a vertex that is already on that path. This is

possible because all of our cost functions monotonically increase as the

path grows longer, therefore going back to a node, already visited, can

never improve a label. This observation leads to an obvious addition to the

code, a simple guard condition OnPath, to see if a vertex is already on the

path, precedes each call to Expand to prevent exploration from a node.

The OnPath guard can be replaced with a less expensive heuristic based

predicate NoPredecessor. This only predicate only checks to see if the
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Simple 23.3 seconds

Similar Sets 3.2 seconds

Precomputation 0.38 seconds MySql server

Fare region restriction 0.9 seconds

Table 5.1: Peformance of the the ParetoPath variants.

predecessor of the current path is the same as the node we are about to

explore. This approach was suggested because for the most part the graph

is extremely sparse and often a vertex is adjacent to only two other

vertices.

The performance increase in terms of time to compute the number of

routes is shown in table 5.5.1. In these experiments the graph is scaled

back to avoid the use of public bus systems, so that we may study the

e�ects of a disk based system verses one where the entire database is in

main memory. The total size of the database without public bus systems is

approximately 5 GB.

It is not surprising to see that the na��ve version of the ParetoPath

algorithm does poorly when computing an itinerary. Pro�ling the run

reveals over 99% of the process time is spent in disk access. The similar

edge sets version of ParetoPaths is much faster, while adding the

OnPath presents a further improvement. Surprisingly, the LastVisited

heuristic leads to a drop in performance over the OnPath performance.

Not surprisingly, placing the entire database into memory and thereby

avoiding any disk access result in the fastest performance of all. Here the
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OnPath heuristic still produces the fastest results but only by a very

small margin. This is explained by the fact that fewer intermediate

solutions are created before the domination check over the simple

ParteoPaths with similar sets, whereas the LastVisited guarded

variant despite being far simpler still allows more solutions to be created

and the overhead of object creation greater than in the OnPath variant.

5.5.2 Reducing the cost of memory management

As is the case with many graph algorithms the cost of memory

management causes a signi�cant overhead to computation. Unlike the case

with disk access however, there is little that can be done to avoid using

memory. One can, however reduce the amount of overhead signi�cantly by

using memory pooling strategies. The ParetoPath algorithm is

implemented using C++ and a Pareto optimal path is represented by a

linked list of ParetoPath objects. Each object contains a pointer to its

predecessor and a copy of the last edge traversed. Each object

instantiation results in a call to the system malloc. In applications where

there is a large amount of object instantiation and destruction it is far

more eÆcient to declare a memory pool of pre-instantiated objects and

then allocate and deallocate memory by checking out and returning objects

to a free pool. This common strategy is outlined in a number of texts on

object oriented programming [5]. However, there is still a fair amount of

work that needs to be done in managing this pool.
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In implementing the ParetoPath algorithm we use an unusual memory

pooling strategy that makes the cost of instantiating and reclaiming space

negligible, this gain however comes at the cost of eÆciency in reclaiming

memory. During the course of scanning a vertex only a small percentage of

the paths created are Pareto paths, most are dominated immediately and

are therefore instantly destroyed. Those that are assigned to the labels for

a vertex need to persist for the duration of the run. The implementation

uses two pools the �rst Permanent, for the label sets, and a second pool

Temporary, for the temporary solutions.

The pools are pre-allocated when the system initializes, each pool being a

large contiguous block of memory. Each pool maintains a single pointer to

the �rst free byte of memory. Space allocation for each object is carried

out by overloading the classes placement new operator to claim as many

bytes as needed from the pool and then to increment the pointer to the

�rst free byte. During the course of execution objects that are created by

Extend are assigned from the temporary pool. After the call to

RemoveDominated the undominated solutions are copied to the

permanent pool. The implementation does not contain any memory

reclamation code other than to reset the pointer to the �rst free byte in

Temporary to the beginning of the pool. In a server application where the

use of ParetoPath is reentrant the memory allocated on the permanent

pool is reclaimed in the same manner.

The gains from memory pooling are in line with those reported in [5].
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There is essentially no overhead, in terms of procedure calls, in allocating

and reclaiming space in the graph. These gains however are comparatively

small in relation to the gains from reducing disk access.
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Chapter 6

Conclusion

This thesis has described the algorithmic toolkit we have developed to

solve the itinerary problem. Solving multi-criteria optimization problems

for transit networks in the presence of response time constraints is

achievable, and the algorithms here have proved themselves in a

commercial environment. Before summarizing our work, this chapter will

discuss how to extend these techniques in future work.

6.1 Future directions

As the size of the transit graph grows so does the need for further

optimization to speed up the response time of the online algorithm. This

requirement becomes particularly important when dealing with transit

networks that represent bus systems. Bus graphs are far more complex

than those that describe railway and other �xed guide-way modes of
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transport. Bus systems tend to be highly interconnected and therefore less

sparse in nature suggesting that more work needs to be done in

implementing a queuing strategy that minimizes scanning. The topological

ordering models of Goldberg and Radzik prove more robust in minimizing

scanning for di�erent classes of graphs than the simple FIFO model of the

Bellman-Ford-Moore algorithm.

Our transit graph decomposed naturally into individual sub-graphs (

components) based on fare-regions. To further eliminates wasted

exploration of the graph in the fare-region restriction techniques, we used

these components to determine whether an online search should scan a set

of vertices when extending paths. However, the size of some of the

components are disproportionately large. The New York City subway for

example has over 25% of all edges in the graph. If the components were

more evenly sized the performance in the larger fare-regions of the graph

would be further reduced. Preliminary work suggests that if we were to

reduce the granularity of the components we could improve the online

performance even further. However, smaller component sizes mean more

transfer points and therefore larger demands on the precomputation

process and requires that the test for whether to expand the search in a

certain direction be executed more often.

More work needs to be done in determining the balance between the

increase in online performance from the reduced scanning of nodes and the

overhead of testing whether it is necessary for the search to enter a
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component. One approach to managing this balance is to recursively

subdivide the graph and use the recursively de�ned components to avoid

searching redundant scans.

There are many other time-dependent multi-criteria optimization problems

that this thesis does not consider that can be solved using the techniques

described in this thesis. Many of these ideas come from interviews with

executives in transit agencies. One of the more obvious itinerary planning

applications is giving a desired arrival time in the problem instead of a

departure time. To solve this problem our notion of time, and how to

extend a path would need to be reversed. Minimizing the amount of time

spent waiting during transfers is another factor that can be added to the

domination predicate. We could expand the domination predicate to say

that if two solutions are identical in all of their costs neither dominates the

other unless one of the solutions involves less waiting time than the other.

Other future areas of work can involve mode-restriction. For example, one

may want to travel using only buses or trains but never a subway. This

problem is simple enough to solve if there is no precomputation involved in

speeding up the online response time. However when using search

restriction techniques like the ones discussed above, more than one set of

precomputes may be necessary, or the precomputation would need to

maintain multiple sets of information, one for each restricted mode.
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6.2 Final Remarks

The work here compares favorably to that of other systems such as the

HaFas system (that runs the DeutchBahn site for European regional and

inter-city rail travel), the Transcom system (that powers the passenger

advisory systems for the Southern California transit authorities), or even

the Orbitz system (for 
ight itinerary planning and booking). Many of

these systems use novel technologies, each highly tailored to their own

problem domain. Transcom o�ers an extremely eÆcient routing engine that

utilizes heuristics to solve single criteria shortest path problems on a single

Pentium class machine. The Orbitz technology runs on a cluster with over

a thousand servers to handle the traÆc levels that they achieve. Each

query takes an average of 10 seconds to complete. All of these systems, like

the ParetoPath variants introduced in Chapter 5 rely on static analysis

of the transit graph to achieve their online performance goals.

In designing the ParetoPath algorithm we have chosen to stay close to

the standard Bellman-Ford-Moore model despite trying to solve a

multi-objective problem. This strategy has allowed us to leverage many of

the existing optimization techniques already in the literature. The

techniques introduced in this thesis have worked well in reducing the

complexity of the algorithm in practice. In this respect the idea of

reducing the graph to sets of similar edges based on an equivalence relation

has proved e�ective in speeding up the computation, even when the edge

set is stored on disk.
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A common technique, used in many of the algorithms we have developed is

the ability to use a domination predicate not only to minimize the number

of solutions kept at any stage of the computation but to implement the

di�erent variants of the ParetoPath algorithm. Where appropriate, the

domination predicate is specialized to allow the same basic

Bellman-Ford-Moore framework to solve di�erent problems. Some good

examples of this technique are the addition of stop priorities to the

domination predicate to allow solutions that start with nearby stops to

persist even when there are other technically superior solutions, and the All

Times Pareto Path algorithm that by adding the start stop condition to

the predicate restricts the sets of solutions allowed to dominate each other.

In many ways the transfer problem that presented itself when we added

the directness measure fXFR to the domination predicate could also be

dealt with if we could decide ahead of time, which sets of solutions can

dominate each other. One approach might be to de�ne a similarity relation

that placed edges in a partition to guarantee equivalent behavior when

transferring trains. In this case domination would only be allowed between

similar sets. While this approach may have no need for direct edges as, our

solution did, we feel that the number of non-dominated solutions at each

vertex would become too large to make the algorithm practical.

Another advantage of following the general framework of label correcting

algorithms is that the algorithms presented here lend themselves to a vast

array of optimization techniques discussed in the literature. The search
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restriction and node selection techniques discussed in [14] can be easily

applied here. Static analysis of the graph, also a common practice to speed

searches in graph algorithms also contribute a great deal to improving the

performance. Along these lines the fare region restriction technique in

Chapter 5 has also proved very successful.

Some techniques, such as the precompute intensive two tier variant,

described in Chapter 5 , have proved less successful in practice. While

extremely fast in terms of online performance, the time taken for the

precomputes proves to be impractical. In this approach the sizes of the

precomputed solution set for a moderately sized subset of the transit

network modeled grew to over 10Gb for some of the larger fare regions,

and over 50Gb for the second tier solutions. Indexing a database of that

size can take an extremely long time. On a dual 1GHz Pentium III server

with a fast RAID subsystem the indexing operations alone took close to 24

hours.

In contrast, the fare region restriction method of 5.3.4 o�ers vast

improvements in online speed but requires a relatively small

precomputation phase.

In closing, we believe that the correct approach to implementing a solution

to the itinerary problem should be to run the ParetoPath algorithm on

similar edge sets using a set of the restriction techniques like fare-region

restriction. Guiding the search through the reduced graph meets the online

performance requirements of a practical system without the cumbersome
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overhead of an intensive precomputation phase. As pointed out in the

survey section, most of literature aimed at improving the performance of

shortest path list type algorithms focuses on reducing the amount of

scanning. Where edge sets are stored on disk the work done in scanning

vertices must be kept to a minimum. We feel that the research presented

here takes a good �rst step at creating an eÆcient multi-criteria itinerary

problem solver.
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