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Chapter 1

Scribe: Ron Even, March 23, 1995

1.1 Preliminaries

For starters, we will examine a finite world, W, with S states, and NV
securities. Securities can be T-bills, commodities, precious metals, and
currencies, as well as corporate stock. A portfolio is a collection of securities
such as an index fund or a mutual fund. The states of the system are simply
defined by the behavior of the securities. For example, a simple system may
just have two states—“up” and “down.” The state is “up” when the market
goes up (Bullish) and down when the market is down (Bearish).
We have a price vector,

§= ((I17(127- - ;(IN) € RN;
which gives the current price of all NV securities.
6= (61,0o,...,0n) € RN\,

is a portfolio where 6; is the number of units of security ¢ in the portfolio.
q- H#gives the market price of a portfolio. Often, we examine 6 such that
-6 = 0. By combining shorts (borrowing) and longs (lending) we can
generate portfolios with a net cost of 0. Finally, we have a N x S dividend
matriz,

Dyy Dy ... Dis
D- Dy; Dy ... Dss ¢ RVXS
Dyxi Dn2 ... Dns

If we call the i** column vector 5,-, then D; - § is the value of the portfolio
in state ¢.
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1.2 Arbitrage

By an arbitrage, we mean one of two scenarios:
(35) [q"- =0 A DT6eRE,\ {()’}] (1.1)
(30") [q"- §<0 A DTgc Rgo] (1.2)

In the first scenario, we obtain our portfolio for a net cost of zero, yet we
at least break even in each possible state and make a profit in at least one
possible state. In the latter scenario, we have already made a profit as our
portfolio has negative cost, and we are guaranteed to at least break even
in each possible state of the world.

A convenient way of stating the no arbitrage condition is by saying that
no matter what nontrivial portfolio is chosen (i.e., § € RN \ {0}),

(—=q-6,Dy-0,...,Ds-6) ¢ RSF' \ {0}
In other words,

(ve”eRN) [DTeeJRgO—>[q-'-9“>ov(DTo:0m7-§=0)]].

If we write H; for the halfspace {§: j- 6> 0} and its boundary as the
hyperplane (')(H;r ) = hy, then above statement has precisely the following

meaning: For every 6, if
Di1,D,,...,Ds € Hf,

then ¢ € InteriorH, , provided that D1, ..., Dg and ¢ do not all lie on the
hyperplane hy (a degenerate situation). Equivalently ¢ is in the relative
interior of

(\{H : D1, D,,...,Ds € Hf },

9
the positive hull (or the cone generated by) Dy, D5, ..., Dg. No arbitrage
condition is equivalent to the geometric conditions:

q € Interior PositiveHull(Dy, ..., Dg),

or
0 € Interior ConvexHull(—g, D1,. .., Dg).

The convex hull of a set of vectors is the smallest convex subset of RV
containing these vectors. The positive hull of a set of vectors is the smallest
cone (with apex at origin) of RY containing these vectors. Both sets are
convex and closed.

A more intuitive proof of these facts in the nondegenerate situation is
given in the next section.

@Mishra, Cyberia



Section 1.3 LECTURE 1 3

Figure 1.1: Diagram of no arbitrage situation for two assets (N = 2). The
dotted line represents all the portfolios of net cost zero (i.e., 7 - g = 0).
The shaded region is the ConvexHull(—q, D1, ..., Dg) and in this case,
contains the origin in it interior.

1.3 No Arbitrage

For simplicity, we assume S > N and that the vectors span (linearly) the
entire space. Thus no arbitrage condition can be written as saying that for
no nontrivial portfolio 0

(=7-0>0) A (D-6>0) A -+ A (Ds-6>0),
as it is guaranteed that for every portfolio one of the inequalities is strict.
Lemma 1.3.1 There is no arbitrage iff
0 € Interior ConvezHull(—{, D1, ..., Ds).

PROOF.
<=: Assume that there is an arbitrage. That is, there is a portfolio s
satisfying all of the following conditions:

(=7-0>0) A (Dy-6>0) A -+ A (Ds-6>0).
In particular if g € ConvexHull(—¢, Dy, ..., DS) [i.e., P=—aod+ a1 Dy +
-+ agDg, with >~ a; =1 and a; > 0] then F- 6 > 0. In other words,

@©Mishra, Cyberia



4 LECTURE 1 Chapter 1

every point in the convex hull is in the halfspace H; of RV defined by
{p': -0 > 0}. Thus it refutes the assumption that

0 € Interior ConvexHull(—§, Dy, ..., Dg).

=: For no arbitrage case, we consider an arbitrary portfolio ¢ and its
negative —6. Let us divide the vectors {—¢, D1, ..., Dg} into two sub-
sets S1 and S (not necessarily, S; N Se = ) such that for every pi € Si,
P -G > 0 and for every p3 € So, 3 -0 < 0. By assumption, neither S; nor
Sy is empty, as this would imply either 8 or —8 would result in an arbi-
trage situation. Thus, as a consequence of the no arbitrage condition, the
hyperplane hyg = {p': - 6= 0} would strictly separate the ConvexHull(S;)
and ConvexHull(S2) and thus intersect ConvexHull(S; U Sz). As this holds
for any arbitrary portfolio, we get the desired consequence:

0 € Interior ConvexHull(—g, Dy,. .., Ds).

This proves the lemma. []

1.4 The State Price Vector

We derive what is known as the state price vector 15

No arbitrage
< 0 € Interior ConvexHull(—¢, Dy,...,Dg)

S
& (Eld’e H&io,Zai = 1) [—aocj'+oz1D1 +---+asDg :0]
1=0

Thus,
o' e
§ = —Di+-+—Dg=4 Dy +-- +¢sDs
Qo (67}
s
1 .
= E(p1D1+...+p5DS), where Zpizl,Vz,0<pi§1
i=1

In the above formula, R is interpreted as the discount on riskless bor-
rowing, zﬁ is called the state price vector, and the p;’s are called risk-neutral
probabilities. If R = 1+ r then r is the interest rate.

Finally, we give an illustration of why r is the interest rate. For this,
we examine a riskless portfolio, § which returns $1 no matter what state
we end up in. Its cost is - 6.

N Sp A

@Mishra, Cyberia



Section 1.4 LECTURE 2 5

1S N
= 720> 0Dy
j=1 =1

= =

We see that the price of the portfolio is its expected future value (under
risk-neutral probabilities) discounted by R = 1 4 r, with r = the interest
rate. . .

A state price vector 1 is a vector in Rio such that § = D1.

Corollary 1.4.1 There is no arbitrage iff there is a state price vector.
PROOF.

One direction is already shown in the preceding paragraph. Note that
existence of state price vector implies that

1
——(—=G+ 1Dy + sDg) =0
E¢z( q 1,[}1 1 ,(/JS S)
and 0 € Interior ConvexHull(—g, Dy, ..., Dg), a condition equivalent to

“no-arbitrage condition.” [

@©Mishra, Cyberia



Chapter 2

Scribe: Toto Paxia, March 30, 1995

2.1 Weak Arbitrage

A dividend-price pair (D, q) is defined to be weakly arbitrage-free if
(vo'eRY) [DTFe RS, » 7-8>0).
If H; is the halfspace {p’: j- 6> 0}, the above condition is equivalent to
(Vo€ BY) [D1,Ds..., Ds € H & qe Hf|.
Hence

ge(\{Hy : D1, Ds,...,Ds € Hf },
[

the positive hull (or the cone generated by) Dy, Da, ..., Ds. Weak-
arbitrage-free condition is thus equivalent to the geometric conditions:

q € PositiveHull(Dy, ..., Dg),

Under this condition, the state price vector zE can again be derived, but
now in

§=11D1+---+¢sDg,

where the 1);’s are > 0. The vector J € IR*;O is called the weak state price
vector. -
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2.2 Risk Neutral Portfolio

Any portfolio

60 = (69,69,...,60%),
is a risk neutral portfolio if in all the possible states € {1, 2, ..., S}, one
gets the same dividend:

DT¢° = (R°,R°,..., R).

We can express the price paid for the risk neutral portfolio in terms of the
state price vector, and the dividend:

7 1Dy + - +1psDs
g-00 = D160 + - +4hgDgh0
RO
= «pll%“Jr---JrzpsRO=(¢1+---+¢;,~)1!2°:E
where 1/R = " 4;. Thus we pay
-~ RO
7.0 = -
q R’

and get R° independent of the state of the world (risk neutral).
The above formula is the market value of the risk neutral portfolio. If

we suppose that this value is unitary, then for any possible state

1

RO=R=———,
ity

and the price can be written as
¢ = 1Di+---+9sDs

1
= R(plDl +---+psDs)

where the risk neutral probabilities are now
I

it
The discount factor R can also be written as

R=1+r,

Di = R.

where r is the “interest rate”. The risk neutral probabilities defined above,
are such that p; € [0,1] and Ele p; = 1. If we consider the expected value
relative to these “probabilities” p;’s, (the so-called risk-neutral probabili-
ties) the price can be expressed as

7= 5B (D).
Thus, in the case of weak arbitrage, some of the risk neutral probabilities
could be equal to zero.

@©Mishra, Cyberia



8 LECTURE 2 Chapter 2

2.3 Examples

In the following examples we will consider a market with two kind of secu-
rities:

e A rigsk-free asset B (Bond).
e A risky asset S (Stock).

The market has only two possible states: Up and Down. Let also R be the
discount factor. The diagrams

UV BR UV SU
B S
DOWI’\ DOWIN
BR SD

show that in the case of the Bond, in all the possible states of the market,
the payoff will be BR. In the stock case, the payoff will depend on the
future state of the market. We will assume that

D<R<U,

otherwise if we suppose for example R > U > D, then we could create a
portfolio § = (5, —5) described in the following diagram:

which is an arbitrage. similarly, if U > D > R, than the arbitrage will be

obtained with the portfolio 6 = (— &, &)

@Mishra, Cyberia



Section 2.3 LECTURE 2

UV U-R>0
0

DOWII\\

D—-R>0

So we must have D < R < U. A geometrical representation is

B
BR D, D,
q
Pt
0 SD SU S

where the price vector must lie inside the cone OD;Dy. Then

g =Y1D1 4+ 2Ds

(3)-s(3) o0(2)

The solution of this linear system is given by

1 R-D
N=RU-D
1 U-R
»=RU-D

Now the discount factor R, can be viewed as the barycenter between U and
D with “weights” 11 and 2. Now, it is easy to compute the risk neutral

probabilities, since
1

Q=E
. R-D U-R
Vi mEpop PTgop

(p1D1 4 p2D2),

@©Mishra, Cyberia



10 LECTURE 2 Chapter 2

2.3.1 Call Option

The next example is a call option on a stock S, with strike price K > SD.

Up/4
C

Down\\

(SU - K)* = SU - K

(SD—K)* =0

Here the price paid for the portfolio is C. If the future state is Up, then
the payoff will be SU — K, otherwise it will be 0 (note that SD — K is < 0).

The price in this case can be expressed using the risk neutral probabilities

as
1

R

=y

-D

C = 5 (SU-K).

q ‘

2.3.2 Put Option

The converse put option is represented as

7
Dow \

(K-8SU)t=0

(K — SD)* = K — SD

with
1

R

-
Sl =

pP= 5 (K —SD).

q ‘

2.3.3 Put-Call Parity

Suppose that we buy a call and sell a put option. Then the net price paid
will be

n p2
—-P = —(SU-K)-*(K-SD
C R(SU ) R( SD)
_ P SU+p2-SD _ prtpe,,
R R
K
- %

@Mishra, Cyberia



Section 2.3 LECTURE 2 11

We just proved that buying a call and selling a put, is equivalent to buy a
stock and sell a discounted bond. Also

K
C=S+P-7%

can be used to express the price of a call. This formula is referred as
“put-call parity.”

2.3.4 Volatility and Call-Put Straddle

We can now change our model for the market. In particular we can augment
the number of possible states. Now the states set S has three elements: Up,

Down and Flat:
U V SU
Flat

S —— SR

Down\\

Suppose that the probabilities of the three states are (py, ps, pa). Sup-
pose they take two possible sets of values: (1/3,1/3,1/3) and (1/2,0,1/2).
In either case, we see that R = (U + D)/2. Now if we have a call and a
put option on this with strike price K = SR = S(U + D)/2, then the call
and put under the first probabilities are priced as: C' = (SU — K)/3R and
P = (K - SD)/3R. Thus C + P = S(U — D)/3R. However, if the second
probabilities are the real probabilities (i.e., the stock is more volatile than
normally assumed) then the holder of the portfolio with one call and one
put will get min(SU — K, K — SD) = S(U — D) /2, independent of whether
market goes up or down. This pay off is no worse than any risk neutral
portfolio of cost S(U — D)/2R.

Thus, if we believe that the risk neutral probabilities are (1/2,0,1/2),
then we can do a call-put straddle. If the risk neutral probabilities are
really (1/2,0,1/2), this creates an arbitrage situation.

SD

2.3.5 Forward Contract

Another example is the forward contract:

@©Mishra, Cyberia



12 LECTURE 2 Chapter 2

UV SU - K
F
DOWII\\
SD—-K

with
- N _ P2 _
F = R(SU K) + R(SD K)
K
- S_E

2.3.6 St. Petersburg’s Paradox

Suppose now that we have a lottery, where we bet a fixed amount of money
(to be determined). Then we toss a coin. If we get the head we will be
paid 2. If we get a tail and then a head, we will be paid 4. In general the
sequence

7O .7O

will be paid 2¢*!, and has probability 5%r. If we compute the expected
value we get infinity:

3 +1_
ZiT2l = Q.
i=1

Thus this asset will cost us infinite amount of money, while only paying
some finite amount of dividend. This is usually referred to as St. Peters-
burg’s paradox.

2.3.7 Martingale Game

next consider the Martingale game, which is represented in the following
diagram:

K
p2=1/2\\
0

@Mishra, Cyberia



Section 2.3 LECTURE 3 13

Suppose our strategy is to repeatedly play this game each time doubling
the amount of money we put in (i.e,1$,2$,4 8, ...), until we “win” (i.e.,
take the up-arrow in the diagram and get a pay-off of double the amount
we put in) and then stop. Assuming that we win at the nth trial, we would
have paid

1+2+4+4--+2"1=(2" - 1)$

but get 2-2""1 = 27 §. Thus we are guaranteed to have a profit of 1 $
eventually.

@©Mishra, Cyberia



Chapter 3

Scribe: Amy Greenwald, April 6, 1995

3.1 Real Probabilities

Recall from Lecture 2 that today’s price is the expectation of tomorrow’s
dividend divided by the discount factor:

._1_p

7= £ (D)
where P is the probability distribution of the risk neutral probabilities p;.
Recall also from Lecture 2 that we think of the p;’s as probabilities, since for
alli,0 <p; <1and Zle p; = 1, but the p;’s are not the real probabilities.
In particular, p; is not the probability that the economy will be in state 4
tomorrow.

Let P; be the (real) probability that the economy will be in state i

tomorrow. Define the state price deflator vector @ in terms of the state
price vector ¢ s.t. m; = 1;/P;. Now

1Dy +---+9sDg
PymD; +---+ PswgDg

7

Thus,
§=E"(axD) (3.1)
where P is the probability distribution of the real probabilities P;. For the

remainder of this lecture, we consider expected value with respect to P,
unless otherwise stated.

14



Section 3.2 LECTURE 3 15

3.2 Expected Excess Return

Consider an arbitrary portfolio 6 of cost $1: e, q- §=1. Let R® € RS be
the return on this portfolio, depending on the state of the economy:

R = (RY,...,R%)

= (Dy-0,...,Ds-0)

Now
E(R’) = Pm(D1-0)+-- + Psng(Ds-0)
(PymyDy + -+ + PswgDg) - g
E(xD)-§
= -6 {by equation 9.1}
=1

Thus, under the real probability distribution, expected “deflated” return
is set at $1, regardless of the choice of portfolio 6.

Example 3.2.1 Consider the two-dimensional case in which there are only
two states of the economy, S; and Ss, as shown in Figure 3.1.

(0, Um)

S
1,0)  gge1

Returns from all the portfolios
f cost 15

Figure 3.1: Graph of the returns obtained from a portfolio of cost 1 $.

At any point on the z-axis, the economy is in state S; with probability
1; similarly, at any point on the y-axis, the economy is in state Ss with
probability 1. The solid line depicts the hyperplane satisfying E(7R?) = 1.
In particular, at the z-intercept, R{ = 7%1 and R = 0; and, at the y-

intercept, R = 0 and R§ = L. The dotted line is the line R{ = R§. The

e "

@©Mishra, Cyberia



16 LECTURE 3 Chapter 3

point at intersection of these two lines is R?, the return on the risk neutral
portfolio of cost $1. [

Now consider a risk neutral portfolio of cost $1 with set return R: i.e.,
for all i, RY = R°. For a risk neutral portfolio, we have

ER’) =R° and Var(R?) =0

In addition, we know from Lecture 2 that R® = R. We also have that

E(r) = Pm+---+ Pgrg
= i+ +9s
1
R

(This last fact implies that there is a connection between the 7;’s and R.
We might think of 7; as R%, where R; is the discount rate in state i.)

Using these observations, we now compute the expected return on an
arbitrary portfolio € in excess of the risk-free rate of return. Equivalently,
this is the expected return in excess of the return on a risk neutral portfolio
of cost $1.

E(R’-R"Y = E(R’-R°

Thus,

E(R’ - R%) = (3.2)

3.3 Investor Preferences
Rational behavior of investors is captured by the following two assumptions,

which Markowitz incorporated into his book on modern portfolio theory in
the 1950’s.

@Mishra, Cyberia
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1. Investors prefer more expected return to less, all other things being
equal: if BE(R% — R®) > E(R% — R®) and Var(R%') = Var(R%),
then 6, is preferable to 6.

2. Investors are averse to potential risk, all other things being equal: if
Var(R%) < Var(R%) and E(R?* — R°) = E(R?2 — R"), then 6; is
preferable to 6.

3.4 Capital Asset Pricing Model

The Capital Asset Pricing Model explains return on a portfolio in excess
of the risk-free rate by the correlation of the portfolio with the market.

The Sharpe Ratio of return on a given portfolio § is the ratio of expected
excess return to risk:

E(R® — RY)
g9

S(R%) =

According to our assumptions about investor preferences, investors desire to
maximize this ratio, thereby maximizing expected returns and minimizing
risk. Now if we normalize the Sharpe Ratio of return on portfolio g by the
Sharpe Ratio of 7, this is equivalent to the correlation coefficient between
RY and 7.

S(R%) _ E(R’—R%/oy
S(ry E(r—R%/o,
0
- _E‘OVUa(ﬁw’)T/rZ(?rgzzraa {by equation 3.2}
Cov(R?,T)
090
= Corr(R% n)

In these terms, the goal of investors is to maximize the correlation between
the return on portfolio § and #. The portfolio §* which maximizes this
correlation is called the market portfolio:

6* = arg sup Corr(R?, )
0

Let R* be the return on the market portfolio.

@©Mishra, Cyberia



18 LECTURE 4 Chapter 3

The Single Index Model assumes that returns are generated by a linear

model:
RY = + BoR* + €

Intuitively, returns depend only on one factor, R*; the term Gy R* captures
the systematic risk of portfolio g and € is an error term that is uncorrelated
with market return.

Given this definition of R?, we compute Cov(R’,7) and Cov(R?, R*).

Cov(R',m) = agB(r) + BoE(R*m) — ag B(r) — B E(R*)E(r)
BoE(R*m) — By E(R™)E(r)
= ByCov(R*,m)

Cov(R’, R¥) agE(m) + By E(R*?) — agE(r) — By E(R*)?
= ByE(R*) - ByE(R*)’

By Var(RY)

Il

Now consider the ratio of expected excess return on portfolio f to expected

excess return on the market portfolio. This ratio is exactly (y.
E(R*—R% _ Cov(R,m)
E(R*—R%)  Cov(R*,m)

=P

Also, by the above,
Cov(R?, R¥)
Bo = ——pr
Var(R*)

“Stick that in your pipe and smoke it.”

(Even, ’95)

@Mishra, Cyberia



Chapter 4

Scribe: Marek Teichmann, April 13, 1995

4.1 The Multiperiod model

As before, we have N assets, and similar dividend processes. In the single
period model, we go from the current state to the next state, for example
either up or down. In the multiperiod model, this happens several times.
We have a following picture, called the binomial tree, see figure 4.1. Each
node represents a state and in column T, the possible states reachable
after T transitions, at which point there are T + 1 different states. From

the initial state to a state at time 7T there are (TTE) possible paths. If it
2

is possible to go neither up or down, i.e. stay at the same level, we get
horizontal edges and the diagram is called the trinomial tree. We can think
of a path in this tree as a random walk on this lattice. If the time scale is
small enough, this model with approximate the real situation well.

Let N be the number of assets, and 0 < ¢t < T be a point in time. We
have two stochastic processes: A dividend process

5 = (81,62,...,8M).
At time t we get paid d} for asset i. We also have a price process
S, = (S}, 82,...,8M).
So for a particular path in the binomial tree, we have a set of prices

and dividends given by the above vectors.
We now must come up with a trading strategy:

6r = (61,67,....6).

19
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Figure 4.1: Binomial tree

At time ¢ we hold i amount of asset i and so on. @, is a function of § and
S, but depends only on the past, not the future. This called an adapted
process. We will assume that our trading strategy is an adapted process!.

4.1.1 Trading strategy

Our trading strategy can be described as follows:

1. Start with a portfolio 8 _; = 0 of zero cost.
2. At time t = 0 we create a portfolio 6.

3. At time t > 1, we buy and sell going from 6;_; to 8y, and we get the
dividend generated at time t:

5t:0_:571'5’t+(0_;71_0_;)§t

Where the first product is the dividend obtained from the portfolio held at
time ¢t — 1, and the second is due to the change in the portfolio, where we
buy and sell at the price at time ¢.

1Rormally: 6; € (5, S)

@Mishra, Cyberia



Section 4.1 LECTURE 4 21

4.1.2 Stochastic processes

A stochastic process X; = (5’;, 5;) generates S‘; and 5; at time t. It satisfies
P’I’[Xt € A|X0 =2g,...,X¢_1 = IL‘t_l] = P’I’[Xt € A|Xt—1 = xt—l]

We can take any particular sequence which gives us a path. An event
is a finite collection of paths.
A filtration F; = {Xo = zo,..., Xt = x;} is the set of all paths of this

type.
An adapted process is Y; € F;. What happens at time ¢ depends only
on rg,--.,Tt-

4.1.3 No arbitrage
Then the no arbitrage condition is equivalent to:
(Vz € X) (VO <t <T) [§ (x) > 0] — (Vo € X) (YO < t < T) [§}(2) = 0]

i.e. there is no scheme s.t. no matter what the adversary does, one
makes money or breaks even. This is again equivalent to

= (Vo € X) [{8)(2), -, 05(x)} ¢ RLS" \ {0}]

We can write the price at time ¢ as

T
1
Se=—E/ | Y md; 0<t<T (4.1)
it j=t+1

This will be shown below. Hence
S¢ € Interior PositiveHull(6¢11, - - -, 07)

We write the expectations as E; since the probabilities of going up or down
are time dependent.

Let L be the space of adapted processes. Then 6§ € L and §? € L are
also adapted processes.

Let Ly = {z > 0|z € L}. Then Ly \ {0} is the set of dividend processes
corresponding to arbitrage.

Let M be the set of dividend processes, the marketed subspace. Then
we have no arbitrage if and only if M N Ly = {0}.

The situation is depicted in figure 4.1.3.

Lemma 4.1.1 M is a linear subspace.
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M

Figure 4.2: Ly and M intersect only at 0

PROOF
Let 6 and ¢ € L. Then ad? + b§? = §20+b¢,

6a9+b¢ = aé;_l(s,g + a(e_;f—l - gt)st +
b 16, +b(Fi 1 — P)S;

Theorem 4.1.2 (Reeds representation theorem) 3F : L — R s.¢.
Ker F =M.

So there is no arbitrage iff there exists an F': L — R, F linear, strictly
increasing such that

T
F(&a) = 0, F(H) = Et (Z Wtet) T > 0.
t=0

If there was arbitrage, M would move away from the origin towards the
interior of L, and would create a region where all coordinates are positive.

F((Sa) = Et (iﬁﬂ;g)

T T
Ztht,lét + zm(ﬂt,l — 0,5)5!| =0
t=0 t=0

We now choose one adapted strategy:

0_1=0=...=6;_1 =0

Ey

and some arbitrary 6= bp=...=0r¢ RV . We enter the market at time
t with arbitrary portfolio # and hold it to the end. This sum then becomes

T
F((Sa) = Et z Wjé(sj') - Wtést
Jj=t+1
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We can now write

T T
R R 1
7,08, = 0E, § ;S| = S = —FE E m;S;

™
j=t+1 t j=t+1

We have proved (4.1).
We can also derive the market value of a trading strategy as follows?

T

1
01511 = E |10 +0: 1 Z ;0
T—1 j=tt1
1
= E [Wtat—lét + 0t_17rtSj]
Tt—1
s
= (E(0;—10¢) + 6:—1S;)
TE—1
Hence
8,15 ™ 9,9 mt
t—190t—1 — ot = (E(0¢—1S¢) + (Bs—1 — 6:)Sy)
-1 Tt—1
7Tt 9
= E(6
— (6¢)
So

T4—104—1Si—1 — m0:Sy = E(m67)
We assume that at the end all prices drop to zero:
wr_107_1S7_1 — 7707 ST = E(n76Yy)
——
0

By telescoping and linearity of expectation, we get

T
1 0
HtSt = W_tE(Z 7Tj(5j)
j=t+1

Where 6;S; is the market value of a trading strategy at time ¢ and is
equal to the expected dividends divided by a discounting factor. Going
back to the binomial tree, we can determine the value at the root, given
the dividends and the discounting factors at each stage, by calculating the
prices at the different states.

2Here we ignore the fact that the probabilities themselves change at each stage.
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Chapter 5

Scribe: Ron Even, April 20, 1995
5.1 Probability Space

Let’s begin by defining a probability space (2, F,P) where Q is a sample
space and F is a o — field over €, i.e.

0 e F
Q e F
F is closed under countable union, complement, and intersection.
Let X be a Markovian price process, X = {xo,z1,...,27}, i.e. Pr[z; €
Alzo,...,xi—1] = Pr[zy € Alzi—1]. Tt is of no interest to look at prob-
abilities of individual paths {zo,...,z7} since these all have probability

zero; therefore, each event is a collection of paths, F; = {z¢ € Ap,z1 €
A, ...,z € A}, A; C Q. With events so defined, we can examine the
probability that a price stays within some range, crosses some barrier, etc.
We have a filtration Fy C F1 C Fa.... We define an adapted trading
strategy {Yo,Y1,...,Yr} where

Y; = @t(wg,xl,...,xT)

Vj,®;(x) is F; —measurable
{Y;=2(x)<a} € Fj

Theorem 1 There is no arbitrage < Vt, m0:S; = E[Z]T:Hl 5?7@-|.7-}].

Let’s examine the one day portfolio, 8; = § = constant,f; 41 = ... =07 =
0.
7rt0_5t = E[677rt+15t+1|}}]

24
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Suppose it was the case that S; = E[Si+1|F:], i.e. today’s price is the
expected value of tomorrow’s price. We call z; a martingale if x; =
Elzipa|2o, 71, .., 2]

TSt = Elmyy1Si41|F]

The price process multiplied by the deflator is a martingale. Now let’s
examine a riskless asset (e.g. a bond).

1 = E[ZR|IF
Tt
1 T
S = ZE ;:1Rst+1|ft]
S0 = LB B E)A]
R Tt
1
S, = EEQ[St+1|}'t]

In the last line above, we’ve adjusted the probability space E? so that we
no longer need the price deflators.

S,
S, = E9[=HL A

R

S Sy
— = E° F
Ry, [RO,T| R

Ry 1
Ry = 2T
4T Fo.
St

In the above equations, o is the discounted price process.

5.2 Some examples of martingales

e Random Walk: z,1 = x,, = b where b is Bernoulli with Pr = 0.5.

e Brownian Motion: z,41 = z, + on where ¢ is Gaussian normally
distributed with mean 0 and standard deviation 1.

e Multiplicative Random Walk: z,1 = z,& where

¢ = U with probability py
~ | D with probability pp

E[xn-i-l] = E[é.xn] = xn(pUU +pDD) = Tn

with the last equality coming by the definition of a martingale. Solv-
ing these equalities, we arrive at pp = 5=% and py = 5=%. The
multiplicative random walk is preferred to the random walk since it

does not allow negative prices to arise and is therefore more realistic.
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Chapter 6

Scribe: Amy Greenwald, May 11, 1995

6.1 Review

We assume the usual processes:

e a price process {So, ..., ST}, where S is the price of asset S at time
t
o a discount process {Ry, ..., Rr}, where R, is the rate of return on a

risk-free asset of value 1 over period [t, t+1): 4.e.: Ry is the short-term
interest rate

e a discounted price process

S1 St
Ro1’ """ Ror

{SOa

(Notation: Ry, i, = Ry, Riy41 - - - Re, over the period [t;,t2).)

e a state price deflator process {mq, ..., nT}, where m; is the state price
deflator at time ¢

Given these processes, we restate some facts shown in previous lectures.
Fact 1 Note the following:

7 = E{m1Re | Fi}
By iterating this equation, we arrive at:

Trt:E{ﬂ-TRt,T | ]:t}7 T>t
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Fact 2 The discounted price process is a Martingale: i.e.:

Fact 3 The no arbitrage condition in a multiperiod model implies:

T
7rt0tSt =F Z ’/T](S]o | ft (61)

j=t+1

We rewrite equation 6.1 as follows:

T 0
Y B, .
=P 2 (R] ) (mf’J) 7

j=t+1 \"tJ

and again as:

6,5, = E< Z (R—]> | Fi

j=t+1 \"tJ

where Q is the Martingale measure (or the pricing measure) i.e.: some
new probability measure based on the m;s. Thus, the value of a portfolio is
equal to the sum over the time to maturity of the expected value (under the
appropriate distribution) of the discounted dividends, given the information
available today.

6.2 Binomial Option Pricing Model

The binomial model of option pricing is a discrete approximation to the
Black-Scholes equations.

Let
Sty1 = S¢6,
where
£ = U with probability py
1 D with probability pp
Fix Rt =R.

The discounted price process is a Martingale; thus,

S,
St:EQ{ gl |7-"t}

which implies:

1
S¢ = 7 (puSU + ppSD)
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Figure 6.1: Binomial tree

or equivalently,
R =pyU +ppD
Also, since py and pp are probability measures:

1=pv+pp
Solving this system of equations yields:
_R-D _U-R
PU=v-Do PP=0-D

We now derive a formula to value European calls:
At the end of T periods, the asset S can be valued at one of T+ 1
possible prices:
sut,su™'p,...,SUDT* DT

The probability that the price is SU/DT—7, for 0 < j < T, is given by the
Binomial Theorem:

TN j 1

j PuPp

Now if Cy denotes the current value of a call option on an underlying asset
with price S, then

Co = EQ{—ff§)|}'t}
TN i 7 . )
= RI_TZ?ZO j ngpg ’f(SUIDT)

= #r ¥ ;F (&—B)j (g_;g)T‘jf(stTfj)
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In the above derivation, f is just some function of the price of the underlying
asset. In the next lecture we will refine this derivation by explicitly defining
f as a function of the asset price and the strike price.
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Chapter 7

Scribe: Amy Greenwald, June 8, 1995

7.1 Binomial Option Pricing Model

In this lecture we continue the discussion of the binomial option pricing
model to value European calls. Let Cy be the value at time ¢ of a call option
on a stock with price S;. The value Cy is equal to the expected payoffs,
discounted by the time til expiration, given the information available at
time ¢. If T is the expiration date, this is expressed formally as:

c
cg:EQ{R%5|ﬂ}

Let K be the strike price. The value C'r of the call option at time T is
given by the payoffs:

o _[Si—-K ifSr>K
=Y o0 otherwise

i.e., Cr = max{St — K, 0}, which we abbreviate as (St — K)™.
Recall from last time that the discounted price process is a Martingale;
it follows that the probabilities py and pp are given by:

_R-D U-R

pU_U—D pD=U_D

with D < R < U, since there is no arbitrage. We now refine the derivation
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given last time of the value Cy of a call option at time O:

Co = arE°%{(Sr—K)" | F}
T P T 4 .
= AT (] )l ST - )
T N (g eNTG
_ S_OTEJT:O(J, )(g_g) (2=2)" wipr=i - K)r
Now find the maximum j s.t.

. . K
ipT-i <« =
U <%

U\’ K
~—) pT <~
(D) ~ So

Algebraic manipulation yields:
_log K —log Sy — T'log D
B log(U/D)

i.€.,

-k

Thus,

o = sxi (] ) (EB) (55) " %) B -

e

J
lf_TZ;‘vrzo ( f ) <%)J (%)T—J

This equation implies that a call option behaves like a portfolio of stocks
and bonds in which we buy stocks worth the price of the underlying asset
So and sell bonds worth the strike price K. Note that a future is a special
kind of call option where K = 0.

7.2 Black-Scholes Model

In the next lecture, we derive the continuous-time analogue of the binomial
option pricing model, which is known as the Black-Scholes equations:

2 2
~ oo ey /2 K [00 =¥ /2
Co = Soly oi“mrW—wrls “d

N(—d + 0+/t) ¥ STOCK PRICE —
N(—d) * DISCOUNTED BOND PRICE

For the moment, let us restrict our attention to one stage in the binomial

tree: L
Cy = EEQ {Cts1 | F2}

= %(Ct[ﬁqu + C£-1PD)
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In fact, C; depends on S; thus, we have a sequence of difference equations

Cy(S) = n% [Ct+1(SU) (%__5) + Cy41(SD) (Z:%)] 0<t<T

with boundary condition:
Cr(S)=(S-K)*

Now, if we consider time steps of size At, this yields a set of differential
equations

R:—D
U-D

U—-R;
U-D

1

C(S) i3

[C’HAt(SU) ( ) + Ciyne(SD) ( )] 0<t<T

with the appropriate boundary condition. These equations have solution

-9C  0%8% 9*C oC
= +rS 5 —rC
ot 2 052 oS

Thus, the negative of the rate of change of the value of the call option with
respect to time depends only on the interest rate r and the volatility ¢ of
the stock, but not on the return u of the stock.

Note the Black Scholes equations are based on the assumption that the
bond and the stock prices evolve according to the processes described by
the following diffusion equations, respectively:

B
%zrdt

%:,udt+(de

7.3 Replication

In this section, we construct a hedge fund consisting of stocks and bonds
that is equivalent in value to a call option. In what follows, {A;} is an
adapted process that is adjusted over time by buying and selling stock. In
particular, A; is the amount of stock held at time ¢:

Cy = A¢St + By
We choose Ay such that if the market goes up, then:
Ci41(SeU) = ALSU + BiR,
otherwise, if the market goes down, then:

Ci41(S¢D) = AS:D + BiR;
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Solving for A; yields:

_ Ct+1 (StU) bl Ct+1(StD)

At S, (U = D)

Thus,

B, — i UCt—H (StD) - -DCt—i-l (StU)
‘TR, U—-D

Finally, we note that this is in fact a replicating portfolio:

NS+ By = Ct+1(StU[3_gt+1(SiD) + RLt (Uct+1(5tD)—DCt+1(5tU))

= A [Cn (S0 (B=E) + Con(siD) (

= C

=3
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Chapter 8

Scribe: Ron Even, June 15, 1995
8.1 The Black-Scholes Equation

8.1.1 European Call Option

Let’s begin by looking at the expected price of a European call option with
strike price K and expiration at time 7.

Cs = E°[Sr-K)'R™"|F)]
(T
= RTY (5 )l s - K
i=o N Y
Up until now we have studied a discrete, multi-period model. Now we will
move to a continuous time model. We break up each discrete interval into
N sub-intervals, and examine our system as N — oo; thus, if we look at

the duration of each sub-interval, we have % — 0. For now, we will look
at yearly intervals.

8.1.2 Continuous Finance

= annual yearly return on stock S

annual volatility of stock S

annual interest rate
r

1+ —

+

DT s o=
|

2k 2w
3 =

e
= €
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Thus, the equation for Brownian motion becomes,

ds

g = pudt + ocdW

Substituting into the equations for U and D the formula e® = 1+z+ ””2—? +---

gives us

U

u o 1 u o 4 1
- 1+ &4 = 4 (24 2 il
+ Tt ~ 2(N _N) +0(N
1 o 102 1
= 1+2 4+ 2 427 il
+N+,/N+2N (N)
u o 102 1
— 1 P, _
+N ,/N_*—QN+ (N)

~ 20
Thus, U — D = N

into the equations for py and pp from the previous lesson, we arrive at

bu

Pp

Substituting our approximations for U and D back
_ R-D
~ U-D

1 T " o o?

N 2—\/% [+ N N + VN 2N]
1 1 o?
= §+20\/N(7’—l~‘—7)
_ U-R
- U-D
1 1 o?
= 3 20’\/N(T — k= ?)

Next, we look at the variable £ defined by

|

+1 with probability py
—1 with probability pp
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Thus, we can write £ = ﬁ (r—p— ";)-&—5’ where ¢’ is Bernoulli distributed

with mean 0 and Var(¢') =1 — 35 (r—p— "2—2) Note that as N — oo,

Var(¢’) — 1. As a consequence of the Central Limit Theorem, if we
add K such independent identically distributed random variables, we get

~VEN(0,1).

8.1.3 Calculating Final Return

Let S; be our stock price at time i. We start at Sy and would like to know
the price at time NT, after T intervals.

Snt = Soe%-i-ﬁﬁle%-i-ﬁ&z __‘e%-i-ﬁ&NT
— So(e%)NTeﬁ PIRENS

= SpehTe AR INT s (r=p= )+ I €l
Soe”TeT(T_”_§)eﬁmN(0’l)

— SoeuTeT(r—u—ﬁ)ea'\/TN(O,l)

_ Soe(r—é)TeaﬁN(og)

One important observation here is that the final return does not depend
upon p, the annual return of the stock. This is to be expected, as our no
arbitrage condition guarantees that the return must be determined by the
volatility of the stock and the risk-free interest rate.

8.1.4 Calculating the Value of the Call Option
The value of the call option, C{ is R-NTE?[(Syr — K)*]. The first step

in calculating this is to calculate the expected value of Sy

Expected Value of Syt

—uy2
E(SNT) = Soe(r_§)T /Oo eaﬁidy
—oo V2
()T / oo Ti2eTaelT
= o€ 2

—eo V2n

~(y2—ovT)?
2

o2
e T dy

o0

2 2
= Soe(rf%)Teo;r / €

—d
—oo \/§7T Y

2 2
— Soe(r_%)Tea2T

= SOeTT
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Value of the Call Option

Using our results from the previous section, we get:

R—NT

crl = R NTEQ[(Syr - K)7T]
— L \—rT
= (1+ N) )
— e—rT
cf = e‘TT/OO Soelr =) T+oVTy _ )+ € 2_g
0 _Oo( 0 ) \/§7T Y

We need to find max(d) such that Soelr=5)T+oVTd < |,

log(K) = log(So)+ (r — %Q)T +0VTd

g - loglK)—log(S) — (r — )T
= e

Now we can continue finding a formula for COT .

Co

O[]

—rT (r— )T+a'\/_y —rT
Soe dy Ke /
A 7

\/—7r
e—y —20\/_y+a2T % =y

Soe 2 T/ - ¢° Tdy—Ke_TT
d V2r d \/_7r

o= sf)2 —y?
y— Ooeg

S/ - dy—Ke T d
0 \/_ﬂ' Yy — € p \/iﬂ' Y

o0 e 2 e%
S / dz — Ke™"T dy
0 d—oVT \/§7T d \/577
50<1>[ d+a\/_ T] — Ke~"T®[—d] where

\/_7r

,z\/_w
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Scribe: Amy Greenwald, June 22, 1995

9.1 Brownian Motion

In the second half of this lecture, we give an alternative derivation of the
Black-Scholes equations utilizing the Ito Calculus. We begin by describing
Brownian motion as the limit of a binomial process - in particular, as the
limit of a random walk.

Let X1, X5,...,XnN, ... denote a sequence of Bernoulli random variables
that are pairwise independent and take values of +1 and —1. A random
walk (Sn) is defined by:

So =0

Sy = Efil X

By the Central Limit Theorem, (Sy) ~ N(0,v/N). Now by fixing a time ¢
and interpolating as follows:

_ 1 Nt — |Nt]

Wi (2) \/NSLNU + T(SLNHU — S| ne))

we obtain, in the limit as N — oo,
W(t) = lim Wx(t)
N—oco
W (t) is a Brownian motion with drift 0 and diffusion 1.

Brownian motion exhibits several important properties which justify its
use as a modelling tool in continuous-time finance.

1. W(t) ~ N(0,/%): i.e., for all intervals (a,b),
b e—x2/02t

38



Section 9.3 LECTURE 9 39

2. For any collection of intervals (a;, b;),1 < i <k,

PriW(t1) € (a1,b1),...,W(tx) € (ak,br)] =

b b e (@i—wi—1)?/o?(tj—tj-1)
/ / H dxy,...,dzcy
a1 ag 27T(tj - tj—l)

Intuitively, this second condition states that Brownian motion is a
Markov process: i.e., the distribution of the process at time ¢ depends
only on its current value, and not at all on the evolution by which
the process arrived at its current value.

3. Brownian motion is a Martingale.

9.2 Ito Processes

We now look at a generalization of Brownian motion called Ito processes.
Let (W) be a Brownian motion. A process (Y;) is called an Ito process iff
there exist two adapted processes p = (u¢) and o = (o) s.t.

dY; = p dt + o dWy
Note that Y; ~ N(ut,0+/t), since Wy ~ N(0,/1).

Theorem 9.2.1 (Ito’s Lemma) If V : £ x [0,T] = R is o diffusion
process - more specifically, a function of Y; and t, then

oV oV 182%V
_ oV oV 10V .19
dVy = dY + tdt+2 QdY

PROOF.
By essentially Taylor’s expansion:

oV oV 1 [8%V 0*V o0V
- i i e 2 R 7 2
dVy = FodY + Grdt £ 5 | G5 dV? + gomdVdt 4+ 2 d?| + oldt?)

Note that dY? is of the same order as dt, since dW ~ +/dt; thus, dY?
cannot be neglected. [

9.3 Black-Scholes Model Revisited

Consider a price process where the rate of change in price is given by:

g = dt + o dW, (9.1)

Equivalently,
logS =pt+ o Wi +logSo

@©Mishra, Cyberia



40 LECTURE 9 Chapter 9

or
S = Spertto W

Let C = C(S,t) denote the value of a call option as a function of the
price process and time. Then

dC = {by Ito’s Lemma}
oC oC 162C

_ b et i 2
= ggdS+ oodt+ 5 5endS
= {by 9.1}

oC oC 0282 0°C __,
= <ﬁ) (u dt +o th) + Edt + —2 det
= {since dW? ~ dt}

oC oC = o%S?9°C oC

= (/J,S%+E+—2 W) dt+0’Sgth

The first term in the above expression is deterministic: 4.e., it is a function
of time; it expresses that the processes C' and S are correlated in some way.
The second term is stochastic and depends on a Brownian motion.

Now consider a portfolio in which we go long on a call option and short
on some stock:

ocC oC  aC  o%8% 9% C ocC
dC—%dS = (NS%‘FE‘F 2 W)dt‘FO'S%th_
oC ocC
_ (e esroy,
ot 2 982

In this final expression, we have eliminated the stochastic effects of Brow-
nian motion. We have replicated a totally deterministic (i.e., riskless)
portfolio by combining a stock and a call option on that stock.

Consider a bond process (B;) which evolves according to the following

diffusion equation:
dB

Now since (By) is a totally riskless portfolio,
oC

dB =dC — —d

C 55 S
This implies that
oC

B=C-—d

c 55 S
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and moreover,

oC
C =B+ —5dS
* 33
Thus, a call option is equivalent in value to B units of bond, and %ds
units of stock.
Finally, a few simple algebraic manipulations yields the Black-Scholes
equations:

acC
Bdt=r(C -2
rB dt =r(C anS)dt

and

TBdt:dB:dC—%dS:

Combining these expressions, we derive:

ot T 2 as2

oC (80 0?52 620>
dt

oC o282 0%C oC
E—}_TW_FT dSﬁ—TC—O
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