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DNA sequencing

(HiSeq 2000 from Illumina, Inc)

⇓
200 GBp in 8 Days

≈ 50x coverage of a human genome of 100Bp sequence reads
⇓

No human halpotypic genome assembly yet
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Shotgun sequence assembly

DNA sequence is sheared into a large number of small fragments.

Assume : If two sequence reads share the same string of letters
(overlap), then they might have originated from the same genomic
location.

Goal : Join the sequences together using a computer program
called assembler (similar to solving a jigsaw puzzle).

Use long-range data to resolve complex genomic structures.
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Why is de-novo sequence assembly so difficult?

1 NP-complete: natural reduction to the Shortest Superstring
Problem (easy for totally random DNA sequences).

2 Genomic structures: repeated regions, rearrangements,
segmental duplications etc.

3 Sequencing-Technology Dependent: algorithms must change to
accommodate changes to read-length or nature and availability of
long-range information.
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The Sense of the Approximation
A wicked problem in search for a correct solution

Definition (Wicked Problem)

A wicked problem is a problem that is difficult or impossible to solve
because of incomplete, contradictory, and changing requirements that
are often difficult to recognize.

Incomplete, contradictory, changing requirements = genome structure
⇓

Not complete and biologically correct mathematical formulation!
⇓

Difficult to have a sense of the approximation of the sequence relative
to the true sequence as they are being assembled
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Genome Sequencing – History & Accuracy

Did we solve the problem?
1995: Haemophilus Influenzae - 1.8 Mbp, ∼ 30h.

2000: Drosophila - 120 Mbp, ∼ week.

2001: 1st Human Genome draft - 3 billion bp
(genotypic), cost: $3 billion!.

How well did we do?
High rates of misassembly.
[Semple, Bioinformatics for Geneticists, 2003]

“Revolution Postponed: Why the Human Genome Project
Has Been Disappointing"
[Stephen S. Hall, Scientific American, 2010]

Need for Quality Assessment! ⇒ Assemblathon (but only
very recently, 2011).

Why did we not try to do better?
“Since the problem is NP-hard (shortest superstring), any efficient reconstruction
procedure must resort to heuristics.” [Kececioglu and Myers, Algorithmica, 1995].
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List of current Sequence Assemblers

Name Read Type Algorithm Reference
SUTTA long & short B&B (Narzisi and Mishra, 2010)
Arachne long OLC (Batzoglou et al., 2002)
CABOG long & short OLC (Miller et al., 2008)
Celera long OLC (Myers et al., 2000)
Edena short OLC (Hernandez et al., 2008)
Minimus (AMOS) long OLC (Sommer et al., 2007)
Newbler long OLC 454/Roche
CAP3 long Greedy (Huang and Madan, 1999)
PCAP long Greedy (Huang et al., 2003)
Phrap long Greedy (Green, 1996)
Phusion long Greedy (Mullikin and Ning, 2003)
TIGR long Greedy (Sutton et al., 1995)
ABySS short SBH (Simpson et al., 2009)
ALLPATHS short SBH (Butler et al., 2008)
ALLPATHS-LG short SBH (Gnerre et al., 2010)
Contrail short SBH (Schatz M. et al., 2010)
Euler long SBH (Pevzner et al., 2001)
Euler-SR short SBH (Chaisson and Pevzner, 2008)
Ray long & short SBH (Boisvert et al., 2010)
SOAPdenovo short SBH (Li et al., 2010)
Velvet long & short SBH (Zerbino and Birney, 2008)
PE-Assembler short Seed-and-Extend (Nuwantha and Sung, 2010)
QSRA short Seed-and-Extend (Bryant et al., 2009)
SHARCGS short Seed-and-Extend (Dohm et al., 2007)
SHORTY short Seed-and-Extend (Hossain et al., 2009)
SSAKE short Seed-and-Extend (Warren et al., 2007)
Taipan short Seed-and-Extend (Schmidt et al., 2009)
VCAKE short Seed-and-Extend (Jeck et al., 2007)

Bud Mishra (NYU) August 2011 11 / 49



Introduction SUTTA assembler Feature-Response Curve Base-Calling and Assembly Conclusion

Issues and Challenges
with current assemblers

Sequencing Technology dependent.

Difficult to integrate other
bio-technologies (e.g., optical maps).

Validation as a post-process.

Challenges of new sequencing technology:

Short read lengths (up to 500 bps).

Lots of data (requires distributed
systems).

Need for novel and more flexible assembly platforms

Bud Mishra (NYU) August 2011 12 / 49
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Goals

1 Better formulation ⇒ constrained optimization.
2 Better algorithms ⇒ more accurate.
3 More flexibility ⇒ easy to integrate data from other

bio-technologies.
4 Simultaneous validation ⇒ using score functions.
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De Novo Genome Assembly

"An assembler must either "guess" (often incorrectly) the correct
genome from among a large number of alternatives (a number that
grows exponentially with the number of repeats in the genome) or
restrict itself to assembling only the non-repetitive segments of the
genome, thereby producing a fragmented assembly."
[Pop and Salzberg, Trends in Genetics , 2008]

We promote an approach with the following features:
1 Exhaustive search (not greedy).
2 Prune implausible overlays quickly (Branch-and-Bound).
3 Score-functions: combine different structural properties (e.g.,

transitivity, coverage, physical maps, etc).
4 Independent of the particular technology.
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SUTTA
Illustration
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1 Generate LEFT and RIGHT trees for the start read.
2 Best LEFT path is concatenated with the root and the best RIGHT path to create

a globally optimal contig.
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Overlap Score
(Weighted transitivity)

Idea: if read A overlaps read B, and read B overlaps read C, we will
score those overlaps strongly if in addition A and C also overlap.

if(π(A,B) ∧ π(B,C))then{Sπ(A,B,C)
= Sπ(A,B)

+ Sπ(B,C)
+ (π(A,C)?Sπ(A,C)

: 0)}

sA

B hang

eA

Bs
B

A

CsC eC

eB

This score cannot resolve repeats or haplotypic variations. Solution :
augment the score with information for mate-pairs distances or optical
map alignment to put an appropriate reward/penalty term.
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Lookahead
How to resolve repeats

Scenario : A potential repeat boundary between reads A, B and C. Read A overlaps both
reads B and C, but B and C do not overlap each other.
Observation : No decision can be made at this point on which read to keep/prune.
Idea: Chose between reads A and B based on how well the mate-pairs (or other
long-range data) in their subtree satisfy the length constraints.
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Staphylococcus Epidermidis - 2,616,530 bp
(SUTTA DotPlot)

*3

484039*20
44294

*317

*3032
8

*9

*411

*12

2

26
*27
13
*3550466
*3819
*45*17
43*5242*5334*51*493611

15
21
*28*14
10
*23

5

*33*24
*18
16

22*47*2537545556575859606162636465

S
_
e
p
i
d
e
r
m
i
d
i
s
_
R
P
6
2
A
_
c
h
r
o
m
s
o
m
e

S
_
e
p
i
d
e
r
m
i
d
i
s
_
R
P
6
2
A
_
p
l
a
s
m
i
d

Q
R
Y

REF

No lookahead

*10

*333836*23

*5

8

*29*39309

43*11

*19

*14

2

*1

7
*3522
28*17
41*454032*443413
253

24
*4

*15

31*2712
*26

6

*21

46*2016
1849534842505147523754

S
_
e
p
i
d
e
r
m
i
d
i
s
_
R
P
6
2
A
_
c
h
r
o
m
s
o
m
e

*
S
_
e
p
i
d
e
r
m
i
d
i
s
_
R
P
6
2
A
_
p
l
a
s
m
i
d

Q
R
Y

REF

With lookahead

Num. of reads: 60, 761; Avg read length: 900.2; Coverage: 19.9X
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Lookahead
How to resolve dead-ends and bubbles

The lookahead procedure can easily handle dead-ends and bubbles.

Dead-ends : short branches of overlaps
that extend only for very few steps
(associated with base errors located close
to the read ends).

Bubbles : false branches that reconnect
after a small number of steps (caused by
single nucleotide difference carried by a
small subset of reads).

Strategy : prune all the branches that are
shorter than Wde.

Strategy : check if branches converge after
Wbb steps. Keep the branch with higher
coverage.
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The need for Quality Assessment
(motivation)

Definition (N50)

Given M contigs of size c1, c2, . . . , cM , N50 is defined as the largest number L
such that the combined length of all contigs of length ≥ L is at least 50% of
the total length of all contigs.

Problem : emphasizes only size, without capturing quality!
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Many short contigs ⇒ too short for annotation efforts.

Other metric: count the number of mis-assembled contigs by
alignments to the reference genome (if available). Problem : error types
are not weighted accordingly.
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Feature-Response Curve

Goal : evaluate the structural properties of the contigs and of the reads
arranged in the layout.

The Feature-Response curve characterizes the sensitivity
(coverage) of the sequence assembler as a function of its
discrimination threshold (number of features/errors).

Features include:

(M) mate-pair orientations and separations,

(K ) repeat content by k -mer analysis,

(C) depth-of-coverage,

(P) correlated polymorphism in the read
alignments, and

(B) read alignment breakpoints to identify
structurally suspicious regions of the
assembly.
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Feature-Response curve Results

Escherichia coli 4.6 Mbp
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Staphylococcus epidermidis 2.6 Mbp
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Experimental Comparison
(De Novo Genome Assembly Results)
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Kmer Feature-Response curve
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Misassembly Feature-Response curve
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Feature-Response curve comparison by feature type

7 different genomes (Bacterial and
Human).

Simulated and real data.

16 different sequence assemblers (both
for old Sanger and next-generation
Illumina sequencing technology).

All the generally accepted assembly
paradigms (Greedy, OLC, SBH,
Seed-and-Extend, and B&B).

⇓
Quality and performance of the existing

assemblers varies dramatically!
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PCA and ICA

1 PCA to remove redundant features .
2 ICA to select the most independent (i.e. important) features .

Long reads : 21 organisms with length from ∼11
Kbp to ∼8 Mbp assembled with 5 assemblers. A
total of 84 assemblies were used in the analysis.

Short reads : 5 datasets with coverages ranging
from 30× to 130× assembled with 5 assemblers.

A total of 82 assemblies were used in the analysis.
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FRCurve on ICA-selected features
Comparing 5 assemblers on the Brucella suiss dataset

All features ICA-selected features (6 out of 13)

Observation : focus on the most informative features leads to
better analysis.
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Re-sequencing
Motivation

Conventional re-sequencing pipeline

Proposed re-sequencing pipeline

Idea: Performing both base-calling and alignment
in a single unified step.
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TotalReCaller
(joint work with Fabian Menges)

Reference

Reads

A Beam Search algorithm combining information from:

raw sequencing data (intensities) and

alignment to a reference genome (Based on Burrows-Wheeler
transform and Ferragina-Manzini search).

=⇒ Combined base-calling and base-by-base alignment.
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Base-calling by building a tree
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Branch: For each sequence in the solution space Nk−1 all four
possible successor sequences are generated;

Bound: Each sequence in Nk is evaluated according to the score
function g (combining intensity and alignment information);

Pruning: All but the best (highest score) l ∈ N sequences are
pruned, thus reducing the size of Nk to |Nk | = l .
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Results: E.Coli
Error rate
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Results: E.Coli
SNPs specificity and sensitivity
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Outline

1 Introduction
Genome Sequencing and Assembly
Issues and Challenges

2 SUTTA assembler
Algorithm details (Scoring, Pruning & Lookahead)

3 Feature-Response Curve
Motivation
Results

4 Base-Calling and Assembly
Re-sequencing (TotalReCaller)
Integrating Base-Calling and Assembly
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Synergy: TotalReCaller + SUTTA
Integrating Base-Calling, Error Correction and Assembly

De Novo assembly pipeline to take advantage of both SUTTA and
TotalReCaller capabilities:

1 DRAFT ASSEMBLY: generate with SUTTA a draft assembly using
the available reads.

⇓

2 BASE-CALLING & ERROR CORRECTION: given the reads intensity
files and the draft assembly (generated in step 1), run
TotalReCaller to generate a new set of reads with higher accuracy.

⇓

3 SEQUENCE ASSEMBLY: Run SUTTA on the new set of reads
generated in step 2 to create an improved assembly.
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TotalReCaller + SUTTA pipeline results
E. coli 125bp reads (Illumina Genome Analyzer II)

Assembler #correct #errors #ctgs≥10K N50 Max Mean Cov. Cov.
(µ kbp) (kbp) (kbp) (kbp) (kbp) all (%) correct (%)

SUTTA 339 49 (13.8) 147 (37.9%) 24.1 105.6 11.6 97.4 82.7
SUTTA (draft) 168 21 (20.9) 100 (52.9%) 54.6 221.5 24.1 98.2 88.6
SUTTA (ref.) 154 25 (31.4) 86 (48.0%) 71.7 141.6 25.4 98.2 81.3

SOAPdenovo (ctg) 245 80 (18.6) 52 (42.3%) 35.7 100.1 14.1 98.4 66.3
SOAPdenovo (scaf) 106 17 (99.6) 53 (45.3%) 117.6 312.5 37.1 99.3 61.9
ABySS 92 13 (80.9) 54 (49.5%) 134.4 312.5 40.7 102.9 79.7
Velvet 126 60 (32.1) 100 (53.8%) 54.8 148.8 24.5 98.5 56.9

Table: Assembly results (contigs) for E. coli (4.6 Mbp) dataset (100X 125bp
reads from one lane of Genome Analyzer II).

Correct contig = align to the reference genome along the whole length
with at least 95% base similarity

SUTTA achieves higher coverage using correctly assembled contigs.
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Conclusion
(Contributions)

1 A new sequence assembler (SUTTA) based on the
branch-and-bound method that allows to perform assembly and
validation concurrently.

2 New metric that more faithfully captures the trade-off between
assembly quality and contiguity (Feature-Response curve ).

3 A new Base-Caller (TotalRecaller ) that has the ability to
concurrently perform base-calling, alignment, error correction and
SNP detection.
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Feature works

SUTTA:

Scaling to large assembly projects ⇒ distributed computing.

Optical Maps integration ⇒ dovetailing between short and long
range data.

Haplotypic (Human) genome assembly?

FRCurve :

Increase specificity ⇒ reduced number of false-positive features.

New specialized features ⇒ other technologies (not just
mate-pairs).
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NARZISI G. and MISHRA B.: Comparing De Novo Genome Assembly:
The Long and Short of It. PLoS ONE , April 2011.
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THE END !
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Sequence Assembly Problem

Definition (Sequence Assembly Problem (SAP))

Given a collection of fragment reads F = {ri}
N
i=1 and a tolerance level (error rate) ǫ, find a

reconstruction R whose layout L = 〈rj1

π1
⇋ rj2

π2
⇋ · · ·

πN−1
⇋ rjN 〉 is ǫ-valid , consistent and such

that the following set of properties (oracles) are satisfied :

1. (Overlap-Constraint (O)) The cumulative overlap score O
of the layout L is optimized:

O(L) =
X

(ri ,rj )∈L
π(ri ,rj )

SO(ri , rj)

2. (Mate-Pair-Constraint (MP)) The cumulative mate-pair
score SMP of the distance between reads in the layout L is
consistent with the mate-pair constraints:

MP(L) =
X

(ri ,rj )∈L
(ri↔rj )

SMP(ri , rj)

3. (Optical-Map-Constraint (OM)) The observed distribution of restriction enzyme sites in the
layout L, Cobs = 〈a1, a2, . . . , an〉, is consistent with the distribution of experimental optical map
data Csrc = 〈b1, b2, . . . , bn〉 (obtained by a restriction enzyme digestion process).

We propose an algorithmic approach that can combine and use concurrently all the oracles
while searching the optimal layout.
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Repeats

If we look for a reconstruction of minimum length, the
reconstructed string can have many errors due to repeats.
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Fragments and Overlaps

Fragments :

A set of fragments/reads F = {f1, f2, . . . , fN}, s.t. fi ∈ {A, C, G, T}∗.

Each fragment is represented as pairs of integers fi = (si , ei), i ∈ [1, |F |] where
1 ≤ si , ei ≤ |R|, and R is the reconstructed string (the order of si and ei encodes the
orientation of the fragment).

Overlaps :

Use Smith-Waterman algorithm to compute the best alignment between a pair of strings.

A π.sAAπ.e Aπ.e

Bπ.s π.eB Bπ.s π.eB

hangA
B hang

B

hangA
B hang

B

A A

Normal

π
Innie

.s

predicate suffixπ(f ) on a fragment f s.t.:

suffixπ(f ) =



true iff suffix of f participates in the overlapπ
false iff prefix of f participates in the overlapπ
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Layout Representation

Let us define the layout L associated to a set of fragments
F = {f1, f2, . . . , fN} as follows:

L = f1
π1
⇋ f2

π2
⇋ f3

π3
⇋ · · ·

πN−1
⇋ fN

where there are no containments (contained reads can be initially
removed and then added later after the layout has been created)

Definition (Consistency Property)

A layout L is consistent if the following property holds for
i = 2, . . . , N − 1:

πi−1
⇋ fi

πi
⇋ iff suffixπi−1(fi) 6= suffixπi (fi)
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Layout
(Illustration)

Layout for a set of fragments F = {A, B, C, D, E , F , G} with sequence
of overlaps πN

(A,B), π
I
(B,C), π

N
(C,D), π

I
(D,E), π

N
(E,F ), π

N
(F ,G)

B
C

D
E

F
G

A

sp sp sp sp sp spspB C D E F GA
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Greedy Strategy
(TIGR 1995, Phrap 1996, CAP3 1999)

1 Pick the highest scoring overlap.
2 Merge the two fragments (add this new sequence to the pool of sequences).
3 Heuristically correct regions of the overlay in some plausible manner (whenever possible).
4 Regions that do not yield to these error-correction heuristics are abandoned as

irrecoverable and shown as gaps.
5 Repeat until no more merges can be done.
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Overlap-Layout-Consensus
(CELERA 2000, Minimus 2007)

Idea: Construct a graph in which nodes represent reads and edges indicate overlaps.
Goal: Need to solve an Hamiltonian path !

Strategy :
1 Remove contained and transitivity edges.
2 Collapse "unique connector" overlaps (chordal subgraph with no conflicting edges).
3 Use mate-pairs to connect and order the contigs.

Contigs correspond to nonintersecting simple paths in the reduced graph.
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Sequencing by Hybridization
(EULER 2001, Velvet 2008)

Idea: Break the reads into overlapping n-mers (an n-mer is a substring of length n). Build a
DeBruijn graph in which each edge is an n-mer and the source and destination nodes are
respectively the n − 1 prefix and n − 1 suffix of the corresponding n-mer.
Idela Goal : find a path that uses all the edges (an Eulerian path) → linear time algorithm
Real Goal : Eulerian-superpath: given an Eulerian graph and a sequence of paths, find an
Eulerian path in the Eulerian graph that contains all these paths as sub-paths (NP-hard).
Note : If no n-mer appears more than once in the genome then there exist at least one
Eulerian path.
Problem : Errors in the data can introduce many erroneous edges !

A

CA

GC

AC

A

C

A

C
CG

G

AA

C

AA

DeBruijn graph for the list L = {AAA, AAC, ACA, CAC, CAA, CGC, GCG}. The Euler path is:
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SUTTA Pseudocode

Algorithm 1 : SUTTA - pseudo code
Input : Set of N reads
Output : Set of contigs

B := ⊘; /* Forest of D-trees */1

C := ⊘; /* Set of contigs */2

F :=
⋃N

i {ri}; /* All the available reads/fragments */3

while (F 6= ⊘) do4

r := F .getNextRead();5

if ( ¬isUsed(r ) ∧ ¬isContained(r ) ) then6

DT := create_double_tree(r );7

B := B ∪ {DT };8

Contig CT G := create_contig(DT );9

C := C ∪ {CT G};10

CT G.layout(); /* Compute contig layout */11

F := F \ {CT G.reads}; /* Remove used reads */

end12

end13

return C ;14
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Node expansion
(High-level Description)

1 Start with a random read (It will be the root of a tree; Use only the
read that has not been "used" in a contig yet, or that is not
"contained").

2 Create RIGHT Tree: Start with an unexplored leaf node (a read)
with the best score-value; Choose all its non-contained
"right"-overlapping reads and expand the node by making them its
children; Compute their scores. (Add the "contained" nodes along
the way, while including them in the computed scores; Check that
no read occurs repeatedly along any path of the tree). STOP
when the tree cannot be expanded any further.

3 Create LEFT Tree: Symmetric to previous step.
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Node expansion
(Branch-and-Bound)

Algorithm 2 : Node expansion
Input : Start read r0, max queue size K , percentage T of top ranking

solutions, dead-end depth Wde, bubble depth Wbb, mate-pair
depth Wmp

Output : Best scoring leaf

V := ⊘; /* Set of leaves */1

L := {(r0, g(r0))}; /* Live nodes (priority queue) */2

while (L 6= ⊘) do3

L := Prune(L, K , T ); /* Prune the queue */4

ri := L.popNext(); /* Get the best scoring node */5

E := Extensions(ri); /* Possible extensions */6

E(1) := Transitivity(E , ri ); /* Transitivity pruning */7

E(2) := DeadEnds(E(1), r0, Wde); /* Dead-end pruning */8

E(3) := Bubbles(E(2), r0, Wbb); /* Bubble pruning */9

E(4) := MatePairs(E(3), r0, Wmp); /* Mate pruning */10

if (|E(4)| == 0) then11

V := V ∪ {ri}; /* ri is a leaf */12

else13

for (j=1 to |E(4)|) do14

L := L ∪ {(rj , g(rj))};15

end16

end17

end18

return maxri∈V {g(ri)} ;19

Bud Mishra (NYU) August 2011 46 / 49



Appendix Appendix

Transitivity pruning

Observation : do not waste time expanding nodes that (due to
transitivity) will be explored at the next level in the tree.
Idea: delay expansion of the "last" node/read involved in a
transitivity relation.
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Strategy for selecting next sub-problem

Best First Search (BeFS):
always select among the live
subproblems the one with best
score.

Depth First Search (DFS):
always select among the live
subproblems the one deepest in
the tree.

Combined strategy : Use DFS as overall search strategy and BeFS
when choice is to be made between nodes at the same level.

Implementation : priority queue with precedence relation between two
nodes x and y :

x ≺ y iff







depth(x) > depth(y)
or

depth(x) = depth(y) ∧ score(x) > score(y)

Because BeFS is applied locally at each level the score is optimized
concurrently.
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Zig-Zag function

Problem: given the set of overlaps O for a set of reads F, find the
overlap (or set of overlaps) for a pair of reads (r1, r2) (if one exists).

Naive strategy: takes time O(n2) where n = |O|.

Graph approach: takes time O(l) where l is the size of the
longest adjacency list in the graph.

Fast approach: hashing!

H(x , y) =
(x + y)(x + y − 1)

2
+ (1 − y) (1)

|H(x , y)| ≤ c, where c is function of the read size, genome
structure and overlap strategy (Smith-Waterman, exact
match,etc.).
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Distributed Computing Approach

(Global Process)

Multiple Overlapper Instances

(distributed over a claud or cluster)

Queries

       SUTTA 

Distribute overlapper over a cloud computing environments (e.g., Amazon Elastic Compute
Cloud). SUTTA as global single process requesting the overlap information to the multiple
distributed overlapper instances.
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Linear filter for intensities
Crosstalk, fading and lagging

Cycle: k ∈ N:

Input: Raw intensities: Ik =
(
Ik
A Ik

C Ik
G Ik

T

)⊤

Crosstalk matrix: Ak ∈ R
4×4

Lagging matrix: Υk ∈ R
4×4

Output: Filtered intensities:

(
X k−1

X k

)

=

(
Ak−1 0
Υk Ak

)−1

︸ ︷︷ ︸

Gk∈R8×8

·

(
Ik−1

Ik

)
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Raw and Filtered Intensities
Result
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Base-by-base alignment

Based on Burrows-Wheeler transform and Ferragina-Manzini search
(like Bowtie, BWA, SOAP2, etc.). Closely related to Suffix trees:

Example: Reference T = “TACAGATTACAC$”
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Score function

Pk (B | X k ) =
Pk (X k | B)Pk (B)

Pk(X k )
with B ∈ {A, C, G, T}

=
Pk (X k | B)Pk (B)

Pk (X k | B)Pk (B) + Pk (X k | ¬B)Pk(¬B)

=
1

1 + Pk (X k |¬B)Pk (¬B)
Pk (X k |B)Pk (B)

=
1

1 +
Pk (X k | ¬B)

Pk (X k | B)
︸ ︷︷ ︸

Intensities

·
Pk (¬B)

Pk (B)
︸ ︷︷ ︸

Sequence alignment
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