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Chapter 1

Introduction

A person's \productivity" can be measured in many ways. However, inde-

pendent of how this productivity is measured, it appears that the advent

of modern computing devices and software architectures has improved this

ability by several factors of magnitude1.

One of the aims of computer science has been to provide better software

tools that would increase our productivity (and hopefully, leave us more time

to engage in leisurely activities such as philosophizing or �shing). Two de-

sirable characteristics of such tools are their \usefulness" in solving a given

problem and the \soundness" of the theory on which they are founded.

1In spite of the fact that computers have been around for decades, there seems to be

a folk consensus that this result has been actually achieved only recently outside research

institutions and very high-tech industries (cfr. Business Week, July 17th, 1995: cover story

on Wages in America).
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This dissertation will describe how problems in robotics and manufactu-

ring prompted the development of a theory of Discrete Event Systems (DES),

how this theory has been applied and how a change in perspective leads

to the construction of algorithms and tools which improve on the original

formulation.

Two motivating examples form robotics and manufacturing will be used

to substantiate the claims to be made. The �rst one is an application to the

problem of synthesizing a controller for the synchronization of leg movements

of a walking machine. The second is an application to the construction of

control software for a food processing manufacturing line. (The latter work

has been carried out in collaboration with the Department of Industrial En-

gineering of Rutgers University).

In the walking machine example the challenge is to build a discrete con-

troller capable of producing reasonable gaits which follow simple principles of

coordination. Moreover, the system presents many problems which have been

recently addressed as \hybrid" between the continuous and the discrete view-

points. Figure 1.1 shows a sample graphic output of the system. Chapter 5

contains a more thorough description of the example.

Manufacturing systems pose very interesting problems from the viewpoint

of coordination and failure detection. Figure 1.2 shows a schematic of a tray

packing line of the Combat Ration Automated Manufacturing Technology

Demonstration (CRAMTD) of Rutgers University. Chapter 6 contains a more

2



Figure 1.1: The walking machine example.
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Figure 1.2: Schematic drawing of the tray pack line of the CRAMTD project.
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detailed description of the application.

The CRAMTD system is composed of many subsystems, each of which

can be represented by a �nite state model. The result of the controller syn-

thesis process for such a plant is packaged in intermediate format which can

be translated into a variety of \programmable logic controllers" (PLC) and

other software tools. In this case, the problems arise from the combinatorial

explosion due to the nature of the model.

The dissertation is organized as follows. Chapter 2 contains an intro-

duction that provides contexts for the developments described later in the

dissertation. It contains a brief literature review and a description of stan-

dard tools: e.g. control theory, Ramadge and Wonham's theory of controlled

discrete event systems, temporal logic, and veri�cation. Chapter 3 contains a

novel interpretation of propositional temporal logic as a tool for the synthesis

of controllers for discrete event systems. Chapter 4 describes an algorithm

for controller synthesis and its implementation using the Control-D tool-set,

and then compares it with the \standard" algorithm for the same problem.

Chapters 5 and 6 contain the descriptions of the walking machine and food

manufacturing examples, respectively.
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Chapter 2

Manufacturing, Robotics, Control

Theory and Veri�cation

This thesis studies the semi-automated synthesis and veri�cation of control

systems for robotics and manufacturing devices using formal methods in a

discrete framework, and bears some resemblance to the theory of controlled

discrete event systems (CDES) of Ramadge and Wonham's [67]. The aim is

to study the integration of CDES theory with the techniques developed for

the speci�cation and veri�cation of discrete event systems (DES). Many of

these techniques rely on the application of some 
avor of temporal logic [35].

This chapter begins with a description of the main concepts underlying

the dissertation, followed by a review of the literature on various related

subjects. It is worthwhile to note in advance that such review will necessarily

be partial and incomplete, because of its the scope and the sheer amount of
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material available in the literature.

2.1 Models and Control

The notions of robotics and manufacturing devices or systems encompass

many artifacts which are currently employed in the production and servicing

activities of the economy of many nations. Giving a precise de�nition of these

terms is therefore a self defeating task. Nevertheless, science and engineering

have provided many abstractions and tools to model such a wide variety of

systems.

For the purpose of this dissertation, the robotics and manufacturing sys-

tems that will be considered, can be formally described in terms of �nite

state machines (FSM) [41]. Such discrete description will represent a certain

\view" of the comprehensive behavior of the robotics or manufacturing sys-

tem. I.e., it represents a model of certain behavioral aspects of the device.

This model is discrete because by its nature the underlying formal tool (FSM)

is. Continuous characteristics will be best described by di�erent formal tools

(e.g. ordinary di�erential equations, linear and non-linear control theory).

Models of robotics and manufacturing systems serve di�erent purposes.

They may simply be a description of the relationships among the components

of a system, to be used as a documentation. More often, these models serve

the purpose of analyzing the system in order to either explain, predict, or

control its behavior. The nature of these models depends on which of these

6



tasks (or their combination) is to be performed.

Nowadays, explanation, prediction and control are supported by combi-

nations of hardware and software embodied by computer systems. There is

therefore a focus on those modeling tools that present desirable computational

properties such as low algorithmic complexity.

This dissertation will focus on an approach to the control task based on

a computational model whose characteristics make it relatively practical to

implement while maintaining expressiveness. The basis of this computational

model is the theory of CDES developed by Ramadge and Wonham in the mid

80's. This theory is deeply rooted in the classical control theory from which it

borrows terminology and key concepts. It will be shown that by dropping the

traditional control theory heritage, the resulting computational model gains

in expressiveness and e�ciency.

To substantiate these �ndings and demonstrate the feasibility of the ap-

proach, an implementation of the algorithms has been incorporated in the

Control-D tool. The tool has been used to construct the controllers of two

systems: a walking machine [12] and a manufacturing line [10].

Before discussing these results, an introduction to the key concepts as well

as a (incomplete) review of the related (and vast) literature touching these

subjects is in order.

7



2.2 Classical Control Theory

The main ideas used in controlling physical devices can be traced back to

Maxwell's governor example which also introduced the concept of feedback

control for dynamical systems. This traditional control theory approach has

been extensively formalized (originally by Shannon, Kalman and others { see

[44, 77, 71]) and has resulted in rich linear and nonlinear theories treating

continuous laws.

These theories introduce many key concepts that will be brie
y reviewed

in this section, in order to clarify their use in other parts of this dissertation.

The following brief introduction is closely patterned after [32, 57].

A very abstract view of control theory considers a system which evolves

over time (T ) while producing outputs (Y ) in response to inputs (U). The

outputs are also dependent on the system state. Usually, inputs, outputs and

system state are denoted with u(t), y(t), and x(t), i.e. as functions of time.

The exact nature of these functions and the underlying representation of time

are the basis for taxonomy of control models.

The evolution of the values produced by these functions are called trajec-

tories, or histories, or traces. The focus is usually on state-space trajectories

HX
4
= fhX : T ! Xg;

and of output histories

HY
4
= fhY : T ! Y g:

8



The dependency of state x(t) on the inputs is usually denoted by a state

transition equation

x(t) = �(t; t0; x(t0); u(t));

or by a state evaluation equation

x(t0) = x0;

x0(t) = f(t; x(t); u(t)):

These functions are coupled with a output equation

y(t) = g(t; x(t); u(t)):

�, f , and g are application dependent functions.

With these de�nitions it is now possible to formulate the control problem

for a dynamical system by distinguishing a goal subset of the trajectories in

HX . Controlling a dynamical system is equivalent to constraining it within

a trajectory in the goal subset. According to the nature of the goal subset,

several 
avors of the control problem can be formulated. Two classical ones

are the servo problem and the state-avoidance problem.

Servo Problem. Given a reference trajectory g 2 Hx, de�ne the goal

subset as

G = fhX such that jhX � gj � �; � > 0g:

I.e. the trajectory g must be \tracked" as closely as possible.

9



State-avoidance Problem. Given a set of states Q � X, de�ne the goal

subset as

G = fhX such that 8t:hX(t) 62 Qg:

I.e. the trajectory never reaches a state in Q (provided that x0 62 Q).

In order to constrain the system within the bounds speci�ed by the tra-

jectory goal set G, actions must be taken. These actions are represented as

inputs to the system and are referred to as control laws or control policies.

Control laws are chosen given the \current" state of the system, or the the

\current" output or both. I.e. feedback is used in order to decide the \next"

input to the system.

Often, goal trajectories may be unattainable. Control theory de�nes no-

tions and methods to describe this situation. The key notion is that of con-

trollability of a system. A point in the time-space h�; xi 2 T �X is said to be

controllable with respect to a set C � X of target states if and only if there

exists a control action 
 such that at a \time" t > � the resulting point ht; x0i

in the time-space is within C.

h�; xi


; ht; x0i; and ht; x0i 2 C:

A dynamical system is completely controllable if and only if it is possible

to transfer any state x(t0) 2 X to any other state in X in a �nite amount of

\time".

10



The de�nition of controllability relies on precise information about the

state of the system. Such information may not be available. The problem of

recovering such information is the observability problem of a system. Control-

lability and observability may be related by the so-called duality principle.

A wide range of physical systems can be described and controlled in terms

of linear, time-invariant models. For this class of models, which are charac-

terized by a linear matrix form of the de�ning state and output equations, a

very rich set of sophisticated mathematical tools has been developed over the

years. Non-linear dynamical systems present many more di�culties.

Classical Control Theory De�ning Traits

Control theory has been historically interested in continuous systems (over

time T ), i.e. systems whose models are represented with the tools of di�eren-

tial equations and linear algebra.

Another characteristic of control theory is the uniformity of representa-

tion. This principle applies both to basic research in control theory and in

the practice of designing controllers for physical systems (robotics and manu-

facturing). It is common practice to represent u(t); g(t); f(t), and the control

task using the same underlying formalism.

This practice has been carried over to the modeling and control of systems

which cannot be promptly represented with the tools of continuous mathemat-

ics. Section 2.3, contains some introductory remarks about the reformulation

11



of control theory for discrete event systems.

2.3 Control Theory Applied to DES

While continuous control theory has been very successful, many modern com-

plex physical devices have proven to be not amenable to its techniques.

There are essentially two sources of problems. Many of these devices can

be properly described only in a discrete or hybrid (i.e., mixture of discrete

and continuous dynamics) setting. The plant has to be modeled in terms of a

discrete set of states and transitions1, which poses many problems. Secondly,

the behavior desired of the ultimate system tends to be fairly complex.

In their original work, Ramadge and Wonham [66] describe a reinterpre-

tation of the key concepts of control theory for systems whose underlying

dynamics is represented in terms of formal languages. The system to be con-

trolled is considered a generator (G) of a language L (see [41]). This choice

is well suited to represent the discrete nature of a wide variety of systems.

Ramadge and Wonham introduced the term CDES to indicate this class of

systems.

As a standard example, consider a machine on a shop 
oor. A high level

1The word discrete assumes two di�erent meanings in control theory_It is used to indicate

a discretization of time T , or as a de�ning characteristic of the underlying state space.

In this dissertation, unless explicitly noted, the term \discrete" always refers to system

modeled with an underlying discrete state space.

12



model of its operation may be given in terms of three states idle, running,

faulty. The normal operation of the machine is an alternation of the �rst two

states, controlled by start and stop signals. Every once in while, the machine

will break down, causing the model to move to the faulty state.

In its simplest form, a CDES is de�ned in terms of its generator

G = (�; S; �; s0):

� is the alphabet of the generator (similar to the outputs Y of a control theory

speci�cation), whose elements are called events. S is a �nite set of states (the

analogous of X). � : ��S ! S is the unregulated transition function, de�ned

in the standard way. The state s0 is the initial state. The generator is also

called, with an obvious analogy, the plant to be controlled.

The main assumption on CDES is that the alphabet set is partitioned

into two subsets. �c � � is a subset of controllable events, �u = ���c is a

subset of uncontrollable events.

This assumption is the basis of the whole CDES theory. The control law

to be applied to the plant can disable events in �c preventing them from

being generated. This disabling action constitutes the input of the system (in

analogy to U).

An admissible control for a CDES is a set of disabling actions and can

simply be represented as a subset of �c or as a function


 : �c ! f0; 1g:

13



A � 2 � is enabled if 
(�) = 1, disabled otherwise. The set of all 
's is

denoted by �.

The analogue of the state equation f is the controlled state transition

function �c, which uses the de�nition of 
 with the extension that 
 : �u !

f1g.

�c : � � S � �! S:

i.e.

�c(
; q; �) =

8>><
>>:

p if �(q; �) = p and 
(�) = 1;

? otherwise:

By substituting � with �c in the de�nition of G, the controlled generator Gc is

obtained.

With these de�nition it is now possible to formulate the control problem

for CDES's. I.e. design a supervisor device that selects the control inputs in

such a way that the given CDES behaves in obedience to various constraints.

2.3.1 Building Supervisory Controllers for CDES

The analogy with continuous control theory is carried over in the speci�cation

of a supervisor for a CDES plant Gc. Since the plant is a generator of a

language (�[G]), it is natural to assume a device observing, or recognizing,

the events generated and producing the control inputs as needed.

Such a device is represented as a recognizer

R = (�; R; �; r0):

14



hR; 'i

Gc

� admissible control 


Figure 2.1: The standard arrangement of plant G and supervisor hR; 'i.

R is the recognizer set of states, � is its transition function and r0 is its initial

state. The recognizer has an associated map

' : R! �;

which represents the control law for the CDES. The pair hR; ' is the super-

visor for Gc. ' is called the supervisor map and represents the state feedback

law for the plant. The supervisor is coupled with the plant in the standard

arrangement shown in �gure 2.1.

With these de�nitions, Ramadge and Wonham develop a theory which

gives guarantees about the existence and the \constructibility" of supervisors.

15



CDES Theory: Main Results

The main result of the theory of CDES is the existence theorem for supervi-

sors (cfr. [66]). The result is based on a notion of controllability of languages.

Assume the standard language union, intersection, concatenation and pre�x

closure operations described in [41]. If K and L are languages over an alpha-

bet � partitioned between controllable and uncontrollable events, then the

language K is said to be controllable if

�K�u \ L � �K:

This condition ensures that given any sequence of events in the pre�x of K

( �K), any subsequent uncontrollable event will not produce a behavior that a

recognizer for K would fail to detect.

The other main result of the theory concerns the structure of the family

of controllable sublanguages of a given language K. This family is closed

under union and intersection and contains a supremal element. The supremal

controllable sublanguage of K, denoted by K", is therefore an approximation

to K. The existence of this supremal element is the key to the construction

of the actual supervisor for a wide variety of systems.

A Pragmatic Methodology

The existence of the supremal controllable sublanguage of a given language

K, implies a procedure for the construction of a supervisor for a given system.

16
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Figure 2.2: Schematic 
owchart of the Supervisor building steps.

The supervisor hR; 'i realizes the control law for a given set of constraints.

These constraints are expressed in terms of a language K. If this language

is not controllable, then its approximation K" can be built. This leads to

a pragmatic procedure for the construction of supervisors (see Figure 2.2).

Such a procedure is not an algorithm directly implementable. It is a guideline

for a practitioner employing these notions to actually build a controller. In

particular, the step checking for the \goodness" of the controlled behavior

is completely up to the human. Ramadge and Wonham take this fact into

account in their theory by introducing the notion of \acceptable" language

(cfr. [66]).

The procedure is the basis for the design of a software environment for
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the synthesis of discrete controllers for CDES's. In [13] a system is described

that performs this \aiding" task.

The process of building a supervisor proceeds in two steps: �rst a supre-

mal sublanguage for the speci�ed K is built, then the actual supervisor map

' is synthesized.

There are restrictions to the kind of languages that can be e�ectively used

with this procedure. The theory works well for regular languages. For larger

classes of languages (e.g. context-free) the uniqueness of K" cannot be guar-

anteed. These results are contained in [64]. In the same paper, one can �nd

an algorithm for the construction of the supremal controllable sublanguage of

a K" with respect to a pre�x closed language �[G]. This algorithm assumes

an FSM representation of G and R and produces the desired automata in

O(jSj; jRj), where jSj is the cardinality of the set of states of the generator

G and jRj is the cardinality of the set of states of the recognizer R. The

synthesis algorithm proposed in this dissertation improves slightly on this

result. Though the overall asymptotic complexity of the proposed synthesis

algorithm does not change, it will be argued that the di�erent representation

used can signi�cantly improve the practicality of the resulting tool.

Other Developments in Ramadge and Wonham's Theory

The part of the theory of CDES's described so far is only the basis which con-

stitutes the background for the development of this dissertation. An overview
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of other developments in the theory can be found in [67]. The other topics

which have been investigated in the CDES framework regard observability

and modular synthesis of supervisors [63]. The issue of decentralized supervi-

sion has been also investigated [68]. In this case the question asked is whether

the action of several supervisors acting locally can achieve the same e�ect as

a centralized one.

Another research direction concerns what kind of extensions can be intro-

duced in the CDES framework preserving its basic characteristics. A crucial

question concerns what classes of languages besides the regular ones admit

the unique supremal sublanguage construction or what are the characteristics

of other extensions to the basic model. For instance, !-languages (and B�uchi

automata) as a basis for CDES are considered in [65], and Vector Addition

Systems are considered in [47, 48].

The basic CDES model does not include time as a component. The only

notion of the passage of time is derived from the generation of events by the

plant. In this direction, a standard extension to the basic CDES model with

discrete time ticks is presented in [18].

On the foundation of CDES, other extensions and reinterpretation of the

theory have been proposed, mainly with the aim to reuse the wealth of knowl-

edge developed within the temporal logic community. This dissertation falls

in this last category. Additional references will be given in Section 2.4.
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2.4 Veri�cation and Temporal Logic

The CDES Theory described in Section 2.3 is geared toward synthesis of

a controller for a given model of a device (either physical - like a robotics

arm or a manufacturing line - or software). Yet, the question of producing

such a controller is intertwined with that of determining the correctness of

the results. Answering this question amounts to verifying that a model of

the system has properties that can be proved in a \mathematical" sense. The

underlying proof process ranges from fully automated algorithmic tools to

\paper and pencil" techniques. An excellent historical survey of the topic of

veri�cation can be found in Chapter 1 of [46], along with a disquisition of the

many meanings assumed by the term \veri�cation".

The argument in favor of automated (or semi-automated) proof proce-

dures was made by Barwise (cfr. [46]) and it is based on the the complexity

and lack of peer review of many correctness proofs for models of real-world

systems. Therefore, since the early sixties, many researchers started work-

ing on applications of theorem proving for the proof of correctness of models

speci�ed in a given logic.

However, theorem proving in its most general sense is undecidable. There-

fore, there have been an e�ort toward restricting the scope of the logics used

for the task. Moreover, since most of the \interesting" properties of complex

systems deal with time-dependent properties, the class of logics of choice is

the one based on temporal modal operators, i.e. Temporal Logics.
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Brief Classi�cation of Temporal Logics

There are several 
avors of temporal logic. Following the classi�cation of

Emerson's [35], di�erent temporal logics can be distinguished according to

the following criteria.

� Propositional vs. First Order.

� Implicit vs. Explicit Time.

� Point vs. Interval Time (especially for explicit time logics).

� Discrete vs. Continuous Time.

� Branching vs. Linear Time.

These distinctions (apart from the propositional vs. �rst-order one) refer to

the underlying structure of time. For the purpose of this dissertation the focus

will be directed at propositional, implicit, branching, discrete time logics. The

exact meaning of this classi�cation will become clearer in the next sections.

2.4.1 Temporal Properties of Systems

Several properties of a system can be classi�ed as \temporal". Among them,

there are explicit time related properties and implicit time related properties.
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Implicit and Explicit Time Properties

Explicit time properties are of the kind \the lathe operation will last 3 min-

utes", or \the temperature of the water in the tank must drop 20 degrees

within 10 minutes", and so on.

Implicit time properties do not mention explicit time constraints. Instead

they express how a system will evolve base on the history of observable vari-

ables. E.g \The failure will be propagated", \In the long run we are all

dead"2.

Temporal logic has historically concentrated on this second kind of prop-

erties. In [50] summarize what classes of properties are the target of the

\practicing veri�er", like safety, liveness of a system.

Safety properties refer to conditions whose truth is ensured by the system.

They are also referred to as \invariance" properties. Liveness properties

express the fact that \something will happen", i.e. they express \eventuality".

Another set of properties that can be expressed in various temporal logics

are fairness properties, which are particularly useful for systems composed

of several concurrently executing devices. A further classi�cation of fairness

properties (namely, \impartiality", \justice", and \fairness") can be found in

[24].

2This quote is ascribed to Lord J. M. Keynes. From \A randomwalk downWall Street"

by B. G. Malkiel, pg. 315.
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Other Extensions

Of course, explicit time logics and extensions to the implicit time framework

have been proposed in literature. Researchers in Arti�cial Intelligence have

tackled this problemmany years ago, though with an emphasis on \reasoning"

and \knowledge representation". Typical references in this �eld are [4], [69]

and also [32]. A more recent reference is [30]. Also, Section 2.4.3 contains

some references that pertain to the �eld of Arti�cial Intelligence.

2.4.2 Temporal Logics: Linear and Branching Time

Temporal logic was introduced a long time ago as a modal logic [42] with a

\temporal interpretation" of the modal operators 2 (necessity) and 3 (pos-

sibility) [61]. Therefore, the semantic of a temporal logic will rely on an

interpretation of an underlying Kripke structure.

In order to achieve a high degree of automation (i.e. with reasonable com-

putational complexity), the temporal logics used have been usually restricted

to the propositional fragment (vs. �rst order temporal logic which is always

undecidable { the Halting Problem is easily encoded { [35]). Furthermore

they are split between linear and branching time logics.

The distinction between linear time temporal logic (in this context re-

stricted to propositional lineal temporal logic { PLTL) and branching time

temporal logic, lies in the assumption of the \form" of the underlying time

structure.
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The following table summarizes the distinctions between linear and branch-

ing time.

Linear Branching

Course of time is linear. Course of time has a branching

tree-like structure.

Each moment has only one possi-

ble future moment.

Each moment has many possible

future moments.

Temporal operators are about

states along a single path.

Temporal operators are about

states along the set of paths start-

ing from the current state.

The semantics of PLTL is given in terms of time-lines over a set of states S.

Time-lines are totally ordered sets hS;<i isomorphic to the natural numbers.

There is an initial moment s0 (no predecessor) and the time-line is in�nite

\in the future."

The semantics of branching time logic is given in terms of an in�nite

branching tree-like structure over a set of states S. The most popular branch-

ing time logic is the Computational Tree Logic (CTL) introduced by Clarke

and Emerson in [36], which comes in many 
avors distinguished by their

expressive power and computational complexity.

Both linear and branching time logics assume the presence of a set AP of

atomic propositions and an assignment of propositions to states.

� : S ! 2AP :
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The semantics of PLTL is given in terms of a linear time structure

M = hS; x;�i;

where S is a set of states, x = (s0; s1; s2; : : :) is a full computation path, or,

more brie
y, a full-path. Partial computation paths are de�ned as su�xes

of full computation paths and denoted as xi = (si; si+1; si+2; : : :) (therefore

x
4
= x0).

The semantics of CTL is given in terms of a branching time structure

M = hS;R;�i:

Where S is { once again { a set of states and R � S � S is a total binary

relation. Because of R, CTL is capable of expressing properties about sets

of paths over M . To achieve this power it augments the syntax of PLTL

with the two path quanti�ers A (\for all paths") and E (\for some paths").

Technically, how PLTL is augmented with the path quanti�ers determines

di�erent 
avors of CTL. See [35] for a thorough account of the CTL variations.

The syntax and semantics of PLTL are summarized in Table 2.1, while

those of CTL are summarized in Table 2.2.

Linear and branching time logics have di�erent expressive powers. In

particular, the version of CTL used in this dissertation is not the most pow-

erful one. The more expressive CTL� subsumes CTL and PLTL by allowing

unconstrained linear time formul� within the scope of a path quanti�er.
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Syntax Semantics (M j= f) Description

Base Formul�

p p 2 �(s) A proposition

f1 _ f2 f1 2 �(s) or f2 2 �(s) A disjunction

f1 ^ f2 f1 2 �(s) and f2 2 �(s) A conjunction

:f f 62 �(s) A negation

f1 ) f2 f1 62 �(s) or f2 2 �(s) An implication

Temporal Formul�

X(f) x1 j= f f is true in the successor state

of s0

fU g 9j[xj j= g ^ 8k < j(xk j= f)] there exists a state in the fu-

ture where g holds and such

that f holds up to (i.e. until)

there.

F(g) this is equivalent to trueU g This is read as eventually g

will hold.

G(f) this is equivalent to :F(:f) This is read as henceforth f

holds.

Table 2.1: Syntax and informal Semantics for PLTL under the assignment �.

The semantics is given with respect to a linear time structure M = hS; x;�i.
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Syntax Semantics (M j= f) Description

Base Formul�

p p 2 �(s) A proposition

f1 _ f2 f1 2 �(s) or f2 2 �(s) A disjunction

f1 ^ f2 f1 2 �(s) and f2 2 �(s) A conjunction

:f f 62 �(s) A negation

f1 ) f2 f1 62 �(s) or f2 2 �(s) An implication

Temporal Formul�

EX(f) f 2 �(s0) and s0 is a successor state of s f will be true in some next

state

AX(f) f 2 �(s0) for every s0 successor of s f will be true in all the next

states

E[f1U f2 ] If s0; s1; : : : ; sn is a sequence of states and

at each of them f1 2 �(si) for i < n and

f2 2 �(sn)

There is a sequence of states

where f1 holds until f2 will.

A[f1U f2] For any sequence of states s0 ; s1; : : : ; sn at

each of them f1 2 �(si) for i < n and f2 2

�(sn)

There is a sequence of states

where f1 holds until f2 will.

EF(f) There is a sequence of states where f will

eventually hold (this is actually an abbrevi-

ation for E[TrueU f ])

This formula represents a po-

tential event.

AF(f) For any sequence of states f will eventu-

ally hold (this is actually an abbreviation for

A[TrueU f ])

This formula represents a

necessary event.

EG(f) There is a sequence of states, f will al-

ways hold (this is actually an abbreviation

for :AF(:f))

The formula f will always

hold on some path.

AG(f) For all sequences of states, f will always

hold (this is actually an abbreviation for

:EF(:f))

This formula states a global

and invariant property of the

system.

Table 2.2: Syntax and informal Semantics for CTL under the assignment

�. The semantics is given with respect to a branching time structure M =

hS;R;�i.

27



When restricted to the propositional case both linear and branching time

logics are decidable, but with di�erent algorithmic complexity. Theorem prov-

ing and model checking must take these di�erences into account in order to

provide a viable veri�cation environment.

2.4.3 Theorem Proving and Model Checking

Verifying a system with a temporal logic amounts to proving properties of

the form F � f ) g, where f and g are, usually temporal logic formul�.

Moreover, it is usually intended that f represents the \model" (in the \de-

scriptive" sense) of the system to be veri�ed and g is a formula representing

the properties to be veri�ed.

There are a variety of approaches that can be used to prove F . Theorem

proving approaches focus on the de�nition of a logical deduction calculus

that can be used to derive theorems in an appropriate logic. The literature

on automated theorem proving is vast by itself. Since Davis and Putnam

put forth their procedure (see [31] for an account), numerous treatises on the

topic have been published. Two rather arbitrary references are [23] for an

account of \resolution based" theorem proving and [37] for an exposition of

various modeling techniques employed in the Arti�cial Intelligence �eld.

For the class of systems which are the target of this dissertation and for

the use of a temporal logic formalism within the theorem proving paradigm,

an excellent example is the work by Manna and Pnueli. (A good reference is
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[51].)

Automated theorem proving in its most general form requires a signi�cant

amount of human expertise to be useful. Moreover most of the decision

procedures available { i.e. when the problem at hand is decidable { su�er

from high algorithmic complexity. Using theorem proving for the temporal

logic veri�cation problem usually involves some for of PLTL, because of its

decidability properties. However, the decision procedures for PLTL su�er

from a very high complexity. The unsatis�ability of f ^ :g is PSPACE-

complete [70].

A reformulation of the veri�cation problem led to the development of

a much more e�cient procedure for branching time logic. The veri�cation

problem can be seen as a 2-inputs problem: the model of the system and a

property to be checked. In [36, 24], the authors take this stand and produce

a model checking algorithm which turns out to be of linear complexity for

a model represented as an automata and a property represented in CTL. In

this context, the formula f ) g is usually recast as M j= g (M is a model

for f).

The model checking algorithm is linear in the size of the set of states {

the state-space { of the model of the system. However, the models are usually

obtained through the parallel composition of distinct FSM's, an operation

that yields a state-space of size exponential in the number of components3

3This is not to belittle the value of the model checking algorithm for CTL.
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a phenomenon usually referred to as the state-space explosion. This fact

spun o� e�orts into two directions: compositional speci�cations and symbolic

model checking.

Some notes on compositional speci�cations appear later in this section.

Symbolic model checking [22] takes advantage of a special representation of

the model based on Binary Decision Diagrams (BDD's) [3, 21] to encode vast

portions of the state space in a small amount of memory, while validating the

speci�cation g via a �xed-point computation. While the worst case analysis

of this encoding does not improve on the original model checking algorithm,

empirical results show a dramatic improvement in the memory requirements

for many veri�cation tasks.

\Synthesis" and the Tableau Method In [36] the authors lay the foun-

dation for the use of temporal logic (in particular CTL) both for veri�cation

(by stating the model checking algorithm) and synthesis of computational

structures.

In the �eld of temporal logic veri�cation the term \synthesis" usually

refers to the decision procedure that tries to prove the satis�ability of a well

formed formula in a given temporal logic by constructing a model for it. A

typical technique is the tableau method in its many di�erent variants (cfr.

[52, 76]). In this case, \synthesis" is a 1-input problem.

In order to avoid confusion, it must be emphasized that the term \syn-

thesis" used throughout this dissertation is to be understood in the sense
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suggested by Ramadge and Wonham, and not in the accepted sense within

the temporal logic framework.

Advantages of Branching Time Logics: Branching time may express

more properties than simple linear time. CTL is strictly more expressive that

PLTL. E.g. the distinction between the modalities AF and EF provide the

ability to distinguish between \potentiality" and \eventuality".

Because of the better algorithmic complexity of the model checking pro-

cedure, CTL has been extensively used in systems like smv [55] to prove

properties of systems like the Futurebus+ hardware bus [26]. The theory and

the tools presented in this dissertation use CTL as a speci�cation language.

Advantages of Linear Time Logics: Linear time logics enjoy certain

characteristics (not excluding the simpler time structure) that are not avail-

able to branching time logics, which makes them easier to handle. Their main

attractiveness is the power to directly express fairness constraints that CTL

cannot encode { fairness properties can be expressed using CTL�, at the price

of exponential time algorithms for satis�ability and model checking.

As a �nal remark, it must also be noted that some recent empirical results

indicate that PLTL model checking may be just as practical (see [25]) as the

provably more e�cient CTL.
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Applications of Model Checking

Model checking has been successfully applied to the veri�cation of VLSI de-

signs, communication protocols, cache coherency protocols, and bus arbi-

tration algorithms [20, 46]. The extensions to manufacturing and robotics

presented here are rather novel, and raise many new issues.

2.4.4 Veri�cation with Automata Theory

Temporal logic approaches to veri�cation are not the only possible ones.

There is a relation between temporal logic and automata theory that is rooted

in the models given for these logics, which eventually are expressed in terms

of the underlying Kripke structures (since, after all, temporal logics are modal

logics). In particular, !-automata on in�nite strings are equally suitable for

representing the properties listed in Section 2.4.1. Kurshan develops the

theory of !-automata for veri�cation in [46]. Automata lend themselves to

model checking and are more expressive than PLTL, though incommensurable

in power with CTL.

The major advantage of this and related approaches (cfr. Chapter 1 of

Kurshan's book) lies in the existence of reduction methods that make it possi-

ble to contain the state-space explosion inherent to the construction of many

practical models and to proceed subsequently in the veri�cation of a system

in a step-wise fashion.

32



2.4.5 Reductions and Compositional Veri�cation

In order to reduce the space requirements of model checking, several compo-

sitional procedures and reduction methods have been proposed. In [58] the

logic CTL� is proposed to this end. CTL� is a syntactically restricted version

of CTL that disallows existential path quanti�ers and allows for a hierarchical

check based on a \hiding" operation not dissimilar to the one proposed by

Milner's for his Calculus of Communicating Systems (CCS) [56]. Another

\compositional" version of CTL can be found in [27]. As already mentioned,

automata based veri�cation provides reduction methods for curbing the state-

space explosion.

This dissertation will not discuss questions related to composition and

reduction. The choice of CTL as the basic speci�cation language limits by

itself this development. However, all the methods and algorithms that will be

developed should apply to CTL�, thus, providing some form of hierarchical

speci�cation.

2.4.6 Real Time Veri�cation

The distinction between \implicit" and \explicit" time properties is more

acute when the systems being analyzed and veri�ed involve real time prop-

erties. Recently, there have been proposed several fundamental models as

well as extensions to temporal logic for this purpose. These models which

introduce explicit time mostly in the form of \attached" constraints to the
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temporal operators. A survey of some of these extended temporal logic and

of their decidability properties can be found in [9]. A fundamental model

which has been studied in recent year is the timed automata. References to

this model can be found in [8]. The interest in this model lies in the existence

of an encoding of real valued time information in a �nite form suitable for

symbolic model checking. Symbolic model checking for real time systems has

been studied, for example, in [6] and [39].

Other approaches to these problems come from di�erent communities.

E.g. the Petri Nets (PN) community has developed many tools for the veri-

�cation of time properties of PN models (e.g. see [14]).

2.4.7 Role of Veri�cation Tools

The study of the algorithmic aspects of veri�cation raises the question about

the role of tools built upon this paradigm. The list of tools is now long. Two

representative are smv [55] and cospan [46].

The role of veri�er systems is, by general agreement of the veri�cation

community, that of sophisticated debuggers which can catch \design errors"

in the early phase of the development of a system. It will be argued that a

tool capable of synthesizing (and verifying) controllers would be as bene�cial

to the early developing phases of a system, notably in such areas as robotics

and manufacturing.
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2.5 Hybrid Systems Veri�cation and Control

Discrete and Continuous modeling tools are extremely useful in many situa-

tions. Yet, many devices and problems are better described as a combination

of discrete and continuous models. Engineers refer to this interplay between

discrete and continuous models as \mode switching". It is no surprise to

see the emergence of e�orts to integrate the discrete and continuous compu-

tational models. As an example, such a model is presented in [53] for the

solution of the classic peg{in{a{hole problem.

New research directions in this �eld can be found in [38] and in [16]. These

e�orts constitutes the coming together of di�erent communities. The research

directions can be roughly categorized into two groups. The �rst one studies

the mathematical foundations of the combination of discrete and continuous

systems, while the second concentrates on the �tting of existing formalisms

to the task. Many of the formalisms are rooted in the temporal logic (e.g. [7]

and [60]) and control theory communities [59]. The main objective of these

studies is to �nd a proper \combined" model for both discrete and continuous

behavior of a given system and to produce a \syntactic" speci�cation of the

control law to be obeyed. The thesis by Desphande [33] follows this direction.

In this dissertation, the topic of hybrid systems is only touched upon when

discussing one of the testbeds for the proposed system. No comprehensive

theory is developed: information of \continuous" nature is only used as a

supplement in the synthesis of a viable discrete controller for a walking ma-
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chine. Nonetheless, this approach seems to be quite powerful, in the kind of

practical situations arising in robotics and manufacturing.
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Chapter 3

Temporal Logic Supervisor

Synthesis with Veri�cation

This chapter contains the theoretical framework for the application of the

tools of temporal logic to the Supervisor Synthesis Problem for CDES.

The aim of this approach is to use a more viable speci�cation formalism

for the constraints on the trajectory of a plant, than having to express them

directly in the form of an auxiliary language (the language K in the CDES

formalism [67]). This is a departure from the control theoretical metaphor

that characterizes the CDES modeling and synthesis procedure. It can be

argued that \representational" simplicity can be gained by such a departure.

The speci�cation language that will be used is the standard CTL described

in [36].

First of all, it must be noted that the idea of using automata or temporal
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logic for the synthesis of \controller programs" is not new and dates back

to the early work of Arbib [44] and others1. Synthesis of programs based

on temporal logic goes back to [1]. More speci�cally, the combination of

temporal logic with the supervisor synthesis problem within the Ramadge

and Wonham framework has been studied in [49], and with a slight variation

(and extensions to the hybrid case) by [33].

The choice of CTL as a speci�cation language is novel. To the best of

the author's knowledge, this is the �rst attempt to formulate the synthesis

of controllers for CDES based on a branching time logic. All the works

mentioned use some form of PLTL as their base model. Choosing a branching

time instead of a linear time logic was mainly a matter of relative usefulness

of the paradigm vs. the linear time framework. One of the main reasons

for such a choice was the existence of the the linear time model checking

algorithms and their e�cient implementations (which form the basis for the

supervisor synthesis algorithm described in Chapter 4) Another reason was

the CTL stronger expressive power.

This Chapter is organized as follows. Section 3.1 contains an introduction

to the notation used throughout the chapter. Section 3.2 contains the de�-

nition of the semantic characterization for a speci�cation given in CTL with

respect to a system to be controlled. Section 3.3 ensures the existence of an

algorithm capable of synthesizing the correct supervisor that will ensure the

1Who must forgive the forgetfulness of the writer.
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satis�ability of the CTL speci�cation. The algorithm is exponential in time.

Chapter 4 will present an algorithm which, under a set of mild restrictions

with respect to the full CTL, achieves a linear time complexity.

3.1 Notational Preliminaries

The terminology used in this and subsequent chapters is that of the Theory of

Formal Languages, more precisely, the regular languages [41]. The de�nition

of CDES given in Section 2.3 serves as a basis of the following discussion. All

the languages mentioned subsequently are intended to be regular. Also, it is

always assumed that the underlying Kripke structure has the form of a FSM

(denoted either with P or G) with components (�; S; �; s0). Finally M [L]

denotes the FSM associated to a language and �[M] denotes the language

recognized by a machineM.

Language, Active Set, Previous and Next Set at a state s

In order to denote the language and the active alphabet relative to a given

state of the FSM, the following notations are used: L[s] and �[s]. L[s] is the

language that can be generated using s as start state. �[s] is the subset of �

that can be \followed", starting from a given state s.

The notations

N[s]
4
= fs0 j 9� 2 �:�(s; �) = s0g;
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P[s]
4
= fs0 j 9� 2 �:�(s0; �) = sg:

indicate the set of \next" and \previous" states relative to a \current" state

s.

Language Operations

The following language operations on arbitrary regular languages L;L1; L2

are assumed.

L1 [ L2 The set-theoretic union operation.

L1 \ L2 The set-theoretic intersection operation.

Lc The set-theoretic complementation operation.

L1L2 The concatenation operation.

�L The pre�x closure operation.

L1 n L2 The language quotient operation de�ned as

L1 n L2
4
= fx j 9y 2 L2:(xy 2 L1)g:

The following shorthand will also be used:

L[s] nqi L[qi]; for 1 � i � n;

where fqig � S and s
�
; qi (i.e. there is a path in P from s to qi), is to

intended to denote

(((L[s] n L[q1]) n L[q2]) : : : n L[qn]):
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Languages concatenation operations

The language concatenation operation is usually de�ned in terms of the string

concatenation operation. This \low level" operation is usually de�ned to have

the empty symbol/string � to be the unit element. Therefore

��� = �;

�w = w� = w:

The usual de�nition of the language concatenation for two languages L1 and

L2 is

L = L1L2 = fuw j u 2 L1 ^ w 2 L2g:

This de�nition is augmented by the two following cases in order to accom-

modate the null language E = f�g and the empty language � = ;.

With these de�nition the concatenation operation behaves as follows

EL = LE = L: (3.1)

and

�L = L� = �: (3.2)

Therefore, in the present framework, language concatenation behaves like

multiplication with E and � as 1 and 0 respectively. De�nition 3.2 will be

especially useful when the semantics of a CTL formul� under supervision will

be de�ned.
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Logical Entailment Operators

The logical entailment operator j= usually denotes truth in a structure M

which is de�ned according to the needs of the task. In CTL literature, the

structure M is de�ned in terms of the underlying Kripke structure and the

notation

M;s j= f;

where f is a CTL formula and s is a state and the entailment, denotes the

truth of f .

However, the constructions that will follow in this chapter, \parameterize"

the notion of truth, making it possible to generate undue confusion. The

following notation is therefore introduced, in order to keep the discussion

simple

L;'; s jj= f; or

L; s jj= f:

L is a language and ' is the standard \supervisor map" of CDES (see Sec-

tion 2.3). The second form is used as a shorthand unless there is a need to

specify explicitly the supervisor map.

The notation

M;'; s j= f; or (3.3)

M'; s j= f;
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withM the underlying Kripke structure (i.e. a FSM like P ), could have been

used instead of L;'; s jj= f . Yet, it was found to make the treatment of some

of the construction more complicated. It was found that using the \language"

as a characterization of the the semantics for a given CTL formula, yields a

more immediate characterization of the behaviors allowed for the model (e.g.

see the AU case).

There is one more important rationale behind the choice of the notation

introduced in (3.3). In the CDES context, the supervisor map acts on the

basis of the \tracking" action performed by the recognizer R. Therefore

it can be used to perform a control action which is not locally limited to

the current state. CTL path formul� serve the purpose of expressing such

non local properties, and the characterization of their semantics by means of

languages is an useful \shorthand."

3.1.1 CDES Notions and Notations

There are two key notions within CDES Theory: the distinction between

controllable and uncontrollable events and the de�nition of the supervisor

map.

The de�nition of controllable and uncontrollable events leads immediately

to the de�nition of supervisor map.

'f : Q� �c ! f0; 1g;

'f : Q� �u ! f1g:
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That is, at each state, a decision must be made whether to enable (with the

supervisor map yielding a 1) or disable (yielding a 0) the next transitions2,

in dependence of the formula f and of its sub-formul�. When no confusion

arise, the f subscript will be dropped. Note that uncontrollable events are

always \enabled".

3.2 CTL Direct Synthesis of Supervisors

One of the aims of the recasting of the CDES paradigm into a temporal

logic framework is to give a reasonable reinterpretation of its basic concepts.

The most important concept is that of supervisor with its components, the

recognizer R and the supervisor map '.

In the temporal logic setting proposed in the following sections and chap-

ters, the recognizerR is equal to the model of the plant P , and the supervisor

map ' is synthesized from the CTL speci�cation S . This is the main di�er-

ence from the CDES approach, where R plays the role of the speci�cation3.

This synthesis problem can be denoted as the Temporal Logic Supervisor

Synthesis Problem or CTL Supervisor Synthesis Problem. The formulation

2Ramadge and Wonham de�ne the supervisor map in a slightly more general way. Refer

to their original paper for a comparison [66].
3Technically, this is not quite correct: R is the result of the manipulation { possibly

identical { of an \initial" FSM which is reduced in order to satisfy the \controllability"

condition (cfr. Chapter 4 for a more detailed explanation). However, the imprecision does

not bear on the following argument.

44



of such a problem addresses the question whether there exists a language L

such that

L � �[P]; (3.4)

L;'f ; s0 jj= f; (3.5)

where �[P] is the plant language, s0 is its initial state and f is a CTL formula

indicating the desirable properties of the controlled plant. The language L is

obtained by restricting �[P] by means of 'f
4.

In other words, the task is to �nd which supervisor map restricts the model

P in such a way to satisfy S . In the following sections, the supervisor map

is shown associated with each state and with each sub-formula of S .

Remark: Once the language L has been found, the following questions can

be asked.

1. Is L 6= �?

2. If L = �, is there a subset of the speci�cation5 that is satis�able by

some other language L0?

Question (2) leads immediately to the notion of \approximation" of a sub-

language, which Ramadge and Wonham treat formally with the notion of

4The dependence from'f maybe omitted for simplicity. The notation becomes L; s0 jj=

f .
5We will take the speci�cation to be a conjunction of CTL formul�. This is standard

practice.
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supremal controllable sublanguage (see Section 2.3.1).

3.2.1 Controlled Semantics as Model Restriction

The supervisor map ' is constructed by an algorithm that can be interpreted

as a modi�cation of the standard model checking labeling algorithm [24]. The

main idea is to \cut o�" the (controllable) branches that would make a sub-

formula unsatis�able. During this process, the language that makes a certain

formula satis�able in a state s is computed and kept in memory, to be used

subsequently.

The modi�ed semantics also de�nes how the supervisor map can be built

in order to ensure the satis�ability of the formula under consideration. The

resulting semantics is called the controlled semantics of CTL, and it is con-

structed in an inductive way.

Semantics \Collapse" Operation

The inductive construction of the controlled semantics speci�es for each for-

mula the supervisor map assignment. Since specifying the map assignment

must always take into account controllable and uncontrollable events, the fol-

lowing convention for specifying the controlled semantics of a formula f is

adopted.

Whenever the map assignment tries to satisfy a formula f in a

state s by disabling an uncontrollable event from �u[s], then the
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semantic clause collapses to

�; s jj= f: (3.6)

In other words, when the only way to satisfy a formula f in a state s would

be through a \controllability" breach, then the state is simply marked as no

good by \assigning" to it the empty language �, thus preventing recursive

building of a nonempty language satisfying a set of formul� for the complete

system.

3.2.2 Main Objective and Notable Problems

The characterization of the semantics for a set of CTL formul� is not triv-

ial. The branching time nature of the logic introduces many problems which

require a careful balancing act in the de�nition of the interplay between the

supervisor map and the language satisfying a given formula.

A very simple construction for the supervisor would either allow every

transition or block all of them (thus yielding �; s0 jj= S) based on the result

of checking for satis�ability of S via the model checking algorithm (i.e.

checking whether P; s0 j= S). Of course these are two extremes and it is

desirable to �nd some \middle ground".

The examination of the trade-o�s leads the de�nition of the controlled

semantics. Its characterization is eventually given in terms of the soundness

theorem of Section 3.2.5. I.e. the restricted plant P must be a model (in the
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model-theoretic sense) of the speci�cation S .

Section 3.2.3 contains an inductive de�nition of the controlled semantics

for a CTL speci�cation. Many of the clauses comprise elaborate structures

that circumvent the problems that might creep in the supervisor if care is not

taken. Three major problems are described below.

� Consistency: The presence of uncontrollable events makes it di�cult to

�nd assignments for the supervisor maps that satisfy the speci�cation

and that do not impose constraints too tight to the languages.

� Choice: Disjunction of path formul� may lead to di�erent supervisors,

which yield di�erent languages satisfying S, which therefore break down

the notion of soundness of the construction.

� Look-ahead computations: Path formul� (mostly pure \until" formul�

like A[f1U f2]) eventually lead to states where the \terminal" f2 must

be satis�ed. The supervisor assignment that satis�es this terminal for-

mula may interfere with the satisfaction of the over all \until" formula,

and is governed by the con�guration of the underlying graph of the plant

FSM.

Some examples of these problems are listed in the next section.
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t1 L[t1]; t1 jj= f

9L:L; s jj= AX(f)? s t2 �[t2]; t2 jj= f

t3 ��; t3 jj= f

�

�




Figure 3.1: Suppose that states t1; t2, and t3 allow f to be satis�ed by the

languages shown in the picture. In this situation the supervisor must be

able to set '(s)(�) to 0. Otherwise we could get into a state (t2) where it

might be the case that �[t2] � L0; t2 jj= :f for some L0 � ��. Assuming that

f�; �; 
g � �c, the language satisfying AX(f) at state s is �L[t1] [ 
��.

Supervisor Map \Consistency" in the Presence of Uncontrollable

Events

In anticipation of the problems that the controlled semantics must take care

of, the reader may consider the case depicted in Figure 3.1.

If the event � were uncontrollable then it would be impossible to prevent

the transition to state t2, where the only possible evolution of the system

would be to block6.

6This is a case where the supervisor map would yield a blocking behavior - cfr. Ramadge

and Wonham [ibid.].
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The Choice Problem Due to Disjunctions

Figure 3.2 contains a problematic example for the temporal logic supervisor

synthesis problem with disjunction. A supervisor is needed that satis�es the

formula

AX(AG(p1)) _AX(AG(p2)): (3.7)

for the plant language L of Figure 3.2.

The language L generated by the automata in �g. 3.2 is simply

L = �1�
�
1 + �2�

�
2 + �3(�

�
1 + ��2): (3.8)

The controllable events are �1, �2 and �3.

Suppose now that the following assignment of propositions to states are given.

�(s1) = fp1g;

�(s2) = fp1; p2g;

�(s3) = fp2g:

With this assignment it is possible to start labeling the states with CTL

formul� in the following way

��2; s3 jj= fAG(p2);AX(AG(p2))g;

��1; s1 jj= fAG(p1);AX(AG(p1))g;

��1; s2 jj= fAG(p1)g; and

��2; s2 jj= fAG(p2)g:
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s0

s1

s2

s3

�1

�1

�1

�2

�2�3

�2

fp1g

��1; s1 jj= p1

��1; s1 jj= AG(p1)

fp1; p2g

��1; s2 jj= p1

��2; s2 jj= p2

��1; s2 jj= AG(p1)

��2; s2 jj= AG(p2)

fp2g

�2; s3 jj= p2

��2; s3 jj= AG(p2)

Figure 3.2: A counterexample which shows the di�culties for the synthesis of

a supervisor for a CTL disjunction. We cannot �nd a reasonable supervisor '

for AX(AG(p1)) _AX(AG(p2)) even if the supervisors for the subformul�

are well de�ned.
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Note that state s0 cannot be labeled with a meaningful language. I.e., no

meaningful language L0 (under a control action implemented by ') can be

found such that

L0; s0 jj= AX(AG(p1)) _AX(AG(p2)); i.e.

M [L0; ']; s0 j= AX(AG(p1)) _AX(AG(p2)):

In fact, when formula (3.7) is eventually considered in state s1, neither of

the two AX disjuncts can be satis�ed unless some control action is enforced,

either by disabling the �1 or the �2 transitions (as it was implicitly assumed

when labeling s3 with ��1 jj= AG(p1) { here it was assumed that �2 was

disabled).

For the two disjuncts AX(AG(p1)) and AX(AG(p2)) in (3.7), there are

the following cases.

1. disabling �1:

(�2 + �3)�
�
2; s1 jj= AX(AG(p2)); (3.9)

2. disabling �2:

(�1 + �3)�
�
1; s1 jj= AX(AG(p1)): (3.10)

The following abbreviations will be useful

L1
4
= (�1 + �3)�

�
1;

L2
4
= (�2 + �3)�

�
2:
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It can now be noted that it is impossible to label s1 with the union of L1 and

L2, as intuition may suggest,

L1 [ L2; s1 jj= AX(AG(p1)) _AX(AG(p2));

because of the control action that must be performed in order to ensure

that either of the disjuncts is satis�ed7. That is, by labeling state s1 and

formula (3.7) with L1 [L2 there is some lost information about what control

actions we are enforcing. This problem arises because of the choice inherent

to the disjunction.

Lookahead Computations

The choice of de�ning the controlled semantics in terms of languages recog-

nized by a given machine (the plant P ) is also dictated by the necessity to

represent evolutions of the system beyond the state where a given formula

is satis�ed. CTL path formul� characterize these evolutions, however, their

controlled semantics must also characterize the interactions between their

sub-formul�. These interactions may hinder the desired characteristic of the

supervisor map to eventually restrict the behavior of the plant to become a

model for S .

As an example of this problem, consider the very simple example of Fig-

ure 3.3. The supervisor map must ensure that eventuallyM [L;'] j= A[bU a].

7The same problem happens in state s2.
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However, since state s1 is labeled with a, then a na��ve supervisor map assign-

ment would allow any su�x language L[s1] of �[P] to be generated undis-

turbed.

However, the na��ve supervisor map is \blind" to the other possible evolu-

tions of the plant. The evolution of the plant by the event � puts the plant

in state s2, where the only possible acceptable event satisfying A[bU a] is 
.

Therefore, there are at least two computation paths which \interfere" during

the construction of a supervisor.

This can be explained in terms of the interference due to the con
icting

goals of \model checking satis�ability" and of \greatest possible size" of the

supervised behavior of the plant8.

3.2.3 Inductive Construction of the Controlled Seman-

tics

This section contains the description of the controlled semantics for each

CTL formula. The construction for each formula is divided into three parts,

accompanied by short discussions about why certain choices were made.

1. A semantics clause.

2. A supervisor map assignment clause.

8Note that it would be possible to selectively disable the event � at state s2 by intro-

ducing a notion of \history" in the system. This choice was discarded because of the extra

complications that it introduces in the construction of the supervisor map.
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s0

s1

s2

s3

s4

� � 


��
f:a; bg

fa;:bg

fb;:ag

fag

f:ag

Figure 3.3: This example shows why some restrictions are necessary on the

controlled semantics for f = A[bU a]. The language satisfying f at s0 is

L = (�� + � )
. However, the language satisfying a at state s1 is La[s1] =

�(
 + �).
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3. When appropriate, a language non emptiness condition9 (which will

also ensure that the supervisor map assignment is meaningful).

In the following we will always assume that for events � 2 �u the supervisor

map ' at state s will be de�ned as

'(s)(�) 1;

as the standard theory requires. As it will become clear, the \language non

emptiness" condition will state when the supervisor map assignment would

make the speci�cation non satis�able.

p 2 AP

Here are the de�nitions for a formula comprising a simple proposition p

Semantics

L[s]; s jj= p i� p 2 �(s):

The semantic rule for the atomic propositions is standard and it is meant to

capture the intuition that if a proposition is true in a certain state, then any

action can be taken without fear of compromising the \local" truth value10.

9Abbreviated lne condition, henceforth.
10As an aside, the case of a negated proposition :p could be considered here. The

appropriated semantic clause would be

�; s jj= p i� :p 2 �(s):

The treatment of :p would then be symmetric.
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Supervisor Map Assignment

�(s)(�) 1 for all � 2 �[s]:

The assignment for the supervisor map must in this case be the \most liberal"

possible.

Case: �[s] = ;

The special case when �[s] = ; must be considered11. The semantic rule is

thus speci�ed as

E; s jj= p:

In this way, once in state s the only thing that the system could do and still

maintain p true is to \block".

Remark: The lne condition is meaningless in this case.

2

:f

In the standard CTL semantics, negation is easily handled. The controlled

semantics of a negation must instead be speci�ed considering the di�erent

outcomes which depend on the presence of uncontrollable events.

11This case happens when the Kripke structure (i.e. the underlying automaton) has a

\sink" state. This is what Ramadge and Wonham appropriately call a blocking system.
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s

Controllable

L; s jj= f

Lc; s jj= :f

Figure 3.4: The characterization of the controlled semantics of f and :f at

state s, without uncontrollable events (�u = ;).

Semantics

L; s jj= :f i� L; s j6j= f: (3.11)

or

L; s jj= :f i� Lc; s jj= f: (3.12)

Note that the semantics of the negation depends on the ability to actually

\complement" the language Lf (i.e. the language such that Lf ; s jj= f), by

means of the supervisory action.

Unfortunately, this works with no problems only when there are no un-

controllable events in �[s] (see �g. 3.4 for an illustration of this fact). In this
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case, the supervisor map assignment is simply the one described by equa-

tions. (3.13) and (3.14). However, the presence of uncontrollable events can

prevent the system from achieving the language Lc by means of supervision.

Figure 3.5 illustrates this situation in the \simple" case where L does

contain all the sequences of events starting with an uncontrollable one12.

With uncontrollable events, the lne condition tells us when :f can only

be satis�ed by � at state s.

Supervisor Map Assignment

�(s)(�) 1; if � 2 �c[s] ^ �w 2 L; for some w 2 ��; (3.13)

�(s)(�) 0; if � 2 �c[s] ^ �w 62 L; for all w 2 ��: (3.14)

This assignment ensures that the semantics of negation is the one expressed

in (3.11) and (3.12).

Language Non-emptiness Condition

The condition that ensures the satis�ability of :f at state s by a non empty

language L:f is the following.

8�2�u[s]: (:9L0: ((L0 � ��) ^ (�L0; s jj= f))) : (3.15)

When this condition holds, the semantics collapses

�; s jj= :f: (3.16)

12A more precise illustration would consider the case where each of Lf and L
:f = Lc

f

both contain controllable and uncontrollable pre�x events.
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s

Uncontrollable

Controllable

L; s jj= f

Lc; s j6j= :f

Figure 3.5: When �u[s] 6= ;, while it could be possible to achieve satis�ability

for a formula f by a language L, it might not be possible to use Lc to satisfy

:f .
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s1 ��; s1 jj= p

(�c�� + �u�
�); s0 jj= EX(p) s0 s2 ��; s2 jj= p

s3 
�; s3 jj= :p

�c

�

�u
�


c




Figure 3.6: An illustration of the di�culties that we encounter with negation

and synthesis of supervisors. In this case we assume that �(s1) = �(s2) =

fpg and �(s3) = f:pg with p 2 AP . While it is easy to come up with

a supervisor that satis�es EX(p), it is impossible to �nd one that satis�es

:EX(p) � AX(:p).

Remark: The fact that sometime a meaningful supervisory action at a state

s cannot be achieved because of negation should not be surprising. In [66],

the existence of a (proper) supervisor is subject to the \controllability" of the

language K (the \desired behavior").

Since in the controlled semantic characterization for the negation of f the

supervisor is actually switching between a \desired behavior" { as speci�ed

by a formula f { and its \opposite", it is also switching between a \potentially

controllable" (in the Ramadge and Wonham sense) language satisfying f and

an uncontrollable one satisfying :f .
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As a further example of this phenomenon consider the case depicted in

�g. 3.6.

2

AX(f)

The universal next time operator has the following characterizations for its

semantics and supervisor map.

Semantics

L; s jj= AX(f) i�

for all states t such that �(s; �) = t and '(s)(�) = 1;

L[t]; t jj= f and L =
[
t

�L[t]: (3.17)

The semantic clause is subject to the restriction of the associated lne.

Supervisor Map Assignment

The semantics of the AX operator is ensured by the following assignment.

�(s)(�) 1; if

(�(s; �) = s0) ^ (L0[s0]; s0 jj= f) ^ (L0[s0] 6= �); (3.18)

�(s)(�) 0; if

(�(s; �) = s00) ^ [(L00[s00]; s00 jj= f)) (L00[s00] = �)]: (3.19)
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Remark: The clause specifying when the supervisor map can disable the

transition re
ects the fact that two di�erent supervisors may at the same time

satisfy both f and :f at a state s. Therefore, it must be ensured that the

supervisor will lead to a state where the formula f (from AX(f)) will be

satis�ed by a non empty language.

Remark: Of course, all the uncontrollable events must lead to states qi such

that L[qi]; qi jj= f . The supervisor assignment is obviously assumed to be

equal to 1 for all � 2 �u[s].

Language Non{emptiness Condition

The lne condition condition is similar to the conditions appearing in the

supervisor map assignment, plus a general condition on uncontrollable events.

8�2�c[s]:(('(s)(�) = 1) ^ (�(s; �) = s0) ^ (L0[s0]; s0 jj= f)

) L0[s0] 6= �); (3.20)

9�2�u[s]:((�(s; �) = s0) ^ (L0[s0]; s0 jj= f)

) L0[s0] 6= �): (3.21)

Again, when (3.20) and (3.21) do not hold it must be concluded that

�; s jj= AX(f): (3.22)

Remark: Note the use of universal quanti�cation over all � 2 �c[s] in (3.20).

Its use intends to stress the \universality" character of the AX operator. As
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it will be seen soon, an existential quanti�er will be used for the EX operator.

2

EX(f)

The existential next-time operator has the characterizations shown below.

Note that there are some technical points that do raise some di�culties that

must eventually be resolved. This is not surprising, since existential nature

of EX implies a choice that must eventually be made in the evolution of the

system.

Semantics

L; s jj= EX(f) i�

for some states t; such that �(s; �) = t;

L[t]; t jj= f and L =
[

� 2 �[s]

s0 = �(�; s)

�L[s0]:

The semantic clause is subject to the lne condition for the EX operator.

Supervisor Map Assignment

�(s)(�) 1; for all � 2 �[s]:

As usual, we assume that '(s)(�) 1; for all � 2 �u[s].
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Remark: The supervisor map assignment must be as liberal as possible. It

is not relevant whether the system takes some step that will lead to a state s0

(from �(s; �) = s0), where �; s0 jj= f . As long as at least one of the \next"

states satis�es f with a non empty language, the semantic clause is ensured.

The lne condition states exactly this intuition.

Language Non{emptiness condition

We can ensure that the language L satisfying EX(f) at state s is non empty,

as long as at least one of the \next" states satis�es f with a non empty

language.

9�2�[s]: ((�(s; �) = s0) ^ (L0[s0]; s0 jj= f) ^ (L0[s0] 6= �)) :

This is the only requirement to ensure that EX(f) is satis�ed at a state s by

a non empty language.

2

A[f1U f2]

Recall that standard CTL semantics for the AU operator is as follows:

M;s j= A[f1U f2] i�

for all paths (s0 = s; s1; s2; : : :);

9i�0: ((M;si j= f2) ^ 80 � j < i:(M;sj j= f1)) :

Where M is the underlying Kripke structure (or FSM plus the assignment

�).
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The AU (and EU) operator involves several \paths" in the underlying

FSM. Hence its controlled semantics (along with the supervisor map assign-

ment) cannot be determined \locally", i.e. just by looking at the state s or

the set N[s]; instead, the controlled semantics must be de�ned by looking at

the paths leading away from s, as in the standard CTL case13.

Semantics

In order to de�ne the language L such that

L; s jj= A[f1U f2];

the following de�nitions are introduced.

Given the underlying plant P (or G) a full-path of it is an in�nite sequence

of states (s0; s1; s2; : : :). Note that a full-path starts at the initial state s0.

Otherwise, the path is a su�x path xi = (si; si+1; s1+2; : : :).

Next there are two auxiliary de�nitions about sets of states and su�x

languages.

1. The set of states Sf1 (resp.Sf2) where f1 (resp. f2) is satis�ed.

Sf1
4
= fs j 9L6=�: (L; s jj= f1)g;

13The semantics given for the \until" formul� in standard CTL literature can be given

in terms of a �xpoint operation (see for example [36]). For the A[f1U f2] formul� we have

that

A[f1U f2] � �F :f2 _ (f1 ^AX(F)):

Where F is a set of states of the underlying FSM.
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Sf2
4
= fs j 9L6=�: (L; s jj= f2)g:

2. The set of su�x languages satisfying f1 (resp. f2) over the elements of

Sf1 (resp. Sf2).

Lf1

4
= fL j (s 2 Sf1) ^ (L; s jj= f1)g;

Lf2

4
= fL j (s 2 Sf2) ^ (L; s jj= f2)g:

De�ne also the following set.

U[s]
4
= fq j (q 2 N[s]) ^ (L[q]; q jj= A[f1U f2])g : (3.23)

That is to say, the set of successor states where the formula A[f1U f2] is

satis�ed by a language L[q]. Finally, indicate with

'1(p) the supervisor map that ensures the satis�ability of f1 at a state p,

'2(p) the supervisor map that ensures the satis�ability of f2 at a state p.

The controlled semantics for AU needs to resort to the standard CTL seman-

tics in order to avoid the the problem depicted in Figure 3.3.

Consider the set of full-paths

XAU
4
= fx j subject to the conditions shown belowg: (3.24)

There exist i � 0, L1 2 Lf1, and L2 2 Lf2 such that

1. L2; '2; x
i j= f2 and

2. 8j: ((j < i)) (L1; '1; x
j j= f1)).
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The de�nition of XAU is the basis for the standard CTL semantics. Now

consider a restricted subset of XAU containing those full-paths for which there

exists a pre�x that does not contain a given state s (the notation xpxk denotes

a full-path with a pre�x xp of length k � 1).

(XAU j s)
4
= fx j 9k:

�
(k > 1) ^ (xpx

k 2 XAU) ^ (s 62 xp)
�
g; (3.25)

where s 2 S.

The de�nition of the language L is given in two clauses.

1. s 2 Sf2: Consider the full-paths xpsiy 2 (XAU j s) for some si, such

that uswsiz 2 XAU. I.e. si is the �rst state after s where the su�x

path starting at s and another full-path over whichA[f1U f2] is satis�ed

cross14. Now, the language L is de�ned as

L
4
= (L[s] nsi (Lf1[si])

c); (3.26)

In other words, the language satisfying f2 at state s is \chopped" o�

the languages not satisfying f1 at the states si.

2. s 2 Sf1 (with some L1[s] 2 Lf1):

L
4
=

[
q2U[s]

� � L[q]; if �(�; s) = q, where (3.27)

'(s)(�) = 1 and

� � L[q] � L1[s]: (3.28)

14Technically there are an in�nite numbers of such paths. However it is always possible

to restrict the number to a �nite one, if cycles in the structure P are \collapsed".

68



s1
p 2 �(s1) ^

:q 2 �(s1)

f�g; s jj= AX(p)

'1(s)(�) = 1

'1(s)(�) = 0

s

s2
:p 2 �(s1) ^

q 2 �(s1)

�

�

Figure 3.7: A problematic case involving the supervisor map assignments

needed to satisfy AX(p) and f � A[AX(p)U q] at state s. Formula AX(p)

is satis�ed with the '1 assignment shown, but, by reversing it, A[AX(p)U q]

would be satis�ed by the language L = f�g, if we did not impose any con-

straints on the supervisors '1 and 'f .

Remark: Condition (3.26) ensures that the language that satis�es f2 at a

state s is properly \trimmed" in order to make sure that its concatenation

with the pre�x where f1 is satis�ed does not interfere with the sub-language

corresponding to another full-path as depicted in Figure 3.3.

Remark: Condition (3.28) may not seem necessary, but it was introduced

because it guarantees an \extensionality" property of the supervisor map

assignments. Figure 3.7, shows a problematic case where the formula AX(p),

coupled with q. If condition (3.28) were not in place, it would be possible
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to satisfy both AX(p) and A[AX(p)U q], but with two di�erent supervisor

maps. This seems quite unnatural and the restriction imposed by (3.28),

automatically rules out this possibility. (Of course, the lne condition for

AU will re
ect this state of a�airs).

Supervisor Map Assignment

The supervisor map assignment that ensures the semantics for the AU oper-

ator is similar to the one for the AX one.

'(s)(�) 1; if

(s 2 Sf2) ^ '2(s)(�) = 1 (3.29)

'(s)(�) 1; if

(�(s; �) = q) ^ (L[q] jj= A[f1U f2]) ^ (L[q] 6= �) ^

�
� � L[q] � L1[s]

�
(3.30)

'(s)(�) 0; otherwise (3.31)

The last conjunct in the second clause is condition (3.28) again. As usual, it

must be true that 8� 2 �u[s]:'(s)(�)  1. If not the lne condition makes

the language empty.

Remark: The assignment (3.29) may seem to contradict the characteriza-

tion of the language satisfying A[f1U f2] given in (3.26). However, it must be

remembered that the supervisor map assignment is local. The characteriza-
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tion given in (3.26) is ensured by the inductive construction of the supervisor

assignments.

Language Non-emptiness condition

The lne for the AU operator states { as in the previous cases { that any

attempts to disable uncontrollable events will result in an empty language

L[s]. The resulting L[s] will also be empty when the union operation in (3.27)

would yield an empty language.

8�2�c[s]: (('(s)(�) = 1)) L[�(s; �)] 6= �) :

8�2�u[s]:

0
BBBBBB@

0
BBBBBB@

�(s; �) = q

^ L[q] jj= A[f1U f2]

^ � � L[q] � L1[s]

1
CCCCCCA
) L[�(s; �)] 6= �

1
CCCCCCA
:

Otherwise, it must be concluded that

�; s jj= A[f1U f2]:

2

E[f1U f2]

The EU operator can be treated in essentially the same way as the AU

operator. However, the treatment reserved for the EX operator must also be

taken into account.
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As in the case of the AU operator, the standard CTL semantics for EUis

as follows:

M;s j= E[f1U f2] i�

for some paths (s0 = s; s1; s2; : : :);

9i�0: ((M;si j= f2) ^ 80�j<i: (M;sj j= f1)) :

The construction for the semantics clause of the EU operator will be a recur-

sive one15, as in the case of AU.

Semantics

The de�nitions for Sf1, Sf2 , Lf1, Lf2, '1 and '2, introduced for the AU

operator are assumed to be the same. The set U[s] is rede�ned as

U[s]
4
= fq j (q 2 N[s]) ^ (L[q]; q jj= E[f1U f2])g :

I.e., the set of successor states where the formula E[f1U f2] is satis�ed by a

language L[q].

The sets of full-paths XEU and (XEU j s) are de�ned analogously to (3.24)

and (3.25) for the AU case.

The de�nition of the language L becomes

15The corresponding �xpoint characterization is the following.

E[f1U f2] � �F :f2 _ (f1 ^EX(F)):

The terminology is the same for the AU case.
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1. s 2 Sf2:

L
4
= L[s]: (3.32)

2. s 2 Sf1 (with some L1[s] 2 Lf1): consider the set of states

F2 = fs
0 j s0 2 Sf2 ^ 9s002U[s]:

�
s00

�;'EU
; s0

�
g:

I.e. F2 is the set of states in Sf2 which is reachable from s under

supervision. The language L is therefore de�ned as

L
4
= (L1[s] n(s02F2) (L2[s

0])c); for L2[s
0] 2 Lf2: (3.33)

Remark: The characterization of the language L for EU is therefore almost

symmetrical to that of AU. The rationale behind this choice is that, whenever

the system reaches a state where f1 is satis�ed by a non empty language, then

it makes sense to limit its evolution only to those behaviors that actually make

the full EU form satis�ed.

Supervisor Map Assignment

The supervisor map assignment for the EU operator is very similar to the

AU case.

'(s)(�) 1 if (s 2 Sf2) ^ ('2(s)(�) = 1);

'(s)(�) 0 if (s 2 Sf2) ^ ('2(s)(�) = 0);

'(s)(�) 1 otherwise:
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Remark: As in the case of the EX operator the supervisor map assignment

should be as liberal as possible. The only obligation of supervisor map as-

signment is to respect the constraints imposed by the satis�ability condition

of f2 (via '2).

Language Non{emptiness Condition

The non-emptiness of the language L such that L; s jj= E[f1U f2] is imposed

by conditions similar to those for the EX case.

9�2�[s]: ((s 2 Sf1)

^ (�(s; �) = s0)

^ (L0[s0]; s0 jj= E[f1U f2])

^ (L0[s0] 6= �)):

(3.34)

Note that L in the case s 2 Sf2, is non empty by de�nition, and we can

therefore assume that '2 does not try to disable any uncontrollable event.

Moreover, since no restrictions are imposed on the next states, it is not

necessary to distinguish between controllable and uncontrollable events in

order to de�ne the lne, when s 2 Sf1.

If the above condition does not hold then the semantic clause becomes

�; s jj= E[f1U f2].

2
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f1 ^ f2

The standard CTL semantics for conjunctions is shown below.

M;s j= f1 ^ f2 i� M;s j= f1 and M;s j= f2

Where M is the underlying FSM (or Kripke structure).

Semantics

The semantics clause for conjunctions is straightforward.

L; s jj= f1 ^ f2 i� Lf1; s jj= f1 and Lf2 ; s jj= f2 (3.35)

where L = L1 \ L2:

Supervisor Map Assignment

The de�nition of the local supervisor map assignment is simply

'^(s)(�) 1 if 'Lf1
(s)(�) = 1 ^ 'Lf2

(s)(�) = 1;

'^(s)(�) 0 otherwise:

Language Non{emptiness Condition

Since the supervisor map assignment is derived from those of the two sub-

formul�, the lne must simply ensure that the intersection of the two lan-

guages is not empty. Locally, this amounts to check that the two map assign-

ments are not disjoint.

2
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f1 _ f2

Disjunctions of well formed formul� pose problems. It turns out that it is not

possible to de�ne their semantics using the CTL guidelines, without paying a

price.

The standard CTL semantics for disjunctions is the following.

M;s j= f1 _ f2 i� M;s j= f1 or M;s j= f2;

Where M is the underlying FSM (or Kripke structure).

Semantics

While somewhat unintuitive, the controlled semantics for disjunctions must

be de�ned in the following terms.

L; s jj= f1 _ f2 i� Lf1 ; s jj= f1 or Lf2; s jj= f2 (3.36)

where L =

8>>>>>><
>>>>>>:

Lf1 if Lf2 � Lf1 ;

Lf2 if Lf1 � Lf2 ;

� otherwise:

The above de�nition is so restrictive because the languages Lf1 and Lf2 must

be guaranteed to be \compatible". As seen in Section 3.2.2, there are serious

problems for the intuitive semantics.

Remark: The notion creeping in the characterization of disjunctions is that

of non con
icting languages that Ramadge and Wonham use to treat \mod-

ular" supervisor synthesis [67].
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Supervisor Map Assignment

Given the above de�nition of controlled semantics the following characteriza-

tions of the supervisor map assignment for disjunctions is satisfactory.

'_(s)(�) 1 if 'Lf1
(s)(�) = 1 _ 'Lf2

(s)(�) = 1;

'_(s)(�) 0 if the containment conditions do not hold:

Note that in absence of the containment conditions, in both cases it could be

concluded that L � Lf1 \ Lf2 and L � Lf1 [ Lf2 .

Language Non{emptiness Condition

The lne condition for disjunctions is also a constraint on the applicability of

the supervisor map construction for both disjunctions and conjunctions. The

containment conditions in (3.36) serve as the lne condition for disjunctions.

Lf1 � Lf2 ; (3.37)

Lf1 � Lf2 : (3.38)

Since it is assumed that either Lf1 jj= f1 or Lf2 jj= f2, the resulting supervisor

assignment will still respect the constraint on the events � 2 �u[s].

2

3.2.4 Circumventing the Problems

As noted in Section 3.2.2 there are some problems with the speci�cations of

the controlled semantics for some classes of formul�{ e.g. the problem of
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\choice" with disjunctions { which may hinder the automatics construction

of a supervisor map.

The steps that can be taken in order to resolve these problems depend

on the nature of application of the CTL synthesis scheme, which, it should be

remembered, is aimed at the aiding of a practitioner whose job is to build a

controller program. The following alternatives are available.

� The scheme can simply be declared erroneous.

� The logic used can be further restricted.

� The user of the scheme (as it will be embodied by a computer program)

can be forced to make a choice as to which disjunct will be considered

acceptable.

It would be desirable to avoid the �rst alternative. The other two are brie
y

discussed next.

Restricting or Changing the Logic. The Logic CTL� [58] could solve

the problems since it disallows disjunctions over path formul�16.

Leaving the choice to the user. This is a viable alternative, but it could

imply an overwhelming work for the user in the case of very intricate spec-

i�cations. As a counterargument, it could be noted that (from literature,

16Technically, a superset of CTL�would be used since the EX operator is not disallowed.
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especially on CTL-based analysis) the speci�cations usually come in the form

of rather short formul� which are then conjoined.

The choices made for the implementation of the Control-D system are

described in Chapter 4.

3.2.5 CTL Soundness of Controlled Semantics

Section 3.2.3 contains the de�nitions for the \controlled semantics" of a set of

CTL formul� for a given plant speci�cation P and discusses the limitations

on the approach due to the implicit choices of the formalism. This section

introduces a notion of soundness for the construction and forms a basis for

the development of a supervisor map synthesis algorithm.

Notation: If ' is a supervisor map, then we use M [L;'] to indicate the

FSM of language L operating under the supervision of '.

Soundness Theorem

The notion of soundness that will be introduced is carefully tailored in order to

allow for reuse of standard results coming from the temporal logic veri�cation

�eld. More precisely, it will be ensured that the speci�cation S is satis�ed

(i.e. can be veri�ed) by the constrained behavior of the plant P.

Theorem: If there exists a supervisor map ' and a language L 6= �, such

that for a plant FSM P with s0 as initial state we have
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1. L � �[P] and

2. L;'; s0 jj= S,

with S being a set of CTL formul�. Then

M [L;']; s0 j= S:

(Note that this last statement is to be intended in the standard CTL sense).

Remark: The theorem states that if a supervisor map restricts the plant

behavior to L, then the speci�cation can be veri�ed with respect to the \re-

stricted" machineM [L;'].

Proof. The proof is by induction on the state space and on the structure of

the formul� in S.

Without loss of generality, suppose that S contains a single formula17 f .

The proof proceeds by cases.

Case: f � p (with p 2 �(s0)).

The de�nition of the supervisor assignment is such that the result follows

immediately

L; s0 jj= f ) M [L;']; s j= f:

17In practice, this seems to be the most likely case. The speci�cation will be given as a

single conjunction.
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Case: f � AXf 0.

In this case too, the de�nitions of the supervisor assignment and of the lne

condition condition are such that the result follows immediately.

L; s0 jj= AXf 0 ) M [L;']; s j= AXf 0:

Case: f � EXf 0.

As above, for the case f � AXf 0.

Case: f � E[f1U f2].

By assumption, there exists a language L and a supervisor map ' such that

L; s0 jj= E[f1U f2]:

There are two sub-cases to be considered.

Sub-case 1: L; s0 jj= f2 (with L 6= �).

L; s0 jj= f2 implies that exist �1; �2; : : : ; �k 2 � and L1; L2; : : : ; Lk � ��

such that L =
Sk
i=1(�iLi) and for all i 2 1; : : : ; k, '(s0)(�i) = 1. From this,

the de�nition of controlled semantics, the construction of the supervisor map,

and by the inductive hypothesis, it follows that M [L;']; s0 j= f2.

Next, note that

M [L;']; s0 j= f2
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implies

M [L;']; s0 j= E[f1U f2]:

To see this fact, suppose that the contrary holds: since L 6= �, it must be the

case that M [L;']; s0 6j= E[f1U f2], but this would contradict the fact that

L; s0 jj= f2 and thus M [L;']; s0 j= f2.

It remains to be shown that M [L;'] j= E[f1U f2] implies M [L;'] j= f2.

Which follows immediately from the de�nition of controlled semantics for the

EU operator.

Sub-case 2: L; s0 j6j= f2 (and L 6= �).

Since L; s0 jj= E[f1U f2], it must be the case that, because of the de�ni-

tion of the controlled semantics, L; s0 jj= f1. Hence, as in the sub-case 1,

M [L;']; s0 j= f1.

It remains to show that, as the language L is \unwound" (under the su-

pervision ') the result will still be M [L;']; s0 j= E[f1U f2]. The argument

is again by induction. However the case depicted in Figure 3.8, will require

special attention.

Base Case:

The base case will be for a s0 such that �(s0; �) = s0 and '(s0)(�) = 1,

i.e. paths in M of length 1 will be considered.

There are two sub-cases to consider.
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s0

f1 2 �(si)

si
f2 62 �(sk)

sk

sj

f1 2 �(sj)

Figure 3.8: A problematic case for the semantic of the EU and AU operators.

1. L[s0]; s0 jj= f2

The machine having s0 as a start state is such that

M [L[s0]; ']; s0 j= f2;

hence it can be concluded that

((L n L[s0])L[s0]) ; s0 jj= E[f1U f2]:

But by the de�nition of the controlled semantics this mean that

M [L;']; s0 j= E[f1U f2]:

2. L[s0]; s0 j6j= E[f1U f2]

This case does not in
uence the proof, unless all the s0 make the

formula false. Yet, this cannot be the case because of the assump-

tion that L is not empty and by the supervisor map construction

for EU.
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Inductive Case:

Now suppose that the statement is true for paths of length i � 1, that

is for su�xes of L of length i� 1. I.e., we have that

L[s0]; s0 jj= f1 and L[s
0]; s0 jj= E[f1U f2]

where s0 = �(s0; �) for some � 2 � such that '(s0)(�) = 1. In par-

ticular M [L[s0]; ']; s0 j= E[f1U f2]. Therefore, the machine M can be

extended by an extra step in order to make it recognize L. Eventually

M [L;']; s0 j= E[f1U f2] can be achieved by this extension process.

Case: f � A[f1U f2].

As in the EU case, there exists a language L and a supervisor map ' such

that

L; s0 jj= A[f1U f2]:

Again, there are two cases to be considered.

Sub-case 1: L; s0 jj= f2 (and L 6= �).

By the same argument used for the EU operator, from the de�nition of the

controlled semantics for the AU operator it can be concluded that

(L; s0 jj= f2) i� (M [L;']; s0 j= A[f1U f2]) :
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Sub-case 2: L; s0 j6j= f2 (and L 6= �).

As in the case of the EU operator, since it has been assumed that L; s0 jj=

A[f1U f2], it must be the case that M [L;']; s0 j= f1, by the de�nition of the

controlled semantics for AU18.

It must now be shown thatM [L;']; s0 j= A[f1U f2] holds after \unwind-

ing" the language L under the supervision of '. Note that the induction

argument used for the EU case, does not apply for AU, since all the next

states must be considered.

Since L 6= � it must be the case that the lne condition for AU does not

hold. Consider the subset of the events \enabled" at state s0 by the supervisor

map '. Each of these events leads to a state s0 2 U[s0] as de�ned by the

controlled semantics of AU { see (3.23).

Now partition these states in U[s0] into two disjoint subsets19

Uf1 [Uf2 � U[s0] and

Uf1 \Uf2 6= ;:

Uf1 is the set of states s0 where L[s0]; s0 jj= f1; Uf2 is the set of states s00

where L[s00]; s00 jj= f2.

Given this partition, the following statements can be veri�ed.

18Moreover, by the de�nition of the controlled semantics of the AU operator, there must

exist another language Lf1 such that Lf1 ; s0 jj= f1 and L � Lf1 .
19In general, we cannot ensure that all the states in U[s] for any s, can be reached from

it. In fact the lne and the \pre�x containment" (3.28) conditions may prevent this from

happening.
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1. For all the states s00 2 Uf2 the argument used in sub-case 1 can be

applied in order to assert that M [L[s00]; ']; s00 j= A[f1U f2].

2. For all the states s0 2 Uf1 , the present argument can be iterated in

order to achieve the same conclusion. The only caveat is to consider

carefully the situation depicted in �g. 3.8 (the situation applies also to

the AU case), in order to avoid a circularity in the argument. Note

however, that the unwinding of the argument can be coupled with the

concomitant marking of the strongly connected components (SCC) of

the underlying Kripke structure under the supervision of ' (after all it

is a �nite structure). This marking process will avoid the circularity of

the argument.

The iterative application of the two present arguments �nally yields that

M [L[s0]; ']; s0 j= A[f1U f2].

Hence, from the two previous arguments, the structure of the underlying

Kripke structure (the \plant" P ) and the de�nition on the supervisor map

assignment for AU, it follows that

M [L;']; s0 j= A[f1U f2]:
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Case: f � f1 _ f2.

Given the conditions in (3.36) and the supervisor map construction de�ned

for the disjunction case, the result follows immediately.

L; s0 jj= (f1 _ f2) ) M [L;']; s j= (f1 _ f2):

Case: f � f1 ^ f2.

As in the case of disjunctions, given the conditions in (3.35) and the super-

visor map construction de�ned for the conjunction case, the result follows

immediately.

L; s0 jj= (f1 ^ f2) ) M [L;']; s j= (f1 ^ f2):

2

Having established this relationship between the notion of controlled se-

mantics and the standard de�nition of satis�ability in the model checking

context (for CTL), it is now time to start answering some basic questions

about the algorithms for the synthesis task.

3.3 Simple CTL-Synthesis Algorithm

The existence of an algorithm capable of synthesizing the supervisor map is

established in this section. The algorithm is very simple, but has a very high
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time complexity. Chapter 4 provides a description of a better algorithm and

its implementation.

3.3.1 Existence of a Supervisor Synthesis Algorithm

It is a simple matter to come up with a supervisor synthesis algorithm that

would produce a map which respects the semantics de�nitions just given (with

the restriction that either (3.37) or (3.38) holds):

Algorithm:

Input: FSM model of a plant, P and a speci�cation as a set S of CTL

formul�.

Method:

1. For each state s 2 QP choose a subset of �[s] (containing all of �u[s])

{ i.e. choose the supervisor map for state s.

2. Run the Model Checking Algorithm on the resulting supervised

P.

3. If S is satis�ed return the supervisor map. We are done.

4. Repeat step 1 with a di�erent choice.

Of course this algorithm terminates (there is a �nite number of choices that

can be made), its computational complexity is horrible and the a supervisor

map produced may satisfy the speci�cation only by �.
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Complexity: There are at most O
�
j S j � j P j �2jPj

�
choices for the super-

visor in the outer loop20 besides the linear cost of the CTL model checking

algorithm. Hence the algorithm has an exponential time complexity.

The existence of the simple-minded exponential algorithm should not be

surprising, given the �niteness of the entities considered. A better algorithm

is possible by a straightforward re-elaboration of the standard model checking

algorithm given in [24].

20The size of P FSM graph is an upper bound on the e�ective size of the set of choices,

which depends on j � j and j � j.
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Chapter 4

The Control-D System

Building a system that embodies a theoretical result poses many interesting

challenges in the present setting. There are many choices that have to be

made.

� How does one represent the elementary building blocks of algorithms

(by e�cient data structures) that on paper are straightforward?

� How does one resolve the problems that the theory leaves open?

� What kind of audience is targeted by the system being designed?.

� What kind of user interface the system should have?

The Control-D system is an experimental tool that addresses these prob-

lems. This chapter contains a description of its core synthesis algorithm and

implementation. Section 4.1 describes the synthesis algorithm, the trade-o�s
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needed to achieve a reasonable usability of the system and an analysis of its

complexity. Section 4.2 discusses how the Control-D tool can be used for

both veri�cation of system properties and synthesis of discrete controllers.

Section 4.3.1 describes the user environment.

4.1 Revised Algorithm and The Implementa-

tion

The controlled semantics for CTL given in Chapter 3 was built in such a

way as to make it easy to construct a state-space search algorithm for the

supervisor synthesis problem. The algorithm presented here is a modi�cation

of the labeling algorithm presented in [24], and it is called themodel restriction

supervisor synthesis algorithm (MRSS).

Limitations: The algorithm embodied in the most recent version of Control-

D uses heuristics and imposes some limitations in the case of \until" formul�,

negations, and disjunctions. In the last two cases, the controlled semantics re-

quires that for each state s the overall supervisor action restricts the language

satisfying a (negation or disjunction) formula f by actually \looking into the

future". This amounts to check, for each state, all the possible supervisor

assignments, hence falling back to the exponential algorithm shown at the

end of Chapter 3. The simple heuristics that will be introduced here allows
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the algorithm to maintain a linear time complexity, while not compromising

the controlled semantics.

Remark: One may ask, why bother with the labeling algorithm, while the

tendency has been toward the use of BDD's and symbolic encoding (cfr. [21,

22, 13]) of the state space?

First of all the BDD based algorithms eventually encode the labeling

scheme. Therefore, the labeling scheme turns out to be necessary to un-

derstand the BDD encoding. Secondly, there is some consensus among prac-

titioners of veri�cation, that BDD's, though extremely useful, are not so easy

to manage (due to the requirements of the heuristics on variable ordering).

Finally, the emergence of new algorithmic techniques based on compositional

modeling [27], might eventually make the \state space sweeping" schemes

more appealing.

4.1.1 State Space Traversing Algorithm

The MRSS algorithm builds the supervisor map ' in an incremental way by

sweeping the state space of a plant P
4
= hQ;�; s0; �i (it therefore assumes a

complete reachability graph construction), while considering sub-formul� of

a speci�cation S. It is therefore a variation of the algorithm found in Clarke

and Emerson's original paper [24].
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Speci�cation S de-structuring

Supervisor Maps ' Synthesis

Supervisor Map ' Consolidation

Figure 4.1: Three stages schematic of the Model Restriction Supervisor Syn-

thesis Algorithm.

Algorithm Stages

The MRSS algorithm works in three stages. Figure 4.1 shows a schematic

of the control 
ow. The �rst stage is a very simple de-structuring operation

of the speci�cation S (cfr. [24]). The speci�cation formula is broken down

into sub-formul� arranged in a topological order. The second stage \labels"

each state with an appropriate supervisor map. Finally in the third stage the

supervisor map for the speci�cation S is reconstructed from the maps for the

component sub-formul�.

The �rst stage is straightforward. The second stage is where the algorithm

spends most of its time. The following notation is used to explain how the

algorithm works.
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� f is a sub-formula of the speci�cation S.

� F is the set of all the sub-formul� of S (f 2 F , since S is usually a

conjunction).

The MRSS algorithm uses the following internal map during the labeling

phase

w�-state-restriction : F � S � �! f1; 0g;

where S is the set of states of the underlying FSM representation of the plant

P. It is obvious that

w�-state-restriction(f) = 'f :

I.e. the w� selects its appropriate supervisor maps in the overall map w�-

state-restriction.

From the de�nition of w�-state-restriction it is immediate to infer an esti-

mate of the space requirements for MRSS algorithm. The space requirement

is O(jSj � jFj � j�j)1.

Labeling Phase

The core of the MRSS algorithm works by labeling each state with the appro-

priate supervisor depending on the w� under consideration. The procedure

label state graph shown in Figure 4.2 is an outline of the actual algorithm.

Each of the sub-procedures in label state graph traverses the state-space

1Where the size of S is the size of the state-space.
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Procedure label state graph(P , f)
The arguments are a graph (actually a FSM) encoding the be-
havior of the plant P, and a CTL formula f .

begin

if f 2 AP ! label proposition(P , f);
f = :f 0 ! label negation(P , f);
f = AX(f 0) ! label all next(P , f);
: : :

f = A[f1U f2] ! label all until(P , f);
f = EF(f 0) ! label possibly(P , f);
: : :

f = AG(f 0) ! label invariant(P , f);
f = EG(f 0) ! label weak inv(P , f);

�

return w�-state-restriction

end

Figure 4.2: The label state graph procedure.

and augments the map w�-state-restriction according to the semantic speci�-

cation given in Chapter 3. Most of the sub-procedures perform a standard

Depth First Search (DFS) [28] of the state-space. However, disjunctions and

negations require special care and the tradeo�s among these cases will be

dealt with separately.

As an example, consider the procedure label all until which traverses the

state space while building the supervisor map for the formula f = A[f1U f2].

The DFS traversal uses the fwhite,grey,blackg labeling scheme used in

[28]. The procedure label all until performs, a simple initialization routine

for the DFS and then calls the real traversal function (label AU) with the

start state of P. The de�nition of label AU is given in Figure 4.3.
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Function label AU(P , f , s) : boolean
The arguments are the plant P, a CTL f = A[f1U f2] formula,
and a state s.

begin

color(s) grey

if (L 6= �); s jj= f2 then

There is a non empty language L satisfying f2.
carry over supervisor(f2; f; s, w�-state-restriction);
color(s) black;

else if �; s jj= f1 then

f1 is satis�ed only by an empty language at s.
w�-state-restriction(f)(s)  0;
color(s) black;

else

f1 is satis�ed by a non empty language at s.
Thus, the supervisor at s for f depends on the paths originating at s.
label AU next(P ; f; s);
color(s) black;

Finally check for the AU lne condition.
if check AU LNE(P ; f; s) then

w�-state-restriction(f)(s)  0;
end

Figure 4.3: The function label AU.
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The �rst two cases of the label AU function are straightforward. The

third case involves a recursive call that realizes the DFS traversal of the state

space.

The procedure label AU next (cfr. Figure 4.4) traverses the state-space

while checking for forward and backward edges. Both procedures label AU

and label AU nextmodify the supervisor map forA[f1U f2] formula, based

on the inductive hypothesis that the supervisor maps for f1 and f2 are known.

This fact is guaranteed by the topological sort of the speci�cation S from the

�rst phase of the algorithm.

With respect to the controlled semantics, label AU and label AU next

produce a smaller language satisfying f . This is a consequence of the treat-

ment of \back edges" in label AU next. This simpli�cation is similar to

the one made in [24] for the CTL model checking algorithm.

The correctness of the algorithm for the AU operator derives from the

inductive construction of the controlled semantics and from a straightforward

argument on the behavior of the DFS coloring scheme.

The overall algorithm is driven by the procedure model synth depicted

in Figure 4.5, which ties together the �rst two phases of the algorithm. Since

each of the w�-speci�c functions is a DFS on the state-space, the overall com-

plexity of the MRSS algorithm is linear. However, in order to achieve these

results, some heuristics and restrictions had to be imposed with respect to

the controlled semantic construction. Section4.1.2 explains these restrictions.
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Procedure label AU next(P ; f; s)
begin

for all f[�; s0] j �(s; �) = s0g do

if color(s0) = white then

The DFS traversal just found a new state.
if label AU(P ; f; s0) then

w�-state-restriction(f)(s)(�) 1;
else

w�-state-restriction(f)(s)(�) 0;

else if color(s0) = grey then

A \back edge" has been found. The transition is disabled
w�-state-restriction(f)(s)(�) 0;

else if color(s0) = black then

A \forward edge" has been found.
A check is necessary to determine whether to disable
the transition or not
if �; s0 jj= f then

w�-state-restriction(f)(s)(�) 0;
else

w�-state-restriction(f)(s)(�) 1;
end

Figure 4.4: The procedure label AU next.

Procedure model synth(S;P)
begin

for all f 2 topsort sub formul�(S) do

label state graph(P , f);
end

Figure 4.5: The model synth procedure.
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Supervisor Map Consolidation Phase

After the labeling phase is over, the map w�-state-restriction contains all the

information needed to reconstruct the supervisor map for the CTL speci�ca-

tion S. However, the information is spread over the whole state-space and it

needs to be consolidated.

As an example consider the simple speci�cation S = fpg. In this case,

either we have ��; s0(P) jj= S or �; s0(P) jj= S. However, the supervisor

map assignment for a state s 6= s0 may be completely blocked. Since what

matters is only the language satisfying S at the initial state, somehow the

supervisor map for s must be \�xed". This is what the consolidation phase

does by a simple additional DFS traversal of the state-space.

4.1.2 Tradeo�s in the Treatment of Disjunctive Forms

In Chapter 3, it was shown that disjunctions have to be treated with care in

constructing a supervisor map. Recall that the main problem here was caused

by the inherent choice involved.

The MRSS algorithm restricts the logic used by imposing restrictions on

the form of disjunctive formul�. The restrictions simply impose a require-

ment on one of the disjuncts of

f � f1 _ f2:

During the implementation of Control-D, two kinds of restrictions were con-
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sidered.

1. Distinguish between local and path disjuncts and restrict one of them

to a local formula, where a local formula is either

� A proposition in AP .

� A conjunction, disjunction or negation of local formul�.

2. Restrict as above one of the disjuncts to be a state formula, but treat

the EX and AX operators in a special way.

The current implementation of Control-D implements the �rst limitation.

Since state formul� comprise all the propositional forms with no path oper-

ators, their controlled semantics is both

(a) Completely local.

(b) Either \all-or-nothing", in the sense that the supervisor map assign-

ment, either enables or disables all of �[s].

Therefore, the controlled semantics for disjunctions is preserved.

Note however that formul� of the form

QXi(f); 1 � i � n;

where each of the QX is either AX or EX, and f is a local formula (e.g.

EX(AX(AX(p ^ q))), with p; q 2 AP ), is really a local formula itself. This

extension (to disjunction manipulation) has not been incorporated yet in
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Control-D, and no analysis of its impact on the complexity of the algorithm

has been carried out.

The restricted form of CTL used is more expressive than CTL
�

The restrictions imposed on CTL in order to achieve a linear time complexity

for the MRSS algorithm are not the only ones possible. In [58], the authors

propose the logic CTL� in order to tackle the problems of hierarchical ver-

i�cation of VLSI circuits. The logic CTL� is a syntactic restriction of CTL

de�ned in the usual way.

(S1) A proposition p 2 AP is a CTL� formula.

(S2) If f1 and f2 are propositional CTL
� formul�, so are :f1; f2;^f2; and

f1 _ f2.

(P1) If f1 is a propositional formula and f2 is a CTL
� formula so areA[f1U f2],

E[f1U f2], AF(f2), and EF(f2).

CTL� is therefore more restrictive than the logic manipulated by the MRSS

algorithm. As already noted, the presence of EX and AX operators make

the logic used by MRSS not usable for hierarchical synthesis and veri�cation.

However, since all the restrictions introduced are syntactic { both for the

MRSS algorithm and for CTL� { it is still possible to modify the tool in

order to recognize such special cases and to apply appropriate optimizations.
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4.1.3 Comparison with Standard Supervisor Synthesis

Algorithm

Control-D is not the �rst implementation of a discrete controller synthesizer

for CDES. First of all, the e�ective computability of the synthesis procedure

was established in [64]. The e�ective computability of the supervisor map

in the CDES framework depends on the e�ective algorithmic constructibility

of the supremal controllable sublanguage K". In the work mentioned, the

authors �rst give a general argument for the constructibility of K" for regular

languages, and then show an e�cient algorithm for its construction (which

will be referred to as SCLS algorithm { where SCLS stands for \Supremal

Controllable Synthesis Algorithm") when the languages involved are pre�x-

closed2.

The SCLS Algorithm

The SCLS algorithm works on pre�x-closed regular languages. The core of

the algorithm is a simple convergent doubly nested iteration that examines all

the states of a FSM (which FSM will become clear in a while) and removes

those not satisfying a given condition, called the active event condition. Its

de�nition requires introduction of some terminology.

2Of course, if the speci�cation language K is controllable, then no construction of its

supremal controllable sublanguage is required.
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Fixpoint Characterization of K". The SCLS algorithm computes the

�xpoint of the operator


(K;P;�u)(L) = K \ fT j (T � ��) ^ (T = �T ) ^ (T�u \ P � �Lg;

where K is the \speci�cation" language [64]. The �xpoint is the supremal

controllable sublanguage K".

De�nition ofRe�nement of FSM's. Given two FSM'sA = (�; SA; �A; a0)

and B = (�; SB; �B; b0), then B re�nes A if

8s; t 2 �[B]:(�B(s; b0) = �B(t; b0)) �A(s; a0) = �A(t; a0)):

Conversely B :re�nes A if

9s; t 2 �[B]:(�B(s; b0) = �B(t; b0) ^ �A(s; a0) 6= �A(t; a0)):

If B re�nes A, then it can be shown that there exists a unique map

h : SB ! SA which satis�es

h(�B(s; b0)) = �A(a; a0); for s 2 �[B]:

SCLS Applicability Conditions. Consider the sequence of languages

K0
4
= K;

Kj+1 = 
(Kj); for j � 0:

It can be proven that given an FSM A, such that �[A] = �[P] and a FSM

Cj, such that �[Cj] = Kj with the condition that Cj re�nes A, then
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1. w 2 
(Kj) if and only if w 2 Kj for each pre�x u of w, x = �Cj(u; cj;0)

implies

�[h(x)] [ �u � �x:

This last condition is the active event condition mentioned earlier.

2. �[Cj+1] = 
(Kj) = Kj+1:

Given these results, the SCLS algorithm can be applied to build the supre-

mal controllable sublanguage K" when the following conditions hold.

1. K � P, and

2. it is possible to construct a C0 that re�nes the FSM for the language

P and such that �[C0] = K.

It turns out that Condition 2 is satis�ed by choosing the intersections of P and

M [K].

MRSS and SCLS Compared

The MRSS algorithm is slightly better than the synthesis algorithm for pre�x

closed languages. The reasons behind this statement derive from a series of

observations on the SCLS and the MRSS algorithms. It will be argued that

� The usage of a temporal logic for the speci�cation of the properties of

the system being modeled results in a more usable system.
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� The overall complexity of the MRSS algorithm is better than the SCLS

one.

Use of a temporal logic for speci�cations. The SCLS algorithm im-

plies a speci�cation K given as either a regular expression (R(K)) or as an

FSM (M [K]). The version of CTL used by the MRSS algorithm has many

advantages coming from its branching time nature and from its conciseness.

In all fairness, these advantages may be o�set by the usage of libraries

of properties in the style of those advocated for linear time logics and for

automata based veri�cation [46, 50].

Better overall complexity. The SCLS algorithmworks by removing states

that do not satisfy the active event condition from the representation of the

recognizer FSM of the supervisor.

As already noted, in order for this condition to be applicable, the supremal

controllable sublanguage construction procedure must be provided with an

\initial" FSM C0 which recognizes the language K and re�nes P, and the

condition K � �[P] must hold.

First of all, in the most general case, a test for language containment

must be performed. This is usually equivalent to test either Kc \ �[P] = �

orK\�[P]c = �. This test requiresO(jKj�jPj) space and time. However, the

containment test can be avoided by using some cleverness in the speci�cation

of the of K (as it is the case of many of the examples appearing in the
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literature).

Apart from the language containment test, because of these requirements,

the SCLS algorithm behaves in very di�erent ways according to which of the

following conditions holds.

1. M [K] does not re�ne P.

In this case, a machine C0 that does re�ne P can be built by considering

S\P. The space requirement becomesO(jSj�jPj) as well as the running

time.

2. M [K] does re�ne P.

The complexity of this case is bounded by the test for the relation

\re�ne", which takes O(jPj � lg(jPj)):3

3. M [K] does re�ne P and K � �[P] by construction.

In the examples appearing in the literature this condition seems to be

always true. In this case the SCLS algorithm requires only O(M [K])

space and time. However, the examples (e.g. the cat and mouse) cor-

respond to only requiring the supervisor to enforce simple invariant

3By using the standard minimization procedure (or, better, the Partition procedure

of Aho, Hopcroft, Ullman [2]) B:re�nes A can be tested in the following way: run the

procedure on both machines (if they are already minimized, eventually the partitions as

the same sets of states will result) splitting according to A. If whenever a partition for A

is split, but B is not, then B does not re�ne A. This algorithm takes as long as the best

Partition algorithm applied to \minimization" of FSM's. Ergo, circa O(jAj lg(jAj)).
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properties which are expressed as AG(p) or AG(:p) formul�, with

p 2 AP . The MRSS algorithm works well in these cases.

The MRSS algorithm fares well against the SCLS algorithm in all three

cases. In case 1, running time and space requirements are the same, though it

can be argued that jSMRSS j � jSSCLS j (where SMRSS is a set of CTL formul�,

and SSCLS =M [K]) because of the CTL formulation.

In case 2, MRSS fares well in terms of time as long as jSMRSS � lg(jPj)j.

In case 3 the SCLS algorithm works better than the MRSS algorithm. Yet,

the di�erence is minimal and the SCLS algorithm requires \non-automatable"

cleverness to actually produce the initial C04.

Because of the above arguments and because of the greater expressiveness

of the speci�cation language employed (i.e. CTL), MRSS turns out to be

superior to the SCLS algorithm. The \expressiveness" argument cannot of

course be used if the more expressive !-automata are used as a basis of

CDES, as it is done in [65].

4.1.4 Open Problem: Symbolic Representation

It has been noted that the techniques of symbolic model checking based on

BDD's have signi�cantly improved the practical applicability of veri�cation

techniques to many problems.

4The cat and mouse example works �ne by simply \removing" undesirable states from

the plant P.
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It is clear that an application of these techniques would be bene�cial to the

MRSS algorithm and to the Control-D tool. To the best of the writer's knowl-

edge, the only application of BDD techniques to the synthesis of supervisors

controllers for CDES is in [13].

So far, no e�ort has been made to formulate the CTL supervisor synthesis

problem with BDD's. A BDD library based on the implementation described

in [17] is included in the Control-D tool, but it cannot be used yet for the

supervisor synthesis procedure. This therefore remains an open problem.

4.2 Veri�cation and Synthesis

The Control-D tool enjoys one more feature deriving from its use of CTL

as a speci�cation language. Since the MRSS algorithm is closely patterned

after the model checking one, it is very easy to interpret its results as a

\veri�cation of the feasibility" of the speci�cation S. This claim is supported

by the theoretical result of Section 3.2.5.

4.3 The Environment

The Control-D tool supports a design methodology which embodies the con-

cept of \iterative design and debugging" phases. Therefore it provides the

user with three basic tools.

� A \language" to describe FSM and CTL speci�cations.
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� A graphical editor for describing and combining FSM's.

� A small \application programming interface" (API) to build graphical

simulations of the system under consideration.

The user of Control-D can describe a model of a system by breaking it

down into its subcomponents and by writing a set of CTL formul� to be used

for the synthesis. The synthesis algorithm is triggered from the graphical

environment and it produces a supervisor map or a counterexample that

shows why a certain formula would yield a null map.

Figure 4.6 shows a snapshot of the Control-D environment. Chapter 5

contains a description of the use of (an earlier version of) Control-D for the

synthesis and simulation of the discrete part of a controller for a walking ma-

chine. Chapter 6 shows how the Control-D system has been used to replicate

a part of the control system of a manufacturing line developed at Rutgers

University. The next section contains a brief description of the Control-D

tool components and user interface.

4.3.1 Control-D Components and User Interface

The Control-D tool is built on top of Common Lisp [72] and uses a Motiftm

interface5. The use of Common Lisp allowed for a very rapid prototyping

of the tool and provided a 
exible environment for the implementation of

5The speci�c Common Lisp implementation used is the one created at CMU by the

team headed by S. Fahlman. The system is known as CMUCL.
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Figure 4.6: A snapshot of a Control-D session. Two edit windows, a CTL

speci�cation window, and the main panel are visible. An Emacs frame con-

taining the Common Lisp listener is in the background. The synthesis and

veri�cation algorithms can be controlled in their execution from the menus of

the tool.
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the CTL manipulation module. Moreover, since the result of the synthesis

problem is essentially a boolean table, nothing prevents the construction of

back ends that produced either C/C++, Ada, Assembler, or any other desired

language.

Control-D Languages

The speci�cations of the plant P and of the properties S are given in a

Lisp-style syntax.

As an example the FSM describing the change of seasons is given as

(define-state-machine seasons

:states (spring summer fall winter)

:start spring

:alphabet (jun21 sep23 dec21 mar21)

:uncontrollable (jun21 sep23 dec21 mar21)

:delta ((spring jun21 summer)

(summer sep23 fall)

(fall dec21 winter)

(winter mar21 spring))

)

This is a very simple self explanatory example. All the components of a

CDES are assumed present in the speci�cation. In particular, note the

:uncontrollable slot in the de�nition, which states that the mere mortals
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do not have any control over the passing of the seasons.

It must be conceded that systems like smv or cospan (see McMillan and

Kurshan, op. cit.) can describe FSM's in a more concise and elegant way.

However, the addition of a layer of \syntactic sugar" would not be di�cult.

CTL is translated directly into Lisp forms following what has become

standard practice for the manipulation of logic languages. The simple system

seasons system is already a good testbed for a set of CTL speci�cations.

E.g. the following properties hold.

� (AG (implies winter (not (AX summer)))):

summer never follows winter (a \safety" property).

� (AG (EF spring)):

spring always comes back (a \liveness" property) eventually.

Control-D Graphical Interface

The Control-D system can be started in a variety of ways, depending on

the con�guration of the underlying Common Lisp system. Once started, the

Control-D's main window appears on the screen. This is just a repository

for the \system menus". The main Speci�cations menu contains the following

items.

� The Loaded Speci�cations simply lists the systems currently available

for manipulation.
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Figure 4.7: Control-D edit window with the seasons system.

� The Compose Speci�cations takes two FSM's and yields their composi-

tion.

� The Controller Synthesis calls the MRSS algorithm.

� Finally, the Dump Controller calls a \back end" to produce a \compiled

version" of the synthesized controller.

Control-D manages two kinds of working windows: one for \simple" and

the other for \composed" FSM's (i.e. FSM's obtained as the product of other

FSM's). Figure 4.7 shows an edit window where the simple seasons system

is being constructed.
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A window for a \composed" speci�cation does not contain a graphical

representation for the underlying FSM since it would be unwieldy most of

the time. These window contain a list of CTL formul� that will serve as

input to the MRSS algorithm.

Control-D Simulation Interface

In order to appreciate the results of the MRSS algorithm it may turn out to

be useful to build simulations { mostly graphical { of the systems for which

a controller is being built. These simulations may o�er other insights into

the actual behavior of a particular system. Control-D provides a very simple

interface for this purpose.

The interface consists of one main macro with-supervised-transition,

which realize the connection between the supervisor map obtained from the

MRSS algorithm (presumably held in a variable) and a set of component

FSM's to be controlled. In order to produce better debugging output, the

writer of the simulation code can also control the actual timing of the tran-

sition �ring in one of component FSM's by using the function run-machine

(this function simply changes the state of a FSM according to the transition

chosen).

The role of the Control-D system is also that of a sophisticated debugger.

The capability of writing graphical simulations for speci�c systems proved to

be a valuable asset. Chapter 5 contains a description of how, in the case of
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the construction of a controller for a Walking Machine, this capability turned

out to be crucial.
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Chapter 5

Building a Discrete/Hybrid

Controller for a Walking Machine

A walking machine is a robotic device capable of moving around over a rough

terrain by emulating the limb (i.e. legs) movements of various multi-pedal

animals. There are several arguments for the utility of such devices, and

the goal of reproducing typical animal movements goes back in time. This

chapter describes the problem of specifying in CTL and then automatically

building a controller for a walking machine with the techniques developed in

Chapter 3 and Chapter 4.

The problem proved to be very rich because of the variety of considerations

that had to be taken into account in order to produce a reasonable behavior

of the (simulated) walking machine.

This chapter is organized as follows. Section 5.1 contains a brief history
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of walking machine devices, while Section 5.2 contains a description of the

model used and of the typical problems to be treated. Finally, Section 5.3

contains a description of the construction of the discrete controller for the

walking machine with Control-D.

5.1 A Brief History of Walking Machines

It is safe to say that the �rst attempts at building walking machines go back

a few centuries. Leonardo da Vinci must have thought about the problem.

However, the focus of this chapter is on the construction of a software con-

troller for a walking machine, therefore the historical recount will be limited

{ and even incomplete { by any standard.

One of the �rst references to the problem of building a walking machine

goes back to Chebyshev [62] in 1850. The application of control theory to this

problem and its electronic implementation are obviously more recent. Some

milestones are shown below:

1968 Frank & McGhee use simple electronic logic to drive, the Phony Pony

[54],

1983 Sutherland's Hexapod

1986 Raibert's Hoppers (op. cit.),

1987 Donner's control of the Hexapod [34],
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1994 Dante Hexapod for volcanic exploration (CMU Dante descends into an

infernal environment).

5.2 Problems for Walking Machines

Walking machines provide several interesting problems that must be solved in

order to achieve a reasonable locomotion movement. Three broad categories

of problems can be individuated.

� Gaits: What kind of gaits can be achieved by the walking machine?

� Stability: How does one ensure that a walking machine does not fall?

� Real-time control : How can one devise a software capable of controlling

the mechanics of the walking machine?

The problems in each category cannot be totally solved in isolation. Further

complication is caused by the fact that some of these problems have a discrete

nature, while others have a continuous one. A walking machine is therefore to

be considered a hybrid system according to the de�nition employed recently

by several researchers [38, 16].

Of course, walking machines must also be classi�ed according to their

morphology, where the number of legs and their disposition are the discrimi-

nating parameters. Di�erent walking machine morphology leads to di�erent

problems to be solved. E.g. one, two, and three-legged machines can move
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Figure 5.1: State diagram representing the movement of a single leg.

only in inherently \unstable" gaits, while four and more-legged machines can

move in stable gaits.

5.2.1 Leg Behavior Models and Gaits

There seems to be some agreement among the researchers who study the prob-

lem of walking, that each leg { taken in isolation { goes through a sequence

of phases which can be easily represented as a two or four state machines.

Figure 5.1 shows a four state machine similar to the one in [34]. The four

states respectively describe the following situations.

1. Drive: The \foot" of the leg is on the ground and exerting a force that

moves the body.

2. Recover: The foot is swung \forward" in a \
ying" motion.

3. Load: At the end of the Recover phase, the machine shifts (part of) its

weight on the leg.
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4. Unload: Symmetrically, at the end of the Drive phase the machine lifts

(part of) its weight from the leg.

The distinction between these phases (or states) is justi�ed by the fact that

the dynamic equations describing the position and the torques of a leg are

formulated di�erently during each of the phases. The variation is mostly due

to changes in the boundary conditions of the system of dynamic equations

(cfr. [29]).

The FSMmodel of the behavior of a leg constitutes a guideline for devising

a high level discrete controller for a leg. In order to model walking machines

with di�erent morphologies the interleaving of several leg FSM models must

be considered.

These \interleaved models" are hoped to eventually produce recognizable

gaits for the walking machine, e.g. walking, trotting, galloping. A reasonable

depiction of gaits is given by Gantt's chart. Figure 5.2 shows the so-called

tripod gait for an insect-like hexapod (cfr. Sutherland's hexapod in [34]).

Hints from Biometrical Data

Biometrical data and models obtained from observing various animals (in-

cluding humans) provide starting points for the construction of engineering

models of robotic walking machine controllers (see [73, 62, 34] for references).

Of particular interest is information regarding:

� The decomposition of the models used for modeling walking,
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Figure 5.2: Hexapod tripod gait. At each moment there are two legs on one

side and one on the opposite side in a Drive state. This fact guarantees the

stability of the gait.

� Evidence about how the movement of legs is coordinated, and

� How gaits shift in walking machines with a given mass.

Walking Models Decompositions. For non bipedal animal-like walking

machines1, biometrical data show that the left \train" of legs operates quite

independently from the right train2. This suggests a way to build a model

for a four or six legged walking machine by treating separately the left and

right trains of legs.

1Most walking animals { from small sized insects to large mammals { show a \left/right"

symmetry in their body morphology.
2See the references on the spinal cat in [34]. Not for cat lovers.
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Rear-to-Front Wave Coordination. Another piece of evidence gathered

from biometrical data is that non bipedal animals move their trains of legs in a

so-called rear-to-front wave. During this movement, an animal (or a walking

machine) with n legs on either the left or right train, numbered from front to

rear, starts recovering leg i before leg i � 1 (for i = 1; 2; : : : n). This sort of

movement is particularly evident in millipedes, where more than one wave can

be observed. Though less evident, the rear-to-front wave is also observable

in quadrupedal animals, like cats. Figure 5.2 shows the rear-to-front waves

for the six legged tripod gait.

Gait Shifting. Many animals can move with di�erent gaits. The di�erence

among these gaits is caused by the mechanics of the animal's body. It has

been noted that for insects it does not make sense to speak of di�erent gaits.

Insects exhibit an almost continuous range of gaits where the only variable is

the frequency of the leg movements.

Di�erent gaits appear only in animals of greater mass than insects. The

reason for these di�erences is accounted for by the way energy is stored in the

skeleton and muscles of the animal. Speed \quantizes" the number of gaits

that minimize the energy expenditure.

Shifting between gaits poses interesting controller design problems, since

it is necessary to make provisions for an overhaul of one model used by the

software with another one. I.e. this requires some sort of a meta controller

which gets executed in place of to the \current" one, subject to change in
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ambient conditions3 (e.g. terrain, friction, speed, gravity etc.).

5.2.2 Stability of Walking Machines

The problem of stability of a walking machine { i.e. how to prevent the

machine from collapsing on the ground { has been widely studied. E.g. the

cited work by Raibert [62] studies the \active/dynamic" balance of hopping

machines with one, two or four legs.

The studies of stability involve exact forms of feedback control scheme in

the framework of control theory. The models employed can become rather

complicated even for simple robots.

5.2.3 Synchronization and Real-time Control

The implementation of the feedback schemes requires some form of sampling

loop within a program that realizes the model, e.g. the stability model of

the walking machine. The FSM representation of the phases of each leg (cfr.

Figure 5.1) is built in the software controlling the system.

This embedding of the FSM model in the control software is usually done

in an \ad hoc" fashion. It would seem that decoupling the discrete and

the continuous models would be bene�cial from the \software engineering"

point of view. As already noted, McCarragher and Asada propose a similar

3This approach may be similar in spirit to the one proposed by Brook's with his sub-

sumption architecture for robotics [19, 43].
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course of action in [53]. However this separation of the discrete level from the

continuous one is rather di�cult to achieve. The case of walking machines

presents one example of such di�culties.

The control of a walking machine would in fact bene�t from the separa-

tion of the issues regarding the actual generation of gaits { a problem which

involves the generation of proper sequences of phases in the FSM representing

the interleaving of several legs { from the issues regarding the generation of

the proper torques in order to position a limb in a desired location. Yet, this

separation is not easy to obtain, since the state transitions in the FSM model

obviously depend on the actual position of the limbs and vice-versa.

Ideally, the resulting architecture of a continuous/discrete controller for a

walking machine (or for a more general hybrid system) would look like the

one proposed by McCarragher and Asada. Figure 5.3 shows an example of

such hybrid controller architecture.

5.3 Building Walking Machines Controllers with

Control-D

The robotics laboratory of Courant Institute of Mathematical Science has

developed an inexpensive yet powerful technology of mini actuators [74].

The design and construction of direct drive walking machines out of mini-

actuators have provided inspiration for the creation of the Control-D system.
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Figure 5.3: Hybrid Controller Architecture for Walking Machine.

Figure 5.4 shows a prototype of the leg joints.

A four-legged walking machine was studied as an example of the use of

the Control-D system [11, 12]. The model of the device assumed that the

controller would be divided into a continuous and a discrete part as the one

depicted in Figure 5.3. The continuous controller for each leg of the walking

machine was further assumed to be solved separately (i.e. a controller capable

of controlling at least the position of the leg was assumed to be available).
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Figure 5.4: Prototypes of the mini actuator links for the legs of the Walking

Machine built by R. Wallace and F. Hansen. (Photo by G. Kondogianis).
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Figure 5.5: The FSM model of a Leg with uncontrollable event slip.

5.3.1 Discrete Controller for the Walking Machine

The standard FSM model of a leg behavior does not make any distinction

between controllable and uncontrollable events. In order to make the walking

machine FSM model more robust via the CDES techniques, the transitions

of the model were thought to be controllable, while an extra, uncontrollable,

transition was inserted. The new transition called slip represents the possi-

bility of a leg \slipping" while pushing on the ground. Figure 5.5 shows the

complete leg model after it was edited with Control-D.
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Figure 5.6: Schematic representation of the walking machine.

The complete discrete model for the walking machine is broken down

into three parts: one for each trains of legs (left and right) and a third one

modeling the alternation between the leg pairs. A schematic of the walking

machine used for the modeling exercise is shown in Figure 5.6.

By following the standard practice of CDES modeling, the P speci�cation

for a train of legs is obtained via a composition of two instances (say 1 and

2) of the FSM, one for each leg4. The speci�cation S must be thought out

4This \copying operation" is still quite cumbersome in Control-D. cospan and smv

provide better linguistic constructs to obtain this e�ect.
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carefully in order to achieve a desired gait. A single train of legs was required

to have an alternation of Drive and Recover phases between the two legs. This

approach resulted in the following simple speci�cation:

AG( :state([Drive1;Drive2])

^ :state([Recover1;Recover2])

^ :state([Slipping1;Slipping2]));

(5.1)

where the syntax state([state,state]) indicates the composed state of the train

speci�cation.

The Formula (5.1) is simply the statement of a state avoidance problem.

The system must avoid any state where both legs of a train are both recov-

ering, or driving, or (worse) slipping.

The rear-to-front wave can be represented by the following CTL formula.

AG(state([Drive1;Recover2])

) :EX:(state([Unload1;Recover2]))):

The meaning of this formula is that whenever the rear leg (number 2) is

recovering, the front leg (number 1) cannot start unloading.

5.3.2 Continuous Control Constraints

The \desired behavior" of the Walking Machine is obviously not completely

speci�ed by the constraints imposed at the discrete level. The transitions

between states are governed by measurements taken from sensors. Only
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Figure 5.7: Simpli�ed Geometric Model of the Walking Machine. fBg is a

coordinate frame set in the body. All measurements are taken with respect to

it.

position information was used in order to allow the transition from one state

to the other of the discrete control. This is su�cient to get nice simulations

and already poses interesting problems for the control synthesis procedure.

The geometric model used for the Walking Machine is depicted in �g-

ure 5.7. A discrete supervisor that ensures the satis�ability of the speci�ca-

tion S is readily obtained. Unfortunately, it turned out that such supervisor

also allows for

EX(state([Load1; Load2]))
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to be true for one train of legs5. In this state, the supervisor has to choose

which transition to make next: i.e. to either state [Load1;Drive2] or [Drive1; Load2].

Since both transitions are controllable and not forbidden by the supervisor,

the system might end up \taking a step longer than the leg" by cycling one

too many times through the [Load1; Load2] state 6. In Petri Net terminology,

this is a con
ict and it really represents a situation where \extra information"

is needed (or assumed) by the system.

In order to solve this problem, the control algorithm must identify these

\con
ict states" in order to reduce the actual behavior of the system to a \ge-

ometrically acceptable" one. This operation is analogous to the one described

in [53].

Continuous Conditions and Choice Points

For a train of two legs, the transition er1 for the front leg (leg 1) in state

[Recover1;Drive2] causes the di�erence in the position of the feet

�(pfeet ) = jpf � prj

5With respect to the \start" state. Actually it can be proved

EG(state([Load1; Load2])

) EX(EF(state([Load1; Load2])))):

6This argument applies also when two legs in alternation { left and right { and virtual

legs (cfr. [62]).
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to change in the following way

�(pfeet )[Load1;Drive2] =

�(pfeet )[Recover1;Drive2] +
1

2
step;

if the rear leg is assumed to have moved a \very small" distance,

�(pfeet )[Load1;Drive2] =

�(pfeet )[Recover1;Drive2] + 2 step

if both legs have moved (almost) the full step distance.

This argument can be repeated for all the other states. This \interval"

computation for the transitions can be reconstructed from the description

of the state in which it is taking e�ect, hence a simple graph traversal could

mark the states where a given constraint could (but not necessarily would) be

violated. In this speci�c case the simple constraint we would like to maintain

is

�(pfeet ) � `;

where ` is derived from the geometry of the Walking Machine.

The graph traversal simply maintains for each node traversed a possible

maximum and minimum value for �(pfeet ) while following only the control-

lable transitions enabled by the Supervisor. Whenever there are two or more

such transitions outgoing from a state s and one of the reachable states (or

the state itself) possibly violates the constraint, then s is marked as a \choice

point".
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Eventually, it will be possible to equip the runtime component of the

system with appropriate tests to avoid the controllable transitions which in

speci�c occasions (usually after a few tours around a cycle in the state space)

would violate the constraint.
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Chapter 6

Ensuring Failure Behavior for the

CRAMTD Manufacturing Line

Manufacturing system are obvious targets for the the application of the tech-

niques developed for CDES. Examples of this trend can be found in [13] and

[75] (though this last reference contains a variation of the approach).

This chapter contains a description of an application of the Control-D sys-

tem to the speci�cation of a controller for a tray packing line built for theCom-

bat Ration Advanced Manufacturing Technology Demonstration (CRAMTD)

of Rutgers University.

The chapter is organized as follows. Section 6.1 describes the tray packing

line of the CRAMTD project. Section 6.2.2 discusses the application of the

Control-D tool to CRAMTD. Some concluding remarks are �nally made about

the experience gathered from the project.
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Figure 6.1: Schematic drawing of the tray pack line of the CRAMTD project.

6.1 CRAMTD Project Tray Packing Model

The aim of the CRAMTD project is to build an advanced dual-purpose (civil-

ian and military) food processing manufacturing facility. The project com-

prises several manufacturing lines, among which is the tray packing line [5],

chosen for the application of the Control-D tool. Figure 6.1 shows a schematic

layout of the line.

The function of tray packing line is to take empty trays (from a tray

stock), �ll them with food rations, check for standardized requirements of

weight (and perhaps discard a \non standard" tray), seal the tray, and �nally

discharge them to the distribution facility.

The tray pack line consists of the following modules as shown in Figure 6.1.

A. Filling Conveyor : The conveyor that takes the trays from the �lling

station.
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B. Spacing Conveyor : The conveyor that ensures that the trays are prop-

erly spaced.

C. Check Weight Station: Where each tray is weighed and checked for

\mounding" (in order to ensure that it could be closed with a lid).

D. Reject Diverter : If a tray weight is outside some prede�ned parameters

or if its content is \mounded", then the tray is rejected and diverted to

a di�erent line.

E. Phasing Conveyor : Where lids and trays are synchronized.

F. Rejected Tray Conveyor : Where the rejected trays are collected.

G. Seamer and Main Motor : Where the trays are closed with the lids.

Also the motor of this component actually drives the whole tray pack

line.

H. Discharge Conveyor : Where the sealed trays are collected.

I. Lid Conveyor : Where the tray lids are fed to the system.

6.2 Failure Behavior Control

The control software for the tray packing line was built using industry stan-

dard Programmable Control Logic (PLC) devices (e.g. see [15]). These PLC's

are programmed by de�ning ladder diagrams which represent boolean circuits
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and are descendants of the old electro-mechanical relay logic used until a few

decades ago in many industrial applications.

There are essentially two functions that the control software performs.

� Data gathering for statistical and tracking software. The relative e�-

ciency of the line must be measured; this is essentially a function of the

number of trays that get rejected. Also, each tray is eventually labeled

so that its origin can be determined in case of problems with the quality

of the content. If a tray in a batch is \rotten", then whole batch must

be retired from distribution.

� \Graceful" fail-stop of the entire line in presence of various error con-

ditions detected by a number of sensors distributed along the length of

the line.

The application of the CDES/CTLmodeling methodology with the Control-

D tool concentrates on the reproduction of the fail-stop behavior of the PLC

software.

This is a typical application of CDES. The possible failures are classi�ed

as uncontrollable events and the main requirements on the behavior of the

system is that it stops \gracefully" when one (or more) of such failures occurs.
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6.2.1 Modeling the Tray Packing Line

The tray packing line has 9 logical modules. Each of these modules has to

communicate some information to the other ones (namely the movement of

trays). The interleaving of the FSM models of these modules would result in

a rather large state-space, therefore a simpler modeling strategy was adopted.

The modules are actually arranged \in series" and (apart from the main

motor) they communicate only with the preceding and the following module.

It was therefore deemed safe to break down the model into smaller sub-models

involving only contiguous modules.

As an example, consider the Check Weight Station (Figure 6.2) and Di-

verter (Figure 6.3) subsystems1. The transitions in the CheckWeight Station

FSM must in
uence the transitions in the Diverter FSM. The interaction be-

tween the two subsystems is modeled by means of a \communication variable"

(�gure 6.4). Moreover, this modules are attached to the Main Motor of the

line (which is actually located in the Seamer module).

Therefore the plant P consists of the Check Weight Station, the Diverter,

the state variable and the Main Motor.

6.2.2 CTL Speci�cation of Behavior

The speci�cation S for the sub-modules considered is rather straightfor-

ward. The notation used indicates the combined state of the system with the

1The circle with the inscribed square indicate a duplicate node.
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Figure 6.2: Model of the discrete transitions for the Check Weight Station.

The uncontrollable events are zero speed, motor overload and a generic ex-

ogenous fault.

139



waiting

reset

stopping

exogenous failure

waiting

fault
exogenous failure

diverting

straight feeding

exogenous failure

exogenous failure

F

F

F

fault reset

F = {motor overload, zero speed}

infeed

infeed

wait next

wait next

Figure 6.3: Model of the discrete transitions for the Reject Diverter. The

uncontrollable events are zero speed, motor overload and a generic exogenous

fault.
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{reset state, weight ok, no mound} {weight <, weight >, mound}

Figure 6.4: States of the measurements done by the Check Weight Station.

The Reject Diverter will make its transitions accordingly.
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form [state idi]2. Also, the notation transition label 7! [state idi] indicates that

a state is reached through a transition marked label, i.e. 9s:(�(label; s) =

[state idi]).

A. Nothing moves until the power in on (or after the power goes o�):

AG([main drive idle]) AX([main drive running]):

B. If a fault occurs in one of the subsystems, then the fault must be prop-

agated to the other ones as well:

AG([main drive fault] _ [weighter fault] _ [diverter fault]

) AX(exogenous fault 7!

[main drive fault;weighter fault; diverter fault])):

C. If the weight station determines that a tray is non acceptable, the di-

verter must take the appropriate action:

AG([keep] ) AX(:[diverting]);

AG([reject] ) AX(:[straight feeding]):

We use this negative convention in order to take into consideration the

possibility of faults.

2We do not use the full form used in the implementation here, because of space con-

straints. Actually the form of a state should be

[diverter;weight station;weight result;main drive]:
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Figure 6.5: Control-D window with CRAMTD constraints.

These constraints represent safety, liveness, and \mandatory" properties that

the weight station plus diverter subsystemmust comply with. More precisely,

the listed constraints model (1) a portion of the standard operations of the

system (constraints A and C) and (2) the desired fault detection behavior of

the system (constraint B). Figure 6.5 shows the Control-D \composed speci-

�cation" window containing the internal Lisp form of the CTL constraints.

As an illustration of the the interplay between the fault detection require-

ments and the regular operations of the station, constraint C could not be
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represented as AG([keep]) AX([straight feeding])), because the uncontrol-

lable transitions representing the faults must be taken into account.

6.3 Concluding Remarks

The CRAMTD system turned out to be not as di�cult to model as the

Walking Machine. This is simply due to the fact that timing constraints

of various nature were not taken into consideration. This was justi�ed by

a rather safe assumption that the fail-stop behavior to be implemented can

be considered \instantaneous", while all the other conditions are boolean in

nature, simply because the PLC speci�cation was taken as a starting point

for the modeling process.
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Chapter 7

Conclusion and Future Work

This thesis discussed how to use the branching-time temporal logic CTL as a

basis for a discrete event system supervisor synthesis problem similar to the

one de�ned by Ramadge and Wonham. It was shown that by modifying some

of the basic assumptions of Ramadge and Wonham's model, it was possible

to construct a semantically sound algorithm capable of solving the synthesis

problem. The use of CTL as a speci�cation language permits the expression

of quite complex behaviors, while retaining a simple syntax. Moreover, this

increased expressiveness does not increase the time or the space complexity

of the synthesis algorithm with respect to similar schemes.

For the future there are two main directions of research. The Control-D

system requires a more stable implementation of the MRSS algorithm, possi-

bly with the inclusion of symbolic encoding techniques, like BDD's. Moreover,

while CTL constitutes a very good speci�cation language, it is necessary to
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devise a better description language for the �nite state models. smv (op. cit.),

cospan (ibid.) and Promela [40] are good candidates.

From a more theoretical viewpoint, there are three major open problems.

The MRSS algorithm restricts the behavior of the plant to a language L �

�[P]. However, the size of this language is not known. There is a conjecture

that the language produced is maximal, but no proof was found yet.

Another conjecture regards the treatment of disjunctions of path formul�.

The example in Section 3.2.2 leads to a restriction on the form of the disjunc-

tions treatable by the Control-D system. The conjecture states that the su-

pervisor synthesis problem for CTL with \full" disjunctions is NP-complete.

Finally, the state-space explosion problem is still open. I.e. the problem

of decomposing a system into parts to be treated in isolation is still a major

obstacle on the widespread use of veri�cation and synthesis systems. The

book by Kurshan (op. cit.) contains some results in this direction. The

Control-D system can treat a restricted form of decomposition by limiting

the speci�cations to formul� in CTL�. While restrictive, this approach may

prove satisfactory for a wide variety of systems.
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