One Thousand and One Arabian Genomes & Beyond A Human Journey

Bud Mishra

Room 1002, 715 Broadway, Courant Institute, NYU, New York, USA

Jointly with Giuseppe Narzisi (Graduate Student, Courant)

・ロト ・回ト ・ヨト ・ヨト

Whole-Genome Shotgun Sequence Assembly An Explosion Assemblers Assembly Paradigms

A Human Journey

The lower valley of the Omo (in southwest Ethiopia) is believed to be the birth place of modern humans.

- Fossils belonging to the genera *Australopithecine* and *Homo* have been found at several archaeological sites here as well as tools made from quartzite, the oldest of which date back to about 2.4 million years ago.
- This valley has the largest diversity of ethnically different groups in the whole of Ethiopia and possibly in Africa. There are more than 16 different languages spoken (excluding dialects), belonging to two important linguistic lines: *Nilo-Saharan* and *Afro-Asiatic*.

(日) (四) (三) (三)

Whole-Genome Shotgun Sequence Assembly An Explosion Assemblers Assembly Paradigms

Bab-El-Mandeb

From northern Africa, 125,000 years ago, a group travelled across a green Sahara through the open northern gate, up to the Nile to the Levant. The branch that reached the Levant died out by 90,000 years ago during a global freeze-up.

This region was later reoccupied by Neanderthal Man.

Later 85,000 years ago, another group crossed the mouth of the Red Sea — "Bab-El-Mandeb" ("the Gates of Grief ")— prior to travelling as beach-combers along the southern coast of the Arabian Peninsula toward India.

This group is our ancestral population.

(口)

From our genomes, we can reconstruct this history...

But also, our complex traits, genetic diseases, and future of our species...

And how we can/should shape our collective destiny!

- North-East Africa, Arabian Peninsula, Southern and South-East Asia, and Australasia...
- Rift Valley, Yemen, Oman, Emirates, Jharkhand (India), Andaman & Nicobar (India), Srilanka, Melanesia & Australia.

・ロ・・ (日・・ (日・・ (日・)

Methods Results

Conclusions and Discussions

$[WGSA \mapsto GWAS]$; (

Whole-Genome Shotgun Sequence Assembly An Explosion Assemblers Assembly Paradigms

The Studies and Results

A subject have the thy call shortly are writen expected for ranker dates with a proving a stratistical common 50% through outside the province of angular with an is when a strategies and the interface of the strategies and the strategies and the strategies when it to a strategies and the strategies and the strategies to common give variants in protect and the strategies and the to common give variants in protect at the films. These gammar will association (WM) makes an extension of the strategies to common give variants in protect at the films. These gammar will association (WM) makes an extension of the strategies and the strategies association (WM) makes and and commond many bit when strategies associated in the strategies and the strategies and the strategies associated (WM) and

B Mishra

SNP alide associated with disasse Nearly gove varies:		
annowidder weekseessee	Distanti 1 Disease	
anorther the state of the second of	Instite + Okene	
AREA STATES AND ADDRESS OF A PROPERTY OF	111 7 Obene	
ARE CAN HIM MANAGER AND THE DOCUMENT	Hall & Healthy	
A DUAL VILLE YOU AND AND A DUAL OF A	Harry & Health	

One Thousand and One Arabian Genomes & Beyond

・ 回 ト ・ ヨ ト ・ ヨ ト

Methods Results Conclusions and Discussions Whole-Genome Shotgun Sequence Assembly An Explosion Assemblers Assembly Paradigms

Discoveries Waiting!

Revolution Postponed

The Human Genome Project has failed so far to produce the medical miracles that scientists promised. Biologists are now divided over what, if anything, went wrong—and what needs to happen next

By Stephen S. Hall

・ロト ・回 ト ・ヨト ・ヨ

Whole-Genome Shotgun Sequence Assembly An Explosion Assemblers Assembly Paradigms

Genomic Dark Matter

Quality of the human genome sequence remains unassessed!

- Most of the reference sequences are genotypic (i.e., non-haplotypic) and lack long range information (i.e., fail to characterize rearrangements, duplications, inversions and translocations).
- Resequencing reveals about 30% of the resquenced reads not aligning to the reference sequences: **Genomic Dark Matter**.
- Optical Mapping, a highthroughput, high-resolution single-molecule system reveals many previously unknown genome structural variants not captured in the reference sequences (Teague et al.)
- Genome-Wide Association Studies based on the currently available genomic data have proven inadequate in explaining common diseases.

・ロト ・回ト ・ヨト ・ヨト

Whole-Genome Shotgun Sequence Assembly An Explosion Assemblers Assembly Paradigms

Shotgun Sequencing

- The DNA sequence of an organism is sheared into a large number of small fragments (8-10x coverage), the ends of the fragments are sequenced (≈ 500 bp), then the resulting sequences are joined together using a computer program called assembler.
- Implicit Assumption: If two sequence reads (strings of letters produced by the sequencing machine) share the same string of letters, then they must have originated from the same genomic location.

Whole-Genome Shotgun Sequence Assembly An Explosion Assemblers Assembly Paradigms

Greed is Good Subprime Sequencing

• Given a set of sequence fragments the object is to find the shortest common supersequence.

Algorithm 1: GREEDY - pseudo code

Input: Set of reads Output: Set of contigs

- 1 Calculate pairwise alignments of all fragments;
- 2 Choose two fragments with the largest overlap;
- 3 Merge chosen fragments;
- 4 repeat
- 5 step 2. and 3.
- 6 until only one fragment is left ;
- 7 return Set of contigs;
- This is a suboptimal approach, but it's our best idea!
- Two other good ideas: OLC (Overlap-Layout-Consensus) and SBH (Sequencing-By-Hybridization).

Methods

Results

Conclusions and Discussions

Whole-Genome Shotgun Sequence Assembly An Explosion Assemblers Assembly Paradiams

Name	Algorithm	Author	Year
Arachne WGA	OLC	Batzoglou, S. et al.	2002 / 2003
Celera WGA Assembler / CABOG	OLC	Myers, G. et al.; Miller G. et al.	2004 / 2008
Minimus (AMOS)	OLC	Sommer, D.D. et al.	2007
Newbler	OLC	454/Roche	2009
Edena	OLC	Hernandez D., et al.	2008
SUTTA	B&B	NYU/Abraxis (unpublished)	2009/2010
TIGR	Greedy	TIGR	1995 / 2003
Phusion	Greedy	Mullikin JC, et.al.	2003
Phrap	Greedy	Green, P.	2002 / 2003 / 2008
CAP3, PCAP	Greedy	Huang, X. et al.	1999 / 2005
Euler	SBH	Pevzner, P. et al.	2001 / 2006
Euler-SR	SBH	Chaisson, MJ. et al.	2008
Velvet	SBH	Zerbino, D. et al.	2007 / 2009
ALLPATHS	SBH	Butler, J. et al.	2008
ABySS	SBH	Simpson, J. et al.	2008 / 2009
SOAPdenovo	SBH	Ruiqiang Li, et al.	2009
SHARCGS	Prefix-Tree	Dohm et al.	2007
SSAKE	Prefix-Tree	Warren, R. et al.	2007
VCAKE	Prefix-Tree	Jeck, W. et al.	2007
QSRA	Prefix-Tree	Douglas W. et al.	2009
Sequencher	-	Gene Codes Corporation	2007
SeqMan NGen	-	DNASTAR	2008
Staden gap4 package	-	Staden et al.	1991 / 2008
MIRA, miraEST	-	Chevreux, B.	1998 / 2008
NextGENe	-	Softgenetics	2008
CLC Genomics Workbench	-	CLC bio	2008 / 2009
CodonCode Aligner	-	CodonCode Corporation	2003 / 2009

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = 釣へで

Whole-Genome Shotgun Sequence Assembly An Explosion Assemblers Assembly Paradigms

Fragments and Overlaps

Fragments:

- A set of fragments/reads $F = \{r_1, r_2, \ldots, r_N\}$, s.t. $r_i \in \{A, C, G, T\}^*$.
- Each read is represented as pairs of integers (*s_i*, *e_i*), *i* ∈ [1, |*F*|] where 1 ≤ *s_i*, *e_i* ≤ |*R*|, and *R* is the *reconstructed* string (the order of *s_i* and *e_i* encodes the orientation of the read).

Overlaps:

 Use Smith-Waterman algorithm to compute the best alignment between a pair of strings.

・ロン ・回 と ・ ヨン・

Whole-Genome Shotgun Sequence Assembly An Explosion Assemblers Assembly Paradigms

Layout Representation

• Let us define the layout *L* associated to a set of reads $F = \{r_1, r_2, ..., r_N\}$ as follows:

$$L = r_1 \stackrel{\pi_1}{\rightleftharpoons} r_2 \stackrel{\pi_2}{\rightleftharpoons} r_3 \stackrel{\pi_3}{\rightleftharpoons} \cdots \stackrel{\pi_{N-1}}{\rightleftharpoons} r_N$$
(1)

where there are no containments (contained reads can be initially removed and then added later after the layout has been created)

Definition (Consistency Property)

A layout L is consistent if the following property holds for i = 2, ..., N - 1:

$$\stackrel{\pi_{i-1}}{\rightleftharpoons} r_i \stackrel{\pi_i}{\rightleftharpoons} \quad iff \quad suffix_{\pi_{i-1}}(r_i) \neq suffix_{\pi_i}(r_i)$$
(2)

• The estimated start positions for each fragment are given by:

$$sp_1 = 1$$
, $sp_i = sp_{i-1} + \pi_{i-1}$. hang_{i-1} if $i > 1$ (3)

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Whole-Genome Shotgun Sequence Assembly An Explosion Assemblers Assembly Paradigms

Layout Representation

Layout for a set of fragments $F = \{A, B, C, D, E, F, G\}$ with a sequence of overlaps $\pi^{N}_{(A,B)}, \pi^{I}_{(B,C)}, \pi^{N}_{(C,D)}, \pi^{I}_{(D,E)}, \pi^{N}_{(E,F)}, \pi^{N}_{(F,G)}$

B Mishra One Thousand and One Arabian Genomes & Beyond

・ロト ・回ト ・ヨト ・ヨト

Methods Results Conclusions and Discussions Whole-Genome Shotgun Sequence Assembly An Explosion Assemblers Assembly Paradigms

Toxic Assembly Recovery Program Shortest Common Superstring Problem

Definition (Sequence Assembly Problem)

Given a collection of fragment/reads $F = \{r_i\}_{i=1}^N$ and a tolerance level (error rate) ϵ , find a reconstruction R whose layout L is ϵ -valid, consistent and such that the following set of properties (oracles) are satisfied :

• Overlap-Constraint (O): The cumulative overlap score of the layout is optimized.

Closely Related to a formulation of assembly in terms of **SCSP**: *Shortest Common Superstring Problem...*

NP-completeness of this formulation becomes a serious Issue.

Whole-Genome Shotgun Sequence Assembly An Explosion Assemblers Assembly Paradigms

Problems Related to Genome Structure Repeats

 If we look for a reconstruction of minimum length, the reconstructed string can have many errors due to repeats.

B Mishra One Thousand and One Arabian Genomes & Beyond

Methods Results Conclusions and Discussions Whole-Genome Shotgun Sequence Assembly An Explosion Assemblers Assembly Paradigms

Greedy Strategy (TIGR 1995, Phrap 1996, CAP3 1999)

- Pick the highest scoring overlap.
- Merge the two fragments (add this new sequence to the pool of sequences).
- Heuristically correct regions of the overlay in some plausible manner (whenever possible).
- Regions that do not yield to these error-correction heuristics are abandoned as irrecoverable and shown as gaps.
- Repeat until no more merges can be done.

B Mishra One Thousand and One Arabian Genomes & Beyond

Methods Results Conclusions and Discussions Whole-Genome Shotgun Sequence Assembly An Explosion Assemblers Assembly Paradigms

Overlap-Layout-Consensus (CELERA 2000, Minimus 2007)

- Idea: Construct a graph in which nodes represent reads and edges indicate overlaps.
- Goal: Need to solve for a Hamiltonian path !
- Strategy:
 - Remove contained and transitivity edges.
 - Collapse "unique connector" overlaps (chordal subgraph with no conflicting edges).
 - Use mate-pairs to connect and order the contigs.

・ロト ・回ト ・ヨト ・ヨト

Methods Results Conclusions and Discussions Whole-Genome Shotgun Sequence Assembly An Explosion Assemblers Assembly Paradigms

Sequencing by Hybridization (EULER 2001, Velvet 2008)

- Idea: Break the reads into overlapping *n*-mers (an *n*-mer is a substring of length *n*). Build a DeBruijn graph in which each edge is an *n*-mer and the source and destination nodes are respectively the *n* 1 prefix and *n* 1 suffix of the corresponding *n*-mer.
- Goal: find a path that uses all the edges (an Eulerian path) → linear time algorithm (however actual performance similar to the overlap-layout-consensus approach).
- **Problem**: Errors in the data can introduce many erroneous edges !

・ロン ・回 と ・ヨン ・ヨン

Whole-Genome Shotgun Sequence Assembly An Explosion Assemblers Assembly Paradigms

DeBruijn graph for the list $L = \{AAA, AAC, ACA, CAC, CAA, CGC, GCG\}$. The Euler path is: $AC \rightarrow CA \rightarrow AC \rightarrow CG \rightarrow GC \rightarrow CA \rightarrow AA \rightarrow AC$

(a)

크

Whole-Genome Shotgun Sequence Assembly An Explosion Assemblers Assembly Paradigms

Higher Coverage ... Shorter Reads

Massively parallel sequencing platforms such as:

- Illumina, Inc. Genome Analyzer,
- Applied Biosystems SOLiD System, and
- 454 Life Sciences (Roche) GS FLX
- IonTorrent Sequencer

Features:

- Typical read size 35-500 bps. Poorer quality base-calls
- Very high coverage (up to 200X).
- Need to assemble millions of reads!

・ロン ・四 ・ ・ ヨン ・ ヨン

Whole-Genome Shotgun Sequence Assembly An Explosion Assemblers Assembly Paradigms

Higher Effective Coverage

- As the read-length increases, the needed overlap ratio parameter gets smaller.
- Even better: shorter repeats and haplotype ambiguities become less of a problem.
- Cost of sample preparation and high resolution sensing!
- How about low-cost low resolution approaches:
 - Optical Mapping (Restn. or Nicking enz. or probes)
 - Mate-pairs (with multiple-length clones)
 - Strobed sequencing
 - Dilution

・ロン ・四 ・ ・ ヨン ・ ヨン

Whole-Genome Shotgun Sequence Assembly An Explosion Assemblers Assembly Paradigms

Optical Maps

- Whole-Genome Optical Map: Ordered Restriction Map; Markers are restriction sites; usually represented by an ordered sequence of restriction fragment length.
- Statistical algorithms (e.g., Gentig[AMS-1999] and Haptig[AM-2005]) construct accurate consensus map, even if the raw input suffers from many corrupting error processes (e.g., sizing, partial digestion, desorption, false-cuts, etc.)
- Gentig and Haptig integrate nicely with SUTTA assembler in a *technologically agnostic* manner.

Methods Results Conclusions and Discussions Whole-Genome Shotgun Sequence Assembly An Explosion Assemblers Assembly Paradigms

Optical Maps

B Mishra One Thousand and One Arabian Genomes & Beyond

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Whole-Genome Shotgun Sequence Assembly An Explosion Assemblers Assembly Paradigms

Intractability (NP-Completeness)

A class of problems having two properties:

- Any given solution to the problem can be verified quickly (in polynomial time); the set of problems with this property is called NP (nondeterministic polynomial time).
- Any NP problem can be converted into this one by a transformation of the inputs in polynomial time.

• There are thousands of important computational problems that represent essentially one problem in many disguises!

・ロト ・回ト ・ヨト ・ヨト

Whole-Genome Shotgun Sequence Assembly An Explosion Assemblers Assembly Paradigms

Intractability (NP-Completeness)

A class of problems having two properties:

- Any given solution to the problem can be verified quickly (in polynomial time); the set of problems with this property is called NP (nondeterministic polynomial time).
- Any NP problem can be converted into this one by a transformation of the inputs in polynomial time.

• There are thousands of important computational problems that represent essentially one problem in many disguises!

・ロ・・ (日・・ (日・・ (日・)

Whole-Genome Shotgun Sequence Assembly An Explosion Assemblers Assembly Paradigms

Intractability (NP-Completeness)

For instance, think about sequence reads as "towns" and overlaps as "roads:" Then Shortest Common Superstring problem is same as visiting all the towns (never more than once) using the roads in a minimum-distance tour.

SCSP(= ShortestCommonSuperstringProb)

- \mapsto HAM(TSP = TravlingSalesmanProblem)
- \mapsto SAT(= Satisfiability)
- $\mapsto \quad LatinSquare$
- $\mapsto \quad Sudoku$

Sudoku

- It is easy to verify if a solution of a Sudoku problem is correct.
- If you exhaustively try all possible configurations, you can find the correct solution, surely. This takes very long (exponential) time.
- Nobody has (yet) a rigorous argument to convince us that there might not be a better/efficient way to solve Sudoku.
- Not all instances are hard: they range from easy, medium and hard to *devilishly hard*.
- But if you try to create a Sudoku puzzle at random, with high probability, it will be easy to solve. Pathologically hard instances can be hard to construct.

Whole-Genome Shotgun Sequence Assembly An Explosion Assemblers Assembly Paradigms

How to Cope with NP-Completeness

- Tell the biologist to think about easier problems.
- Come up with a simpler problem that vaguely looks like the original problem. Solve the easy problem, even if it gives the wrong solution. Tell the biologist to learn to live with incomplete or incorrect solutions.
- Work with the biologist to cheat. Design experiments and technologies so that they only generate easy instances of a hard problem. Solve them correctly.
- Solve the problem by exhaustive search, but learn to constrain the search space intelligently.
- Try all of the above (+ kitchen sink)!

・ロト ・回ト ・ヨト ・ヨト

Whole-Genome Shotgun Sequence Assembly An Explosion Assemblers Assembly Paradigms

Traveling Salesman Problem

A traveling salesman wishes to visit a given number of cities, returning to the starting point in a tour. Each pair of cities incurs a cost proportional to the distance between these cities. The Traveling Salesman Problem (TSP) is to find a tour with minimum costs.

1994	Applegate, Bixby, Chvátal, Cook	7,397
1998	Applegate, Bixby, Chvátal, Cook	13,509 (USA tour)
2001	Applegate, Bixby, Chvátal, Cook	15,112 (D tour)
2004	App., Bixby, Chvátal, Cook, Helsgaun	24,978 (Swe tour)
2006	App., Bixby, Chvátal, Cook, Helsgaun	85,900

Table: TSP Competition.

 These five largest instances were solved by Concorde which is based on branch-and-cut.

・ロ・・ (日・・ (日・・ (日・)

Methods Results Conclusions and Discussions Whole-Genome Shotgun Sequence Assembly An Explosion Assemblers Assembly Paradigms

Traveling Salesman Problem: World Tour

ヘロト ヘロト ヘヨト ヘ

SAT Solver

- Davis-Putnam-Logemann-Loveland algorithm (DPLL)
- Modern SAT solvers come in two flavors: "conflict-driven" and "look-ahead."
 - Conflict-driven solvers augment the DPLL search algorithm with efficient conflict analysis, clause learning, non-chronological backtracking, "two-watched-literals" unit propagation, adaptive branching, and random restarts.
 - Look-ahead solvers have especially strengthened reductions (going beyond unit-clause propagation).
- SAT Competitions: The conflict-driven MiniSAT (the 2005 SAT competition) only has about 600 lines of code.

・ロ・・ (日・・ (日・・ (日・)

Methods Results Conclusions and Discussions Whole-Genome Shotgun Sequence Assembly An Explosion Assemblers Assembly Paradigms

k-SAT

Figure 4 Backbone fractions as a function of a for 2-SAT and 3-SAT. The data were startacted from 3,000-15000 samples for the 2-SAT cases (on the left) with *N* values of 20 (red), 30 (blue), 45 (green), 100 (black), 200 (light blue), and 500 (grange). The results for *N* < 45 were obtained by exhaustive enumerator, assimments, while those for *N* > 100 used a modified Davis–Purtam search procedure. The 3-SAT cases were studied by exhaustive enumerator, in 7500-30000 samples for *N* values of 16(red), 20 (blue), 24 (green), and 28 (black). The vartical lines mark the observed SAT/UNSAT thresholds in the limit $N \rightarrow \infty$. For 2-SAT, data obtained from larger sizes show that the backbone fraction at the threshold the finds towards.

B Mishra One Thousand and One Arabian Genomes & Beyond

<ロ> <同> <同> < 三> < 三> < 三> <

크

Whole-Genome Shotgun Sequence Assembly An Explosion Assemblers Assembly Paradigms

Wicked Problem

- The Sequence Assembly problem is an \mathcal{NP} -hard combinatorial optimization problem.
- The Sequence Assembly problem is claimed to have been successfully (but approximately) solved using greedy and heuristic methods; the greedy approaches exhibit many limitations and low flexibility.
- "Fast" Brute-Force global optimization of the sequence assembly problem is possible!
- SUTTA outperforms many assembly algorithms on bacterial genomes.
- SUTTA has the potential to assemble haplotypic whole-genome sequences.
- SUTTA is technology-agnostic: if the sequencing technology changes, just change the score function.

・ロン ・回 と ・ヨン ・ヨン

Methods Results Conclusions and Discussions Whole-Genome Shotgun Sequence Assembly An Explosion Assemblers Assembly Paradigms

Regroup, Reformulate and Attack

Definition (Sequence Assembly Problem)

Given a collection of fragment/reads $F = \{r_i\}_{i=1}^N$ and a tolerance level (error rate) ϵ , find a reconstruction R whose layout L is ϵ -valid, consistent and such that the following set of properties (oracles) are satisfied :

- Overlap-Constraint (O): The cumulative overlap score of the layout is optimized.
- Local-Read-Distribution-Constraint (R): The observed distribution of fragment reads start point, D_{obs}, has the minimum deviation from the source distribution D_{src}
- Mate-Pair-Constraint (M): The distance between mate-pairs is consistent.
- Optical-Map-Constraint (OM): The observed distribution of restriction enzyme sites, *C*_{obs} is consistent with the distribution of experimental optical map data *C*_{src}.

Constrained Optimization: We suggest an approach that can combine and use all the oracles while searching the optimal layout.

SUTTA: Scoring-and-Unfolding Trimmed Tree Assembler Algorithmic Improvements

Outline

- Whole-Genome Shotgun Sequence Assembly
- An Explosion Assemblers
- Assembly Paradigms

Methods

- SUTTA: Scoring-and-Unfolding Trimmed Tree Assembler
- Algorithmic Improvements

Results

- Assembly comparison
- 3 Conclusions and Discussions

SUTTA: Scoring-and-Unfolding Trimmed Tree Assembler Algorithmic Improvements

SUTTA's approch

- Could potentially lead to an exhaustive search over all possible overlays;
- Tames the computational complexity through a constrained search (Branch-and-Bound) by identifying implausible overlays quickly;
- Uses a score-function (*oracle*) combining different structural properties (e.g., transitivity, coverage, physical maps, etc).

(口)
Outline

Methods

Results Conclusions and Discussions SUTTA: Scoring-and-Unfolding Trimmed Tree Assembler Algorithmic Improvements

SUTTA Illustration

- First generate LEFT and RIGHT trees for the start read.
- Next, the best LEFT path is concatenated with the root and the best RIGHT path to create a globally optimal contig.

Outline

Methods

Results Conclusions and Discussions SUTTA: Scoring-and-Unfolding Trimmed Tree Assembler Algorithmic Improvements

SUTTA Pseudocode

	Igorithm 2: SUTTA - pseudo code
	nput: Set of N reads
	Dutput: Set of contigs
1	F:=⊘; /* Forest of D-trees */
2	:=⊘; /* Set of contigs */
3	$B := \bigcup_{i=1}^{N} \{r_i\};$ /* All the available reads */
4	νhile ($B ≠ ⊘$) do
5	r := B.getNextRead();
6	<pre>if (¬isUsed(r) && ¬isContained(r)) then</pre>
7	$DT := create_double_tree(r);$
8	$\mathcal{F} := \mathcal{F} \cup \{\mathcal{DT}\};$
9	Contig CTG := create_contig(DT);
10	$\mathcal{C} := \mathcal{C} \cup \{\mathcal{CTG}\};$
11	CTG.layout(); /* Compute contig layout */
	$\mathcal{B} := \mathcal{B} \setminus \{\mathcal{CTG}.reads\}; /* \text{Remove used reads }*/$
12	else
	<pre>/* jump to next available read */</pre>
13	end
14	nd
15	eturn C;

B Mishra One Thousand and One Arabian Genomes & Beyond

イロン イヨン イヨン イヨン

= 990

SUTTA: Scoring-and-Unfolding Trimmed Tree Assembler Algorithmic Improvements

Node expansion (High-level Description)

- Start with a random read (It will be the root of a tree; Use only the read that has not been "used" in a contig yet, or that is not "contained").
- Create RIGHT Tree: Start with an unexplored leaf node (a read) with the best score-value; Choose all its non-contained "right"-overlapping reads and expand the node by making them its children; Compute their scores. (Add the "contained" nodes along the way, while including them in the computed scores; Check that no read occurs repeatedly along any path of the tree). STOP when the tree cannot be expanded any further.
- Oreate LEFT Tree: Symmetric to previous step.

(口)

Outline

Methods

Results Conclusions and Discussions SUTTA: Scoring-and-Unfolding Trimmed Tree Assembler Algorithmic Improvements

Node expansion (Branch-and-Bound)

Algorithm 2: Node expension							
Algorithm 5. Node expansion							
Input: Start read r ₀ , max queue size K, percentage T of top							
ranking solutions							
Output: Best scoring leaf							
1 $T := \oslash;$ /* Set of leaves */							
$2 \mathcal{L} := \{(r_0, g(r_0))\}; /* \text{ Live nodes (priority queue) } */$							
3 while $(\mathcal{L} \neq \oslash)$ do							
4 $\mathcal{L} := Prune(\mathcal{L}, K, T);$ /* Prune the queue */							
<pre>5 r_i := L.getNext(); /* Get the best scoring node */</pre>							
$\boldsymbol{6} \qquad \mathcal{L} := \mathcal{L} \setminus \{\boldsymbol{r}_i\};$							
7 if (no reads align with r _i) then							
8 $T := T \cup \{r_i\};$ /* r_i is a leaf */							
9 else							
10 Add contained reads to r _i ;							
/* Branch on r _i generating r _i , r _i , r _{im} */							
11 for (j=1 to M) do							
12 $\mathcal{L} := \mathcal{L} \cup \{(r_{i_j}, g(r_{i_j}))\};$							
13 end							
14 end							
15 end							
16 return $\max_{r_i \in \mathcal{T}} \{g(r_i)\};$							

B Mishra One Thousand and One Arabian Genomes & Beyond

イロン イヨン イヨン イヨン

E.

SUTTA: Scoring-and-Unfolding Trimmed Tree Assembler Algorithmic Improvements

Overlap Score (Weighted transitivity)

• Idea: if read A overlaps read B, and read B overlaps read C, we will score those overlaps strongly if in addition A and C also overlap. This implicitly assumes that the coverage is higher than 3.

$$if(\pi_{(A,B)} \land \pi_{(B,C)}) then\{S_{\pi_{(A,B,C)}} = S_{\pi_{(A,B)}} + S_{\pi_{(B,C)}} + (\pi_{(A,C)}?S_{\pi_{(A,C)}}:0)\}$$
(4)

- A simple generalization for higher coverage is obvious.
- This score cannot resolve repeats or haplotypic variations. Solution: augment the score with information for mate-pairs distances or optical map alignment to put an appropriate reward/penalty term.

Strategy for selecting next sub-problem

Problem: trade-off between keeping the number of explored nodes in the search tree low and staying within the memory capacity.

Best First Search (BeFS): always select among the live subproblems the one with best score.

- Memory problems can arise since this strategy behaves similarly to a Breadth First Search (BFS).
- Checking repeated nodes in a branch is computationally expensive (linear time).

- Theoretically superior: whenever a node is chosen for expansion, a best-score path to that node has been found.
- Depth First Search (DFS): always select among the live subproblems the one with largest level in the search tree.

Memory requirements are bounded by depth \times branching. Use depth-first search interval schemes to check if a read occurs repeatedly along a path (constant time).

Solution: combined strategy. DFS + BeFS.

SUTTA: Scoring-and-Unfolding Trimmed Tree Assembler Algorithmic Improvements

Transitivity pruning

- **Observation**: do not waste time expanding nodes that create suffix-paths of a previously created path.
- Idea: delay expansion of the "last" node/read involved in a transitivity relation.

The expansion of nodes B_2, B_3, \ldots, B_n can be delayed because their overlap with read A is enforced by read B_1 ($h_1 \le h_2 \le \cdots \le h_n$).

Lookahead

Using Long Range Information

- Scenario: A potential repeat boundary between reads *A*, *B* and *C*. Read *A* overlaps both reads *B* and *C*, but *B* and *C* do not overlap each other.
- **Observation**: No decision can be made at this point on which read to keep/prune.
- Idea: Chose between reads *A* and *B* based on how well the mate-pairs in their subtree satisfy the length constraints.

Outline

Methods Results

Conclusions and Discussions

SUTTA: Scoring-and-Unfolding Trimmed Tree Assembler Algorithmic Improvements

Staphylococcus Epidermidis - 2,616,530 bp (SUTTA DotPlot)

• (left plot) no lookahead; (right plot) with lookahead.

Num. of reads: 60, 761; Avg read length: 900.2; Coverage: 19.9X

B Mishra (

One Thousand and One Arabian Genomes & Beyond

(ロ) (同) (E) (E)

SUTTA: Scoring-and-Unfolding Trimmed Tree Assembler Algorithmic Improvements

Hard instances (SUTTA DotPlot)

Chromosome 22 - 5Mbp (simulated reads)

SUTTA: Scoring-and-Unfolding Trimmed Tree Assembler Algorithmic Improvements

Wicked Problem

- The Sequence Assembly problem is an *NP*-hard combinatorial optimization problem.
- The Sequence Assembly problem is claimed to have been successfully (but approximately) solved using greedy and heuristic methods; the greedy approaches exhibit many limitations and low flexibility.
- "Fast" Brute-Force global optimization of the sequence assembly problem is possible!
- SUTTA outperforms many assembly algorithms on bacterial genomes.
- SUTTA has the potential to assemble haplotypic whole-genome sequences.
- SUTTA is technology-agnostic: if the sequencing technology changes, just change the score function.

・ロ・・ (日・・ (日・・ 日・)

Assembly comparison

Outline

- Whole-Genome Shotgun Sequence Assembly
- An Explosion Assemblers
- Assembly Paradigms

Methods

- SUTTA: Scoring-and-Unfolding Trimmed Tree Assembler
- Algorithmic Improvements

Results

- Assembly comparison
- 3 Conclusions and Discussions

Assembly comparison

Benchmark data

Genome	Length (bp)	# reads	avg. read length (bp)	Coverage
Brucella S.	3,315,173	36,276	895.8	9.8
Wolbachia Sp.	1,267,782	26,817	981.9	20.7
Staphylococcus E.	2,616,530	60,761	900.2	19.9

Table: Bacteria benchmark data.

These bacteria have been sequenced and fully finished at TIGR, and all the sequencing reads generated for these projects are publicly available at both the NCBI Trace Archive, and from the CBCB website¹.

¹www.cbcb.umd.edu/research/benchmark.shtml < => < => < => < => < => < => <>

Assembly comparison

Conclusions and Discussions

Genome	Assembler	# contigs	# big contigs	Max contig	Mean big contig	N50 ²	Big contig
			(>10 kbp)	size (kbp)	size (kbp)	(kbp)	coverage (%)
Brucella	Minimus	203	101	89	30	32	93.1
Suis	TIGR	108	67	182	48	57	98.8
	CAP3	1321	35	18	12	4	12.7
	Euler	238	108	82	25	25	82.2
	Phrap	54	23	434	126	199	103.2
	SUTTAC	73	53	268	62	79	99.2
	SUTTA ^a	73	45	396	72	98	98.4
Wolbachia Sp.	Minimus	1545	37	16	13	2	40.7
	TIGR	1080	46	46	20	5	73.6
	CAP3	1661	1	10	10	2	0.7
	Euler	615	0	6	0	1	0
	Phrap	2253	55	64	22	1.8	98.5
	SUTTAC	1089	39	87	26	6	80.8
	SUTTA ^a	1068	27	181	39	6	83.5
Staphylococcus	Minimus	425	86	119	10	19	80.7
Epidermidis	TIGR	94	38	230	68	100	99.8
	CAP3	1219	39	21	13	5	20.2
	Euler	116	54	149	44	55	91.5
	Phrap	86	22	357	123	183	103.9
	SUTTAC	65	33	268	78	98	98.7
	SUTTA ^a	64	24	756	108	148	99.1

 2 N50 = length L_{c} of the largest contig such that the sum of contigs of equal length or longer is at least 50% of

B Mishra

the total length of all contigs.

Assembly comparison

Brucella Suis - 2 chromosomes of 2,107,792 and 1,207,381 bp (Minimus DotPlot)

Minimus's conservative strategy fails to create long contigs.

Num. of reads: 36, 276; Avg read length: 895.8; Coverage: 9.8X

(a)

Assembly comparison

Brucella Suis - 2 chromosomes of 2,107,792 and 1,207,381 bp (Phrap DotPlot)

Phrap's aggressive strategy creates many mis-assemblies.

Num. of reads: 36, 276; Avg read length: 895.8; Coverage: 9.8X

Assembly comparison

Conclusions and Discussions

Brucella Suis - 2 chromosomes of 2,107,792 and 1,207,381 bp (SUTTA DotPlot)

Num. of reads: 36, 276; Avg read length: 895.8; Coverage: 9.8X

・ロト ・回ト ・ヨト ・ヨト

크

Assembly comparison

Conclusions and Discussions

Staphylococcus Epidermidis - 2,616,530 bp (TIGR DotPlot)

TIGR's greedy strategy fails to join some of the contigs and produces few mis-assemblies.

Num. of reads: 60, 761; Avg read length: 900.2; Coverage: 19.9X

(ロ) (同) (E) (E)

Assembly comparison

Conclusions and Discussions

Staphylococcus Epidermidis - 2,616,530 bp (Phrap DotPlot)

Phrap's greedy strategy fails to join some of the contigs and produces many mis-assemblies.

Num. of reads: 60, 761; Avg read length: 900.2; Coverage: 19.9X

Outline

Methods Results

Assembly comparison

Conclusions and Discussions

Staphylococcus Epidermidis - 2,616,530 bp (SUTTA DotPlot)

Num. of reads: 60, 761; Avg read length: 900.2; Coverage: 19.9X

< □ > < □ > < □ > < □ > < □ >

Assembly comparison

Feature-Response curve

- Too often assemblies have been judged only by contig size, with larger contigs preferred without regard to quality. A new and more reliable metric needs to be devised.
- Inspired by the standard receiver operating characteristic (ROC) curve, the Feature-Response curve characterizes the sensitivity (coverage) of the sequence assembler as a function of its discrimination threshold (number of features/errors).

Features include:

- (M) mate-pair orientations and separations,
- (K) repeat content by k-mer analysis,
- (C) depth-of-coverage,
- (P) correlated polymorphism in the read alignments, and
- (*B*) read alignment breakpoints to identify structurally suspicious regions of the assembly.

Assembly comparison

Feature-Response Curve

(computation)

- For a fixed feature threshold ϕ , the contigs are sorted by size and, starting from the longest, only those contigs are tallied, if their sum of features is $\leq \phi$.
- For this set of contigs, the corresponding genome coverage is computed, leading to a single point of the Feature-Response curve.

B Mishra

One Thousand and One Arabian Genomes & Beyond

Assembly comparison

Wicked Problem

- The Sequence Assembly problem is an *NP*-hard combinatorial optimization problem.
- The Sequence Assembly problem is claimed to have been successfully solved using greedy and heuristic methods; the greedy approaches exhibit many limitations and low flexibility.
- "Fast" Brute-Force global optimization of the sequence assembly problem is possible!
- SUTTA outperforms many assembly algorithms on bacterial genomes.
- SUTTA has the potential to assemble haplotypic whole-genome sequences.
- SUTTA is technology-agnostic: if the sequencing technology changes, just change the score function.

Assembly comparison

Short-Read Overlapper

Idea: use exact matching

- allowing approximate matching (using dynamic programming) would significantly increase the number of nonspecific spurious overlaps (sequencing errors)
- drastically faster than approximate matching

Implementation: Trie data structure (prefix-tree)

- index the non-redundant read data set by a prefix-tree (both forward and reverse complement).
- find overlaps by simple in-order traversal of the tree.

Assembly comparison

Conclusions and Discussions

Short-Read Overlapper

B Mishra One Thousand and One Arabian Genomes & Beyond

E

Assembly comparison

Conclusions and Discussions

Comparison of assemblies

Only contigs ≥ 100 bp.

Correct contig (S. aureus): aligned along its whole length with at least 98% base similarity.

 Correct contig (E. coli): fewer than 5 consecutive base mismatches at the termini and at least 95% base similarity.

Genome	Assembler	# correct	# misassembled	N50	Mean	Max	Coverage
			(mean)	(kbp)	(kbp)	(kbp)	(%)
S. aureus	SUTTA	998	11	6.0	2.6	22.8	97
	Edena (strict)	1122	0	6.0	2.6	25.7	98
	Edena (nonstrict)	733	14	9.4	3.7	51.8	97
	Velvet	1093	2	5.4	2.5	22.9	98
	SSAKE	2334	99	2.0	1.2	12.6	97
	SHARCGS	3632	3	1.2	0.76	8.6	97
E. coli	SUTTA	423	7 (18.8)	22.7	10.2	84.5	98
(K12 MG1655)	ABySS	220	13 (33.2)	45.3	20.2	173.8	99
	Edena (strict)	674	6 (13.2)	16.4	6.6	67.1	99
	Velvet	277	9 (52.3)	54.3	15.9	164.2	98
	SSAKE	893	38 (5.8)	11.4	4.9	50.6	99
	EULER-SR	190	26 (37.8)	57.4	21.1	174.0	99
	SOAPdenovo	182	5 (n.a.)	89.0	25.0	n.a.	n.a.

N50 = the largest number L such that the combined length of all contigs of length \geq L is at least 50% of the total

length of all contigs.

B Mishra One Thousand and One Arabian Genomes & Beyond

Assembly comparison

N50 vs. min overlap size k

- The min overlap length k is a determinant parameter and its optimal setting strongly depends on the data (coverage).
- Trade-off between number of spurious overlaps and lack of overlaps.

B Mishra One Thousand and One Arabian Genomes & Beyond

Assembly comparison

http://bioinformatics.nyu.edu/wordpress/projects/sutta/

Outline

- Whole-Genome Shotgun Sequence Assembly
- An Explosion Assemblers
- Assembly Paradigms

Methods

- SUTTA: Scoring-and-Unfolding Trimmed Tree Assembler
- Algorithmic Improvements

Results

Assembly comparison

3 Conclusions and Discussions

Wicked Problem

- The Sequence Assembly problem is an *NP*-hard combinatorial optimization problem.
- The Sequence Assembly problem is claimed to have been successfully solved using greedy and heuristic methods; the greedy approaches exhibit many limitations and low flexibility.
- "Fast" Brute-Force global optimization of the sequence assembly problem is possible!
- SUTTA outperforms many assembly algorithms on bacterial genomes.
- SUTTA has the potential to assemble haplotypic whole-genome sequences.
- SUTTA is technology-agnostic: if the sequencing technology changes, just change the score function.

Genomics Redux

- Whole-Genome Haplotypic Sequence Assembly:
 - *Cost*: High-Throughput Short Reads and Low-Resolution Single Molecule Maps
 - Methylation-Sensitive Restriction Maps
 - Epigenetics, Rare variants, de novo mutations, structural variants, and much more... (with haplotype phasing)
- 4,000 10,000 Haplotypic References from a Well-sampled Population
 - Distribution of de novo mutations
 - Out-of-Africa (North-West Africa, Arabian Peninsula, Southern and South-East Asia, Australasia)
 - Indian Subcontinent
- Characterization of Genomic and de novo Variants, Selective Sweeps and Population Dynamics
- Phenotyping!! [Causality Analysis...]

Scalability

A single human genome requires 100 GB of raw data — We need extremely scalable systems and algorithms.

- Cloud Computing: using MapReduce ... Google's parallel distributed framework Data and computations are spread over thousands of computers... 946,460 TB processed in May 2010 (Jeff Dean @ Stanford, Nov 10, 2010)
- **Hadoop** is the leading open source implementation ... GATK is an alternative implementation specifically for NGS
- Hadoop MapReduce: Scalable, Efficient, Reliable and Easy to Program; BUT requires Redesigning / Retooling applications; Everything must be in MapReduce (Not Condor, Nor MPI)...

э

Strategy: Similar to Crossbow

- Map: Total ReCaller
 - Call bases while aligning each read to a genotype reference
 - Align single-molecule maps
 - Emit (chromosome region, alignment for reads and maps)
- Shuffle: Hadoop
 - Group and sort reads and maps into overlapping regions
- Reduce: SUTTA
 - Make haplotype assemblies for each region
 - Combine into whole-genome assembly (while integrating unaligned reads and optical maps)

Cost and Time Estimates

1 Arabian Individual Genome

Data Loading	3.3 B reads	106.5 GB	\$10.65	AED 39.12
Data Transfer	1h :15m	40 cores	\$3.40	AED 12.49
Setup	0h : 15m	320 cores	\$13.94	AED 51.20
Alignment	1h : 30m	320 cores	\$41.82	AED 153.61
Assembly	2h : 00m	320 cores	\$55.76	AED 204.81
End-to-end	5h : 00m		\$125.57	AED 461.23

1001 Arabian Individual Genomes = AED 461,691.23. (Based on an estimation by M. Schatz of CSHL.)

・ロ・・ (日・・ ヨ・・

[End of Talk]

• Puzzle: A shotgun assembly of few words.

 WordList: "assembled," "completely," "correct," "genome," "human," "in-," "is," "only," "sequence," and "the."

 WordAssembly: "the human genome sequence is correct, only incompletely assembled;"

• Other Solutions: "the only assembled human genome sequence is completely incorrect;"

• Other Solutions: "only, correct the assembled sequence; genome is completely inhuman."

[End of Talk]

• Puzzle: A shotgun assembly of few words.

 WordList: "assembled," "completely," "correct," "genome," "human," "in-," "is," "only," "sequence," and "the."

 WordAssembly: "the human genome sequence is correct, only incompletely assembled;"

• Other Solutions: "the only assembled human genome sequence is completely incorrect;"

• Other Solutions: "only, correct the assembled sequence; genome is completely inhuman."
Outline Methods Results Conclusions and Discussions

[End of Talk]

• Puzzle: A shotgun assembly of few words.

- WordList: "assembled," "completely," "correct," "genome," "human," "in-," "is," "only," "sequence," and "the."
- *WordAssembly*: "the human genome sequence is correct, only incompletely assembled;"
- Other Solutions: "the only assembled human genome sequence is completely incorrect;"
- Other Solutions: "only, correct the assembled sequence; genome is completely inhuman."

Outline Methods Results Conclusions and Discussions

[End of Talk]

• Puzzle: A shotgun assembly of few words.

- WordList: "assembled," "completely," "correct," "genome," "human," "in-," "is," "only," "sequence," and "the."
- *WordAssembly*: "the human genome sequence is correct, only incompletely assembled;"
- Other Solutions: "the only assembled human genome sequence is completely incorrect;"
- Other Solutions: "only, correct the assembled sequence; genome is completely inhuman."