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Doctoral Dissertation Abstract

The optimazation problem called MATRIX-TO-LINE consists of finding an embedding of
a edge weighted complete graph, specified by a positive symetric matrix W, into a one
dimensional vector space whose outcome produces pair—wise distance matrix W such that
il
genomics. and is NP-Complete for the general case. We develop the problem in a geometric
setting and show that the problem although NP-Complete admits hueristics solutions. We
construct one such hueristic in the form of a dynamical system. We discuss two important
applications in genomics where hueristics to this general problem can be made useful, the
first application is called Probe-Mapping, the second is called RFLP-Phasing.

In Probe-Mapping a map of genomic features is determined by the best embedding
of pairwise distance data. In this application we can make percise statments about how
frequently hueristic algorithms determine correct answers.

In RFLP-Phasing similar ideas are used to determine likely configurations of a set of
polymorphic markers.

is minimized over all possible embeddings. The problem arises in applications in
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Chapter 1

Motivation

Let Hy be the set of N x N non-negative, symmetric matrices with zero diagonal. Let II
be the set of non-negative, symmetric matrices arising from pairwise distances from a set of
N points on the real line. The optimization problem called MATRIX—TO—LINE is to find an
element W € II so that:

W = argmin(HW — WH), for any given W (1.1)

Pairwise distance matrices arising from points in R of a given order form a linear subspace
in Hy. The MATRIX—TO—LINE problem is shown to be NP-Complete. Thus the hardness of
the problem could be attributed to the super—polynomially number of orderings of N points.

The Problem has become a relevant problem in applications to genomic experiments
which focus on the inference of genome structure based on experiments that provide only
pairwise distance or orientation information.

In probe-mapping, probes are important substring markers that can be string-—matched
via hybridization experiments to genomic material. Experiments are designed to observe an
estimate of pairwise genomic distances from probe to probe.

In RFLP-Phasing a set of restriction enzyme site markers on both chromosomes are
considered. Data consists of a mix of genomic copies taken from small regions of one of
the two chromosomes. From small variations in the length between restriction sites due to
restriction fragment length polymorphism ( RFLP ) on the two chromosomes and from the
large number of copies involved we get a view of how these restriction enzyme sites should be
mapped on each chromosome. This separation of genotype data into the two chromosomes
or haplotypes is the phasing problem.

Probe-Mapping and RFLP-Phasing share common elements as mathematical problems.
In both problems experiments are designed to discover pairwise similarity of the genome
structure, from the pairwise data which is local information, we wish to infer what types of
genome structure is possible globally. Both problems require considering a very large con-
figuration space, which is exponential in the number of features. Such a search is confirmed
to be computationaly difficult in the sense of NP-Completeness. In addition both problems
admit to heuristics. One point the thesis shall make is that in applications experiments can
be designed to produce data that make such heuristics reliable.

The thesis is organized into three main chapters and one appendix. In the first chapter a
motivation is given, along with definitions sufficient enough to understand the geometry of



the optimization problem. Formal definitions of the optimization problem as well as the result
that the problem is NP-complete. Also is a discussion of heuristics and a dynamical system
heuristic is demonstrated. Mathematical definitions of a basic nature, and an expanded
proof of NP-completeness of GRAPH-EMBEDDING are placed in the appendix for reference.

The second chapter contains the explanation of Probe-Mapping and develops heuristics
and analysis showing that with probability close to one the heuristics obtain the correct
result. We model the outcome of hybridization experiments with a probability distribution
and are able to show that the DNA—-Hybridization technology can be used to map and place
probe positions on the genome. This is accomplished by noting that the problem is solved
with easy heuristic algorithms with some inputs. In fact the same heuristic algorithm work
for a set of input that our model of input assigns high probability to. This is made precise by
formalizing an algorithm and the analysis using Chernoff bounds to provide exponentially
decaying bounds on the probability that the optima attained by our heuristic algorithm is
not a correct answer. The heuristics were inspired by ideas from the heat equation.

The third chapter explains the structure of RFLP-Phasing and develops heuristics, anal-
ysis and examples. Experiments are designed to detect co—association of restriction fragment
length polymorphisms on haplotypes in contiguous regions, we model this as a lattice—spin
system, where the spin is either up or down, and is considered an attribute at each restric-
tion site. It is interesting to view the global configuration as an unknown and each contig
operation branching the search space in half directing the search into regions which are ap-
propriate for observed data. In the application of RFLPs we found an interesting connection
between continuous groups and Maximum Likelihood estimates for pairwise-events. This is
treated in a section on RFLPs.

1.1 Mathematical Definitions

In this section we build up the mathematical definitions to view the optimization problem
MATRIX-TO-LINE as a geometric problem of finding the intersection of an ellipsoid ball
and a star shaped set called II. The set II is the set union of subspaces determined by a
permutation on N objects, that is each permutation o € Sy determines a subspace of H,
denoted II, having dimension (/N — 1). Since there are N! permutations in the permutation
group Sy and the dimension of H, is (J; ) there is considerable overlapping. The structure of
overlapping is explored and algorithms for computing the overlap and sums of such subspaces
are given.

The optimization problem is shown to be NP—complete by reduction to GRAPH EM-
BEDDING which is reduced to 3—SAT. We discuss heuristics and present one heuristic as a
dynamical system.

Definition 1.1.1 Linear space of linear transformations
Let L(N, M) denote the set of linear transformations mapping vectors in RN into RM Let
L(N) denote the set of linear transformations of RN into itself. The elements of L(N, M)



are made into a linear space over R by defining +, - as:
+:L(N,M)x L(N,M) — L(N,M):(A,B)— A+ B
A+ B(z) = A(z) + B(x)
-t L(N,M) xR — L(N,M) : (A k) — kA
kA(z) = A(kx)

Given an element A in L(N, M) the kernel of A is defined to be the set {z € RM : A(z) = 0}.
This set is also a linear subspace.

All entries a;; : 4,7 € [1...N] of a matrix A in L(N) are necessarily real numbers, and
often will be denoted as Ry, indicating the N x N matrices over R.

Definition 1.1.2 Isomorphism of linear spaces

An 1somorphism 1is a one—to—one and onto mapping which maps sums onto sums and scalar
multiples onto scalar multiples. X andY are said to be isomorphic if there exists a mapping
¢ one—to—one and onto so that:

d(r1+k-x0) = p(x1) + k- Pp(xg) Vri,20€ X,k €K (1.2)

where the +, - operations on the left hand side are operations in X and the ones on the right
hand side are operations in Y .

Claim 1.1.1 The Basic Isomorphism: The space L(N) is isomorphic to the space RV

Proof 1 [Proof of claim 1.1.1] We construct an isomorphism called ®, and show that it is
one-to-one and onto. Finally, we show that it preserves sums and products. let v(i,j) =
(j —1)N + i, Let A € L(N) and we define ® by its components:

2
O:L(N) = RY : A &(A) : B(A) ;) = Ay (1.3)
® is one-to—one: Suppose that A # B € L(N) but ®(A) = &(B) this would imply that
®(A),,; = ®(B),,; Vv(iJ) but the map v is one-to—one and onto as a map of [1.. .NJ?
to [1...N?], Hence we have A;; = B;; Vi, j, but this is a contradiction;
® is onto: Suppose that V € RY” \ ®(L(N)) but consider the matrix A which is defined as
follows:

Aij = Vij—yn+i (1.4)

clearly the image of A must be V, but this is a contradiction.
® preserves sums and products: given A, B € L(N) and k € K we have:

O

The basic isomorphism concatenates matrix columns into one long column. We will make
use of the isomorphism frequently, as well as linear transformations in the space L(N?), where
conditions of a matrix are summarized by solutions spaces to problems of this form:

Lz =0 (1.6)

where L € L(N?). The set of elements in L(N) which satisfy a set of linear conditions in
their entries will become isomorphic to the kernel of L.



1.2 Geometry and Important Subsets and Subspaces in L(N)

In this section we explore some of the structures important in the consideration of pairwise—
distance data. Some of the structures explored will be sets, some will be convex sets or cones,
others will be subspaces. When there is a subspace to consider we construct an operator in
the space L(N?, N?) operating on the isomorphic space RY ’ , and whose kernel is isomorphic
to the subspace.

The intended goal of these straightforward techniques is to observe the geometry involved
for optimization problem requiring the embedding of points into a one dimensional subspace.
This optimization problem is called MATRIX—TO—LINE.

1.2.1 Basic Notions

In a linear space the Minkowski Sum of sets S, So is the set {s1 + s : 51 € S1, 82 € So}, and
is denoted S; + Ss.

A Convex Set C is a set with the property that if z,y € C, then all the elements on the
line segment joining x to y are also contained in C'. That is:

z,yeC= X+ (1-XNyeC VIe|0,1] (1.7)

The line segment is denoted [z : y] = { z+ (1 - Ny e C: X € [0,1]}

The smallest convex set C' containing an arbitrary set S is called the convex hull of S,
denoted by [S].

A Cone Set is a set C' that is convex and has the property that:

c+CccC
2€ECkER" =kreC

The order relation of R, is determined by a cone set. Similarly a cone set in a linear space
can be used to order vectors.

Cones are closed under union, intersection, and Minkowski sum.

Further if P is a cone in R*, and M € L(n, m) then M(P) is a cone in R™. If P is a cone
in R™, then {z : M(z) € P} is a cone in R".
In a linear space a set C' is a linear flat if the following condition holds:

z,yeC=Xx+(1-ANyeC VAeR (1.8)

The smallest flat containing an arbitrary set S is called the affine hull of S, it is denoted by
Aff (S).

If a flat contains the point 0 then it is a subspace. Any flat in RY can be written as the
solution space of a linear system Az = b with A € L(N),b € RY. When the vector b = 0
then the flat is a subspace, otherwise it is a parallel translation of a the solution space of
Ax = 0 by any z so that Az = b.

The smallest subspace containing an arbitrary set S is denoted by ().

Example 1.2.1 In R" the set of vectors with strictly positive entries is a cone set.
In R* the set of all vectors x for which ||z||, < & is a conver set when p > 1, where the



p-norm ||z[|, is defined as (3 acip)%

In L(N) the set of positive matrices ( all entries are positive ) is a cone.

In L(N) the set of bi—stochastic matrices ( rows sum to one, columns sum to one ) is a
conver set.

The transpose of a matrix A € L(N) is denoted A’ and is defined by the interchange of
columns and rows:

Afj = Aj; (1.9)
1.2.2 Spaces of H,
Symmetric Matrices
A matrix is real-symmetric if A € R¥M*Y and:
At =A (1.10)

Let H denote the subset of L(N) which are real-symmetric. This family of matrices will
be used to represent pair-wise—distance data in the applications.
This class of real-symmetric matrices are a subspace in L(N), let a,b € H:

(a'ij = aji) A (bZJ = bﬂ) = Q5 + kbz] = Qj; + k‘bﬂ (111)

This equation holding over the range of indices 7, 7 shows that the space H is closed under
the +, - operations of linear space L(NV).

Reformulating the condition of symmetry in the entries of a matrix a € H as linear
equations we get:

ai]-—aji:O 1,] € [1,N] (112)

We can summarize the space of symmetric matrices as the kernel of a matrix in L(N?, N?)
acting on the space RV isomorphic to L(N).

We demonstrate that construction: Let us define an index function converting the indices
of a 2-dimensional array to a 1-dimensional array.

(i,j) »v=3G—-1)*N+i (1.13)
v (v, ;) = (v modN, 1 + L%J) (1.14)
(1.15)

Then define I'; € L(N?, N?) by :

1 lfl/z :k,l/i ?él/j
[FS:| vk = —1if v; = k,l/i 75 vj (116)

0 otherwise

Define the solution space: ,
Sy ={z € RV : T,z = 0} (1.17)

S, is spanned by ® ().



Symmetric Matrices with Zero Diagonal

The set of matrices in H with zeros on the diagonal is denoted Hy and is a subspace of H.
We can summarize the space of symmetric matrices with zero diagonal as a solution space
of a matrix in L(N?, N?) acting on the space RN’ isomorphic to L(N). Using the map in
equation ( 1.13 ). Define 'y € L(N?, N?) by :

lify, =v, =k
r = ! J 1.18
[ 0]””“ {O otherwise (1.18)

Let Sy be the solution space {z € RV” : T'yz = 0}, and let:
Sy =S, S (1.19)

Sso is spanned by @ (H,).

Positive Symmetric Matrices with zero diagonal

Let T, denote the subset of Hy which are real-symmetric and positive. This set YT, is not
a linear subspace of L(N) but only a cone set and represents the pairwise distance data. All
experiments designed in the applications produce data which in the worst case belongs to
this class. We describe the cone set in RY".

We consider the condition that an element of a symmetric matrix is non—negative, letting
a€ Yy

Define 'y € L(N?, N?) by:

1, ifv =k;
r = ’ ' 1.21
) vik {0, otherwise. (1.:21)

Let Py2 = {z € RY iz, >0 Vv} be the non-negative cone in RY ® . Then the pre—image
of a cone P, = {z € R¥” : Ty (z) € Py>} is a cone in RV,

Py =P NSy

. . . . 2 .
Since subspaces are cones then Py is easily seen to be a cone in RV". The set (written
as a Minkowski sum)

D (Ho) + Prso (1.22)

is the cone set in RV isomorphic to Y.

Pairwise distance Matrices

Given arbitrary points {z1, ¥, ..., zy} in a finite dimensional normed linear space (X, [|-|| ), p >
1, we define the Pairwise Distance Matriz called W by assigning w;; = d(z;, z;) = |[z; — z;|,, V1 <



1,7 < N. The elements of the matrix must inherit some properties from the norm:

w;; = d(z;, z;) > 0 Non—Negative

wy = d(z;, ;) = 0 Zero Diagonal

w;; = d(z;, z;) = d(zj, 2;) = wj; Symmetry

wig = d(z;, xx) < d(z;, ;) + d(xj, £x) = wi; + w,j, Triangle Inequality

Let YT be the set of pair-wise—distance matrices ranging over any N points in any finite
dimensional normed linear space.

Claim 1.2.1 Y is a cone.

Proof 2 (Proof of claim 1.2.1) We will show closure under the operations +,- for the
triangle inequality: For a,b € T:

(aij + aje = ai) A (bij + b > bix)
= Qij + jg + b + bjk > aix + big
= (a+b); +(a+b), > (a+bd)y

k>0, (aij + ajr > aix)
= kaij + /-cajk > kai

We construct the isomorphic cone in RV”.

Let Sy be as in equation( 1.19 ), the result of constructing solution spaces for I'y, 'y in
equations ( 1.16 , 1.18 ) earlier. Sy, contains points satisfing the equality constraints of zero
diagonal and symmetry.

Let I’y be defined as in ( 1.21 ), this covers the positive entry condition.

Now we focus on the triangle inequality.

Letting 7 be a index function converting triples of the form (i, j, k) into a single index
over the range [1...N?] given by the map:

(1,5,k) =n=(k—-1)*«N>+(j—1)*«N +i (1.23)
Ui n
n— (M, N5, M) = (77 mod N, 1+ LNJ mod N, 1+ LWJ) (1.24)

Define 'y, € L(N3, N?) as

Vit mi = v,mi 0y i 7 My M 7 Mk
) = 1 if'77j =0, F N £ e, 1 7 Tk (1.25)
nY —Lif g = v, M # N5, i # MMy F M
0 otherwise



Let Py be the non-negative cone in R, Then the set P, = {z € RV . [y(x) € Py} is a
cone in RY”.

As ®(Y.) is the cone from equation (1.22) given by: ®(H,) + Fpn2, Note that upon
intersection with cone P, we satisfy all equality and inequality conditions.

PA = (P(Ho) + PO,N2 N P2 (126)
And the Isomorphic space in RV * is the Minkowski sum given by:

3(T) + Pa (1.27)

Pairwise Distance Matrices of Points on a Line of a Given Order

Let us take N points 1 < 3 < ... < zx from the line R.
Since all points are vectors in R', pairwise angles are in the set {0, 7}. All triples z;, z;,
with ¢ < 7 < k will attain equality in the triangle inequality:

1<j<k= ((J,ij + ajx = aik) (1.28)

Let II, be the class of all matrices with the condition that a € Il, implies i < j < k =
(a,-j + Ak = aik).

Claim 1.2.2 TI, < L(N)
Proof 3 (Proof of claim 1.2.2) Let a,b € Il,:

i<j<k:>aij—|—ajk:aik

1< j < kibij-i-bjk = b, =>’}/bij+’)/bjk :’Ybilc
= @ij + ik + Ybij + Ybjk = aik + Vi
= (a+7b);; + (a+ ), = (a+7b)y

Let ITF be the class of all matrices arising from pairwise distance data of any N points
{x1,%9,...,2zn} on aline so that ., < ., < ... < z, (here e; = i the identity permutation
in the permutation group Sy ).

Claim 1.2.3 IIf is a Cone in L(N)

Proof 4 (Proof of claim 1.2.3) All element entries of IT} are non—negative. The diagonal
entries of IT} are zero. Thus, cone closure property of IIT is obvious. O

Further all entries in the matrix are determined by the upper-diagonal containing N — 1
members.

We can represent the space of matrices in Il as a solution space of a matrix in L(N?, N?)
acting on the space RV isomorphic to L(N).

Let us translate these stiff triangle equality conditions into a matrix equation in the
isomorphic space RV”.



Let n <> (i, 4, k) be the index map defined in equations ( 1.23, 1.24 ).
Now define ', € L(N?, N?)

Lifv=uw;, (1, <v; <wy)

T = lifv=vj, (1, <vj <) (1.29)
“re —lifv=uw, (1 <v; <wy) '

0 otherwise
Let S, be the solution space:
Se={zeRY :Tz =0} (1.30)
Finally the space S, is ®(Il,). With Py the positive cone in RY * The cone set
Py>NS, (1.31)

is the isomorphic set of IT.

Pairwise distance Matrices of points on a line of a fixed ordering

Let us take N points 1, 29, ..., Zy from the line R!, and let ¢ € Sy be the permutation of
indices which sorts the set of vectors:

Loy < Ty < ooo < Ty (1.32)
The triangle equality constraints are:
0; < 05 < 0 = (Ggy0; + Uojo, = Goy0y) (1.33)

Let II, be the class of all matrices with the condition that a € II, if and only if 0; <
0j < 0k = (Ug;0; + Uoj0, = Goy0y)

Claim 1.2.4 II, < L(N)
Proof 5 (Proof of claim 1.2.4) Let a,b € I1,:

0; < 05 < Ok = Qgio; T Qoo = ooy,
0; <0 <0 = bo'iO'j + bajak = bamk = ’ybmaj + fotfjffk = f)/btfiffk
= Og;0; + Qg ;aoy, + ’Ybo-io'j + ’Ybajak = Ugyoy T ’Ybaiak
= (a+7),,,, + (a+70),, = (a+70)

00k 00

Let IT} be the class of all matrices arising from pairwise distance data of any N points
{z1,29,...,2x} on a line so that z,, < x,, < ... < z,, where o € Sy is the permutation
in the permutation group Sy, which sorts the set.



Claim 1.2.5 IT} is a Cone in L(N)

Proof 6 (Proof of claim 1.2.5) All element entries of IT} are non—negative. The diagonal
entries of IL are zero, hence cone closure property of IIT is obvious. O

We can represent the space of matrices in II, as a solution space of a matrix in L(N?, N?)
acting on the space RY” isomorphic to L(N).
We translate these triangle equality stiffness conditions into a matrix equation in the
isomorphic space RY”.
Let n <> (4,4, k) be the index map defined in equations ( 1.23, 1.24 ).
Now define ', € L(N?, N?)
lif v = (0, <0, <0y,,)
Lif v =, (0, <0, <o0y,)

r]o- 1.34
[ }U,v -1 if’l}:l/k;(aui <O_Vj <0Vk) ( )

0 otherwise
Let S, be the solution space:
S, ={z e R¥ : Tz =0} (1.35)
Finally the space S, is ®(II,). With Py the positive cone in RY * The cone set
Py:N S, (1.36)
is the isomorphic set of IT.

Definition 1.2.1 Degrees of Freedom
A set S in L(N) is said to have J degrees of freedom if its affine hull has dimension J.

Lemma 1.2.6 Degrees of Freedom: Degrees of freedom is preserved under isomorphism

Proof 7 (Proof of lemma 1.2.6) Dimension of subspaces are preserved under isomor-
phism. O

Lemma 1.2.7 For any o € Sy The space II, has N — 1 degrees of freedom.

Proof 8 (Proof of lemma 1.2.7) We prove this for II, and reduce all other cases to II,
by means of permuting rows and columns. Let a € II,. a;;;; due to the triangle equalities
we can write the equation:

Qijitj = Giit1 + Qiplitj
= Q41+ Qip1542 + Qg1

= Qi1 T Qipi42 + oo T Qigj1,i4



rne)
RIGY)

Figure 1.1: Permutation spaces

for any j > 4. This yields a system that can be solved over the free variables a; ;1,7 €
1...(N—=1)]

General Case: Let a € Il,, let J, be the permutation matrix obtained by permuting rows
and columns by o. Consider the matrix b = J,a7, One can see that the matrix b € II, and
hence has N — 1 degrees of freedom. Note that J is an isomorphism and thus, it must have
N — 1 degrees of freedom as well. O

1.2.3 Permutation Spaces

So at this point a picture of the geometry of the these ‘permutation spaces’ starts to emerge:
If each point z,, < z,, < ... < ,, is distinct then their associated pairwise-distance matrix
sits in a linear subspace II, < T of rank N — 1. Thus for every ¢ € Sy there is a subspace
fanning out of the origin in T which contains these data.

But consider the fact that |Sy| = N! and since the rank of T is (), there surly must be
some overlap.

Clearly only the origin belongs to the intersection of kernel spaces I'. N I',, unless o = e,
o is the reversal of e, or there is some degeneracy in some of the dependent variables.

Intersections of Permutation Spaces : We give an algorithm for constructing a basis
for the intersection of two such permutation spaces Il,, and II,,. The clearest way to view
this process is in the isomorphic space.

Algorithm 1 We construct a matriz in L(2N3, N?),

H?: ] [z] = [0] (1.37)

And construct a solution space for x using the LU factorization. The solution space is
specified in terms of a basis. Let {by, by, ..., by} be the basis for the solution subspace, convert
back to a basis in L(N) by ® . This provides a basis of elements in L(N) describing the
overlap of two permutation spaces.

This algorithm can be used inductively to compute the intersection of any finite number
of permutation spaces.

Minkowski Sums of Permutation Spaces: We give an algorithm for constructing a
basis for the Minkowski sum of two such permutation spaces II,, and II,,. The clearest way
to view this process is in the Isomorphic space.



Algorithm 2 We construct the matriz in L(N®, N?), specified by equation( 1.34 ):

T,.] [2] = [0] (1.38)
And construct a solution space for x using the LU factorization. The solution space is
specified in terms of a basis. Let {bgl), bgl), ey bglll)} be the basis for the solution subspace.
Next do the same thing for the matriz equation [Fg] [m} = 0 constructing a basis of its solution

space: {b%z), b§2), A bfi)}. Now we construct a matriz in L(N?, hy + ho) with columns equal
to the basis vectors. Setting up the matriz equation:

o B b b b P [2] = [0] (1.39)

finding a solution space for this problem in terms of basis elements {b§3), b§3), e bgi)}. Next
we need only find a spanning set for the space

SRR S S I I I S VAR Y ) § (1.40)

1 3

This provides a basis in RY * which spans the Minkowsk:i sum of the two kernels, converting
the basis back to L(N) describes the Minkowski sum of two permutation spaces.

The algorithm can be extended to compute the spans of a Minkowski Sum of any finite set
of permutations @), by iterating the previous algorithm and letting the set {bgl), bg), .. .bgl)}
be the running basis carried over as the solution of the previous problem.

Yo, <Y (1.41)

0EQR

Pairwise distance Matrices of points on a line of unknown ordering

Since all points are vectors in R' we know that pairwise angles are in the set {0,7}. All
triples x;, x;, x; will satisfy one of three triangle equalities.
Let us define a set of constraints among entries of a matrix:
Cz'jk A — (ai]- + Qi = aik)
Cjki A — (a'jk + ag; = a'ji)
Ckij A — (aki + ;5 = akj)

Now define a condition that one of the three are satisfied:
Cligryn= = (Cije V Cjri V Chij) (1.42)
We define a class of matrices representing pair-wise distances of N points that are found
on a 1-d subspace in a normed linear space.
II = Nicj<kClijryn= () (1.43)

When a relation R;;; holds then a point indexed by j can be seen to be in the convex
hull of points indexed by ¢, k.



Lemma 1.2.8 w € II if and only if there is a 0 € Sy so that w € 11,

Proof 9 (Proof of lemma 1.2.8) Let R;j; for i < j < k be a condition that satisfies the
condition Cjrya=. Let L[i : j] = {k : (wg; = wi; + w;j)}, note condition Ry;; and R will
imply that k£ € L[i : j].

sub claim 1

kelLli:jlNnLim:i]=4ke€ Lm:jland m e L[i: j] (1.44)
IT is defined to be a subset of T so each triple obeys the triangle inequality, hence:
Wgj = W4 +wi]- as k € L[Z ]]

= Wi + Wi + W45 A8 ke L[mz]
> Wem + Wiy 88 Wiy < Wiy + Wy

but also the triangle inequality gives that wy; < wgy, + wp; and we conclude:
Wij = Wim + Wy and k € Lim : j] (1.49)
To prove that m € L[i : j]:

Wi = Wii — Wgm a8 k € L{m : i
Wi = Wgj — Wy; as k € L[i : j]
Wgj = Wgm — Wmj aS k€ L[m : j]

By eliminating variable wy; followed by wy; we find the relation:
Wij = Wmj — Wmi (1.54)

Thus showing that m € L[i : j], and concluding our sub-claim.

We conclude that relations Rym,; and R,,;; are satisfied in addition to whatever relations are
specified on triplets k£, m,j and m,, j, by w’s inclusion in II.

sub claim 2

Ifye L[i:j]and i € L[z : j] then y € L[z : j].

Wij = Wi + Wij
= Wkj + Wiz + Wy a5 ¢ € 1 € L[z : j]
2 Wiy + Wyj AS Wi + Wig Z Wy

This concludes Sub claim 2.
sub claim 3

IfbeLli:jlandy € L{i : jland y & L[b: j] and w;; # 0 then b € Lly : j]. If y & L[b : j]



then either Rpy; or Ry, must be satisfied for a w € II. Ry,; implies b € L[y : j] which is in
contradiction to our assumption, so we must investigate what happens if b € L[j : y]

> Why + Wy; + Wi (1.60)
> Wiy + wyj as y € Li : ] (1.61)

If b ¢ L[j : y] then we will have:

Wy = Whj + Wiy ( )
Why + Wyj + Wiy ( )
(1.65)

(1.66)

:>wyi+wij:0

contradicting the assumption that w;; # 0.

We outline an algorithm that will find a permutation ¢ € Sy satisfying all relations. We
maintain a set of indices S for which every relation holds, at every step we may increase the
size of S by another index and show that all relations hold after the insertion. We say a list
of indices [ has property L if:

size(l) < 3
l1 € L[ly : I3],sizel =3 (1.67)
1<j<k=1l€ L[lj : lk],SiZG(l) >3

Our algorithm shall grow list [ so that it always has property L. The end result is a permu-
tation o so that w € II,. Identify all indices 7,j so that w;; = 0 in the given matrix, and
for each equivalence class choose a representative index. Initialize the list by choosing any
three distinct indices, and use R to place other indices in [ so that [ has property L. To
insert an index z insert in front of the first /,,, so that x € L[, : lsize(l)]. If there is such a
minimal element, sub—claim 2 shows that z € Ll : lsize(l)] for all Iy > 1,,,. Use sub—claim
3 to show that b € L[m : lg,e()] implies that b € L[l : lgseq)]. This shows that all triples
are still satisfied. If there is no such m for which « € L[l;, : lsseq)], use the relation on
T, lsize(1)—15 lsizery t0 determine where to place x among the last three. In either case List [
has property L.

[l

A further question one may ask is given a set of such relation what pairwise distance
must be zero. We address this quesiton in the appendix section Connection between number
of orderings and degeneracy of containing space .

Claim 1.2.9 (II) = H,

Proof 10 (Proof of claim 1.2.9) Using permutations we give a basis for which any matrix
in H, can be expressed. Let a be a N x N matrix contained in the class H,. We define M,



to be the largest number (a + jb) < N for j € Z. Let us enumerate n — 1 elements of Sy:

o1=1,2,3,4,....,(n—1),n (1.68)
o, =1,3, 5,...,(1+2j),...,M[1]2, (1.69)
2,4,6,...,(2+Qj),...,M[Q]Q (1.70)

O3 =1,4, 7,...,(1+3j),...,M[1]3, (1.71)
2,5,8,...,(2+3j),...,M[Q]g, (1.72)
3,6,9,...,(3+3j),...,M[g]g (1.73)

: (1.74)

Ok =1,4,7,...,(1+/€j),...,M[1]k, (1.75)
(1.76)
a,a+k,a+2k,...(a+kj),..., Mg, (1.77)
(1.78)
k,?k,3k,...,(k-i-kj),...,M[k}k (1.79)
On—1 :1, M[l]n—la M[Z]n_]_, M[3]7L—1a Ce M[n—Z]n—l (180)
(1.81)

Let II; be the permutation space associated with o,. For the II; we let V, be a deficient
basis set specified by:

V;c = {wak(i),ak(i+1) : O'k(i + 1) - Uk(i) = k} (182)
Notice that Vj, spans the upper kth diagonal of Hy. O

Definition 1.2.2 We call G a generating set of permutations for Y if and only if Hy =
Byecll,. A necessary condition that G is a generating sets is that the Minkowski sum spans
a space of dimension (];]) :

Claim 1.2.10 (T) = %,

Proof 11 (Proof of claim 1.2.10) If ¢ € II then a € T thus by 1.2.3 we have H, C (II) C
(T). We also have T C H, hence (YT) C H, and we conclude that:

(T) = H, (1.83)
O

We summarize the main results of this subsection by a table:

| Vector Subset of L(N) | Type | Degrees of Freedom |
Non—Negative Cone N?
Symmetric, Zero Diagonal | Subspace Hy < L(N) (12v )
Pairwise Distance Data Cone (];7)
PDD of points on a line Subspace 11, < Hq N-—-1




Figure 1.2: Optimization problem in the isomorphic space

1.3 NP—-Completeness of MATRIX—TO-LINE Problem

In this section we formulate an optimization problem known as the MATRIX—TO—LINE prob-
lem. The main result of this section will be to show that the MATRIX—TO-LINE problem
is NP-Complete. We proceed by showing that a solution to the MATRIX—TO-LINE is ver-
ifiable in polynomial time, and then we show that MATRIX—TO—-LINE reduces to GRAPH—
EMBEDDING, which, in turn, is shown to be NP-Complete.

Problem 1 MATRIX-TO-LINE-OPTIMIZATION ~
Given a matriz A € Y, and a semi-norm ||-||, find an element A € I which minimizes the
distance with respect to the norm.

(A |l = A: A= argmingen||A — z|| (1.84)
Where ||A — z|| denotes ||®P(A — z)||.

Figure 1.2 indicates that the solution to the optimization problem in the case of a norm
can be seen as the finding the first intersection of a ball centered at A intersected with II.
1.3.1 MATRIX—-TO-LINE is NP—Complete

We state the decision problem corresponding to the optimization problem.

Problem 2 MATRIX—TO-LINE-DECISION
Given input (B € Yy,b € F,||||, A € IIg) decide ( Yes / No ) if the given A is such that:

1B — Al <b (1.85)

Problem 3 MATRIX—TO-LINE-BOUND
Given input (B € Yg,b € F,||-||) construct a matriz A € Iy, or determine that one does not

exist so that:
[|[B—A|l <b (1.86)

Clearly MATRIX—TO—-LINE-BOUND is verifiable in polynomial time using straightforward
matrix operations that can be computed in ©(N?) time.



Lemma 1.3.1 MATRIX—TO-LINE-BOUND s equivalent to GRAPH-EMBEDDING—BOUND

Proof 12 (Proof of lemma 1.3.1) Now we show that if we can solve instances of MATRIX—
TO-LINE-BOUND we can solve instances of GRAPH-EMBEDDING—BOUND via a polynomial
reduction.

Given the instance of GRAPH-EMBEDDING—BOUND, we construct B as:

vw T

{W(v,w) if (v,w) € E (1.87)

0 otherwise
Let A(6) be a matrix in L(/N?) given by the equation:

lifv=2v,w=v,(v,w) e E
Awuw),wwy =40 ifv=2w=u'(v,w) ¢ E (1.88)
0 otherwise

And let ||z[, , = Hx\//_\H be the norm in the MATRIX—TO-LINE instance. As ¢ goes to zero
’ P

the limiting problem is a GRAPH-EMBEDDING rather than the complete graph embedding.
In fact when 6 = 0 one can check that:

lallp = [|=vA]| (1.89)

Is a semi—norm always equal to the p—norm of the GRAPH-EMBEDDING problem. Letting
0 = 0 we have:

HB—B‘ i,p:Z‘(B—B)Jp (1.90)
=> |(W(e) - Bl (1.91)
(1.92)

Since B € IIy one can then find an embedding function f based on the values of B, for each
eec E. O

Lemma 1.3.2 GRAPH-EMBEDDING—BOUND Problem is NP-Complete

A proof very similar to the one by Jim Saxe [29] ( by private communication), but expanding
the cases and extending the result to P-Norms is given in the appendix.

Theorem 1.3.3 NP-COMPLETE
MATRIX—TO-LINE is NP-Complete.

Proof 13 (Proof of Theorem 1.3.3) By lemma ( 1.3.1 ) we note that GRAPH-EMBEDDING—
BOUND reduces to MATRIX-TO-LINE, and by lemma ( 1.3.2 ) we conclude that MATRIX—
TO—LINE is NP-Complete. O

This concludes the main result of the section.



1.4 Heuristics

To date it is not known if there is a polynomial time algorithm to solve MATRIX-TO-LINE
problem in the general case: If the answer is yes then we can conclude that NP=P, if the
answer is no then NP#P. In either case, we would have solved the P vs. NP problem, one
of the outstanding open problems in current mathematics.

Heuristics may be defined as algorithms which compute near optimal solutions, or locally
optimal solutions. We are lead to ask, “can one design heuristics that are efficient?”, if so
are there conditions on the input which will ensure solutions are correct?”

We construct dynamical systems which define projections onto Il as the end results.

In the applications we focus on proving that local optima, however poor the guarantee
may be, have computed perfect or correct results.

Definition 1.4.1 Heuristics
A Heuristic algorithm computes locally optimal solutions.

1.5 ODE Dynamical System Heuristic

We consider the construction of polynomial time algorithms which work in some cases for the
MATRIX-TO—-LINE problem. We then do an analysis of a ‘basin of accuracy’ for the heuristic
by using the methods of Lyapunov. We begin by defining an evolution equation in the space
of Hol

v :[0,00) = Hy (1.93)

As an objective we seek to design the evolution of the matrix y(¢) so that:

e The 7(0) is arbitrary preassigned ‘Initial Data’ from the class Y.

e The limit value is in II.

lim e I1 (1.94)
t—00
e The evolution is autonomous in time:
T,: L(N) = L(N) : (s +0) = y(s+t) Vs €0, 00] (1.95)

For 7(t) we define the underlying variables X(¢) which determine v and +':

Xijn(t) = (Vigs Vik» Viks Ojins Oinj, Onjir Pige) 1 < j <k €[l...N]
7i; = distance between points whose indices are 1, j
vjx = distance between points whose indices are j, k
ik = distance between points whose indices are %, k
0;;x = angle between line segments with endpoints indexed by ik, ¢j
i;x; = angle between line segments with endpoints indexed by ki, kj
0rj; = angle between line segments with endpoints indexed by jk, ji

pijk = local gauge function



The local gauge function is described by the following: Let,

Y1 = max {%'j, Yik> Yik }

Yo = max {ij, Vik, Vik} \ {71}

¥3 = max {Vij, Vik, Vi } \ {715 Y2}
Pijk ={p: 71 — (5 +13) = 0}

For the problem of embedding points in a line we will strongly encourage p — 1, the only
p—value to allow the relation v — (75 + ~%) = 0 while points are in a line.

Geometrically this vector is a set of variables defining model triangles, one for each of the
(%) distinct index triples. We note that the underlying variables X are an over-determined
set of variables. We will use them anyway for easing the description of the ODE, but a
smaller set of variables can be found. The dependencies amongst the variables in terms of
free variables «;; : ¢ < j:

2 2 2
2 4 A2 2
0, = arccos <_%k Tij ’Vyk)

2%iYik

2 2 2
2 4 A2 A2
0;x; = arccos (—%k Tk ~ Vg )
27k Yik
T

ji = a5 j ikj
0 5 (0]k+0k])

pijk ={p: 71 — (75 +3) =0}

Now we let 1 be a index array map:
N
n:i<j<k—>[1,<3)] (1.96)

X(t) = (Xy(1)) (1.97)
Since we want y(oco) € II, we design smooth bounded penalty functions favoring flow
toward the set II, and so that z € II is a stable fixed point.
Penalty Functions
These penalty functions comprise two components:

e Angle displacement penalty

F(8,0:0) = 5 (1.98)

(o) + (omor3) 3+ (G- (60 moa )2
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Figure 1.3: Angle penalty function family

e Local gauge penalty function:
1
9(p;7) = exp(—(1 — max {p, 5})/T) (1.100)

These penalty functions are plotted in figure 1.3:

The angle displacement penalty function is plotted on a domain 0 : .05 : 7 for values of
v as .003, .1, 2, and 10.

Next the gauge penalty function is plotted for various values of 7:

Note that the function f(¢,0;v) is periodic, with periodic domain [0,%]?, and favors
values with one large angle and two tiny angles, as it happens for points on a line.

The function g(p; 7) on the other hand favors values of 1, which is the needed convexity
of a norm to place points in a line so that they satisfy equality in a triangle inequality. The
gauge penalty is not a Gaussian, as it places a slightly greater penalty on points with gauge
less than 1, than on points with gauge greater than 1, this is to bias against index triplets
that do not satisfy the triangle inequality. The p—function has a singularity when all edges
are the the same length, this corresponds to the fact that 2 = 22P if p = oo, at this point
the gauge penalty function is zero.

These functions together will impose a structure on the evolution of our data. Let:

Y(t) = F(v(t); v, 7) (1.101)
with:

1
F(yijsv,m) = i — Zilo7) Z fikg X ginj X (Cirg ik + BiriVes) (1.102)
VA keLN)\ iy}
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Figure 1.4: Gauge function family

B

B=1)if yix < yjr < yij
B=-1)if yjr <yi; = yir
B
p

= —1) if yjr < yij < Yk
=1) if yjr < yir < yij

where:
firj = f(Oijk, Ojkis v) (1.103)
Gikj = 9(Dijk; T) (1.104)
Zij(v,7) = Z f (Oijk; Ojri; ) 9 (Dijn; 7) (1.105)
ke[1:N\{i,5}
((a=—1,8=1)if y; = yir = ys
(a=-1,8=1)if yi; < yir = Yji
(a=-1,8=1)if yi; = yir < yji
(a=-1,8=1)if yi; < yir < Yji
(@a=1,8=-1)ify; = yjr < yu
(@a=1,8=-1)if y; <yj < yux
(ijis Biji) = & (@ = —1,8 = 1) if yix < yi; = Ui (1.106)
(a=-1,8=1)if yir < yij < Yj
(
(
(
(
(
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I
— = e
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The ordinary differential equation above is nonlinear as can be seen if we replace ©
variables with their dependencies in terms of v variables.



After the needed conditions of F' are verified we will treat the above ODE with a numerical
analysis.

Claim 1.5.1 F(v;v,7) is Lipschitz Continuous in a bounded set of Ho for fized v, T

Proof 14 (Proof of claim 1.5.1) For fixed parameters, 7,v, f;jx and g;; are clearly Lip-
schitz continious. Let us define:

Tijk = fijkGijktijh (1.107)
tije = (Yij — QijeYix + BijkYrj) (1.108)

The proof will consist of showing that either t;;x(vi;, Yik, Yr;) or Tijx is Lipschitz continious

over a large number of cases given by the ordering of data ¥;j;, yix, Yk;- This is sufficient to
show that F' is Lipschitz continious, as Fj; is a normalized sum of Lipschitz continious
functions.
We will show that ¢, is Lipschitz continious in a large number of cases, then we will indicate
how the other cases are identical, One case will use the smoothness properties of f and g.
Underlying the technical details of the proof is that ;5 is continious in v;;, ik, yx;- Variables
a, 8 depend on the ordering of data y;j;, yir, yx; and act as switches always producing a
correction for value y;;, in order that the points indexed by 7, j, k fit on a line. The cases of
the proof are enumerated below.

((Z) Yij = Yik = Ygj = —1 B =

(1) Yy <y =uyr; a=-1,8=
(499) Y5 =y <wypy a=-1,8=1
(1) Yo <y <yp; a=-1,8=1
() yig=ur <y a=1,0=—1
(V1) yi; < yrj <Yix @ = ,5=—

§ (Vi) yi <yij =yk; a=-1,0= (1.109)
(Vi) Yy <y <ypy; @ =—1,8=
(iz) Y =Yrj <y a=1,8=1
() v <wunj <yy a=1,=1
(x8) yrj <wij =y a=1,8=—
(zid) yrj <y <y a=1,0=—
((@998) yrs <wir <y a=1,8=1

We first consider cases (iv), (vi), (viii), (z), (zi7), (xii7):
tijk (Yij + €ij, Yik + €iks Ukj + €kj) — tijk(Yijs Yiks Ykj)
=y + €5 + (& (Yir + €x) + B (Ynj + €x5)) — Yij + (0ir + BYyr;)
=€+ e + Blen + yin (¢ — @) + yi; (B — B)

here o/, B are the «, 8 variables for the possibly perturbed ordering y;; + €;;, ¥ij + €, Yij + €x;-
but for ||e|| < min |yi; — Vikl, |Yik — Ukjl, |¥i; — Ykj| we will have o = o and ' = §. Further



we have that |a| <1 and |8| < 1 so we may conclude that:

tijk(Yij + €ij, Yik + €iks Ykj + €xj) — tijk(Yijs Yir, Yki) = O(/|€]]) (1.114)

And ¢, has been shown to be Lipschitz continious in the cases (iv), (vi), (viii), (x), (x4i), (z13i).
Now we consider cases (i7i), (v), (iz). We shall pick (zi¢) to proove and note that the other
proofs use the same idea. In case (i) we have y;; = yix < yrj. We can proove that the term
tijr is Lipschitz continious.

tijk(Yij + €5, Yik + €k, Ykj + €x5) — tiji (Yijs Yik, Ykj) (1.115)

= Yij + € + (& (Yij + €r) + B (Ynj + €x7)) — Yij + (ayij + Byj) (1.116)

(1.117)

but in case (7ii) we see that for e small enough we will have: y;; + €5, Vik + €ik, Yk; + €x; either

fallin into one of the cases (i7), (i7i), (vii) all of which assign o/ = —1,5" = 1. we deduce
that:

tijk (Vi + €5, Yik + €k, Yij + €x5) — Cijie (Yijs Yik, Ykj) (1.118)

= yij + €5 + (=1 (Yij + €ix) + 1 (Yrj + €x3)) — vij + (= Ly + 1yx;) (1.119)

= O(/lel]) (1.120)

We conclude that these cases are safe, and that ¢;;; is Lipschitz continious.

Now we consider cases (i7), (vii), (x7), we shall pick (iz) to proove and note that the other
proofs use the same idea. In case (i7) we have y;; < yix = yr;. We note that for |||
small enough we will have y;; + €, Yix + €k, Y; + €x; in one of the cases (iv), (it), (vi). If
Yij + €ij, Yik + €ik, Yrj T €x; 1s in case (iv) or (44) then the proof is similar to the one above but
if yi; + €ij, Yik + €k, Yrj + €x; is in case (vi) we will have, (o, 8) = (-1,1), (o, B) = (1,-1) :

tijk (Yij + €ij, Yik + €iks Yk + €kj) — tijk(Yijs Yiks Yrs) (1.121)
=i + €5 + (1 (Yar + €ir) + =1 (yix + €x5)) — vi5 + (=1yar + 1yir) (1.122)
= O(|le]]) (1.123)

We conclude that these cases are safe in that ¢, is Lipschitz continious.

We now consider our last case, case (i). We note that a pertubation of this case may become
any of our 13 cases, so rather than go through these cases we shall prove that 7 is Lipschitz
continious. The function g is zero when y;; = ¥ = yi;, In a neighborhood of the zero the
function g decays exponential. This ends our proof. O

Claim 1.5.2 If y(ty) € II then y(to + s) = y(to) Vs > 0

Proof 15 (Proof of claim 1.5.2) If y(ty) € II then y(ty) € II, for some o € Sy by lemma(
1.2.8 ). We may conclude that:

Yij = CukjYik + Bikj ks for 4,5, k (1.124)



Thus:

F(yv;v,7)ij = Yij — m > M)y (1.125)
= Yij — 'Yijm > (el (1.126)
=0 (1.127)

Our next result indicates the stability of the set II for our ODE. We shall consider a point

v € Il, so that v is not in any other II, which is not identical to II,. For such a v there
exists a Bs(v) so that:

Bs(v)Nnll, =92 V I, #11, (1.128)

Now let Y = Hy \ I1,, Y is the perpendicular subspace of I1, in Hy. Let U = Bs(v) NY and
Fy = F|y as a restriction map.

Claim 1.5.3 For v,Y as above, there exists a 0 so that y € U = Gs(v) NY, 0 is an
Asymptotically Stable point, in the sense of Lyapunov. The point 0 corresponding to a point
wn 1l,.

Proof 16 (Proof of claim 1.5.3) We prove this claim using the method of Lyapunov, by
developing a strict Lyapunov function for Y. We define the function

1
V:U— RS : g 5||—r(,<1> W3 (1.129)

This function V' is the norm on the image vector I',®(y) where I, is defined in equation(
1.34 ). We show that V is a strict Lyapunov function by showing three things.

¢ V(0)=0
e V(y)>0 VyeU\{0}
o gradV(y)- Fy <0 Vye U\ {0}

V(0) = 0 is obvious and corresponds to a flow that is contained in II, C II. Also obvious is
that V(y) > 0 if y # 0.
To show the third item in some Bs(v) we can let: d = ming—s_ ., {VUsk—1)o(r)}, and let

o' = (%)p. Now we have:

d
Iy —oll, < 8" = lly —vll < § (1.130)

This is sufficient to conclude:

Yo(i)o(k) = Yo(i)o(§) VY Yo(G)o(k) & Va(i)a(k) > Vo(i)a(j) V Vo(j)o(k) (1.131)



The gradient vector of V' is computed as:

(gradV(®)oory = Do — (“Yototr) + Yotko® + Yotio()) (1.132)
o(k)<a(i)<a(j)
+ Z — (Yoti)oli) = Yoli)otk) — Yo(k)o(s)) (1.133)
o(i)<a(k)<a(j)
+ Y = (“Yelyo) + Yolioli) T Yoli)o()) (1.134)
a(i)<o(k)<a(j)
(1.135)
The field vector:
Jo()o()o k) 9o i)o(G)o (k)
EW)oiyory = D e (Vo) F Yoot + Yotiro))  (1-136)
o(k)<a(i)<o(j) LOLO)
fo()o(j)o(k) 9o (i)a(j)o (k)
+ Z 7 (Yoti)o() — Yoli)ok) — Yok)o()) (1.137)
o(i)<a(k)<o(j) a(@)o ()
Jo(o(i)otk) Yo (i)o(i)o (k)
+ > T (oot T Yoliot) T Yolioth)
o(i)<a(k)<a(j) o(i)o(4)
(1.138)
Letting:

(=Yo(i)otk) + Yotk)oli) T Yolios)) if o(k) < (i) < o(j)
tije = (Yot)ot) = Yoliyotk) = Yoho(s) if 0 (i) < a(k) < o(5) (1.139)
(=Yo(irotk) T Yoli)ol) T Yoi)otk)) if 0(8) < o(k) < o(4)

fo(z)o(y)a(k)ga(z)vma(k)
Zo(i)o (j)

(8radV (¥))oiy<o(y X EW))oiy<o) = ( thk> (Zhijktijk> (1.140)

Now to finish up the proof we will show that in a small enough ball of v the terms h;jj

consentrate to values %
We note that each h,(iys(j)s(x) is many times differentiable on a compact set and hence is

Lipschitz continious. Thls implies that there is a K so that:

g (y1) — hige(v)] < Klyy — v] (1.141)

Noting that h;jx(v) = &, and letting:

and hjj, = we get:

1
€ijk = hijk: - N (1142)



We proceed:

( gradv(y))a(i)<a(j) X (F(y))g-(i)<a(j) (1.143)

]

> (% + %’k) tijk) (1.145)

=N (Ztiﬂc) — ((tije, (1,1, .1))) (eij, ij)) (1.146)
< a2+ el 2 R e (1147

1
= el (— + Vel ) (1149

1
3
N2 K

But when ||ly; — v|| < we will have:

1
lleijl| < Kllyr —vl] < — (1.149)
N2

and the term (—% + \/N||6UH2> < 0. Letting § = min <(S/’ ﬁ) completes the proof. O
2

The above claim tells us that within a neighborhood of a point v ( in only one subspace II,
) given by Bj(v), the analytic result converges to a projection onto one of the permutation
spaces.

Next, we will prove that a numerical solution converges to the analytic solution, the stage
is set as we have shown that our field function F is C".

Claim 1.5.4 A numerical method such as Euler’s method, backward Euler, or Ruge-Kutta
converges

Proof 17 (Proof of claim 1.5.4) We give a proof for the Euler’s method, and note that
the other methods are well known to have better convergence properties than that of Euler’s
or Forward Eulers method. let A be some small number.

tn = to + nh (1.150)

And our approximate solution will given by the formula, also know as the forward Euler
method:

Y = An-1+ hF (n—1) (1.151)

This as a approximation to the actual position of the flow:

Yo = Y(tn) (1.152)



By Taylors series expansion we will have:

Yo =7 (to + nh) =7 (to + (n — 1) h) + I (to + (n — 1) k) + O(h?) (1.153)
= Vo1 + A (to + (n — 1) k) + O(h?) (1.154)

Now let the error at time point n be given by:

€n = |[Fn — Ynl| (1.155)
and notice that ¢¢ = 0. We derive the bound:

len| = I[[n — Yall] (1.156)
= ||(Fn-1 + hF (Fuz1)) = (Va1 + b (to + (n = 1) h) + O(h?))]] (1.157)

<[ Fno1 = Ynr || + [[RE (Fnr) = b (to + (n = 1) B)[| + O(h?) (1.158)

< en1+A|[F (1) = F (7 (to + (n = 1)) + O(r?) (1.159)

< €n1 + hK||yn—1 — v (to + (n = 1))|| + O(h?) (1.160)

< én1 (1+hK)+O(R?) (1.161)
(1.162)

We get equation (1.158) by the triangle inequality, we get equation ( 1.160 ) by the Lipschitz
continuity of the function F'. We conclude:

len] < (1+hK)" O(h?) (1.163)

For n = |5-] + 1 we can get an arbitrary precision accurate evaluation by letting A — 0.
This shows us that we can use the forward Euler step method to approximate (¢, + %)
to arbitrary precision, from an accurate 7(¢,) evaluation. We conclude that the numerical
method Converges in the interval [t,,, tn—{—%] and we can use this iteratively to get Convergence
for all [0,00). O

1.5.1 Numerical Solutions and Complexity

Numerical solutions are in general quick algorithms. We note the only problem we face is
that we have blown a problem of (ZZ ) up into about (]; ) space vectors, however we are still
within the grasp of tractable work, maybe N = 100.

We illustrate some examples and illustrate the effect of error.

1.5.2 Conclusions on Heuristics.

We note that the heuristic is able to tune itself to the region of data that most satisfies our
assumptions that points are embedable into R, namely that angles (0,7, 0) can be found to
match data.
What we find is somewhat interesting in terms of distributions of error matrices. Suppose
that we have input A:
A=7+FE 7mell (1.164)

Given a distribution of on E we believe that the resulting subspaces are fairly robust under
the variation in E. The algorithm is essentially choosing a basis for II as it goes. It pursues



a basis for its embedding by pruning back a large number of basis candidates as it moves.
In some cases the solution is determined from a high signal to noise ratio in a critical band
of matrix entries. Ultimately we believe that the determination of basis is somewhat related
to the flow of heat in a conductive rod, and occurs very quickly. In the applications the
algorithms presented are speedups of the central idea presented in the ODE.



Chapter 2

Application I, Probe Mapping

2.1 Mathematical Definitions

A probe is an isolated string of genomic material that may hybridize with genomic material (
called the text string ) if there is substantial similarity between the probe and any substring
of the text string. The probe will stick to genomic material the text string contains a similar
sub-string to the probe’s complementary sequence.

Given a set of P probes listed as {pi,po,...,pp} and contained in some contiguous
segment, of the genome we define a probe map to be a pair of sequences, ordering =
{Pr(1); Pr(2)s - - -, Pr(p)} and position = {z;, 2, ..., zp}. The ordering sequence is a de-

scription of an ordering for the P probes, while the position sequence is a description of the
probe positions.

Assume that the underlying correct position of each probe remains unknown. We infer
probe maps approximating the correct positions as best as possible from an experimental
set of data which is stochastic.

We model various experimental errors arising from the hybridization experiment used
to measure probe to probe distance. With the model we can understand the distribution
of pairwise distance graphs as a random variable. Under certain parameters we can im-
plement Bayes formula to build a Maximum Likelihood Estimator (MLE) for probe map
reconstruction.

Formulating the Problem

Consider a genome represented by the interval [0,G]. Take P random short sub-strings,
about 200bps (base pairs), which appear on the genome uniquely. Represent these strings
as points {x1,...,zp} in the vector space R, and indicating the genomic position of each
string. Assume that the probe positions are i.i.d. with uniform random distribution over
the interval [0, G]. Let S be a collection of intervals of the genome, each of length L (usually
ranging from few 100kbs to Mbs). Suppose that the left-hand points of the intervals of S are
i.i.d. uniform random variables over the interval [0, G]. Take a small, even in number sized
subset of intervals S’ C S, chosen randomly from S. Divide S’ randomly into two equal-size
disjoint subsets S' = S§ U Si;, where R indicates a red color class and G indicates a green
color class. Now specify any point z in [0, G] and consider the possible relationships between
z, and the intervals in S”:

29



e 1 is not covered by any interval in S’.

e 1 is covered by at least one interval of Si but no intervals of Sg,.

e 1 is covered by at least one interval of S¢; but no intervals of Sf.

e z is covered by at least one interval of Sy and at least one interval of S;.

If we perform a sequence of M such experiments then for each z we get a sequence of M
outcomes represented as a color string of length M. We are interested in observing color
string outcomes at each position {z1,...,zp}.

For DNA the short sub-strings can be produced with the use of restriction enzymes, or
synthesized as oligoes. The collection of covering intervals may be provided by a bacterial
artificial chromosomes library ( BACs ) or yeast artificial chromosomes library ( YACs ). The
division of a random sample taken from the clone library may be done with phosphorescent
molecules added to the DNA and visible with a laser scanner. Hybridization microarrays
allow us to observe such an outcome sequence for each of the 100,000 probes in a constant
amount of time.

Consider an example with human. To make a set of Human Oligoe Probes we may use
restriction enzymes to cut out P probe substrings of size 200bp to 1200bp from the genome
and choose a low complexity representation (LCR) . We may arrange for a sequence of M
random samples from the BAC library, suppose each sample has K BACs and coverage
¢ = EL Samples are then randomly partitioned into two color classes ¥ = {R, G}, and
then hybridized to a microarray, arrayed with P probes. If we pick one probe p;, then the
possible outcomes for one experiment are:

e p; hybridizes to zero BACs. We say the outcome is ‘B’ (blank).

e p; hybridizes to at least one red BAC and zero green BACs. We say the outcome is ‘R’
(red).

e p; hybridizes to at least one green BAC and zero red BACs. We say the outcome is ‘G’
(green).

e p; hybridizes to at least one green BAC and at least one red BAC. We say the outcome
is ‘Y’ (yellow).

We call these events ig, ig, tg, and iy respectively. We use M random samples to complete
the full experiment. The parameter domain for the full experiment is (P, L, K, M), where
P is the number of probes, L is the average length of the genomic material used (for BACs,
L = 160kb), K is the sampling size, and M is the number of samples. The output is a
color sequence for each probe. The sequence corresponding to probe p; is s; = (s; ), with
sjk € {B,R,G,Y}.



How the distances are measured

With the resulting color sequences s; we can compute the pairwise Hamming distance. Let

H; ; = # places where s; and s, differ , (2.1)
C;; = # places where s; and s; are the same but s; # B, (2.2)
T; ; = # places where s; and s; are B. (2.3)
(2.4)
The Hamming distance defines a distance metric on the set of probes.
Lemma 2.1.1 Consider an experiment with parameters (P, L, K, M), and ¢ = % Let i

and j be arbitrary indices from the clone set and xz;; is the actual distance ( in number of
bases ) separating probe p; from probe p; on the genome. Let ;; = min{z;;, L}. Then:

206(_70)§3'ij

Hij ~  Bin (M, —F—+0((&y)")) (2.5)
Cij ~ Bin (M,1—e ™+ (e = 2¢75)i; + O((8)") (2.6)
T, ~ Bin (M, (0 )) (2.7)

(2.8)

Where V.~ Bin (M,r) indicates that V' is a binomial random variable with parameters
(M, ).

Proof 18 (Proof of lemma 2.1.1) Fix i, j and let iy be the event that probe i is observed
to have a Y outcome; similar events are defined for the symbols g, g, tq, iy, B, Jr, JG) Jv -
Let C be the event that ¢ and j are observed to have the same non-blank color, let 7" be the
event that 2 and j have the same blank outcome, and let H be the event that probe 7 or j
are not the same color.

Since the M samples are done independently the proof reduces to showing that when M =1
the probabilities are Bernoulli with respective parameters. Let us define events "= (ig Ajp)
5 C = ((’LR /\jR) \% (’LG /\jg) \% (ZY /\jy)), and H = (_|T/\ _|C)

Given a set of K BACs on a genome [0, G] the probability that none start in an interval of
length [ is (1 — )" ~ e~ where o = £

Shown below in figure 2.1 is a diagram that is helpful in computing the probabilities for
events C, H,T when z < L. The heavy dark bar labeled a represents a set of BACs which
covers probe p; but not p;; the bar labeled b represents a set of BACs that covers probe p;
and pj;; finally, the bar labeled c represents a set of BACs that covers p; but not p;. Hence



c
b
a
| | |
T ! B |
T L—-z p T pj
Figure 2.1: Probabilities dependent on distance x
we derive:
Pr(T|z <L) = exp(—(ag+ag)(L+1)) (2.9
Pr(igr Ajrlz < L) = e ®cEHaf(1 — gmorlm2)) 1 (1 — gmor)(gmor(L72)) (1 — ¢7*4D)}0

= 6*06G(L+.’L‘){1 _ 2e*OLRL + efo‘R(L‘I“-T)}
= 6—aR(L+$){1 _ 2€—agL + e_aG(L‘HE)}
(1 - 2e7ort 4 emonlltn) (1 — gemaoh 4 emoclln)

Pr(ig A jglz < L E
(
P(ir A jrlz < L)+ P(ig AN jglx < L)+ P(iy ANjylz < L) (2.14
(
(

)
Pr (’Ly /\jy|$ < L)
Pr(Clz < L)

)

I

1~ [P(T]z < L) + P(Cl < )]

When x > L the probabilities are:

Pr(T|xz > L) exp(—(agr + ag)(2L)) (2.17)
Pr(ig A jglz > L) e~2c@hf(1 — gmarl)2} (2.18)
Pr(ig A jolz > L) = e 2rCD(1 - ¢ acl)2} (2.19)
Pr(iy Ajylz > L) = (1—e *r)?(1 — e 2cl)? (2.20)

Pr(Clz > L) = P(igAjrlz > L)+ Plig A jglz > L) + P(iy A jy|z > L)2.21)

Pr(Hlz>L) = 1-[P(T|z> L)+ P(Clz > L)] (2.22)

(2.23)

Because ap = ag, agl = agL = § = 5L Let ¢ = g(z) = P(H) and p = p(z) =
P(C). In general g(z) and p(x) are complicated functions of z, below we derive a first order
approximation of z(¢) to be used as a biased estimator.

2cexp(5°)z

Pr(H) = (1—-(1—-2e7 +2e200))?) = 7 +O(z?) (2.24)
Pr(T) = (eUF1)) (2.25)
Pr(C) = 1-e+ (e —2e %)z +O(a?) (2.26)

2



With independent sampling:

2cexp(3)

Pr(H;;) ~ Bin (M, 7 + 0(z?)) (2.27)
Pr(Ci;) ~ Bin (M,1—e ™+ g(e—c —2¢~5)z + O(a?)) (2.28)
Pr(T;;) ~ Bin (M, (e +1))) O (2.29)

(2.30)

These computations for small = lead to an accurate estimator:

Corollary 2.1.2 The estimator of x;; is given by T;; = Hi,jgf—ﬂf[

there are values of ¢ so that:

1s good in the sense that

_ (d—ﬂ%'z')2

1 2022, y
e ij if T < L
f(@ij = dlzy) — ¢ VPOV /i ’

as M — oo. (2.31)

1 T I
———€  22L f .. > L
VarovVL if 23 2 L

with 0? = (é)

2c
Proof 19 (Proof of corollary 2.1.2) It is based on a standard approximation. 0

Lemma 2.1.3 The distribution for distance d is a function of x and is approximated by

—(d—z)?/202x —(d—L)?/202L

€ €

dlz) =locger——— + l1<cgecg——F———
f( ‘) 0<z<L \/%0 L<z<G \/27T—LO'

Proof 20 (Proof of lemma 2.1.3) Simple restatement of corollary 2.2 O

Since we have assumed that any given probe is distributed uniformly randomly over the
genome, the density function for the probe’s position is:

flz) =5 (2.32)

Our next lemma is an application of Bayes’ formula to compute f(z|d) from f(z) and
f(d|z) computed above.

o= (d—2)2 /202 e—(d—1)2/202L

V2nxo + II:LSxSG V2nLo
6—(z—d)2/202d I, I 1
W da>L li<z<a G_L

Lemma 2.1.4 If f(d|z) = Lo<z<r . Then

f(z]d) = Lacr, (2.33)



Proof 21 (Proof of lemma 2.1.4)

flzld) = fdlo)] (o) (2.34)

G
Jo' fldlz)f(z) dz
1 (1 e (d—2)? /202 o e—(d—L)Q/ZJQL)
G ( 0<z<L P L<z<G Lo
= V2 vert (2.35)

1 G e—(d—2)2/202z e—(d—L)2/202L
& Jo <H05w<L Varae T lLsese™ 7, dz

For small values of 02 the denominator in the above expression can be approximated as
follows':

1 L e—(d—m)2/202z G-I 6—(d—L)2/202L
d = — ——dx + 2.36
/() G Jo 2o G 2 Lo ( )

1 L
~ =1 1— — | dg=r. 2.37
i<t + ( G) d=L (2.37)
Thus, we make further simplifying assumptions and choose the following likelihood function:
e,($,d)2/202d 1

f(z|d) ~ Hddi\/%—da +la>r Ir<e<a -1 O (2.38)

O

With conditional f(x|d) we can now define the Maximum Likelihood Estimation problem:

Given an arbitrary pair-wise distance edge weighted complete graph G of P vertices,
representing probes, and each edge (i,7) labeled with d;;, a sampled value of a random
variable with the distribution f(d||z; — z;|), we would like to choose an embedding of G (or
more precisely, an embedding of the vertices of G) into the real line:

(1,79, ..., 5p} C [0,G], (2.39)

that maximizes a likelihood function F(Zi,Zs,...,Zp|d;; : 4,5 € [1,P]). By ignoring the
weak dependencies, we approximate F' as:

I £ —5lldy). (2.40)

1<i,j<P

Hence, we can minimize a related cost function

D —Inf(lE — | dyy). (2.41)
1<i,j<P
Lemma 2.1.5 The Optimization problem of finding T, to minimize f(Z;|{Z; i < j}, {di; :
i < j}) is approrimated by solving the following optimization problem:

minimize Y Wi;(|%: — &;] — dij)?, (2.42)

1<i<j<P

!The Dirac Delta Function is distribution defined by the equations { 0a=0 =0 if o #0 }

fw Oz=odx =1



where W;;’s are positive real valued weight functions:

1
— ifdy <L
I/Vij = 202dij Zf J < (243)
€ otherwise,
and € = O (ﬁ)
Proof 22 (Proof of lemma 2.1.5)
(z — d)? o N .
—lnf(x|d)%{ W—i—ln( 2’/Td0') 1fd<L, (244)
In(G—L)—Inl;<,<c otherwise.
Hence
Yo —Inf(lE—alldy) = > Wy(|dE — & — di)”. (2.45)
1<i,j<P 1<i<j<P
Note that € = 205 r < 20121” - < Q(G_IL)2 - as oy being the maximum variance is bounded by
(G—-L). O

Simple Algorithm

In the following description of an algorithm, Contigs are sets of probes, that are believed
to be in a contiguous region of the genome. Contigs are local regions where the map may
be understood. The algorithms shall grow the contigs monotonically obtaining the largest
possible set of probes that can be mapped, mapped means understanding probe positions in
terms of order and placement.

The simplest algorithm to place probes proceeds as follows: Initially, every probe occurs
in just one singleton contig, and the relative position of a probe z; in contig C; is at the
position 0. At any moment, two contigs Cp = [Zp,, Tpy, - - -, Tp,) and Cy = [Ty, Tgy, - 5 Ty
may be considered for a “join” operation: the result is either a failure to join the contigs
C, and C; or a new contig C, containing the probes from the constituent contigs. Without
loss of generality on set is not smaller than the other, assume that |C,| > |C,|, and that the
probe corresponding to the right end of the first contig (z,,) is closet to the left end of the
other contig (z4,). That is the estimated distance d,, 4, is smaller than all other estimated
distances: dp, 4,, dp, g, and dp, 4.

Let 0 < # < 1 be a parameter to be explored further later, and L' = L§ < L. If d,, 4, > L'
then the join operation fails. Otherwise, the join operation succeeds with the probes of C,
placed to the left of the probes of Cj, with all the relative positions of the probes of each
contig left undisturbed. We will estimate the distance between the probes in C}, and the
probe z,, by minimizing the function:

g — T —dig,)”
minimize Z (T =7 ) ) (2.46)

202d;
i€{p1,enpi}idi g, <L' Ha




Figure 2.2: Contig operation

where Z;’s (i € {p1,...,p}) are fixed by the locations assigned in the contig C,. Thus taking
a derivative of the expression above with respect to Z,, and equating it to zero, we see that
the optimal location for z,, in C; is

Zie{pl,...,pl}:di,ql <L’ (jZ + diy‘]l) /02di7111

(2.47)
Zie{plv---vpl}:di,ql <L’ 1/02di,q1

. -
d* = max | Zp,,

Once the location of z,, is determined in C, at d*, the locations of all other probes of C; in
the new contig C. are computed by shifting them by the value d*. Thus

Cp = [Trys oo Ty Tryys - o Frpn)s (2.48)

where r; = p; and I, = Ip,, for 1 <@ < [; ryy = ¢; and 2, = d* + T, for 1 <7 < m.
Note that when the join succeeds, the distance between the pair of consecutive probes Z,,
and T, 1s

0< 3z, —2, <L, (2.49)

and the distances between all other consecutive pairs are exactly the same as what they were
in the original constituent contigs. Thus, in any contig, the distance between every pair of
consecutive probes takes a value between 0 and L'. Note that one may further simplify the
distance computation by simply considering the £ nearest neighbors of Z,, from the contig
Cp: namely, T, _, ., ..., Tp.

Zie{pl—k+la'“apl}:di,q1 <L' ("Z.Z + di,(Il) /O-Qdi,ql

dy, = max |, (2.50)
l Z’iE{pl_k+1,...,pl}:di,q1 <L’ 1/0-2di;q1
In the greediest version of the algorithm £ = 1 and
dy = Zp, + dpq (2.51)

as one ignores all other distance measurements.
At any point we can also improve the distances in a contig, by running an “adjust”
operation on a contig C, with respect to a probe z,,, where

Cp = [Tpry e Ty 1s Ty Topyas - > Tipy) (2.52)



Tp1 Tp; Tp

Figure 2.3: Adjust operation

We achieve this by minimizing the following cost function:

T, — T — d;p.)?
minimize > (1%, 20;; iz;) : (2.53)
i€{pr,pi \{p; Yidip; <L/ P

where Z;’s (i € {p1,...,p} \ {p;}) are fixed by the locations assigned in the contig C,.
Let:

I = {ine{p,...,pj—1} 1 diyp, < L'} (2.54)
L = {is€{pjsrr o} dinp, < L'} (2.55)
__— dien (iil + dil,pj) /UQdilapj + D e, (jiz - diz,pj) /a2di2,pj

Yoiven, /0% div gy + D, cr, 1/0%diy p, '

At this point, if 2% # I,,, then the new position of the probe I, in the contig C), is z*.
As before, one can use various approximate version of the update rule, where only & probes
from the left and k£ probes from the right are considered and in the greediest version only
the two nearest neighbors are considered. Note that the “adjust” operation always improves
the quadratic cost function of the contig locally and since it is positive valued and bounded
away from zero, the iterative improvement operations terminate.

(2.56)

2.2 Implementation of the k—neighbor Algorithm

INPUT

The input domain is a probe set V', and a symmetric positive real-valued distance weight
matrix D € RY*P | where P = |V|.

PRE-PROCESS

Construct a graph G' = (V, E'), where E' = {e; = (z;,2,)|d;; < L'}. The edge set of the
graph G’ is sorted into an increasing order as follows: e, es, ..., eg, with @) = |E'| such
that for any two edges ey, = [z;,, %}, ] and e, = [2i,,2},], if k1 < ko then d;, 5, < d;,,. G’
can be constructed in O(|V]?) time, and its edges can be sorted in O(|E’|log(|V])) time.



In a simpler version of the algorithm it will suffice to sort the edges into an “approximate”
increasing order by a parameter H, ; ( related to d;; ) that takes values between 0 and M.
Such a simplification would result in an algorithm with O(|E’| log M) runtime.

MAIN ALGORITHM

Data-structure: Contigs are maintained in a modified union—find structure designed to
encode a collection of disjoint unordered sets of probes which may be merged at any time.
Union-find supports two operations, union and find , union merges two sets into one larger
set, find identifies the set an element is in. At any instant, a is represented by the following:

e Doubly linked list of probes giving left and right neighbor with estimated consecutive
neighbor distances.

e Boundary probes: each contig has a reference to left and right most probes.

In the kth step of the algorithm consider edge e = [z;, z;]: if find(x;) and find( z; ) are
in distinct contigs C), and C,, then join C), and C,, and update a single distance to neighbor
entry in one of the contigs.

At the termination of this phase of the algorithm, one may repeatedly choose a random
probe in a randomly chosen contig and apply an “adjust” operation.

OUTPUT

A collection of probe contigs with probe positions relative to the anchoring probe for that
contig.

Time Complexity

First we estimate the time complexity of the main algorithm implementing the k—neighbor
version: For each e € E’ there are two find operations. The number of union operations
cannot exceed the number of probes P = |V, as every successful join operation leading
to a union operation involves a boundary vertex of a contig. Any vertex during its life
time can appear at most twice as a boundary vertex of a contig, taking part in a successful
join operation. The time cost of a single find operation is at most v(P), where 7 is the
inverse of Ackermann’s function. Hence the time cost of all union-find operations is at
most O(|E'|y(P)). The join operation on the other hand requires running the k—neighbor
optimization routine which is done at a cost O(k). Thus the main algorithm has a worst
case time complexity of:

O(|E'(V1) + k) (2.57)
The Full Algorithm including preprocessing is:
O(|E'og(IV]) + |V ?) (2.58)

In a slightly more robust version the contigs may be represented by a dynamic balanced
binary search tree which admit find and implant operations. Each operation has worst case
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Figure 2.4: Simulation statistics

time complexity of O(log(|V])). Thus after summing over all |E'| operations the worst case
runtime for the main algorithm is:

O(|E'og(|V]) + K|V (2.59)

and for the full algorithm is:
O(|Elog([V)) + V) (2.60)

2.3 Examples and Analysis

Simulation: observed distance

The sample mean and variation of the distance function are computed with a simple sim-
ulation done in-silico. Bacterial artificial chromosomes ( BACs ) are 160Kb in length, we
generate 1,200 BACs and place them randomly on a genome of size G = 32,000Kb, This
gives a 6x BAC set. In this experiment a random point is chosen on the genome and we use
a hypothetical clone library covering this point as well as points 10, 20, 30, ...300 Kb to the
right on the Genome to compute the Hamming distance, we repeat the experiment for 100
such random points. Color sequences are computed by using 20 samples of 130 randomly
chosen BACs of which half are likely to be red and the other half green.

Simulation: full experiment

Below we describe an in-silico experiment for a problem with 150 probes. On a Genome
of size 5,000 Kb we randomly place 150 probes, their positions are graphed as a monotone
function in the probe index. Next we construct a population of 500 randomly placed BACs.
From the population we repeat a sampling experiment using a sample size of 32 BACS 16
are colored red, and 16 are colored green. Each sample is hybridized in-silico to the probe
set. Here we assume a perfect hybridization so there are no cross hybridizations or failures in
hybridizations associated with the experiment. We repeat the sample experiment 130 times.
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Figure 2.5: Simulation results

This produces the observed distance matrix, whose distribution we modeled earlier. This is
the input for the algorithm presented in this paper. In the distance vs observed data plot
we see that using a large M = 130 ( suggested by the Chernoff Bounds ) has its benefits in
cutting down the rate of the false positives. The observed distance matrix is input into the
( 10—neighbor, 6 = % ) algorithm without the use of the adjust operation, the result is 7
contigs. The order within contigs had five mistakes. We look at the the 4th contig and plot
the relative error in probe placement.

2.3.1 Analyzing the Algorithm Results

In this section we develop an idea for a proof of correctness for a randomized algorithm.

Chernoff bounds for Proof of Correctness, False Positives, False Negatives

We treat the problem of false positives, and false negatives with Chernoff’s tail bounds. We
find upper bounds on the probability of getting a false positive or false negative in terms of
the parameters §, M,c=%L 0<9<1,L'=LO< L.

G
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A false positive is a pair of probes that appear to be close by the Hamming Distance but
are actually far apart on the genome. We denote the event as:

FP. =(d<L)A(z> L)

A false negative is a pair of probes that appear to be far by the Hamming Distance but are
actually close on the genome. We denote the event as:

FN. = (z<L)A(d> L)

In the following picture the volume of data which are false positives and false negatives
are indicated by the squares noted F.P. and F.N. respectively.

We develop a Chernoff Bound to bound the probability that the volume of false positive
data is greater than a specified size.

The Chernoff Bounds for a Binomial Distribution with parameters (M, g) are given by:

v Mg
—Mq(1-6)2 .
P(H < 6Mgq) <e with0 <6 <1 (2.62)
(2.63)

Let H(M) be the Hamming distance when M phases are complete. Let ¢(L) = P(H|z >
L)~ 2L — 2—%0 We start by noting equivalent events:

(d< 0Lz >L) = (6?H(M) <0L|x > L) (2.64)
— (HM) < e%u > 1) (2.65)

C (H(M) < 92224 ) (2.66)

— (H(M) < 0Mq(L)) (2.67)

(2.68)

Using the Chernoff bound we have:

—Mc(1-9)2

P(d<6L|x > L) < P(HM) <0Mgqr) <e -2
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Figure 2.7: Chernoff bounds

For the False Negatives we begin by noting that:

(d>Llxr <L) = (0*H(z)> Lz <L) (2.69)
_ (0®H(z) > (1+ )|z < I') where v = (% 1 (270

— (@) > %u« < 1) @2.71)

C (H(z)>(1+v)Mq(x)) (2.72)

(2.73)

The last event inclusion is due to the following:

2cMzx  2cML' 1
@)= (g =7 ) 7 M@ = 351

Applying the Chernoff bound we get:
e’ Mq(a) 1 1 1 MZ
P( F.N. ) S P(H > (]_+’U)MC](ZE)) < (W) < (6(5—1)9§)M(IL — (6(5—1)95) o5

Chernoff bounds are:
—Mc(1—9)?
P(FP.) < e 3 (2.74)
1 1 2

P(FN.) < (eli=Dg)"es (2.75)
(2.76)

The Chernoff bounds for typical parameters are shown below. And one can use the
bounds to prescribe good parameters for probe mapping experiments. Further they give us
confirmation that our heuristic algorithms provide the correct solutions.



Chapter 3

Application II, RFLP Phasing

3.0.2 Restriction Fragment Length Polymorphism or RFLPs

Restriction enzyme site are sequence where specific restriction enzymes may bind to genomic
DNA, they are important markers for several applications in genome mapping or analysis.
Each chromosome copy Haplotype in the diploid organism contains a roughly similar map of
restriction enzyme sites. Knowing a restriction enzyme site map for each haplotype provides
a possible tool to investigate genetic mutation and disease. Genomic material from the cell
cannot be extracted for each Haplotype by Haplotype with current technologies, so we focus
on the problem of sorting out haplotypes from the genotype data.

Building on the technology of optical mapping which provides a local view of restriction
fragment sites found on molecules derived from one of the two haplotypes, we develop tools
to understand the haplotypes underlying the mixture of data. The basic unit of measure-
ment is the length between two consecutive restriction fragment sites, this is know as the
restriction fragment length, and under some conditions there is a significant difference in the
corresponding length between two consecutive restriction fragment sites on the two haplo-
types. This difference is called a Restriction fragment length Polymorphism or RFLP, and
in combination with optical mapping tools lengths of RFLPs may be understood pairwise
if the RFLPs are found on any molecule derived from one of the Haplotypes, in this way
co—association of lengths may be understood for each of the haplotypes.

In this application we focus on the development of feasible algorithms for finding the
co—associations of lengths for each haplotype, we present a contig algorithm which discovers
the co—association of RFLPs in increasingly larger contiguous regions of genotype data for
which restriction site maps are known. Finally the results of these feasible algorithms are
analyzed by providing probabilities of successful computation given that the data conforms
to our error model. Chernoff bounds which provide limiting bound for the the probabilities of
False Positives and False Negatives are computed over the parameter space of experiments,
these give a probability bound that our computation has failed to find the correct answer.

3.0.3 Formulating the Problem

We consider a set of M fragments of average length L which cover the genome of length G
with coverage ¢ = % On this genome we have a set of N restriction sites. Each molecule

is a contiguous region from one of two haplotypes, and contained on the molecule are some
restriction sites. Each molecule provides a local view of the ordered restriction sites taken
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from one haplotype. For each of the restriction sites found on a molecule we have data for
position in the interval [1,G]. We assume that non-digestion rates are negligible, and that
distance data may be scaled to a consensus map so that positional data may be understood.

We model the position of a particular restriction site as a random variable whose p.d.f.
function is a convex sum of two normal random p.d.f.’s with means representing positions of
the restriction sites on each of the two haplotypes. Further we assume a common standard
deviation as a constant for all data derived from restriction sites[2]. The genotype restriction
site position is modeled as a random variable with p.d.f.:

/) 1 B (‘r - /'1’1)2 + (1 _ 0) 1 - ($ - /1’2)2 (3 1)
Vo T 207 oro? L 207 |

Index the restriction sites from 1 to N and index the molecules from 1 to M. The input
is assumed to be a set of restriction sites with positions for each molecule. Since we may
assume that the map of these restriction sites is complete, each restriction site found on
any molecule may be associated with a ‘consensus’ restriction site for the genome map. The
input may be formalized as a large banded matrix D. D is an M x N matrix where non-zero
entries in column j represent restriction site positions found in the data which correspond
the restriction fragment site indexed by j. Non-zero entries found in row 7 correspond to
restriction sites positions that were found on the molecule indexed by +.

D is a large banded matrix whose band width is equal to the coverage c in expectation,
hence the expected sparsity, ratio of non—zero entries to total entries, of matrix D is AC/I—I; =+
or £.

Our first problem is to determine RFLP events accurately, sometimes with small number
of data points. This is called the Mixture Problem and we give an EM algorithm to solve
the mixture problem. Once RFLPs have been estimated we would like to understand how
they fit together pairwise, we work locally by developing a contig algorithm based on the
relative phasing for pairwise RFLPs found in phased contigs stretching distances greater
than L bases apart. The contig-algorithm is done with a combination of Union-Find [30]
data structures for the maintenance of disjoint sets and Tree data structures for maintaining
the history of contigs and computed RFLP phasing.

We also provide analysis for results arising from model data.

3.0.4 EM for Mixture Problems

In model problems where data is derived from a mixture of two Gaussian, mixture in the
sense that the cumulative distribution function for the data is a convex combination of two
cumulative distribution functions taken from two separate Gaussians. The mixture problem
is to infer the parameters of our mixture distribution. On approach to inferring parameters
for such a distribution is the expectation maximization algorithm or EM algorithm for short.
The expectation maximization algorithm finds parameter values © for the model distribution
which best describe the data D, This is stated as an optimization problem, maximizing the
objective function:

P(D|©). (3.2)

Consider the jth column of D and take the non-zero entries as a column vector denoted
by a and consider it as a derivate of random vector A, an n x 1 vector with (A4;);—1., i.i.d.



random variables representing the position of restriction sites taken from a distribution with
p.d.f. function:

1 ox _(x_m)2+ 1 ox — (z— p)”
V2mo? P 20? QQ\/27r02 P 20?

We do not know the parameters yet but without any loss of generality we may assume
that pu; < pe. Also ¢;,7 = {1,2} may be interpreted as a probability that point z is derived
from the Gaussian with mean y;, further we have ). ¢; = 1.

For each random column A of D there is an estimation problem: We must determine
the values of © := (uy, 2,0, ¢1). Once this is complete, we may attempt to detect RFLPs
as events involving the distance between p; and us, we may also compute probabilities of
pairwise events.

The approach that is typically performed in such problem instances is Maximum Like-
lihood, whereby one evaluates the probability that any particular parameter vector © may
produce the observed data.

fAi=2)=q (3.3)

L©)=P(A=a:0)=1Lfo(4 = a) (3.4)

A necessary condition for L to attain a maxima at vector ©* is that the gradient vanishes:
oL

25 (©7) =0 3.5

56, @) (3.5)

for all ¢ indexing parameters. If the Hessian or second variation is non-positive then it
is a sufficient condition for local maxima and this suggests a value ©* for the argument of L
which provides the best possible model parameters for the data.

Note that a log likelihood function L' = log L follows the same principle but has the
feature that products of independent random variables are transformed to sums.

We choose to treat one of the parameters ¢;; as the probability of a hidden random
variable for each derivate a; let Y; be a Bernoulli random variable whose p-value is equal to
q1; and represents the probability that the data point a; is derived from the Gaussian with
the left most mean.

We note that we have a distribution:

P(A; =2,Y1i =v|0) =1, f1(a;) + L=2f2(a;:)

1 — (a; — 1)’
fi (az) = o2 exp = 1

1 — (a; — M2)2
f2(ai) = €xp

202

B vV 2ro?

whose marginals are:

P(A; =z|©) = E,[I,_1f1(a;) + 1,—2f2(ai)]
= qinf1(a;) + qiofo(as)



We now formulate the EM-Algorithm by use of Jensen’s Inequality
L'(©) =1log(L(©)) = logIl;—1.nP(A; = z|O)
= logI;—1.n Z Ai=1,Y; =7/|@)

v=1:2

= log Ty, Y, =
e o0 =0 G

1=1:N v=1:2

- F L)

i=1:N v=1:2

= Z Z QYi=v)logP(A;=2z,Y; =v|O) + H(Q;)

i=1:N v=1:2

Here () is an arbitrary measure and H is the Entropy Function on probability vectors:

1
= 3" Qi log(=
: g( Qi)
We define the function:

F(Q0):= > > Qi=v)logP(4; =z,Y; = v|0) + H(Q)

From now on, the EM-algorithm may be defined as a process of increasing the F' function
value [27]. We note that a gradient ascent may be performed on the Likelihood surface by
successively maximizing () followed by ©.

E-Step Qk-l—l — {Q* P maxg F(Q, ®k:) = F(Q*, @k)}

Lemma 3.0.1 (E-Step) Let QQ be a vector (giv)i=1:ny=1:2 where N is the number of non-
zero entries in the column of data. The Arg—Mazx can be solved for explicitly with :

Qry1 = <Qf1+1>i:1;N

(h+1) 1
du (=2 (ai—u{)?
exp 0(13)2 - 20(1@2)2 +1

Proof 23 (Proof of lemma 3.0.1) Consider the calculus problem of optimizing:
f(¢) = ¢ (A1 —log(B9) + (1 — ¢)(Az — log(B(1 — ¢)))



1
fl(¢)=0=¢" = <m)

And notice that ¢* € (0,1). Applying this fact to the optimization problem of finding
numbers ) = (giy)i—1:N—1:2 S0 that the following function is optimized:

3= > (@i ~log(Baw)) (3.6)
= ((gn A —log(Bgin)) + (1 — gi1) Aio — log(B(1 — g:1)))) (3.7)

i=1n

(3.8)

Where A;; = (“‘2 ’;1 and Ay = “’2 ‘32 and B = v/27m0?. We see that the answer is given by

maximizing each summand and hence given by:

din = (a3—p1)2 (](_li—uz)Q (39)
6< 202 - 202 ) + 1
) e(—(aé;m)z) (3 10)
o e(*(a;éﬂﬂ) N e(f(a;(jgzﬂ) '
(3.11)

M-Step ©Opi1 < {O0" : maxe F(Qr+1,0) = F(Qr+1,0%)}
Lemma 3.0.2 (M-Step) The Arg-Maz can be solved for explicitly with :

Oppr = (uFHD, y+D) plkrn)y

:ul ) /,62 ) o
k41
(k+1) Zz 1:N qz(l )ai
Hi < (k+1)
Zi:l:N 91
k41
(k+1) Zz 1:N qz(2 )a,
Hg " 4= (k+1)
Zi—l N qi2

ok+1) Z Z g k+1) k))Q

u12 i=1:N

Proof 24 (Proof of lemma 3.0.2) Consider the calculus problem of optimizing the func-



tion:

—(q: — 2
e S S e A

i=1:N v=1:2
= Z Z Qui (7_(%2_2%/) - logv27ra2> +H
o
i=1:N v=1:2

Where H is constant in (1, i2,0). Consider the partial derivative of f with respect to p,:

af a Qui 2 2 2 /
Oy ,;v Oty (202(_a" - 2aiphy — i, — 207 log QMQD

1
= ﬁ Z Quil; — Hvqug

=1:N

Thus we get
of it GivGi

=0« Mty =
8!“"/ Zi:I:N Giv
Now consider the partial of f with respect to o:

w R ( > ‘1)
202 > D il pw)* = 20°)

i=1:N v=1:2

Thus we get

of
% Z Z q“J I/

v= 12 1=1:N
Hence the necessary condition for (u}, u%, 0*) to be the maximizing argument is that:
0= Zz’:l:N g;i1G;
' Zz’:l:N di1
Lk = Zi:l:N 4i20;
2 Zi—l-N di2

- A LS -

u_12 1=1:N

O

Lemma 3.0.3 EM Algorithm finds a non-deceasing Likelihood function limit in the param-
eter space.



Proof 25 (Proof of lemma 3.0.3) Consider the E-Step, and distribution Q1) = P(A4; =
z|Y; = v,0(,)) We note that Jensen’s Inequality attains equality:

P AZ =, Y =v (")
log / Querny o 96) 41 = 10g / P(A; = 2,Y; = v|O))da

= log P(Y[O))
— /logP(YZ- =v|A;, = 2,04))P(A; = z|Y; =v,0))dx

P(Ai = z,Y: = v|Ow)
= /1 P4, =zlY; =v,
/w o (P(Ai =z|Y; =v,0n4) ( 2l v, O))d

PA,=2Y, =v|O
- Qe (P = 10w,
T Q(IH—I)

We can argue that if we can complete the E-Step then we have evaluated Q1) < P(4; =
z|Y; = v,0O)) At this value of Q1) = P(A4; = z|Y; = v, O))and we have an equality:

F(Qu+1), Ow) = L(Ow))

Showing that at each of the M-Step we are increasing the Likelihood function by finding a
®(k+1)- [l

With the Lemmas we assume we have procedures called ESTEP and MSTEP. The EM-
Algorithm is now:

Algorithm 3
EM( A)
QPREV « .5*0NES( MAX(SIZE(A)), 2)
M + MEAN(A )
S « sTD(A )
TPREV « ( M(1-S), M( 1+ S), S)
QNEW <« INF
TNEW < INF
WHILE( MAX( NOrRM( QPREV - QNEW ) , NorM( TPREV - TNEW ) ) > €¢)
QNEW + ESTEP( QPREV, TPREV )
TNEW « MSTEP( QNEW, TPREV )
ENDWHILE
return ( QNEW, TNEW )

Detection of RFLPs

We define a detected RFLP as an outcome to our EM algorithm, it is an event such that |pe—pi| > 6
for some positive § possibly related to o, see the section on EM and Detection of RFLPs for further
results.

3.0.5 Data Maps to Group Elements, MLE homomorphism
The results of EM on each column A; of D is value (Q(j), ©(j))-



Consider a data point in the jth column d; ;, as such it is derived from the distribution given

by Q(7), 0(j) i

1 —(z — p14)? 1 —(x — pgj)?
£(&) = ala) s exp Ty (1 gfag) e T2
2mo? 75 2ro? 95

Where ¢(x) is some random function giving p-values of the point at x being derived from the
distribution with p1;. But our EM algorithm has done a fit for this function at the points of
interest, so corresponding to dy; is a value g; which the EM algorithm has estimated, as the
probability that dy; derives from the left distribution.

Let p; = 1 — g; and we identify the data point d;; to the 2 x 2 matrix:

[Qi pi]
bi 4

We similarly define a map for each element in the jth column of data, and denote the dependence
on column with an additional subscript j.

; qji pji:|

®;:d;j —

I [pj' gji

The map is an injection into the set G’ the 2 X 2 symmetric matrices whose entries are such that

each column adds to one and each row adds to one. G’ is a set with a natural group structure.
Let us define a continuous Abelian group by its set members and its operation:

QZ{[Z Z] :a#b,a—i—b:l}

voxoo; 3 - [oaii it

To show that G is closed under the operation ( i.e. matrix multiplication ) we note that
aA+bB+aB+bA = a(A+B)+b(A+B) = (a+b)(A+B) = 1is implied by (a+b=1)N(A+B = 1),
and also we have (a—b#0)N(A—B #0) = (a—b)(A—B) #0= aA+bB # aB + bA. To show
that there is an identity element notice that Iyx2 € G by satisfying the conditions 1 + 0 = 1 and
1 # 0, further G contains inverses for every element as:

[ab]ﬁﬁ:[lo]
boa] |ip atp] 101

Observe that anbQ + a{f’bg = (a—(g)_(g = a%'_b =1 follows when a + b = 1.

We note that a # b implies that the matrix has full rank and excludes the case which

b5 b
b5 b
will however be an interesting part of our algorithm as it shall be the designated value of non-
RFLPs. Note that the case a = b acts like 0 in the ring (R, +, *). It has no inverse, acts as an
. . . .. |a a||A B| [(aA+aB) (aB +aA)

idempotent under the operation of multiplication: [a a] [B A] = [(aB +ad) (ad+aB) but

clearly a(B + A) = a(A + B).
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Figure 3.1: Haplotypes, case 1

Additional Operation and Closure

The set G’ is closed under any affine combination of elements, that is to say : ¢1,92,...,9, € G

then:

Z wigk € G'

k=1:n

Here + is the usual matrix addition and coefficients wy, are such that >, ;. wp =1

Computing Pairwise Events

Pairwise events are events which consider the placement of two restriction sites on the same
molecule.

Let us focus on two Restriction Sites, site ¢ and site j that are believed to be RFLPs, these
sites have non—constant ¢;(x),q;(z) functions.

Counsider molecules that span both RFLPs, these molecules contain data points = and y which

were

used to estimate both the functions g¢;(z) and g;(z), In these estimates the haplotype is

revealed, and statistically with a large number of observations we will observe these limiting fre-
quencies.
Let us look at the possible sets of haplotypes:

casel: haplotype 1 contains the left most restriction site of ¢ and the left most restriction
site of j while haplotype 2 contains the right most restriction site of 4+ and the right most
restriction site of j. See figure 3.1, denote this event as (i11,711) N (422, j22)

case2: haplotype 1 contains the left most restriction site of ¢ and the right most restriction site
of 7 while haplotype 2 contains the right most restriction site of ¢ and the left most restriction
site of j. See figure 3.2, denote this event as (i11, j12) N (i22, jo1)

case3: haplotype 1 contains the right most restriction site of ¢ and the left most restriction site
of 7 while haplotype 2 contains the left most restriction site of ¢ and the right most restriction
site of j . See figure 3.3, denote this event as (12, 711) N (421, j22)

cased: haplotype 1 contains the right most restriction site of ¢ and the right most restriction
site of 7 while haplotype 2 contains the left most restriction site of ¢ and the left most
restriction site of j. See figure 3.4, denote this event as (412, j12) N (421, 21)
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Figure 3.3: Haplotypes, case 3
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Figure 3.4: Haplotypes, case 4




Since we don’t care to determine which haplotype the pairs are on, but rather just to determine
which pairs are found together on a haplotype. The events of interest are:
By = ((i11, 1) N (i22, J22)) U ((G12, J12) N (421, J21))
By = ((i11, J12) N (422, J21)) U (412, 311) N (321, J22))
Now we computing the probability that molecule ¢ with point z; and point y, support the event
E1:
P(E1|¢) = P ((i11,511,¢ € H1) U (inz, j22, ¢ € H2)) U ((i12, j12,¢ € Hi) N (321, J21, ¢ € Ha))
= P ((411,J11) U (421, J21)|C € H1) P(C € Hy) + P ((i22, j22) U (121, j21)|¢ € Ha) P(¢ € Ho)
= (qi(z¢)g;(x¢) + pilyc)pi(ye))(P(C € Hi) + P(C € Hy))
= qi(z¢)qj(zc) + Pilyc)ps(ye)

While similarly

P(Es) = qi(z¢)pj(z¢) + pilyc)g; (ye)

But notice the connection with the group structure, P(E;) is the entry on the diagonal while
P(E») is the entry on the off diagonal of the product:

[P(EllC) P(Ele)] _ [qz'(ivc) pi($§)] ‘o [Qj(yC) pj(?J{)]
P(E2[C) P(EL|Q)]  |pi(we) aixe) pi(ye)  ai(ye)

Sites on different molecules are independent, and to evaluate the probability of events E; given
a set of molecules that contain data for both sites 7 and j we see:

P(E |U1): m Cv) P(E |Uv: m Cv) _ Qi(va) pi(l‘(v) % Q'(yCv) p'(yCv)
|:P(E;| Uv:i:m Cv) P(Ei Uv:i:m C’U):| B U_zl::mwv [pi(xCu) qz'(a"{u):| g |: ]' J :|

with E Wy = 1

v=1m

When all molecules are equally informative one should let:

Wy = —
m

Given two restriction sites @ and 3, we define the support of the pair as: Supp («,8) = {(:
dea # 0 Adeg # 0} or equivalently as the number of molecules indexed by ¢ that span both sites.
The Phase between two sites: RFLP « and RFLP 3 may be defined as:

1
$a.f) = a7 Y, Palz) *g p(yc)
We can also define the distance between two fragments as:
1
dop =5
# " [Supp (a, B)|

Computing all pairwise spins can be done with a few sparse matrix multiplications:



Algorithm 4

PWS (P)
DIST« (P!=0)*(P!=0)
Q < oNEs( sizg( P )) - P
6« ( (P*P) + (Q'*Q ))./DIST
return ( 0 )

For use in large data sets we use a threshold to guard against a worst case, This idea is explained
in the section on Chernoff bounds. We define a dead state as a spin [z Z] where p is within a

.5¢ ball of 0.

Algorithm 5

PWSDEADSTATE ( P )
PWS «+ PWS( P );
PWS( ((PWs > .5 —¢) && (PWS < .5+¢€)) ) « .5
return ( PWs)

3.0.6 Algorithms

We define the phasing problem as: Given a sequence of mixture models whose parameters and
distributions have been estimated, use pairwise data to assemble monotonically growing disjoint
sets ( contigs ) where a phasing structure can be inferred, in the sense of maximum likelihood.

Weighted k—Neighbor Phase—Contig Algorithm

We can define the phased contigs recursively as follows:
The base cases C; = {F;} shall be phased Vi by the function:

10
if F; is a detected RFLP, this contig type is Non Trivial

(Ci) = .
'5] otherwise this contig type is Trivial

If Cp = {Fp,, Fpy,...,Fp,} and Cy = {Fy,, Fy,...,F,, } are phased contigs with well defined
distance then the union C, U C; may be phased by our phase—join operation.

distance

We define the distance between two phased contigs as the minimum distance between two
fragments within contigs.

phase—join

The phase—join operation may be performed on C, and C; if and only if there is a molecule ¢
which contains a data point z; from a restriction site F},, found in contig Cp, and a data point y,
from a restriction site F,, found in contig Cy, as otherwise the distance will not be defined.

Our phasing may never stretch further a contiguous regions of a map.

For every pair F,, € C}, and F € C, there are pairwise spins variables to consider in the phase-
join. These pairwise spins tell us how to orient the phased—contig C; relative to the phased—contig
C) we will consider a weighted combination of this information, Weights will depend on distance
between fragments, confidence in RFLP assignment etc.
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Figure 3.5: Contig distance
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Figure 3.6: Phase weights

To attempt a join of C, to Cy we compute a quantity called mean group action which is a ’least
squares’ rotation to be applied similarly to all variables in the right contig to make a nice fit for all
pairwise spins in the union of C, U C,.

To compute the group action for a pair of RFLPs one in each of the phased—contigs with spin
assignment J; and J2, and pairwise spin ®15, we derive the chain of computations, let k1o be the
group action for pair 1, 2.

kioJo = @121 (3.12)
ki = Ty ' @127, (3.13)
(3.14)

Solving for k1o we find the best rotation for these pairs in that after we update the spin Jo <
k12 J> the variables would be in a state which is satisfies the pairwise spin data. Note that when
we work in a group G’ everything is solvable uniquely.

Thus in our algorithm the pair 1,2 cast a vote of k1o = ‘7271\71(1)12 as the mean group element
needed to rotate contig Cy into the correct phase.

For each such i,5 whose spins are of interest, one can solve uniquely the pair group action
element k;;

The mean group action computed for C}, and Cy is denoted by ® g4 and is defined by the
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Figure 3.7: Mean group action

'weighted combinations’ of pair group actions .

Drrga = Z Wapkap
Fa€Cp,F3eCyf—a<k+1

Z’wag =1

We use weight schemes placing uniform distribution over the detected RFLPs, and in the future
will consider the local coverage of the fragments as well, one could also generalize to placing weights
on molecule data.

Prrga = Z Z Weapkap

Fo€Cy,FgeCyf—a<k+1 (€ Supp (a,B)

Z’U]Ca/j =1

Now if the resulting mean group action ®pga = [;Z Z] is not a dead state (i.e. |p — .5 > ¢€),

this will be a successful join with a parent node C, A C; assigned the value ®(C, A Cy) <~ Ppga
this node will indicate the new contig as a union of the constituents and will be a non trivial contig.
To complete the operation the element in the right hand side will be reassigned spin states.

VF/j € CqCI)/B — (I)MGA(I),B

This completes the JOIN operation, when the mean group action is not in the dead state.
When the mean group action ®pga = g is in the dead state (i.e. |p —.5| < €) we will

be able to complete the JOIN if either of the contigs C, or C; is Trivial. If both C, and C; are

b5 5
only one of the contigs C), or Cy is Non Trivial the JOIN C), A Cy is Non Trivial, and assigned the
spin variable ®(C, A Cy) = [g g
Join or Join from the dead state.

Trivial the resultant JOIN C, A C; contig is Trivial and assigned spin ®(Cp A Cy) = ['5 '5]. If

] . In the last two cases no recomputing is done as this is a Dead



If the mean group action is in the dead state and if both contigs C, and C; are Non Trivial
then the JOIN cannot be completed, the operation is aborted, and no Join Contig is created.
The number of disjoint phased islands goes up by one.

At any given time the history of join—operation is stored as a set of disjoint binary—trees and
each node C in any of the contig trees corresponds either to the base case (leaves) or to a historical
join—operation (interior), at each node we store the Contig Type and spin variable ®(C') which is
the mean group action in the case of C being a join—operation.

Phase—Adjust

We may also attempt to improve on the phasing locally with an ’adjust’ operation which con-
siders a possibly larger neighborhood than the phase—join operation did. This is because the later
in time the fuller the possible k—neighborhood is developed.

Phase—Adjust constitutes computing the mean group action for all pairwise Fragments in the
k—neighborhood of F, let C denote the contig for which F,, is in at the time of the Adjust.

DG anew = Z Wap kaﬂ
FgeC:p—a<k+1

ka,@ = ja_lq)aﬂjfj

Zwaﬂ =1

Then the Adjust affects only the spin variable at F, and we have:

joz — q)MG’AnewJa

to complete the Adjust Operation.

Implementation of the weighted k—neighbor algorithm
INPUT

The input domain is a restriction fragment map F', these are encoded as a large banded matrix D.
D is an M x N matrix where non-zero entries in column j represent restriction site points found in
the data which correspond to the left end of fragment j. Non-zero entries found in row 7 correspond
to restriction sites that were found on molecule number . The band width is equal to the coverage
¢ in expectation. Let us assume that the maximum band-width is ¢ ( slightly greater than c in
reasonable examples ).

PRE-PROCESS

Compute the fragment—to—fragment distance matrix. This can be done by banded matrix multipli-
cation and hence takes time O(K M) where K is related to CITM Compute the fragment—to—fragment
pairwise spins. This can be done by a small number of banded matrix multiplication and banded
matrix additions and hence takes time O(K M) where K is related to C’TM Construct a sparse graph
K' = (F,E'"), where E' = {e), = (F;, Fy)|d; j < oo}. The edge set of the graph K’ is sorted into an
increasing order as follows: ey, e, ..., eg, with Q@ = |E'| such that for any two edges ey, = [F},, Fj,]
and ey, = [Fi,, Fj,], if k1 < ko then d;, j, < d,, j,. K' can be constructed in ¢'O(|F|) time, where
constant K is related to the maximum depth of the fragment library, and the edges can be sorted
in O(|F|) time as our distance takes on a finite set of values.



MAIN ALGORITHM

Data-structure: Contig—Trees are simple binary trees with a spin variable at each node. Contig—
Trees are maintained in a Union-Find structure [30] designed to encode a collection of disjoint
Contig—Trees which may be merged at any time. To support the set of disjoint Contig—Trees, two
operations union and find are given: union merges two sets into one larger set, find identifies the
set an element is in.

At any instant, a phasing is a set of Contig—Trees represented by the following:

e A rooted tree, giving a historical description of how subtrees have been phased.

Initially, every Fragment is its own contig.

In the kth step of the algorithm, consider edge e, = [F;, F}]: if find(F;) and find(F;) are in
distinct contigs C, and Cy, then phase—join C}, and Cj.

At the termination of this phase of the algorithm, one may repeatedly choose a random fragment
in a randomly chosen contig and apply an “adjust” operation.

POSTPROCESS

Starting from the left most fragment assigned a spin Io«o in any phased contig, we may compute
phasing of every fragment to the right in the phased—contig by multiplying 'through the tree.” If
done in a directed fashion all fragments can be assigned a phase in O(M) time, After spins have
been resolved we can use the values as a maximum likelihood estimator ( MLE ) and round to the

nearest possible spin state [é (1)] or [(1) é] The post—process costs O(M) time .

OUTPUT

A collection of phased RFLPS and non-Phased Restriction sites within a contiguous region of a
restriction fragment map.

Time Complexity

First we estimate the time complexity of the main algorithm implementing the k—neighbor: For
each e € E' there are two find operations. The number of union operations cannot exceed the
number of fragments N = |F|, as every join operation resulting in a union, involves a boundary
vertex of a contig. Any vertex during its life time can appear at most twice as a boundary vertex
of a contig, taking part in a successful join operation. The time cost of a single find operation
is at most y(N) where + is the inverse Ackerman function. Hence the time cost of all union-find
operations is at most O(|E'|y(N)). The join operation on the other hand requires running the
k—neighbor phase—join routine which is done at a cost O(k) with looking up tables computed in
the pre-process. Unfortunately there is a need to re-compute at least min{k, |Cy|} spins from the
right contig C; with every successful join operation. Thus the main algorithm has a worst case
time complexity dominated by the sort of edges:

O(IE'|(1(|E)) + k)) ~ 2(c)*kO(F)

Where ¢’ is a bound on molecule coverage. The full algorithm including preprocessing is:

2(c)%k0 (M) + (%)O(M) = (2(c)2(k + %))O(M)

where M = F' as the number of columns in the banded input matrix.



3.0.7 Analysis

We consider a few problems that aid in our quantitative understanding of the algorithm’s results.

Expectation Maximization and the Detection of RFLPs

The results of the EM algorithm are parameter vectors and ¢(z) function, leaving us with the
problem of choosing which estimates indicate RFLPs.

We develop a cut—off function which is designed by considering the Chernoff bounds in the next
section, for now we will state the events, and say that we may be liberal in RFLP assignment for
sites with large local coverage.

The distinction between an RFLP site and non RFLP site is that the g(z) function which non
constant or constant .5. The non RFLP case follows from the condition that pus — 1 = 0. We look
upon this the separation of means as the independent variable determining RFLPs. We shall define
the event RFLP as:

detected RFLP = (|2 — fu1| > d(c))
RFLP = (ju> — i] > 0)

Let F' denote a restriction length:

FP. — ((F is not an RFLP ) A (F is a detected RFLP ))
F.N. = ((F is an RFLP ) A (ﬁ’ is not a detected RFLP ))
False Negatives are of no consequence to the correctness of the phasing. They only effectively

shorten contiguous phased regions. See the section on computational reductions.
False positives may have consequences to the correctness of the phasing.

3.0.8 Simulations and Examples

We demonstrate our algorithm on a small simulated data set, along the way we point out some
features. The view below contains the simulated haplotypes in the bottom—most band of the
layout. Above that is the Haplotype Molecule Map for a Diploid Organism, these molecule maps
are available to the algorithm the segmentation of the two haplotypes is hidden from the algorithm.
The third band indicates estimate values where we can see what sites the EM algorithm chooses
as RFLPs. Mistakes occur with the lack of a deep library. The forth band in the Layout indicates
the history of contig—operations and from this tree one can 1) view the developing maximum of
k-neighbor neighborhoods to compute mean group action, and 2) See the distinct Phased contigs.
At last the fifth band in the layout gives the algorithmic output to this problem, complete with
phasing in subsets that span the distance indicated by the bars. Notice that where bars cross are
areas of interest for extension of the phasing and one may choose to return to these areas with
additional target sequences to understand what phasing is occurring through—out these regions.
Parameters of the simulations are:



M
F

number of molecules
number of fragments RFLP and non RFLP

G = size of the genome
EMS = expected molecule size
VMS = variance in molecule size
VFS = variance in fragment length size
P-BIMODE = P-value that any given Fragment is an RFLP
ERFLPSEP = Expected separation of means for RFLP
VRFLPSEP = Variance in the separation of means for RFLP

Any parameter with both an expectation and variance is generated with a normal distribution.
From these parameters one can compute some additional symbols that we use in the paper L =
EMS and ¢ = %

For the first simulation a relatively small set is chosen so that one can view the action of the

algorithm, here the neighborhood size is set to K = 5 and there is no e guard of the dead state, still
things work pretty well, and one can see that any mistakes are due to the low coverage library.

50

VFS
P-BIMODE
ERFLPSEP
VRFLPSEP

-
o

o
ot

[=}
=t

Here we give an illustration that similar results may be achieved on large data sets.

M =150

F =100

G = 50000
EMS = 2000
VMS = 500
VFS = 20

P-BIMODE = .3
ERFLPSEP = 50
VRFLPSEP = 6

Analyzing the Results, Chernoff bounds for the effect of False Positives

F.P. events may affect the performance of our algorithm. We are particularly interested in bounding
the probability of such a restriction length X causing phase error, specially when the left neighbors
of X are phased incorrectly to the right neighbors of X.

To consider this problem we study the probability that a single F.P. may rotate the right contig
in the wrong direction relative to the left contig. In figure 3.10 below indicates the adversary case
of interest.

Suppose that molecules [1,k] U [2k + 1, 3k| are from Haplotype 1 while molecules [k + 1,2k] U
[3k + 1,4k] are from Haplotype 2. In the image, the dotted lines surround the molecules from
haplotype 1. Now let us suppose that there are three sites Site 1, Site 2, and Site 3, site 1 and
site 3 are oriented in the same way, while site 2 is not an RFLP but due to an unlikely set of data
estimated as an RFLP.
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Figure 3.10: Dangerous phasing event

The worst possible F.P. outcome of EM at Site 2 is an estimate of the ¢(x) function as:

0 z<p
q:
I z2>p

where 4 is the actual mean of the site. Given that this worst case is found in our data, let us de-
termine its action in the algorithm as a function of k with 4k the local coverage. Let x; be a Bernoulli
random variable with parameter p = .5, z; shall take on the values of { left of mean ,right of mean }
and indicate whether the point at Site 2 of molecule j falls to the left of u or to the right, both
of which happen with model frequency .5. The sequence (z;);=1.4x then has an outcome space of
cardinality 2**. When all possible pairwise spins between Site 1, Site 2, and Site 3 are computed,

denoted the spins as ¢12, ¢23, we are interested in the events that the spins are diabolically opposed

meaning 1o — g jrg g i g] for a § > 0.

Recall that the dead state is the event that p € [.5 —€,.5 + €]. A necessary condition that ¢12
and ¢o3 are a set of diabolically opposed spins whose pairwise spin will be incorrectly phased is
that:

p12p23 + (1 —p12)(1 —po3) < .5 —¢

Let F(p12,p23) := p12p23 + (1 — p12)(1 — p23). The contour plot is depicted below for p1,ps €
[0,1]2. We develop the event inclusions:

{p1,p2: Flpi,p2) < 5—€} C((p1<-5—€)A(pe>54+€)V(pL>5+e)A(pa<.5—¢))
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Figure 3.11: Chernoff bounds

Of course the value of pi» depends on the selection of variables (z;);—1.0r independent of the
selection of variables (%) j=ok+1:4x determining po3.

Redefine the X; variable as having outcome: restriction site 2 of molecule j falls on ¢ side of
p2 and restriction site 1 of molecule j falls on the ¢ side of y; when j € [1,2k]. Similarly for
J € [2k + 1,4k] let the outcome space be restriction site 2 of molecule j falls on ¢ side of uo and
restriction site 3 of molecule j falls on the ( side of us, here ( € { Left , Right }. X; are still
Bernoulli trials for all j for Gaussians and bi-mode distributions our means are also medians.

Letting p1o = ﬁ ijl:% X and pa3 = % Zj:%_i_l:% X; we note that 2k *p12 is Bin(2k, .5) and
that 2k * po3 = Bin(2k,.5). We next apply the Chernoff bounds for binomial random variables.

Letting p; = p12 and py = pa3 Thus:

P({p1,p2: F(p1,p2) <.5—€}) <P((p1 <.5—€)A(p2>.5+¢))
+ P ((p1 > .5+¢€) A(p2 <.5—¢)) independence
=2+ P((p1 <.5—¢€) A(p2 >.5+¢€)) symmetry
= 2% P ((2kp1 < 2k(.5 —€)) A (2kps > 2k(.5 + ¢€)))
= 2% P ((2kp1 < 2k(.5)0) A (2kp2 > 2k(.5)(1 +v)))

k
(6-1)
< e_“r’k(l_@)2 (669 ) Chernoff bounds for Binomial RV's

62(6762) k
<{f-—-
— (1 + 26)(1+2e)

In the chain above the substitutions ® =1 — 2¢, and v = 1 — 8 were made. Below some values of
Chernoff bound are contoured over the space k =5:5: 100 and ¢ = .05 : .05 : .4.

In an actual problem we will estimate k = ()cioc-

These bounds are not even so bad, when weighed against the small probability that such an
occurrence of data may happen. The only real problems may occur when k is small.



Combinatorial Reductions, Expectations

If there are F' RFLPs there are possibly 2 possible RFLP configurations, after our algorithm has
completed this number will be reduced substantially but by how much?

Essential for our algorithm is that molecules are capable of bridging two RFLPs so that we
can observe the correlation, thus the length of molecules L as well as the number of RFLPs F is
important.

We will let T' be a distance for which we can be almost certain that 2 RFLPs are found within
this distance. Then we can declare a random variable:

V(a,a +T) = number of molecules overlaping the region of genome indexed by [a,a + T

Since this event depends on the left end—point of a molecule falling in the region [a — (L+T), a)
we can rewrite V' as a sum of indicator variables,

V(a,a+T) = Z Z Sij
1=1:M j=a—(L+T):(a—1)
g {1 if Molecule ¢ starts at Genome position j
i =

0 otherwise

Since Sj; is Bernoulli(p = &) where G is the size of the Genome we have V(a,a + T) is

Binomial ((L — T')M, %) and we use a standard approximation such as Brun’s Sieve to approximate

the random variable as a Poisson(co) with ¢ = £ as coverage and o = (1 — I).
Supposing that we set T" large enough so that with probability greater than 1 — ﬁ we have

two RFLPs within a length of T'.
We use the above distribution to evaluate:

PV(ag,a+T)=0)=e “

and hence the Probability that any particular Molecule is the left ’anchor’ of a phased contig is
e~ % and in expectation we’ll have
M xe <

Phased contiguous regions.
Thus our algorithm is expected to reduce the possible phasing by a factor of:

2F7M*e_”"

We derive o(rgrrp) Since we can look at the expected length before the next RFLP as a

geometric RV with parameter rgprp in order to insure two RFLPs within a distance of T' with a

probability greater than 1 — ﬁ we compute:



o0

1
> 1— n—1
T0M rrrLp (1 — TRFLP)

n=T
o0
= rreLp(1 — rrecp)? L Z rrrLp (1 — TRELP)"
n=0

1 ].
1 —(1—rrrLp)

= rgrrp(l — rrrrp)’

= (1 —rgrLp)’ !

Hence

(T —1) — log( ) < —log10M

log 10M

1
log(1=mz)

1 —rrrLP

T> +1

Letting T'(r) = __log10M 4 1 we should expect at least a phasing reduction of
log( 1-TRFLP )

2F—M*e*C(I*Z(LT_))

So with this formula one can compute the effect of F.N. on the phasing reduction factor which our
algorithm ensures.
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Appendix A

mathematical definitions

Sets, Conditions, Set Algebras, and Probability Spaces

Sets are collections of objects. We denote set membership as £ € X while x ¢ X denotes non—
membership.

Y is said to be a subset of X if every element of Y is also an element of X, we denote the
correspondence with Y C X. Sets are said to be equal if and only if X CY and Y C X.

Given sets X,Y the intersection is defined to be the collection of elements found in both sets,
while the union is the collection of elements found in either of the sets. We denote the set intersection
and union by X NY and X UY.

We define a condition as a 2-tuple denoted (C, X) whose members are a domain set X, and a
boolean function C, well defined for any element of the set X:

C:X —{0,1}: 2 — C(x)

When reference to a condition is made by specifying only the boolean function, we assume the
existence of an ambient domain set. The ambient set could be defined as the largest such set for
which the function makes sense, or as the minimum set covering the scope of arguments needed.

For elements of the real line R we assume one component of the trichotomy property as a
condition:

<C>= R)

1ifz>0
C>($):{

0 otherwise

Binary-Relations are conditions on 2—tuples. With the field properties of R, in addition to the
trichotomy property we construct a binary order relation:

<C>aRXR)
lifz >y

0 otherwise

Cs(z,y) =Cs(z—y) = {

To select members of a set Y which satisfy a condition (C, X) we use the set inverse map:

Cl)NY ={zeY:C(zx)=1}
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We use the notation C(Y) = C~}(1)NY to indicate the elements of Y which satisfy the condition
(C,X). If C is well defined on X it will be well defined on Y N X, usually Y C X.
With condition (C, X), we can define the complement condition, (=C, X):

if =1
O X 5 {01} g 0 HC@ (A1)
1ifC(z) =0
With conditions (C1, X), (Ca, X) we can define an intersection condition:
CiNCy: X —{0,1} : z — Ci(z) x Ca(x) (A.2)
forY C X:
Ci ANCy(Y) =C1(Y)NCo(Y) (A.3)

Example A.0.1 We can define the condition of equality to zero for elements x € R as an inter-

section condition:

(C-,R)
C=(z) = -Cs(z,0) A ~Cs(0,x)

denote the condition C—(z) by (z = 0).
De Morgan’s law for sets states that:
- (WNY)=(=W)U(-Y) (A.4)
We use it to define the inclusive disjunction or the OR of conditions (C1, X), (Co, X) as:
C1VCy: X —{0,1} : z = = ((=C1) A (=C2)) (x) (A.5)

The operations of V and A acting on sets have a Lattice Structure.
A Lattice Structure is a binary relation R on set X so that:

z€X=>R(zx,z)=1

2,y € X :R(z,y) =Ry,x)=1=>z=y

z,y,2 € X : R(z,y) =R (y,2) =1=>R(z,2) =1

Vz,y € X3z € X : R(z,2) = R(z,y) =1, and
Vwe X :R(w,z) =R (w,y) =1=R(w,2) =1

Vz,y € X3z € X : R(z,2) =R (y,2) =1, and
Vwe X :R(z,w)=R(y,w)=1=>R(z,w) =1

The Power Set of a set X is the collection of all subsets of X this is denoted:

2¥ = {A: AcC X} (A.6)



Set Algebras, c—Algebras, and Probability Space

Definition A.0.1 Set Algebra
An algebra of sets over X is a collection of subsets A, A € A means that A C X. A set algebra is
any subclass of 2X, which satisfy these closure conditions:

geA
AecA=>-AcA
A Be A=ANBecA

A set algebra is a lattice structure with relation R(A, B) < A C B and with minimum element &
and maximal element X.

Definition A.0.2 oc—Algebra
A o—-algebra is an algebra of sets A with a countable closure condition:

Ai c .A. fOT’i € {1, 2, .. } = ﬂiE{l,Q,...}A’i S ./4 (A7)

Definition A.0.3 Measure Space
A measure space is a 2-tuple (X, A) with a set X and a o—algebra A over X.

Definition A.0.4 Probability Space
Probability spaces are measure spaces (X, A) with a positive, normalized, countably additive set
function:

P:A—[0,1]: A P(A) (A.8)

The set function is positive, normalized, and countably additive if the following hold:

P(2)=0

P(-A)=1- P(A)
ANB=@ = P(AUB)=P(A)+ P(B)

Aie A Viell,...00) and A;NAj =@ when i # j

= i P(A;) = P(U2, A;)

This last condition is called countable additivity of the set function.

Definition A.0.5 Borel oc—algebra
The Borel o-algebra of sets on R is a class of sets contained in 2% having these properties:

o [t contains all of the open sets of R.
o [t is the smallest such o—algebra to contain the open sets.

We denote the Borel o—algebra by: (R, B)



Definition A.0.6 Measurable Map
Let (X, A),(Y,B) be two measure spaces, a measurable map on measure spaces is a mapping:

o (X, A) = (Y,B) (A.9)
So that the set inverse map ( often called the pull-back ) takes on values in A:
®1(B) € A for every B € B (A.10)

Definition A.0.7 Random Variable
A random variable is a measurable map from a probability space onto the measure space (R, B)

As such the properties of the probability space are translated into an induced measure on (R, B)
continuous with respect to the Lebesgue measure. For many useful random variable there are well
understood correspondences:

‘ Useful Items in correspondence with a Random Variable ‘

CDF function F : R — [0,1] : { = P((—00,(])

PDF function f: R — [0,1]: { = £ P((—00,(])

Characteristic function x : C — C: ( — [ exp (iz() f(z)dz
dF

Moment Sequences (Wx(O))kzg,l___

A probability distribution of a random variable is the CDF function induced on (R, B) by the
probability space (X, A, P).
Of particular use to us will be the Gaussian Distribution . The Probability Space for the Gaussian
Distribution with parameters u, o is given by:

(R, B, A\po) (A.11)

Where the set R is the real line, B is the Borel o-algebra of sets, and A, , is the set function:

, _ 1 —(z—p)’
A/J,Cf . A — [0, 1] . A — " m exp (T d.’I,‘ (A12)

This probability set function will be referred to as the Gaussian Distribution with mean y and
variance o. We will denote the CDF and the items in correspondence with the set function:

N(p,0) (A.13)

Basic Sets and Spaces

Definition A.0.8 Linear Space over K
A linear space is a set X, a field K, and operations:

FiXxX X (A.14)
X xK—o X (A.15)
(A.16)



satisfying these conditions for all x,y,z € X and h,k € K:

z+@W+z)=(x+y)+2
r+y=y+zx
VeX:z24+0=zx
VeeXd-—zeX:z2+—-2=0
h(-k-z) = (hk) -z
h-(z+y)=h-z+h-y
(h+k)-z=h-z+k-z

Definition A.0.9 Linear Subspace
If X is a linear space then Y 1is a linear subspace of X, if it is closed under the operation of +,- in
X, this follows if:

YL, €Y =yt €Y
yeY ke K=kyeyY

We denote Y as a subspace of X by: ¥ < X.

Definition A.0.10 Norm, Normed linear space
A norm is a function arising from a even gauge function, or a symmetric convex set containing
zero, a function is a norm if it satisfies these properties for x,y € X,k € K:

z) >0 forallz #0

p(
(z)=0=>z2=0
(
(

S

p(z+y) < p(z) +p(y)
p(kz) = |k|p(z)

The p—norm p > 1 on the linear space R" is the function:

1
n »
I, : R =R :z— (Zx?) (A.17)

=1

Definition A.0.11 Linear Transformation
If X and Y are linear spaces, A linear transformation from X to 'Y is any map L which preserves

linear structure:
L:X—>Y:z— L(z) (A.18)

To preserve linear structure it is necessary that for r1,20 € X,k € K:
L(zy + k- z9) = L(z1) + kL(x2) (A.19)

Where the +,- on the left-hand—side of the equation are the operations defined on X and the +,-
on the right-hand—side of the equations are the operations defined on Y .



Appendix B

Connection between number of
orderings and degeneracy of
containing space

Order and Degeneracy Now if z € L[i : j] and y € L[i : j] then we may order z <;; y if and
only if wg; > wy;.

sub-claim

We claim that if z <;; y then z € L[yj]. proof

On the index triplet z,y,¢ one of the relations must hold:

case 1 Ryy; or Riyg (B.1)
case 2 Ryiz or Ry (B.2)
case 3 Rigy or Rygi (B.3)
(B.4)
We give proofs case by case.
Case 1 is done by definition, we have We may conclude that = € L[y : j].
For case 2 we have:
x € L[i: j] (B.5)
y € L[i : j] (B.6)
xz € L[i : y] (B.7)
(B.8)
producing equations:
Wri + Wij = Wgj (B.g)
Wy; + Wij = Wy (B.10)
Wej = wyj + K K >0 (B.12)
(B.13)
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By eliminating variable w;; and replacing w,; — wy; by K we get:

Wy — K = wy; (B.14)
Wi + Wiy = Wy (B.15)
(B.16)
Now eliminating variable wy; we get:
Wi
2 -1 1] | K| =0 (B.17)
Wy

We conclude that there is a choice of two free variables to determine the relations. We arrive at
the conclusion that wy; = 0 and wgy = wy; and that z € L[y : j].
In case 3 we arrive at these equations:

Wy; + Wig — Wyg = 0 (B.18)
Wyj + Wj; — wy; =0 (B.19)
Wei + Wij — Wgj =0 (B.20)
Wei — wj; > 0 (B.21)

(B.22)

Whose solution requires that wgy = 0 and wy; = wy;. We may conclude that = € L[y : j|.
This shows that the ordering <;; is a linear ordering for the set L[ij]. This being the case let m(ij)
be the set of minimal elements in the chain (L[ij], <;;). We will show that there is a minimal element
m below every chain. Let m(ij) and m(km) be two minimal elements from chains L[ij] and L[km].
For i, 7, m one of the following cases must occur: case 1: m € L[ij] or case 2: i € L[mj] or case 3:
i € L[jm] as one of the following six relations are given {Rmi; V Rjim: Rimj V Rjmi, Rijm V Rmji }-
In case 1 we have k € L[ij] so m(ij) < m(km). In case 2 we have i,k € L{mj]. In case 3 we have
m(km) < m(ij) and we have a minimum element. Now let L[ij] = {¢ : ( € L[a,j] : a € L[ij]}

IT is not a subspace, but a rather elaborate set contained in L(N). The set is not a subspace,
not a cone, not convex, it is however a star-shaped set meaning that it is closed under the positive
scalar multiplication.



Appendix C

Further Remarks on the equivalence
of problems

C.1 Embedding Bounds

Our next result indicates that for any given B € T and a given norm |||, there exists an interval
containing solutions for all b € R.

Lemma C.1.1 For B € T and ||-||,, there is a bounded interval [0,D] for all embedding, in-
dependent of b. That is, there exists a D € R so that for every b € RT, if the instance of
MATRIX-TO-LINE given by (B,b,||-||,) has a solution then there ezists a solution B € II so that:

HB—BHA<b (C.1)

and Bij < D for alli,j.

Proof 26 (Proof of lemma C.1.1) Let p be the ratio of the minimal and maximal eigenvalue of
A, and let
D=(1+¢) (N -1)p (B, (C.2)

for some negligible € > 0.
If b > [|B||, we may note that b > ||[B — 0|, so the solution of placing all points at the origin is
possible. If a solution B exists for b < ||B||, then we note that:

1Bl >b>||B-B|| >0l (B-B) | vij (C.3)
v

Since B € II we may assume that there is a permutation o € Sy so that B € II, by lemma( ), but
we have: .
Bo(iyo(i+1) < '|Bll5 by equation( C.3) (C.4)

Hence we have: .
D > B,(1),0(N) (C.5)

concluding the proof. O
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Figure C.1: Annular bound

C.2 Annular bounds

Problem 4 MATRIX-TO-LINE-ANNULAR-BOUND
Given input (B € T,b> a € R,||-||) construct or find a matriz A € II or determine that one doesn’t
exist so that:

a<|B-Al<b (C.6)

Lemma C.2.1 MATRIX—TO-LINE-BOUND and MATRIX—TO-LINE-ANNULAR—BOUND are Polyno-
mial Equivalent

Proof 27 (Proof of lemma C.2.1) one—way MATRIX—TO-LINE-ANNULAR—BOUND can be used
to solve MATRIX—TO-LINE-BOUND:

Let a = 0 for the a < b pair in the annular bound.

other—way MATRIX—TO-LINE-BOUND can be used to solve MATRIX—TO—LINE-ANNULAR-BOUND:
If a solution v € II, < T for some o € Py can be found with the MATRIX—TO—LINE-BOUND some
scalar multiple of v will contact the boundary of the sphere. So given annular bounds a < b solve
MATRIX—TO-LINE-BOUND with bound b to find solution «, now scale y until it is found in the
annular region. [

C.3 GRAPH-EMBEDDING—BOUND solves MATRIX—TO—-LINE-BOUND

Proof 28 Given an instance of MATRIX—TO-LINE-BOUND given by (B, ||-||5 ,, b) where A has spec-
tral values in Z ™, we shall construct an instance of GRAPH-EMBEDDING—BOUND to solve the instance
of MATRIX—TO-LINE-BOUND. Let B be a N x N matrix, With out loss of generality we may as-
sume that A is a diagonal matrix. For each value A(; ;) (m,n) we let k(A;p) (4,4),(mm) = MiNjez+ 7P <

AGi,j),(mm) We construct a vertex set V' :
Vitie[l...N] (C.7)
V;JZZ<]E[1N]ZE[1]€(A,]))] (CS)

Vin:i<je[l...N]:l€[l...k(A;p)] (C.9)



We construct an edge set E with weights W :

((Vi, Vijo),0) ri < j e [l... N]: L e [1... k(A;p)] (C.10)
((Vj, Via), 0) : z<36[1 NJ:lefl...k(A;p)] (C.11)
((Vijis Vi), Bij) - z<]€[1 N : le[l  k(A;p)] (C.12)
((Vi; Via), Bij) i < j € [1. N] Lell...k(A;p)] (C.13)
(Vs Vi), Big) :i < j € [1... N sl € [1... k(A; p)] (C.14)

(C.15)

And we note that if we multiply A by a large integer M, we may approximate the p—norm slightly
better. This sketches the main idea involved in showing the equivalence. For M sufficiently large

and e = kb scaled accordingly we are actually emulating the MATRIX—TO-LINE instance with positive
definite bilinear form A, pnorm. O



Appendix D

Proof of GRAPH-EMBEDDING
NP—-Completeness with P-Norm

Definition D.0.1 ¢,p—Embedding
A graph—embedding function f : V — R is an €, p—Embedding if:

Y @) = f@)] = W((w, ) < & (D-1)

(u,v)EE

GRAPH-EMBEDDING-BOUND instances (V, E, W, p,b) There is a solutions if and only if there is
a b, p-Embedding.

Lemma D.0.1 GRAPH-EMBEDDING—BOUND Problem is NP-Complete

Proof 29 (Proof of lemma D.0.1) We reduce 3-SAT to GRAPH-EMBEDDING-BOUND . An in-
stance of 3—SAT is a set of clauses:

/\jzl;ij (D.Z)
each clause is a disjunction of literals of the form given by:
Cj = (Lj1V Ljz V Lj3) (D.3)

Each Lj, is equal to X; or —X;, for some 4 € [1...n| one of the n boolean variables. Similar to
Saxe [29], we construct a graph with vertex set:

V={zyzi:ie[l...n]},
A, B,
{{Cjy:ve1...10)},2: j €[1...m]}}
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And Edges with Weight:

ExW ={{({(zi,=;),2) :i €[i...n]} (D.4)
((4,B),2) (D.5)
(A, 2),1), (A, ~2:),1) Vi€ [1...n]} (D.6)
{((4,Cj1),1), ((Cj1, Cja), 3) , ((Cjas Cs), 1) , ((Cysy 25), 1) } (D.7)
{((4,Cjs),4)} (D.8)
{((4,Cj2),1), ((Cj2, Cje), 1) , ((Cys; Cjr), 4) , ((Cy, 25), 1)} (D.9)
{((4,Cj6),2)} (D.10)
{((4,Cj3),1) . ((Cj3, Cjs),4) , ((Cyss 25), 2) } (D.11)
{((B,Cj9),4), ((Cjo, Cj10),2) , ((Cj0, 2), 1) } (D.12)
{((Cjv, Ljp),0)j € [1...mJv € [1,2,3]}} (D.13)

(D.14)

Below we draw a figure of the Clause Representation for reference: Further we name some paths
and edges through the graph:

= (4,C4),(C4,C5),(Cs, 2) (D.15)
= (4, Cs), (Cs, Cr), (Cr,2) (D.16)
= (4,C3),(C3,C3), (Cs, 2) (D.17)
ay —( B), (B, Cy), (Cy, C10), (C10, 2) (D.18)

Please notice that if point A is at zero and point B is at 2 then all points can be embedded exactly



on the line for these configurations listed by z’s position:

z2=T:c1=1,c4 =4,c5 =6 (D.19)
tco=1,c6=2,c7=56 (D.20)
te3=1,c8 =5 (D.21)
tcg =06,c10 =8 (D.22)

z=bicp=1,ca=4,c5 =06 (D.23)
teo=1,c6=2,c7 =6 (D.24)
teg=—1,c3 =3 (D.25)
tcg=06,c10=4 (D.26)

z=3:c1=1,ca =4,¢c5 =2 (D.27)
tep=—1,c6 =—2,¢7 =2 (D.28)
teg=1,c3 =5 (D.29)
tcg =6,c10=14 (D.30)

z=1:¢c1=1,c4 =4,¢c5 =2 (D.31)
teg=—1l,c6=—-2,c7 =2 (D.32)
3= —1,c8 =3 (D.33)
tcg=—2,c10=0 (D.34)

(D.35)

z=—1l:cg=—-1,c4 = —4,¢c5 = -2 (D.36)
tep=—1,c6 =—2,¢7 =2 (D.37)

ey =1,05 = -3 (D.38)
tcg=—2,c10=0 (D.39)
z=-3:¢c1=—-1,c4 = —4,c5 = -2 (D.40)
teg=1,c6 =2,¢7 = —2 (D.41)
teg=—1l,c8 =5 (D.42)
tcg=—2,c10 = —4 (D.43)
z=-b:c0=-1,c4 = —4,c5 = —6 (D.44)
tep=—1,c6 =—2,c7 = —6 (D.45)
teg=1,c3 =—3 (D.46)
tcg=—2,c10=—4 (D.47)

(D.48)

We note that if A =0, z = —7 is the only other possible position for z incurring no cost on paths

a1, ag, 3. However a positive cost must be paid if we are to place B in any location other than
—2 in particular the embedding of such a clause requiring that B = 2 will have to be done with
¢, p-embedding and cannot be done without incurring error greater than %. Here-forward we use
the symbols Cj; as both the vertex and the position of vertex embedding on R. After an embedding
we note that the signs of (C; — A,Cy — A,C3 — A) encode the assignments of variables,

{Lﬂzlif (Cji — A) >0
le:

) (D.49)
Lj; = 0 otherwise



We illustrate this encoding of values of literals with the position of z; :

2 =T:Lj1=1,Ljs=1,L;3 =1 (D.50)
Zj:5:Lj1:1,Lj2:1,Lj3:0 ( )
2j=3:Lj1=1,Lj3=0,L;3=1 ( )
zj=1:Lj1=1,Ljp=0,Lj3=0 (D.53)
zj=—1:Lj1 =0,Lj2=0,L;3=1 ( )
zj=—-3:Lj1 =0,Ljp=1,Lj3=0 ( )
zj=-5:Lj; =0,Ljs=0,Ljz=1 ( )

Now we show a sub—claim.

sub—claim: If f is a ¢, p-Embedding with ¢ < % of clause Cj. If A = 0 and B = 2 then the
sign of (Cj1 — A),(Cj2 — A),(Cj3 — A) encode a satisfying assignment of literals L;i, Lj2, L;3 by
assignment:

(D.57)

o liijl—A<O
7o ow

Let:

F(A,B,Cy,Cs,C3,C4,Cs5,Cq,C7,Cg, Cy, Cro, 2;p) =
(1(1B — A[) = 2[)" + (I(IC1 — A]) = 1))* + (|(IC2 — A]) = 1])* + (|(IC5 — A]) — 1)
+ (I(ICs = A]) = 4])” + (|(IC6 — A]) = 2))” + (|(ICs — C1]) = 3])” + (I(IC6 — C2) — 1])”
+ (I(1C7 = Cs|) = 4))P + (I(Jz = C7]) = 1))? + (|(IC5 — Cal) = 2))* + (I(|z — C5]) — 1])P
+ (I(1Cs — C3) = 4))P + (|(1z — Cs|) = 1))? + (|(IC9 — B|) — 4])* + (|(IC10 — Col) — 2/)*
+ (I(|z = Ciol) — 1))

HfA=0and B=2and C;1 —A <0, Cy—A4A<0,C3-A4AK< OthenthefunctionF—%
can be shown to be positive with a computational proof. Further we can show that if the vec-
tor (A, B,C1,C5,Cs,Cy,Cs5,Cq,C7,Cs,Cy, Crg, 2) is a €, p-embedding then the only solution to
F(:;p) = 0 is the solution with the same signs for (C; — A), (C2 — A), (C5 — A), when [A : B]
is taken to be the positive direction. Note that % is chosen in connection with the longest
cycle length 8 given by cycles [A,Cy, Cs, Cr, z,C5,Cy4, C1, A, [A, B, Cy, C1g, 2,C5, Cy, C1, A], and
[A4, B, Cy, Cig, 2,C7,Cs, Cz, A]. Now if two clauses C}, and C}, including the edges between clauses
if any are €, p—embedable then the result is that each must individually be €, p-embedable, and thus
if any literals are in common the clauses agree upon the placement for each, and thus the encoded
assignment satisfies both clauses. So at this point one can reason that there is an ¢, p-embedding
with € < % for the graph specified if and only if there is a satisfying assignment for the 3—SAT
instance. O



