HAND OUT: ANALYSIS OF ALGORITHMS
September 8, 1998
Bud Mishra
(© Mishra, February 19, 1986

1 Introduction

In general, there can be several algorithms to solve a problem; and one is faced
with the problem of choosing an algorithm for use. One way to differentiate
between two competing algorithms is to assign a complexity measure to the
algorithms. Having done this, one may choose the algorithm with the lowest
complexity.

There are two kinds of complexity measures:

e Static: A complexity measure is static, if it does not depend on the
input values. An example of such a measure is the program length.
This measure is relevant only if the algorithm is to be used once or
only a few times.

e Dynamic: A complexity measure is dynamic, if it varies with the input
values. Some examples of such a measure are running time or storage
space complexity of an algorithm as a function of the input values. This
measure is relevant, when the algorithm is to be run several times on
‘large’ input values.

In most practical applications, the dynamic complexity measure is signif-
icant, since all production softwares are assumed to run a large number of
times, and the cost of producing and maintaining the software (which depend
on static complexities) are amortized rather fast. We shall use running time
as our complexity measure, since almost all the algorithms we consider have
a space bound that is a linear function of the input size. Furthermore, while
analyzing running times, we will ignore constant factors, and will concentrate
only on the orders of growth. There are two reasons for doing so:

1. This allows us to ignore details of the machine model, (such as, the hard-
ware of the machine, the instruction sets of the computer, the memory
structure of the computer, the quality of code generated by the compiler,
etc.) thus giving us a machine-independent complexity measure.

2. For large enough problem sizes the relative efficiencies of two algorithms
depend on the running times as an asymptotic function of input size,
independent of constant factors.

We shall generally measure the running time, 7'(n), as a function of the
worst-case input data of size n; that is, T'(n) is the maximum, over all inputs
of size n, of the running time on that input. The worst-case analysis provides
a performance guarantee, but may be overly pessimistic, if the worst-case
inputs occur seldom.

An alternative is an average-case analysis: we measure the running time,
Tavg(n), as the average, over all possible inputs of size n, of the running
time on that input. However, such an analysis is frequently mathematically
intractable. Furthermore, we must take care that our probability distribution
is realistic—which may be much harder to accomplish.

Faced with these problems, algorithm-designers have suggested other average-
case complexity measures; but these measures have not achieved wide-spread
acceptance, and requires mathematics, outside the scope of this class. Hence,
we shall restrict ourselves to worst-case complexity analysis, and occasionally,
try to do the average-case analysis.

2 Big Omicron, Big Omega, Big Theta

We talk about the orders of growth of the function T'(n) using the functions:
O(-) (known as big-omicron or more popularly, big-oh), Q(-) (big-omega) and
O(-) (big-theta). They are defined as follows:

e T'(n) =0O(f(n)), if there are two positive constants C' and ng such that

T(n) <C- f(n),for all n > ne.

e T(n) = Q(f(n)) ', if there are two positive constants C' and ng such
that
T(n)>C- f(n), forall n>ne.

!Some define this differently: T'(n) = Q(f(n), if there is a positive constant C' such
that T'(n) > C - f(n) infinitely often (for infinitely many values of n). This is a weaker
definition, and seems more useful for lower-bound proofs—but, for all practical purposes,
the stronger definition works pretty well.

e T'(n) =0(f(n)), if there are three positive constants C', C' and ng such
that
C-fn)<Tn)<C" f(n), foralln>ne.

3 Algebra on O

Many of the rules of algebra work with O-notations, but some don’t. Here,
the main problem is that, in the expression T'(n) = O(f(n)), ‘="1is a one-way
equality (i.e. , it does not have the symmetry property of the equality.) For
instance: %nz +n = O(n?) but not O(n?) = %nz + n. (Why not?)

So how do you manipulate expressions with O’s? Very carefully. Here are
some of the simple operations you can do with the O-notation:

fn) = O(f(n),
c-O(f(n)) =0(f(n)), ¢ is a constant,
O(f(n)) +O(f(n)) = O(f(n)),
O(0(f(n)) = O(f(n)),
O(f((n)) O(g(n)) = O(f(n) g(n)),
O(f(n) g(n)) = f(n) O(g(n))

Using these, we can derive many other useful relations: Let Ti(n) =
O(f(n)) be the running time of the program P;, and Ty(n) = O(g(n)), the

running time of P,. The following program P

procedure P(N);
begin
Pi(N); Py(N)

end.

has running time Ty (n)+7T5(n). It is easy to show that f(n) = O(max(f(n),g(n)))
and g(n) = O(max(f(n),g(n))). Using the above identities(?), we see that

4 Analysis of Algorithms and Recurrence Re-
lations

In general, we are interested in analyzing algorithms that is made of a set of a
mutually recursive algorithms. Non-recursive algorithms are usually easy to
analyze, and require very little mathematical sophistication. In what follows,
we will concentrate on self-recursive algorithms, since these illustrate all the
main ideas, and generalization to mutually recursive algorithms is straight-
forward.

Let us write self-recursive algorithm in the following schematic form:

procedure P(N);

begin
Statement—1;
P(Ny);
Statement—2;
P(Ny);

Statement—3;

Statement—I;

P(Ny);

Statement—(1 + 1);
end.

A general program may be transformed into this form after resolving if-
then-else’s and unrolling while-loop’s. Hence, [itself can be function of
Size(N). Such schemas are somewhat simplistic, but not overly restrictive.
Let Size(N) = n, Size(Ny) = nq, ..., Size(N;) = n;. Assume that the time
spent by Statement—1, Statement—2, ..., Statement—(l+1) is bounded from
above by f(n). Then we can write the complexity of the algorithm as follows:

l

=2 (i) + fl

Such an inequality is called a recurrence relation.
What we present here are, in fact, techniques to solve recurrence equations

of the form l

T(n)=>_T(n)+ f(n).
=1
Under a rather mild assumption, you can show that replacing the inequality
by an equality does not create any problem. (This will be a home work
problem.)

5 Solving the Recurrence Equations

The subject of solving recurrence equations (also called difference equations)
arise in many other areas too: combinatorics, probability theory, discrete-
time control theory, economics—to name a few. There are several powerful
mathematical techniques available to solve these—such as, summing factors,
generating functions, z-transformations, operator methods, etc. But most of
these techniques are beyond our scope. We develop only a few techniques—
though simple, they are sufficient for our purpose.

5.1 Guess-Work

The idea is to guess a solution, and then verify the guess by a mathematical
induction over the integer. This method requires you to know the solution in
order to get the solution, and does not work. Use it only when you have no
other way of solving the equation—try several guesses; if you are lucky, one
of them will work.

Example. 5.1 Consider the following recurrence equation:

c1, if n=1;

0= { S5y e, tnot 0

Suppose we guess that T'(n) = ¢z nlg n+ ¢y n, then by mathematical induction
over all positive integers, we can show the validity of our guess. Hence T'(n) =
O(nlgn). It is left as an exercise for you to do the steps of the inductive proof.

O

5.2 Expansion

Another way to solve a recurrence relation is to repeatedly expand the terms
as many times as possible. When this process stops, we will be left with a
sum consisting of functions of f(-) and lower values of T'(-). In many cases
the summation can be evaluated to obtain a close form solution. This method
is rather messy, and prone to error—avoid it, in all but a few simple cases.

Example. 5.2 Consider the following recurrence equation:

c1, if n=1;

100 ={ s 1 ey ot ®
First rearrange the recursive part as
n
T(n)=cm+2T (5))
Expanding the recursive definition of T'(%) shows that

T(n)=cm+2 [czg +2T (%)])

Multiplying and canceling yields
n

T(n)=cm+cn+4T (4))

Applying the recursive definition of T'(%) to above shows that

T(n)=cn+can+can + 8T (g))

This process of expansion and cancellation can be iterated lg n times to yield
Ign

T(n)= [Z Can

=1

+n-T(l)=cnlgn+can. O

5.3 Recursion Tree

Another way to solve the recurrence equation of the form

[T(no), if n = ng;
100 = { o 4 T oo+ T 5 S0 itn o

is by expanding the terms of it in a tree like manner. The tree corresponding
to this expansion is called a recursion tree, and is defined as follows. The
recursion tree for the equation 3 at the value n is:

e a single node with the value T'(ng), it n = ng;

e otherwise, a node with the value f(n) and [sons such that the i® son
is the root of a recursion tree of the equation 3 at n;.

It is easy to see that T'(n) is just the sum of values at the nodes.
Example. 5.3 Consider the following recurrence equation:

c1, if n=1;

100 ={ e e, oot g

The recursion tree for the equation 4 is as shown below.

Figure 1: Recursion Tree

You may prove the following facts about the above recursion tree:

7

1. The tree has a depth of lgn 4+ 1. The sum of values at all the internal

nodes at level 7 (0 < <lgn) is can. Thus

> value(j) = canlgn.

7=internal—node

2. The tree has n leaves. The value of each leaf node is ¢;.

> value(j) = en.

7=leaf —node
Hence

T(n)= Z value(j) = eanlgn+en. O

7=node

5.4 Telescoping

The idea of telescoping or summing factors is rather simple, and is developed
step-by-step in this and the next section. We start out by showing how to
solve recurrence equations of very simple form using this technique. But this

technique, when combined with the transformation techniques of the next
section, is quite powerful and handles almost all equations. Please try to
master this technique by trying to solve several recurrence equations—this is

the official technique for this course.
Consider the recurrence equation

1, if n=0;
T(n):{T(n—l)—l—l, ifn>1.

We can write down the above equation as follows:

Tn)— T(n-—1) =1
Tn—1)— T(n-—2) =1

T()— TO) =1

T(n) -T(0) =n

The simplification is obtained by canceling —T'(¢) of the current line by the
T'(2) of the next line. Thus when we added up all the equations most of the

terms canceled out. We say the sum telescopes. Note that the final answer is
Tn)=n+T0)=n+1.

Finding the solution above was almost trivial. Sometimes however we
have to use a little trickery to make the sum of successive equations telescope.
Suppose that our recurrence is

aoT(0) = co; (6)
a,T(n) =b,Tn—1)+¢,, ifn>1.

where a,,, b, and ¢, are given. If we try to add to successive copies of this
equation, for example,

a,T'(n)— b, T(n—1) =c,
an1T(n—1)— b,_1T(n —2) = ¢,

then the T'(n — 1) terms do not cancel since b, is not equal to a,_;. Note
however that we could multiply the equations by some factor which would
make the T'(n — 1) terms cancel and the sum will telescope. Let us multiply
the n'® equation by some (so far unspecified) factor f, to obtain

faa T(n)— fob,T(n—1) = fnCn
fn_lan_lT(n — 1)— fn_lbn_lT(n — 2) = fn_lcn_l

In order to guarantee that the T'(n — 1) terms cancel we require that

fnbn — fn—lan—l

or

e ()

By unrolling the above equation we get:

fo = fam (“z:) = faz (Zj) (“z:) - foll__[[:j Z

Fixing fo =1, we get

Jo =1 .
fn = =0 - lfnZl ()

b, ?

=1 "

fn 1s called the summing factor for the equation 6. Let us write

R(n) = foa,T(n).

Since

fraT(n) = f,0,T(n— 1)+ focn = fuo—ranaT(n—1) + fuca,

this yields
R(0) = co;
Rn) =Rn—1)4c,fn, ifn>1

Now the telescopy will work.

R(n)— R(n—1) = ¢ufn
R(n—1)— R(n—2) = Cp1 fn-1

R()— R(O0) =af

R(n) —R0) =37 ¢if;
Hence
(n) = fua,T(n) = CO"’Zijj] :
7=1
and
1 n
T'(n)= T | + Z:: ijj]
simplifying,

) = (=) |

Example. 5.4 Consider the following recurrence equation:

ot Z b] (®)

1, if n =0;
T(n):{ZT(n—l)—I—Q”, ith> 1. (9)

This is same as

This is an example of 6 with

By 7 we may choose
fo =1
fn = 2%, ifn > 1.

Multiplying by f, (3) gives the new equation

277,
T(0) =1
T(n T(n .
z(n) — 2,1(_2 =1, ifn>1.
Using telescopy we get
M_ J_ZT n—1 =
i o)) T(n-2) B
gn—1 gn—2 -
) - 1(0)
i 2 1
o -T(0) =n

Hence

Tn)=(m+1)2". O

5.5 Range and Domain Transformations

Now, we examine how to transform a sequence so that the transformed se-
quence becomes more recognizable—more familiar. The function T" maps the
integer n in its domain to a real T'(n) in its range. We call a transformation
on the values of the sequence T'(n) a range transformation and a transforma-
tion on the indices n a domain transformation. We illustrate the ideas using
examples:

Domain Transformation

Example. 5.5 Consider the following recurrence equation:

c1, if n=1;

100 ={ s e, oot 10

11

Let us use the following domain transformation first
n=2 (k=Ilgn) hence S(k)="T(n)="T(2".
The above equation becomes

_ C1, lfk:(),
S(k) = {QS(k — 1) 4 2% if k> 1.

Now we can use telescoping to get the following solution:
S(k) =T(2F) = 2% (c3k + 1) .
Back-substituting n for 2% and lgn for k, we conclude that
T(n)=n(clgn+e). O
Range Transformation

Example. 5.6 Consider the following (pseudo-non-linear) recurrence equa-
tion:

1, if n =0;
T(n) = {3 (T(n = 1))%, ifn>1. (11)

Let us use the following range transformation first:
S(n) =logy T(n), (3509 =7(n)).
We may rewrite the recurrence as

0, if n =0;
S(n):{QS(n—l)—l—l, ifn>1.

Using multiplier f,, = 2%, we get
5(0) -0
20
Sn) Sn—1 _ 1
n gn—1 — 92n

Using telescopy, we get

=)= =)

=1

Hence,

S(n)=2"—1.

Hence,

T(n)=3"" =3""1 @

12

6 Examples

6.1

Example: Divide-and-Conquer

An important class of recurrence equations results from algorithms based on
the ‘divide-and-conquer’ paradigm; such algorithms consist of three steps:

1.

DIVIDE: Break the problem of size n into a smaller subproblems each

of size 7, using no more than g(n) time.

RECUR: Recursively solve each of the a subproblems using a - T'(})

time.

MARRY: Combine the solutions to the subproblems to get a solution
to the original problem, using no more than h(n) time.

The recurrence equation is of the form:

T(n) = a- (%) +f(n), where f(n) = g(n) + h(n). (12)

Use the following domain-transformation first

n=>b" (m=log,n).

The above equation becomes

TH™) =a- T+ (™).

Using the multiplying factor f,, = (&) we get

() TN | f)

am aml + am™
Using telescopy
TS;:")_ el _ fgﬁ;")
do- e = L=
TG T _)
T T —en

13

Hence

T(b™) = a™ lT(l) + ZZ fg’)] .

ASSUMPTION f is a multiplicative function; that is, f has the following prop-
erty

flmn) = f(m) f(n).
Example of a multiplicative function is f(n) = n°. Hence

F6) = (F(b)".

Rewrite the previous function as

rimy = 5 (20)]
Let (f(b))
Then "
T(n) = a™ [T(l) + ia] — [T(l) + aaj__f] .

There are three cases to consider

e CASE.l a > f(b); that is, « < 1. Then
e CASE.2 a = f(b); that is, « = 1. Then

Tn)=am-0(m)=0(a"m)=0 (alogb” log, n) =0 (nlogb“ log, n) .

e CASE.3 a < f(b); that is, o« > 1. Then

14

6.2 Example: Randomized Divide-and-Conquer

Let us consider a randomized algorithm (i.e. algorithm involving coin-
tosses), also based on the ‘divide-and-conquer’ paradigm; such an algorithm
consists of three steps:

1. RANDOM-DIVIDE: Break the problem of size n into 2 smaller subprob-
lems as follows: first choose a number ¢ (1 <¢ < n—1) with probability
anl; let the first subproblem be the one consisting of the first ¢ elements,
and the second, consisting of the remaining n — 1 elements. The division
step takes no more than g(n) amount of time.

2. RECUR: Recursively solve each of the 2 subproblems using Tyye(7) +
Tavg(n — 1) time.

3. MARRY: Combine the solutions to the subproblems to get a solution
to the original problem, using no more than h(n) time.

Let us assume that g(n) + h(n) = ¢- n.
Hence the recurrence equation will be

Tual) = 3 (2)+ Tl = 0])

n—1

This can be rewritten as

Tavg(n) = 75 Zi5) (Tavg(d

(n— 1) Tavg(n) =2 (”Z—: Tavg(i)) +c-n(n—1). (13)

Substituting n 4+ 1 for n, we get

nTave(n+1) =2 (Z Tavg(i)) +ec-n(n+1). (14)

=1

15

Subtracting equation 13 from equation 14,

nTan(n ‘I’ 1) - (n — 1) Tavg(n) = QTan(n) _|_ 20 -n.

Simplifying the above equation

nTavg(n + 1) == (n + 1) Tavg(n) + 2¢-n.

Or
Tan(n + 1) Tavg(n) . 2c
n+1 n n4+1
Using telescopy we get
Tavg(n41) Tavg(n) _ 2
ntl n n+1
* Tavg(n) Tavg(n—1) _ £
n n—1 n
Tug(2) Tag(l) 2
Tave (nF1) 2 1 2 1
e =T(1) :2c{§_|_§_|_..._|_m}
Hence
Tave(n +1) = (n 4 1) [Tave(1) + 2¢(Hppq — 1)].
Or,

Tocaln) = 1 [Tuug(1) + 2¢ (H, — 1]

The approximate size of the n" harmonic number H,, is a well-known quantity

anlnn—l—’y—l—%—O(n_z).

Here v = 0.57721 56649 ... is Fuler’s constant. Hence

Tavg(n) =n [20 (lnn +v+ i -0 (n‘z)) + Tave(l) — 20}

= (2In2)en lgn 4+ (2¢(y — 1) 4+ Tave(1))n + ¢ — O(n™t)

= 1.39¢n lgn + [Tave(1l) — 0.85¢] n + ¢ — O(n™t)

= O(nlgn).

16

7 End Notes

These notes are about 12 years old. I originally wrote them for the master’s
level graduate course in algorithms and had derived these notes from my
earlier notes from graduate school, a survey paper by Leuker and ideas due
to Monier, Bentley and Saxe. Clearly, there are some new interesting ideas
that have evolved in the intervening years. The readers are urged to consult

these more up-to-date results.

17

