
Hand Out: Analysis of AlgorithmsSeptember 8, 1998Bud Mishrac
 Mishra, February 19, 19861 IntroductionIn general, there can be several algorithms to solve a problem; and one is facedwith the problem of choosing an algorithm for use. One way to di�erentiatebetween two competing algorithms is to assign a complexity measure to thealgorithms. Having done this, one may choose the algorithm with the lowestcomplexity.There are two kinds of complexity measures:� Static: A complexity measure is static, if it does not depend on theinput values. An example of such a measure is the program length.This measure is relevant only if the algorithm is to be used once oronly a few times.� Dynamic: A complexity measure is dynamic, if it varies with the inputvalues. Some examples of such a measure are running time or storagespace complexity of an algorithm as a function of the input values. Thismeasure is relevant, when the algorithm is to be run several times on`large' input values.In most practical applications, the dynamic complexity measure is signif-icant, since all production softwares are assumed to run a large number oftimes, and the cost of producing and maintaining the software (which dependon static complexities) are amortized rather fast. We shall use running timeas our complexity measure, since almost all the algorithms we consider havea space bound that is a linear function of the input size. Furthermore, whileanalyzing running times, we will ignore constant factors, and will concentrateonly on the orders of growth. There are two reasons for doing so:1. This allows us to ignore details of the machinemodel, (such as, the hard-ware of the machine, the instruction sets of the computer, the memorystructure of the computer, the quality of code generated by the compiler,etc.) thus giving us a machine-independent complexity measure.1



2. For large enough problem sizes the relative e�ciencies of two algorithmsdepend on the running times as an asymptotic function of input size,independent of constant factors.We shall generally measure the running time, T (n), as a function of theworst-case input data of size n; that is, T (n) is the maximum, over all inputsof size n, of the running time on that input. The worst-case analysis providesa performance guarantee, but may be overly pessimistic, if the worst-caseinputs occur seldom.An alternative is an average-case analysis: we measure the running time,Tavg(n), as the average, over all possible inputs of size n, of the runningtime on that input. However, such an analysis is frequently mathematicallyintractable. Furthermore, we must take care that our probability distributionis realistic|which may be much harder to accomplish.Faced with these problems, algorithm-designers have suggested other average-case complexity measures; but these measures have not achieved wide-spreadacceptance, and requires mathematics, outside the scope of this class. Hence,we shall restrict ourselves to worst-case complexity analysis, and occasionally,try to do the average-case analysis.2 Big Omicron, Big Omega, Big ThetaWe talk about the orders of growth of the function T (n) using the functions:O(�) (known as big-omicron or more popularly, big-oh), 
(�) (big-omega) and�(�) (big-theta). They are de�ned as follows:� T (n) = O(f(n)), if there are two positive constants C and n0 such thatT (n) � C � f(n); for all n � n0:� T (n) = 
(f(n)) 1, if there are two positive constants C and n0 suchthat T (n) � C � f(n); for all n � n0:1Some de�ne this di�erently: T (n) = 
(f(n), if there is a positive constant C suchthat T (n) � C � f(n) in�nitely often (for in�nitely many values of n). This is a weakerde�nition, and seems more useful for lower-bound proofs|but, for all practical purposes,the stronger de�nition works pretty well. 2



� T (n) = �(f(n)), if there are three positive constants C, C 0 and n0 suchthat C � f(n) � T (n) � C 0 � f(n); for all n � n0:3 Algebra on OMany of the rules of algebra work with O-notations, but some don't. Here,the main problem is that, in the expression T (n) = O(f(n)), `=' is a one-wayequality (i.e. , it does not have the symmetry property of the equality.) Forinstance: 12n2 + n = O(n2) but not O(n2) = 12n2 + n. (Why not?)So how do you manipulate expressions with O's? Very carefully. Here aresome of the simple operations you can do with the O-notation:f(n) = O(f(n));c �O(f(n)) = O(f(n)); c is a constant;O(f(n)) +O(f(n)) = O(f(n));O(O(f(n)) = O(f(n));O(f((n)) O(g(n)) = O(f(n) g(n));O(f(n) g(n)) = f(n) O(g(n)):Using these, we can derive many other useful relations: Let T1(n) =O(f(n)) be the running time of the program P1, and T2(n) = O(g(n)), therunning time of P2. The following program PprocedureP (N);beginP1(N);P2(N)end:has running timeT1(n)+T2(n). It is easy to show that f(n) = O(max(f(n); g(n)))and g(n) = O(max(f(n); g(n))). Using the above identities(?), we see thatT1(n) + T2(n) = O(f(n)) +O(g(n))= O(O(max(f(n); g(n)))) +O(O(max(f(n); g(n))))= O(max(f(n); g(n))) +O(max(f(n); g(n)))= O(max(f(n); g(n)))3



4 Analysis of Algorithms and Recurrence Re-lationsIn general, we are interested in analyzing algorithms that is made of a set of amutually recursive algorithms. Non-recursive algorithms are usually easy toanalyze, and require very little mathematical sophistication. In what follows,we will concentrate on self-recursive algorithms, since these illustrate all themain ideas, and generalization to mutually recursive algorithms is straight-forward.Let us write self-recursive algorithm in the following schematic form:procedure P (N);beginStatement�1;P (N1);Statement�2;P (N2);Statement�3;...Statement�l;P (Nl);Statement�(l + 1);end:A general program may be transformed into this form after resolving if-then-else's and unrolling while-loop's. Hence, l itself can be function ofSize(N). Such schemas are somewhat simplistic, but not overly restrictive.Let Size(N) = n, Size(N1) = n1, : : :, Size(Nl) = nl. Assume that the timespent by Statement�1, Statement�2, : : :, Statement�(l+1) is bounded fromabove by f(n). Then we can write the complexity of the algorithm as follows:T (n) � lXi=1 T (ni) + f(n):Such an inequality is called a recurrence relation.What we present here are, in fact, techniques to solve recurrence equations4



of the form T (n) = lXi=1 T (ni) + f(n):Under a rather mild assumption, you can show that replacing the inequalityby an equality does not create any problem. (This will be a home workproblem.)5 Solving the Recurrence EquationsThe subject of solving recurrence equations (also called di�erence equations)arise in many other areas too: combinatorics, probability theory, discrete-time control theory, economics|to name a few. There are several powerfulmathematical techniques available to solve these|such as, summing factors,generating functions, z-transformations, operator methods, etc. But most ofthese techniques are beyond our scope. We develop only a few techniques|though simple, they are su�cient for our purpose.5.1 Guess-WorkThe idea is to guess a solution, and then verify the guess by a mathematicalinduction over the integer. This method requires you to know the solution inorder to get the solution, and does not work. Use it only when you have noother way of solving the equation|try several guesses; if you are lucky, oneof them will work.Example. 5.1 Consider the following recurrence equation:T (n) = ( c1; if n = 1;2T (n2 ) + c2n; if n > 1. (1)Suppose we guess that T (n) = c2 n lg n+c1 n, then by mathematical inductionover all positive integers, we can show the validity of our guess. Hence T (n) =O(n lg n). It is left as an exercise for you to do the steps of the inductive proof.5



5.2 ExpansionAnother way to solve a recurrence relation is to repeatedly expand the termsas many times as possible. When this process stops, we will be left with asum consisting of functions of f(�) and lower values of T (�). In many casesthe summation can be evaluated to obtain a close form solution. This methodis rather messy, and prone to error|avoid it, in all but a few simple cases.Example. 5.2 Consider the following recurrence equation:T (n) = ( c1; if n = 1;2T (n2 ) + c2n; if n > 1. (2)First rearrange the recursive part asT (n) = c2n+ 2T �n2� :Expanding the recursive de�nition of T (n2 ) shows thatT (n) = c2n+ 2 �c2n2 + 2T �n4�� :Multiplying and canceling yieldsT (n) = c2n+ c2n+ 4T �n4� :Applying the recursive de�nition of T (n4 ) to above shows thatT (n) = c2n+ c2n+ c2n+ 8T �n8� :This process of expansion and cancellation can be iterated lg n times to yieldT (n) = 24 lgnXi=1 c2n35+ n � T (1) = c2 n lg n+ c1 n:6



5.3 Recursion TreeAnother way to solve the recurrence equation of the formT (n) = �T (n0); if n = n0;T (n1) + T (n2) + � � �+ T (nl) + f(n); if n > n0, (3)is by expanding the terms of it in a tree like manner. The tree correspondingto this expansion is called a recursion tree, and is de�ned as follows. Therecursion tree for the equation 3 at the value n is:� a single node with the value T (n0), if n = n0;� otherwise, a node with the value f(n) and l sons such that the ith sonis the root of a recursion tree of the equation 3 at ni.It is easy to see that T (n) is just the sum of values at the nodes.Example. 5.3 Consider the following recurrence equation:T (n) = ( c1; if n = 1;2T (n2 ) + c2n; if n > 1. (4)The recursion tree for the equation 4 is as shown below.
.
.
.

.

.

.

.

.

.

.

.

.

C n2

C n2

C n2

C n1

1C 1C 1C 1C 1C 1C 

C n2-----
4

2

C n2-----

C n2

2

C n2-----

C n2-----
4

C n2-----
4

C n2-----
4

. . .

depth =
lg n + 1

n Figure 1: Recursion TreeYou may prove the following facts about the above recursion tree:7



1. The tree has a depth of lg n+ 1. The sum of values at all the internalnodes at level i (0 � i < lg n) is c2n. ThusXj=internal�nodevalue(j) = c2 n lg n:2. The tree has n leaves. The value of each leaf node is c1.Xj=leaf�nodevalue(j) = c1n:Hence T (n) = Xj=node value(j) = c2 n lg n+ c1 n:5.4 TelescopingThe idea of telescoping or summing factors is rather simple, and is developedstep-by-step in this and the next section. We start out by showing how tosolve recurrence equations of very simple form using this technique. But thistechnique, when combined with the transformation techniques of the nextsection, is quite powerful and handles almost all equations. Please try tomaster this technique by trying to solve several recurrence equations|this isthe o�cial technique for this course.Consider the recurrence equationT (n) = � 1; if n = 0;T (n� 1) + 1; if n � 1. (5)We can write down the above equation as follows:T (n)� T (n� 1) = 1T (n� 1)� T (n� 2) = 1...T (1)� T (0) = 1T (n) �T (0) = nThe simpli�cation is obtained by canceling �T (i) of the current line by theT (i) of the next line. Thus when we added up all the equations most of the8



terms canceled out. We say the sum telescopes. Note that the �nal answer isT (n) = n+ T (0) = n + 1.Finding the solution above was almost trivial. Sometimes however wehave to use a little trickery to make the sum of successive equations telescope.Suppose that our recurrence isa0T (0) = c0;anT (n) = bnT (n� 1) + cn; ifn � 1: (6)where an, bn and cn are given. If we try to add to successive copies of thisequation, for example,anT (n)� bnT (n� 1) = cnan�1T (n� 1)� bn�1T (n� 2) = cn�1then the T (n � 1) terms do not cancel since bn is not equal to an�1. Notehowever that we could multiply the equations by some factor which wouldmake the T (n� 1) terms cancel and the sum will telescope. Let us multiplythe nth equation by some (so far unspeci�ed) factor fn to obtainfnanT (n)� fnbnT (n� 1) = fncnfn�1an�1T (n� 1)� fn�1bn�1T (n� 2) = fn�1cn�1In order to guarantee that the T (n� 1) terms cancel we require thatfnbn = fn�1an�1or fn = fn�1 �an�1bn � :By unrolling the above equation we get:fn = fn�1 �an�1bn � = fn�2  an�2bn�1 !�an�1bn � = � � � = f0Qn�1i=0 aiQni=1 bi :Fixing f0 = 1, we get f0 = 1;fn = Qn�1i=0 aiQni=1 bi ; if n � 1: (7)9



fn is called the summing factor for the equation 6. Let us writeR(n) = fnanT (n):Since fnanT (n) = fnbnT (n� 1) + fncn = fn�1an�1T (n� 1) + fncn;this yields R(0) = c0;R(n) = R(n � 1) + cnfn; if n � 1:Now the telescopy will work.R(n)� R(n� 1) = cnfnR(n� 1)� R(n� 2) = cn�1fn�1...R(1)� R(0) = c1f1R(n) �R(0) = Pnj=1 cjfjHence R(n) = fnanT (n) = 24c0 + nXj=1 cjfj35 ;and T (n) = 1fnan 24c0 + nXj=1 cjfj35simplifying, T (n) =  Qni=1 biQni=0 ai!24c0 + nXj=1 cj Qj�1i=0 aiQji=1 bi 35 : (8)Example. 5.4 Consider the following recurrence equation:T (n) = � 1; if n = 0;2T (n� 1) + 2n; if n � 1. (9)This is same as 1 � T (0) = 1;1 � T (n)� 2 � T (n� 1) = 2n; ifn � 1:10



This is an example of 6 with an = 1; bn = 2:By 7 we may choose f0 = 1;fn = 12n ; if n � 1:Multiplying by fn ( 12n ) gives the new equationT (0) = 1;T (n)2n � T (n)2n�1 = 1; if n � 1:Using telescopy we getT (n)2n � T (n�1)2n�1 = 1T (n�1)2n�1 � T (n�2)2n�2 = 1...T (1)2 � T (0)1 = 1T (n)2n �T (0) = nHence T (n) = (n+ 1)2n:5.5 Range and Domain TransformationsNow, we examine how to transform a sequence so that the transformed se-quence becomes more recognizable|more familiar. The function T maps theinteger n in its domain to a real T (n) in its range. We call a transformationon the values of the sequence T (n) a range transformation and a transforma-tion on the indices n a domain transformation. We illustrate the ideas usingexamples:Domain TransformationExample. 5.5 Consider the following recurrence equation:T (n) = ( c1; if n = 1;2T (n2 ) + c2n; if n > 1. (10)11



Let us use the following domain transformation �rstn = 2k; (k = lg n) hence S(k) = T (n) = T (2k):The above equation becomesS(k) = � c1; if k = 0;2S(k � 1) + c22k; if k � 1.Now we can use telescoping to get the following solution:S(k) = T (2k) = 2k (c2k + c1) :Back-substituting n for 2k and lg n for k, we conclude thatT (n) = n(c2 lg n+ c1):Range TransformationExample. 5.6 Consider the following (pseudo-non-linear) recurrence equa-tion: T (n) = � 1; if n = 0;3 (T (n� 1))2 ; if n � 1. (11)Let us use the following range transformation �rst:S(n) = log3 T (n); �3S(n) = T (n)� :We may rewrite the recurrence asS(n) = � 0; if n = 0;2S(n � 1) + 1; if n � 1.Using multiplier fn = 12n , we getS(0)20 = 0S(n)2n � S(n�1)2n�1 = 12nUsing telescopy, we getS(n)2n � S(0)20 = nXi=1 � 12i� = (1=2) � (1=2)n+11� (1=2) = 1 � �12�nHence, S(n) = 2n � 1:Hence, T (n) = 3S(n) = 32n�1:12



6 Examples6.1 Example: Divide-and-ConquerAn important class of recurrence equations results from algorithms based onthe `divide-and-conquer ' paradigm; such algorithms consist of three steps:1. divide: Break the problem of size n into a smaller subproblems eachof size nb , using no more than g(n) time.2. recur: Recursively solve each of the a subproblems using a � T (nb )time.3. marry: Combine the solutions to the subproblems to get a solutionto the original problem, using no more than h(n) time.The recurrence equation is of the form:T (n) = a � �nb�+ f(n); where f(n) = g(n) + h(n): (12)Use the following domain-transformation �rstn = bm (m = logb n):The above equation becomesT (bm) = a � T (bm�1) + f(bm):Using the multiplying factor fm = ( 1am ) we getT (bm)am = T (bm�1)am�1 + f(bm)am :Using telescopyT (bm)am � T (bm�1)am�1 = f(bm)amT (bm�1)am�1 � T (bm�2)am�2 = f(bm�1)am�1...T (b)a � T (1)1 = f(b)aT (bm)am �T (1) = Pmi=1 f(bi)ai13



Hence T (bm) = am "T (1) + mXi=1 f(bi)ai # :assumption f is a multiplicative function; that is, f has the following prop-erty f(mn) = f(m) f(n):Example of a multiplicative function is f(n) = nc. Hencef(bi) = (f(b))1 :Rewrite the previous function asT (bm) = am 24T (1) + mXi=1  f(b)a !i35 :Let � =  f(b)a ! :Then T (n) = am "T (1) + mXi=1 �i# = am �T (1) + ��m � 1�� 1 � :There are three cases to consider� case.1 a > f(b); that is, � < 1. ThenT (n) = am �O(1) = O (am) = O �alogb n� = O �nlogb a� :� case.2 a = f(b); that is, � = 1. ThenT (n) = am �O(m) = O (amm) = O �alogb n logb n� = O �nlogb a logb n� :� case.3 a < f(b); that is, � > 1. ThenT (n) = am �O (�m) = O (f(b)m) = O �f(b)logbn� = O �nlogb f(b)� :14



6.2 Example: Randomized Divide-and-ConquerLet us consider a randomized algorithm (i.e. algorithm involving coin-tosses), also based on the `divide-and-conquer ' paradigm; such an algorithmconsists of three steps:1. random-divide: Break the problem of size n into 2 smaller subprob-lems as follows: �rst choose a number i (1 � i � n�1) with probability1n�1 ; let the �rst subproblem be the one consisting of the �rst i elements,and the second, consisting of the remaining n�i elements. The divisionstep takes no more than g(n) amount of time.2. recur: Recursively solve each of the 2 subproblems using Tavg(i) +Tavg(n� i) time.3. marry: Combine the solutions to the subproblems to get a solutionto the original problem, using no more than h(n) time.Let us assume that g(n) + h(n) = c � n.Hence the recurrence equation will beTavg(n) = n�1Xi=1 � 1n� 1 [Tavg(i) + Tavg(n� i)]�+ c � n:This can be rewritten asTavg(n) = 1n�1 Pn�1i=1 (Tavg(i) + Tavg(n� i)) + c � n= 1n�1 �Pn�1i=1 Tavg(i) +Pn�1i=1 Tavg(n� i)�+ c � n= 1n�1 �Pn�1i=1 Tavg(i) +Pn�1j=1 Tavg(j)�+ c � n= 2n�1 �Pn�1i=1 Tavg(i)�+ c � n:Or (n� 1)Tavg(n) = 2 n�1Xi=1 Tavg(i)!+ c � n(n� 1): (13)Substituting n+ 1 for n, we getnTavg(n+ 1) = 2 nXi=1 Tavg(i)!+ c � n(n+ 1): (14)15



Subtracting equation 13 from equation 14,nTavg(n+ 1)� (n� 1)Tavg(n) = 2Tavg(n) + 2c � n:Simplifying the above equationnTavg(n+ 1) = (n+ 1)Tavg(n) + 2c � n:Or Tavg(n + 1)n+ 1 � Tavg(n)n = 2cn + 1 :Using telescopy we getTavg(n+1)n+1 � Tavg(n)n = 2cn+1Tavg(n)n � Tavg(n�1)n�1 = 2cn...Tavg(2)2 � Tavg(1)1 = 2c2Tavg(n+1)n+1 �T (1) = 2cn12 + 13 + � � �+ 1n+1oHence Tavg(n + 1) = (n + 1) [Tavg(1) + 2c (Hn+1 � 1)] :Or, Tavg(n) = n [Tavg(1) + 2c (Hn � 1)] :The approximate size of the nth harmonic numberHn is a well-known quantityHn = lnn+ 
 + 12n �O �n�2� :Here 
 = 0:57721 56649 : : : is Euler's constant. HenceTavg(n) = n h2c �lnn+ 
 + 12n �O (n�2)�+ Tavg(1) � 2ci= (2 ln 2)c n lg n+ (2c(
 � 1) + Tavg(1))n + c�O(n�1)= 1:39c n lg n+ [Tavg(1)� 0:85c] n+ c�O(n�1)= O(n lg n): 16



7 End NotesThese notes are about 12 years old. I originally wrote them for the master'slevel graduate course in algorithms and had derived these notes from myearlier notes from graduate school, a survey paper by Leuker and ideas dueto Monier, Bentley and Saxe. Clearly, there are some new interesting ideasthat have evolved in the intervening years. The readers are urged to consultthese more up-to-date results.

17


