CHAPTER 21

Model checking

Edmund M. Clarke

Bernd-Holger Schlingloff

Contents
1 Introduction o . . o e e e e e e
2 Logical Languages, Expressiveness o v v v v v i i e e e
2.1 Propositional and First Order Logic
2.2 Multimodal and Temporal Logic

2.3 Expressive Completeness of Temporal Logic
3 Second Order Languages ittt
3.1 Linear and Branching Time Logics
3.2 Propositionally Quantified Logics o oo
3.3 w-automata and w-languages oL
3.4 Automata and Logics
4 Model Transformations and Properties

4.1 Models, Automata and Transition Systems
4.2 Safety and Liveness Properties
4.3 Simulation Relations 0 0 oo e

5 Equivalence reductionso e e e e
5.1 Bisimulations (p-morphisms) 0 ...
5.2 Distinguishing Power and Ehrenfeucht-Fraissé Games
5.3 Auto-bisimulations and the Paige/Tarjan Algorithm

6 Completeness L L e e e e e e e e e e e e e
6.1 Deductions in Multimodal Logic
6.2 Transitive Closure Operators v v it v v ..

7 Decision Procedures L o e
7.1 Deciding Branching Time Logics
7.2 Satisfiability Algorithms for Natural Models

8 Basic Model Checking Algorithms v v v
8.1 Global Branching Time Model Checking
8.2 Local Linear Time Model Checking

8.3 Model Checking for Propositional p-Calculus
9 Modelling of Reactive Systems e
9.1 Parallel Programming Paradigms
9.2 Some Concrete Formalisms for Finite State Systems
9.3 Example Applications L e
10 Symbolic Model Checking e
10.1 Binary Decision Diagrams e

HANDBOOK OF AUTOMATED REASONING
Edited by Alan Robinson and Andrei Voronkov
© Elsevier Science Publishers B.V., 2001

11

12

13

14

15

10.2 Symbolic Model Checking for CTL 1476

10.3 Relational u-Calculus o v 0 o e e 1478
Partial Order Techniques 1483
11.1 Stuttering Invariance 000000 1484
11.2 Partial Order Analysis of Elementary Nets 1486
Bounded Model Checking 0 0 00000, 1487
12.1 An Example L 1488
12.2 Translation into Propositional Logic 1489
Abstractions 1491
13.1 Abstraction functions L Lo 1491
13.2 Symmetry Reductions Lo o o 1494
13.3 Parameterized Systems 1495
Compositionality and Modular Verification 1496
14.1 Model Checking and Theorem Proving 1497
14.2 Compositional Assume-Guarantee Reasoning 1498
Further Topics o i e 1499
15.1 Combination of Heuristics o o o 1500
15.2 Real Time Systems e 1501
15.3 Probabilistic Model Checking00, 1502
15.4 Model Checking for Security Protocols 1503
Bibliography 1506

Index L L e e e e e e e e e e e 1520

MODEL CHECKING 1369

1. Introduction

Model checking is an automatic technique for verifying correctness properties of
safety-critical reactive systems. This method has been successfully applied to find
subtle errors in complex industrial designs such as sequential circuits, communica-
tion protocols and digital controllers [Browne, Clarke and Dill 1985, Clarke, Emer-
son and Sistla 1986, Clarke, Long and McMillan 1991, Burch, Clarke, Dill, Long
and McMillan 1994]. It is expected that besides classical quality assurance mea-
sures such as static analysis and testing, model checking will become a standard
procedure in the design of reactive systems.

A reactive system [Harel and Pnueli 1985, Manna and Pnueli 1992, Manna and
Pnueli 1995] consists of several components which are designed to interact with one
another and with the system’s environment. In contrast to functional (or trans-
formational) systems, in which the semantics is given as a function from input to
output values, a reactive system is specified by its temporal properties. A (tempo-
ral) property is a set of desired behaviors in time; the system satisfies the property
if each execution of the system belongs to this set. From a logical viewpoint, the
system is described by a semantical (Kripke-)model, and a property is described by
a logical formula. Arguing about system correctness, therefore, amounts to deter-
mining the truth of formulas in models.

In order to be able to perform such a verification, one needs a modelling language
in which the system can be described, a specification language for the formulation
of properties, and a deductive calculus or algorithm for the verification process.
Usually, the system to be verified is modeled as a (finite) state transition graph,
and the properties are formulated in an appropriate propositional temporal logic.
An efficient search procedure is then used to determine whether or not the state
transition graph satisfies the temporal formulas. When model checking was first
developed in 1981 [Clarke and Emerson 1981, Emerson and Clarke 1982, Quielle and
Sifakis 1981], it was only possible to handle concurrent systems with a few thousand
states. In the last few years, however, the size of the concurrent systems that can
be handled has increased dramatically. By using sophisticated data structures and
heuristic search procedures, it is now possible to check systems many orders of
magnitude larger [Burch, Clarke, McMillan, Dill and Hwang 1992].

Much of the success of model checking is due to the fact that it is a fully au-
tomatic verification method. Interactive methods are more general but harder to
use; automatic methods have a limited range but are more likely to be accepted.
In interactive verification, the user provides the overall proof strategy; the machine
augments this by

e checking the correctness of each step,

e maintaining a list of assumptions and subgoals,

e applying the rules and substitutions which the user indicates, and by

e searching for applicable transformation rules and assumptions.

Sophisticated tools are also able to prove certain lemmas automatically, usually by
applying a heuristic search. Although there has been considerable research on the

1370 E. M. CLARKE AND H. SCHLINGLOFF

use of theorem provers, term rewriting systems and proof checkers for verification,
these techniques are time consuming and often require a great deal of manual
intervention. Moreover, since most interactive provers are designed for undecidable
languages (e.g., first or higher order logic), the proof process can never be completely
automatic. User interaction is required, e.g., to find loop invariants or inductive
hypotheses, and only an experienced user can perform a nontrivial proof.

On the other hand, with model checking all the user has to provide is a model
of the system and a formulation of the property to be proven. The verification tool
will either terminate with an answer indicating that the model satisfies the formula
or show why the formula fails to hold in the model. These counterexamples are
particularly helpful in locating errors in the model or system.

With the completely automatic approach it may be necessary for the model check-
ing algorithm to traverse all reachable states of the system. This is only possible if
the state space is finite. Whereas other automated deduction methods may be able
to handle some infinite-state problems, model checking usually is constrained to a
finite abstraction. In fact, model checking algorithms can be regarded as decision
procedures for temporal properties of finite-state reactive systems. However, many
interesting systems like sequential circuits or network protocols are finite state.
Moreover, in the design of safety critical systems it is often possible to separate the
(finite state) control structure from the (infinite state) data structure of a given
module. Finally, in many cases it is possible to abstract an infinite domain into an
appropriate finite one, such that “interesting” properties are preserved. In an ‘a
posteriori’ verification, some efforts may be necessary to construct such an abstrac-
tion from a given program. In a structured software development process, however,
the abstract system often arises naturally during an early design phase.

A main impediment of the fully automatic approach is the state explosion: if
any state of the system is uniquely described by n state bits, then there are 2™
possible states the system can be in. At the present time, the number of states that
can be represented explicitly (e.g., by lists or hash tables) is approximately 106.
In [Burch, Clarke, McMillan, Dill and Hwang 1992, McMillan 1993], binary deci-
sion diagrams (BDDs) were used to represent state spaces symbolically. With this
technique, models with several hundred state bits and more than 10'%° reachable
states can be checked. Because of this and other technical advances in the available
tools it is now possible to verify reactive systems of realistic industrial complex-
ity, and a number of major companies including Intel, Motorola, ATT, Fujitsu and
Siemens have started using symbolic model checkers to verify actual designs.

We now describe a concrete example of a nontrivial application, where model
checking has been used to improve a proposed international standard. Consider
the cache coherence protocol described in the draft IEEE Futurebus+ stan-
dard [IEEE 1994]. This protocol is required to insure coherence: consistency of data
in hierarchical systems composed of many processors and caches interconnected by
multiple bus segments. Such protocols are notoriously complex and, therefore, quite
difficult to debug. The Futurebus+ protocol maintains coherence by having the in-
dividual caches observe all bus transactions. In order to increase performance, the

MODEL CHECKING 1371

protocol allows transactions to be split. That is, the completion of a transaction may
be delayed and the bus freed. Then, it is possible to service local requests while the
remote request is being processed. At some later time, an explicit response is issued
to complete the transaction. Consider a sample configuration with two processors
P, and P, accessing data from a common memory via a single bus (see Fig. 1 on
page 1372). Initially, neither processor has a copy of the data in its cache; they are
said to be in the invalid state. Processor P issues a read_shared request to obtain
a readable copy of the data from memory. P, may observe this transaction and also
obtain a readable copy, such that at the end of the transaction, both caches contain
a shared unmodified copy of the data. Next, if P; decides to modify the data, the
copy held by P, must be eliminated in order to maintain coherence. Therefore, P;
issues an invalidate transaction on the bus. When P, notices this transaction,
it purges the data from its cache. After executing the invalidate-transaction, P;
now has an exclusive copy of the data.

The standard specifies the possible states of the cache data within each processor
and how this state is updated during each possible transaction. It consists of roughly
300 so-called attributes, which are essentially boolean variables together with some
rules for setting and clearing them. In the automated verification of the Futurebus+
protocol described in [Clarke, Grumberg, Hiraishi, Jha, Long, McMillan and Ness
1993], these attributes were transformed into the input language of the SMV model
checker [McMillan 1993]. For example, the following SMV code fragment indicates
how the cache state is updated when the cache issues a read_shared transaction:

next(state) :=
case CMD=read_shared:
case state=invalid:
case !SR & !TF: exclusive_unmodified;

'SR : shared_unmodified;
1 : invalid;
esac;
esac;
esac;

If the transaction is not split (!SR), then the data will be supplied to the cache.
Either no other caches will read the data (!TF), in which case the cache obtains
an exclusive unmodified copy, or some other cache also obtains the data, and
everyone obtains shared unmodified copies. If the transaction is split, the cache
data remains in the invalid state.

The model for the cache coherence protocol consists of approximately 2300 lines
of SMV code (not counting comments). The model is highly nondeterministic, both
to reduce the complexity of verification by hiding details, and to cover allowed
design choices. This model is compiled into an internal BDD representation by the
SMV program. Correctness properties are formulated in the temporal logic CTL.
For example, cache consistency is described by requiring that if two caches have

1372 E. M. CLARKE AND H. SCHLINGLOFF

copies of a cache line, then they agree on the data in that line:
AG (Pl.readable & P2.readable -> Pl.data = P2.data)

This formula is evaluated automatically on the BDD representation of the model.
SMYV finds that it is not valid and exhibits a scenario which could lead to the error:
initially, both caches are invalid. Processor P; obtains an exclusive unmodified
copy of the data (say, datal) as described above and the data of P is invalid (see
Fig. 1). Then, P, issues a read modified, which P; splits for invalidation. That is,
the memory supplies a copy of the data to P», and P; postpones the invalidation of
cache data until local actions are completed. Still having an exclusive unmodified
copy of datal, P; now modifies the data (say, into data2) and transitions to
exclusive modified. At this point, P, and P, are inconsistent. This bug can be
fixed by requiring P, to go to the shared unmodified state when it splits the
read modified transaction for invalidation.

. X datal datal data2 . .
invalid shar ed_unnod excl usi ve excl usi ve invalid

P1

read_shared i nval i dat e
BUS dat al dat al dat a2
read_nodi fied
P2 .)))) -
invalid datal invalid invalid datal

shar ed_unnod

Figure 1: Error scenario in the Futurebus+ protocol

Given a formal model of a system to be verified, and a formulation of the proper-
ties the system should satisfy, there are three possible results which an automated
model checker can produce:

1. either it finds a proof for the formula in the model and outputs “verified”, or
2. it constructs a refutation, i.e., an execution of the (model of the) system which
dissatisfies the (formulation of the) property, or
3. the complexity of the verification procedure exceeds the given memory limit or
time bound.
If there is not sufficient space or time, in some cases it is possible to use bigger and
faster machines for verification. Alternatively, one can use a coarser abstraction of
the system and its properties. The third possibility is to employ heuristics which
improve the performance of the verifier. Some of these heuristics are discussed in
Sections 10 and 11.

In some sense it is more interesting to get a refutation than to get a proof. With
a refutation, one can decide whether it is due to the modelling and formulation, or
whether this undesired sequence of events could indeed happen in reality. In the
former case, the unrealistic behavior can be eliminated by additional assumptions
on the model or formula. In the latter case, one has found a bug, and the system
and model can be changed appropriately. One of the major advantages of the fully

MODEL CHECKING 1373

automatic approach is that there is almost no additional overhead for the new
verification of the changed system.

If the model checker is able to prove all specified formulas for the given model,
then the verification is successfully completed. However, there can never be any
guarantee that a system which has been verified by a computer tool will function
correctly in reality. Even if we could assume that the verifier’s hard- and software
is correct (which we can not), there is a fundamental source of inaccuracy involved.
Verification proves theorems about models of systems and formulations of proper-
ties, not about physical systems and desired behavior; we can never know to what
extent our models and formulations reflect physical reality and intuitions. It is not
possible to guarantee that a physical system will behave correctly in unexpected
(i-e., unmodeled) situations. It would be unreasonable, however, to reject formal
methods because they cannot offer such guarantees. Civil engineering can never
prove that a certain building will not collapse. Nevertheless it uses mathematical
models to calculate loads and wall thicknesses and so on. Similarly, we can never
prove that our model adequately represents the reality. Therefore we can never
prove that a system will function as planned. Nevertheless, compared to current
practice, the use of formal methods can significantly decrease the amount of errors
in complex software systems. A temporal logic specification adds redundancy to the
design by restating an intended property in a (different) concise formalism. Com-
puter aided verification can help to locate errors and to increase reliability of these
systems. In the future, formal verification by model checking will augment classical
software design tools such as structured analysis, code review and testing.

In this survey, we give a tutorial on the theoretical foundations and techniques
used in model checking. Starting with elementary material on propositional tem-
poral logics and automata we derive basic model checking algorithms from com-
pleteness results and tableau decision procedures. Then we discuss applications and
techniques for efficient implementation of these algorithms. We extend the results
to more expressive logics and models. Finally, we discuss some open problems and
future research directions in the area. At the end of this chapter, the reader can
find a list of all symbols and notations and an index of topics.

2. Logical Languages, Expressiveness

One of the major concerns of philosophical logic is to find an appropriate language
for the formalization of natural language reasoning. The first and probably most
successful of these languages is first order logic. Almost all mathematical state-
ments and proofs can be formulated in this language. However, certain concepts
important for computer science like well-foundedness and transitive closure require
more expressive languages.

Temporal logic was invented to formalize natural language sentences about events
in time, which use temporal adverbs like “eventually” and “constantly”. Temporal
logics have proved to be useful for specifying concurrent systems, because they can
describe the ordering of events without introducing time explicitly. There have been

1374 E. M. CLARKE AND H. SCHLINGLOFF

many variants of temporal logic proposed in the literature. Temporal logics can be
classified as
e state- or transition- (interval-) based, depending on whether the formulated
properties involve one or more reference points,
e linear or branching time, depending on the intuition of time as a sequence or
as a tree of events,
o star-free or regular, depending on the formal languages which can be defined
by formulas of the logic, and
e propositional or first-order, depending on the cardinality of the nontemporal
domains.
In principle, these classifications are orthogonal; in practice, however, only cer-
tain combinations are widely used. In this survey, we concentrate on propositional
modal logic, linear temporal logic, computation tree logic, and fixpoint calculus.
Restrictions and extensions of these logics are introduced whenever appropriate.

2.1. Propositional and First Order Logic

We assume a set P = {p,q,p;,-..} of (atomic) propositions which can be either
true or false. ! For example, the proposition stack_is_empty denotes the fact that
“the stack is empty”. The propositional logic PL is built from P with the following
syntax:

PL == P | L | (PL—-PL)
That is,

e Every pe P is a well-formed formula of propositional logic,

e | is a well-formed formula (“the falsum”),

e if p and v are well-formed formulae, then so is (¢ — %), and
¢ nothing else is a formula.

P is a parameter of the logic; the special case P = {} is allowed. Other connectives
can be defined as usual: ~¢ 2 (o = L), T 2 -1, (pVy) 2 (np =),
(pAY) £ 2(mpv—y), and (¢ ¢ ¥) = ((p = Y)A(Y = ¢)). The precedence of
these operators is fixed by (-, A, V, =, ¢+), and parentheses are omitted in formulas
whenever appropriate. Atomic propositions and negated propositions are called
literals.

An interpretation T for the propositions is a function assigning a truth value from
{true, false} to every proposition. (For example, the proposition stack_is_empty
is interpreted differently on a farm, in a library, or in front of a computer ter-
minal.) A propositional model M £ (U,T) consists of the fixed binary domain
U £ {true, false} and an interpretation for P. (Later on, we will consider logics

LA list of syntactic categories and other symbols is given in the appendix.

MODEL CHECKING 1375

over arbitrary nonbinary domains.) The most basic semantical notion is the valida-
tion relation |= between a model M and a formula ¢. It is defined by the following
clauses.

e ME=p iff Z(p) = true,
e MK 1, and
e M= (p—1) if ME ¢ implies M E 9.

That is, M = (¢ = ¢) if M FE v or M = 9. If M = ¢, then we say that M
validates p, or, equivalently, ¢ is valid in M.

Propositional logic is not well-suited to formalize statements about events in
time. Even though the interpretation of a statement can be fixed, its truth value
may vary in time. This cannot be expressed directly in PL.

To express such temporal dependencies, first order logic can be used. The set P
is redefined to be a set of monadic predicates. That is, each p € P is augmented
with an additional parameter denoting time, for example, stack_is_empty(t).

For sake of simplicity, we do not include function symbols (or constants) in the
first-order language. Assume in addition to the set P of unary predicates a fixed
set R 2 {R,a,b,...} of accessibility relations, and let Rt £ RU{<, <, =}. Fur-
thermore, let 7 be a set of first-order variables T = {t, %o, ...} for points in time
(which is assumed to be infinite unless stated otherwise).

FOL := P(T) | L | (FOL—FOL) | R*(7,7T) | 3T FOL

When writing formulas, we often use infix notation for relational terms: ¢; Rty =
R(t1,t2). The notation V¢ ¢ is an abbreviation for =3¢ -, the string z > y stands
fory <z, and z <y for (z <yVz=y),etc.

To assign a truth value to a formula containing (free) variables, we assume that
we are given a nonempty universe U of points in time, and that the interpretation
T assigns to every proposition p € P a subset of points Z(p) C U, and to every
relation symbol R € R a binary relation Z(R) C U x U. For the special relation
signs =, <, and < we require that Z(=) £ {(w,w) | w € U} is the equality relation,
Z(<) £ U{Z(R) | R € R} is the transition relation, and Z(<) is the transitive
closure of Z(<), the reachability relation. A wvariable valuation v assigns to any
variable t € 7 a point w € U. A first-order model M £ (U,Z,v) consists of a
universe U, an interpretation Z, and a variable valuation v. As in the propositional
case, we define when a formula holds in a model:

o M =p(t) iff v(t) € Z(p);

e MK 1, and

e ME(p—1) if ME ¢ implies M E 1;

e M = R(to,t1) iff (v(to),v(t1)) € Z(R);

e M=3ty iff (U,Z,v') |= ¢ for some v which differs from v at most in ¢.

This language is rather expressive: consider the following example formulas.

1376 E. M. CLARKE AND H. SCHLINGLOFF

(1) (stack-is_empty(tog) — It1(put(to,t1) A ~stack_-is_empty(t1)))
If stack_is_empty, then it is possible to perform a put such that not
stack_is_empty holds.
(2) th((to <t A req(tl)) — it (tl <tz A aCk(tg)))
Every request is eventually acknowledged.
(3) th((to <t A I‘eq(tl)) — 3t2((t1 <ta A aCk(tz)) A
Vt3((t1 <ts Atz < t2) — I‘eq(tg))))
No request is withdrawn before it is acknowledged.

2.2. Multimodal and Temporal Logic

First order logic has been criticized by theoretical linguists for not being intu-
itive. Except from text in mathematical books, one can hardly find English sen-
tences which explicitly use variables to refer to objects. Natural language state-
ments use modal adverbs like “possibly” and “necessarily” to refer to an alterna-
tive state of affairs. Temporal phrases in natural language use the adverbs “even-
tually” and “constantly” (or “sometime” and “always”) to refer to future points
in time. Modal logic was invented to formalize these modal and temporal adverbs
[Lewis 1912, Prior 1957, Prior 1967]. The idea is to suppress first-order variables
t € T; propositions p € P are nullary again. In modal logics, the meaning of a
proposition like stack_is_empty is intended to be “the stack is empty now”. Thus,
in a temporal interpretation, every formula describes a certain state of affairs at a
given point.

To be able to describe properties depending on the relations between points, in
multimodal logic for every R € R a new operator (R) ¢ is introduced. The meaning
of (R) ¢ is “possibly ¢”, i.e., “there exists some ¢ accessible via R such that ¢ holds
at t”. Dually, [R]¢ £ - (R) - means “necessarily ¢”; “for all ¢ accessible via R,
it is the case that ¢ holds at ¢”.

ML == P | L | ML—>ML) | (R)yML.
Intuitively, the above example (1) could be written
(stack_is_empty — (put) ~stack_is_empty).

Assume again that U is a nonempty set of points in time (or “possible worlds”).
An interpretation T for multimodal logic assigns to every p € P and R € R a subset
Z(p) C U and a relation Z(R) C U x U, respectively. The tuple F £ (U, T) is called
a frame for P and R. A (Kripke-) model (introduced in [Kripke 1963, Kripke 1975])
M £ (U, T,w) for multimodal logic consists of a frame (U, Z) and a current point
wo € U. U M = (U,Z,wy), we say that M is based on the frame F = (U, Z). Thus,
a Kripke model for multimodal logic is similar to a first order model, where the
variable valuation v is replaced by a single designated point wy.

Note that our notion of frame and model is somewhat different from the tradi-
tional use of these terms, where a frame denotes the tuple (U,{Z(R) | R € R}),

MODEL CHECKING 1377

and a model is the triple (U,{Z(R) | R € R},{Z(p) | p € P}). Historically,
atomic propositions have been regarded as being “variable” in a formula, thus
{Z(p) | p € P} is a separate valuation for these variables. In this paper, a proposi-
tion denotes a fixed predicate, hence its meaning is given by the interpretation. In
a later section we introduce a separate syntactic category of proposition variables,
which can be evaluated differently in each context.

Validity of a modal formula in a Kripke model M £ (U,T,wp) is defined as
follows.

e M E=piff wg € Z(p);

e ME 1,and

e ME(p—7vy) iff M@ implies M [.

e M = (R) ¢ iff there exists wy € U with (wo,w1) € Z(R) and (U,Z,w;) [E .

We write w = ¢ instead of (U,Z,w) | ¢ whenever the frame (U,Z) is given. A
formula ¢ is universally valid (or frame-valid) in (U,), if for all w € U it holds
that w [.

As defined above, < is interpreted as the transition relation, i.e., the union of
all accessibility relations, < is interpreted as the transitive closure of <, and < as
the reflexive transitive closure (the reachability relation). For these special relations
~€ {<,<,=,<}, we henceforth simply write v ~ w instead of (v,w) € Z(~). We
introduce the special operators X, F and F":

e wy = X ¢ iff there exists w; € U such that wy < w; and w; | ¢,

o W = F+cp iff there exists wy € U such that wo < wy and wy | ¢, and

e wy = F ¢ iff there exists wy € U such that wy < w; and wy = .

For the dual operators, we use the symbols X ¢ £ =X —¢, and G+<p 2 F" -,
and G" ¢ £ = F —¢p. Traditionally, X, F, and G have been used to indicate neXt
time, Future and Global operators?. Alternatively, F" and G are called sometime-
and always-operators. X is referred to as weak next- operator.

Here are some historical remarks on the use of these operators. In the 1950’s and
1960’s, proof theory and model theory of modal logic was developed ([Rescher and
Urquhart 1971, Hughes and Cresswell 1977] are historical, and [Blackburn, de Rijke
and Venema 2000] is a modern textbook on this topic). Its applicability to computer
science was discovered in the 1970’s: [Burstall 1974] suggested a modal logic built
upon F" and G to describe program properties. [Kroger 1978] suggested to use
both X and F' for program verification. [Pnueli 1977] used a similar system for
parallel programs. [Gabbay, Pnueli, Shelah and Stavi 1980] extended temporal logic
for program specification by the binary connective until (explained below). The
framework was further elaborated in [Pnueli 1981, Manna and Pnueli 1981, Manna
and Pnueli 19825, Manna and Pnueli 19824, Pnueli 1984, Harel and Pnueli 1985,

2 A note on notation: with the above convention, the X, X, F+, F, Gt and G* operators could
be written as (<), [<], (<), (<), [<] and [<], respectively. In the literature, some authors use the

symbols ®, o, 3, and 2. An index of the notations used in this chapter is given in the appendix.

1378 E. M. CLARKE AND H. SCHLINGLOFF

Manna and Pnueli 1987, Manna and Pnueli 1989]. The combination of (R)- and F"-
operators originates from dynamic logic [Salwicki 1970, Pratt 1976] (for an overview
on dynamic logics, see [Harel 1984, Kozen and Tiuryn 1990]).

Intuitively, X ¢ indicates that ¢ holds at some point accessible via a single tran-
sition, F+<,0 specifies that ¢ must hold in some point which can be reached by a
nonempty sequence of transitions, and F ¢ means that ¢ holds at some reachable
point (possibly now). Dually, X ¢ holds if all successors satisfy ¢, and G ¢ and
G+g0 determine that all reachable points (except maybe the current point) must
validate . With these operators, example (2) could be written

G'(req — F' ack).

From the definition, wo | X ¢ iff w1 |= ¢ for all w; € U such that wy < wy.
Similarly, wo | G o iff wy = ¢ for all w; € U such that wg < w;. A point
w € U is called terminal, if {w' | w < w'} = {}. A terminal point represents a final
state of a terminating computation. Terminal points satisfy all X - and G™-formulas
vacuously: if wo has no accessible successors, then wo = X ¢ and wo | G+cp for
any formula .

The difference between F* and F~ is that in the latter “the future includes the
present”. Using the X operator, F'" and F* can be mutually defined: clearly, the
formula (F" ¢ < ¢V F') is valid. Therefore, the F"-operator can be expressed
by F'. Using the equivalence (F* ¢ <> X F" @), each occurrence of the operator F*
in a formula can be replaced by F* and X, with only a linear increase in formula
length. It is not possible to define the F'-operator by F alone (without X):

2.1. LEMMA. Without X, the operator F' s strictly more expressive than F .

ProoOF: Consider two models M; and M,, where U; £ U, £ {w}, T; (<) =
{}, To(<) £ {(w,w)} and Zy(p) = Zx(p) for all p € P. Then M; B F' T and
M,y E F'T. However, w = F ¢ iff w = ¢ in both M; and M. Therefore, for
all formulas ¢ which involve only propositions, boolean operators and F’ it holds
that My E ¢ iff Ms | ¢. (The formal proof of this statement is omitted; it is
a straightforward induction on the construction of such formulas.) Hence, there is
no formula ¢ consisting only of propositions, boolean operators and F* such that
for all models M it holds that M = ¢ iff M |= F" T. In other words, F" T is not
expressible in this language. 2

A similar proof shows that modal operators cannot express statements about
intervals. For example, there is no formula equivalent to example (3) of the above.
To remedy this lack of expressiveness, [Kamp 1968] introduced a binary operator
(¢ U" 1)) meaning “p holds until ¢ holds”. We use the term temporal logic to refer
to any modal logic which contains some sort of until-operator. In computer science,
this operator was first used by [Gabbay et al. 1980] to classify important properties
of concurrent programs. The semantics of U™ is defined as follows:

o wy = (ch+¢) iff there exists wy € U with wy < w; and w; = 4, and for all
wy € U with wg < w2 and wy < wy, we have wy = .

MODEL CHECKING 1379

This situation is illustrated by the following picture.
O-@-@-@-@-O-O -

As an example, the above formula (3) can be expressed with an until-operator as
G'(req = (req U ack)).

Various other operators can be defined via U'. Sometime-operator and nexttime
operators (for discrete <) are obtained as follows:

e Xy (L U* ®)

o F' e (T U")
The proof of these equivalences is immediate from the definition: wg = (L U*)
iff there exists wy € U with wy < w; and w; | 9, and for all w, € U with
wo < wz < wy it holds that ws |= L, which is impossible. In other words, wo < w1,
but there is no wy that satisfies wy < wo and wy < w;. Therefore w; must be an
immediate successor of wp, i.e., wy < w;. Consequently, wy = X . The second
equivalence is obtained in a similar way.

The reflezive until-operator is defined as (¢ U 1)) 2 (¥ Vo A (¢ U™).

@-@-@-@-®-O-Or-

As above, F" ¢ ¢ (T U ¢) and (o U") +» X(p U ¢). Without X it is not possible
to define U" or F* from U". Hence, X cannot be defined by U’.
The unless or weak until-operator is defined as

(W') £ ~(=p U ~(p V ¥)).

Whereas (¢ U 9) requires that 1 eventually holds, (¢ W') is also true if ¢ is
never and ¢ always true. Intuitively, (o W') says that ¢ holds at least up to
the next point where ¢ holds. This can be seen as follows: assume that wo =
(=) U" =(p V)). By definition, it is not the case that for some w; > wg both
wy = (e V) and wy | —p for all wy < we < wy. Thus, for all w; > wp it holds
that wy = (¢ V), or we |E ¢ for some wy < wy < wy. In other words, if wy > wy
then either w; |= ¢ or there is some wy < ws < wy such that wy [¢. Therefore,
if wy B ¢ for all wy < wy < wy, i.e. if wy is before the next point where ¢ holds,
then wy = ¢.

Note that by definition (¢ W' L) = ~(T U" =) = G' . Some texts define the
unless operator by ((¢ U 1))V G™ ¢). In natural models, which consist of a sequence
of points, these two definitions are equivalent:

2.2. LEMMA. For natural models, (¢ W" 1) < (o U 9) V G" o).

PROOF: We must show that for all models M which are sequences, the following

holds: (i) M = (¢ W' ¢) = (¢ UT9) VG), (i) M |= (GTe = (¢ W'y))

1380 E. M. CLARKE AND H. SCHLINGLOFF

and (iii) M = (¢ U) = (9 W)). For (i), assume that wo = (o W' 1)) and
wo H G* @. Then wy # ¢ for some w; > wy. According to above, there is some
wo < wz < wy such that wa = . Since the model is assumed to be a sequence, it is
well-founded. Therefore there must be a smallest wy with this property; i.e. wo <
wy < wy, wy = 9, and w3 F ¢ for all wg < wz < wsy. Again, according to
the above, if wg < ws < ws then ws = . Therefore wy = (¢ U'¢). Formula
(i) follows immediately from the definition: if wo |= G' ¢, then w; |= ¢ for all
wy > wo. Therefore, it is not the case that some w; > wy exists which satisfies
wy = —(p V). This implies wo F (- U (¢ V), i.e., wo = (9 W' 4). For
implication (iii), we need the property that the model is linear: if wo |= (¢ U™ 4),
then there exists w; > wp such that wy |= ¢ and ws |= ¢ for all wy < wa < wy.
Assume any point w > wy. Then w < w; or w > w;. In the first case, w = ¢. In
the second case, there exists w' = w; such that w' |= ¢. Thus, for all w > wyq it
holds that w = ¢, or there exists wy < w' < w such that w' |= ¢. This shows that

wo = (o W'). 2

This equivalence does not hold for dense time: for example, if (U, <) is isomorphic
to the rationals and Z(¢)) £ {1/n | n € N}, then Vt; > 03ty > 0 (t, < t1 A1h(t)),
hence 0 = (L W). Moreover, 0 £ X T and 0 = F' T, hence 0 F (LU ¢) vV
G* 1). For more information on other models of time, see [van Benthem 1991,
Gabbay, Hodkinson and Reynolds 1994]. An immediate consequence of Lemma 2.2
is that in natural models the operator U™ is definable by W and F:

(U) & (p W) ANF).

With first order logic, it is possible to use reverse relations: z > y iff y < z. In
[Lichtenstein, Pnueli and Zuck 1985], the authors argue that the ability to refer to
the past can facilitate program specifications. The temporal past or since- operator
U is defined with the following semantics:

e wy = (U) iff there exists wy € U with w; < wy and w; | 4, and for all
wy € U with w; < w2 and wy < wp, we have wy = .

The syntax of linear temporal logic (LTL) is defined as follows:
LTL == P | 1L | (LTL - LTL) | (LTLU'LTL) | (LTL U LTL).

We write F ¢ and G ¢ for (T U ¢) and = F -, respectively. Intuitively, these
operati)rs refer to “sometime in the past” and “always in the past”. Moreover, F @
and G™ ¢ are abbreviations for (F ¢ V ¢ VF') and — F* ¢, respectively.

2.3. Expressive Completeness of Temporal Logic
How can first order and temporal logic be compared? Temporal logic can be re-

garded as a certain fragment of first order logic; this is explained more formally
below. In contrast to modal or temporal logics, FOL formulas can mention several

MODEL CHECKING 1381

reference points (free variables). To be able to compare the expressiveness of both
type of logics, we restrict FOL to formulas with at most one free variable.

The above semantics induces a translation “FOL” from modal or temporal to
first order logic, where FOL(y) has exactly one free variable tg.

o FOL(p) £ p(to)
e FOL(L) £ (to # to)
* FOL((p = ¢)) £ (FOL(p) — FOL(v))
e FOL((R) ¢) 2 3t'(toRt' AFOL(p){to := t'})
e FOL(X) £ 3t'(tg < t' AFOL(p){to :=t'})
e FOL(F" @) 2 3t'(ty < t' AFOL(p){to :=t'})
e FOL(F @) 2 3t'(ty < t' AFOL(p){to :=t'})
e FOL((p U ¢)) £
3t (to < t' AFOL (1)) {to := '} AVE" (to < t" < t' = FOL(p){to := t"})).
¢ FOL((pU 9)) £
3t (#' < to ANFOL(){to :=t'} AV (' <t < tg — FOL(p){to :=t"})).

This translation is sometimes called the standard translation[Blackburn et al. 2000].
In the translation of (R) ¢, ..., (¢ U"4), the symbols ¢’ and ¢ denote arbitrary
variables which do not occur in FOL(p) or FOL(%)). The formula FOL(v)){to := t'}
denotes the formula FOL(v), where every (free) occurrence of the variable tq is
replaced by the variable which is denoted by t'. The following example demonstrates
the standard translation.

FOL(((—ack U req) U™ ack))
= Ft1(to < t1 Aack(tr) AVia(to < t2 < t; = FOL((—ack U req)){to :=1t2}))
= 3d (to <ti A ack(tl) A Vi (t() <ty <ty —
It (t3 <ty A I‘eq(t3) N Vt4(t3 <ty <ty — —lack(t4))))).
The standard translation of a modal or temporal formula is a first-order for-
mula with exactly one free variable ¢y. Correctness of the standard translation can
formally be stated as follows:

2.3. Facr. For every ¢ € ML or LTL there exists a first order formula FOL (i)
such that for every frame (U, Z), point wy € U and valuation v for which v(¢g) = wq
it holds that (U,Z,wq) = ¢ iff (U,Z,v) = FOL(yp).

Hence, FOL is at least as expressive as LTL. A logic is called expressively complete
(or definitionally complete), if there exists also a translation in the other direction:
given any first-order formula with exactly one free variable, does an equivalent
temporal formula exist?

For the translation of any given temporal formula into first order logic only three
variables (say, to, t1 and t2) are really needed. Other variables can be reused; for
example, the above FOL(((-ack U~ req) U ack)) is equivalent to

Jt, (to <ti A ack(tl) A Vi (t(] <ty <t —

1382 E. M. CLARKE AND H. SCHLINGLOFF

dto (t() <ta A I‘eq(to) A Vit (t() <t <ty — ﬁack(tl))))).

Similarly, modal logic can be translated into the so-called guarded fragment of first-
order logic, which allows only two variables. In the first-order clause for (¢ LOM)
three variables are needed. This is the reason why the until-operator is not definable
in modal logic. Likewise, LTL cannot express any property which “inherently”
uses four variables. For example, the statement “there are three different connected
points reachable from the current point” is not expressible in temporal logic.

3t1,t2,t3(t0 <tiAtg<toAtg <tz Nty <toAti <tzAts <t3)

If < is irreflexive, then a minimal model satisfying this formula is e.g. the following:

O

In case that < is a linear order (antisymmetric and total) this is equivalent to
Jty(to < ty A Tta(ty < ta AJts(ts < t3)))

in which we can rename t3 by to to get the equivalent
Tty (to < t1 A Tta(ts < ta A Jto(ts < to)))

which in turn can be expressed temporally as F* F"F' T.

Therefore, attention is restricted to certain classes of structures, like complete
linear orders, or finitely-branching trees, etc. A natural model consists of a finite or
infinite sequence of points. Formally, a natural model M £ (U, T, wy) is a Kripke-
model with only one accessibility relation, such that (U, <) is isomorphic to the
natural numbers or an initial segment of the natural numbers®, where < is the
usual successor relation.

2.4. THEOREM (Kamp, Gabbay). Temporal logic is expressively complete for nat-
ural models.

The original proof of this theorem in [Kamp 1968, pp. 39-94] is extremely com-
plicated. The proof given below follows [Gabbay 1989] and uses a certain property
called separation. Call a temporal formula

3Some textbooks restrict attention to infinite models. Terminating computations are then mod-
elled with an idle loop. In this survey, we use both finite and infinite computation sequences.

MODEL CHECKING 1383

e pure future, if it is of form (¢ U" 1)), where in both ¢ and 4 no U -operator
occurs, and
e pure past, if it is of form (¢ U™ ¢), where in both ¢ and ¢ no U'-operator
occurs, and
e pure present, if it contains no U'or U -operators.
A future formula is a boolean combination of pure future and pure present formulas,
i.e., one which does not contain any U -operators. Similarly, a past formula does
not contain any U*. A formula is separated if it is a boolean combination of future
and past formulas. A logic has the separation property (for a given class of models),
if for every formula there exists a separated formula which is equivalent for all
models under consideration.

2.5. LEMMA. The separation property implies expressive completeness.

PRroOF: This lemma is proven by induction on the structure of FOL-formulas. For
the proof, we assume that LTL has the separation property for natural models.
That is, for each linear temporal formula there exists an equivalent formula which
is separated. We show that any first order formula ¢(to) which has exactly one free
variable o can be translated into a temporal formula LTL(yp). It suffices to consider
first order logic where Rt £ {<, =}: in natural models, there is a single accessibility
relation, and every atomic subformula ¢ < ¢’ can be equivalently replaced by (¢t < t'A
-3t"(t < t"” At" < t')). Furthermore, the scope of quantification can be minimized
such that no sub-formula ¢ £ 3t ¢ contains a proposition p(t') where t' is free in ¢.
For example, 3t; (t1 > toAp(to)Ap(t1)) can be rewritten as p(to) AJt1 (t1 > toAp(t1))-
The translation of p(¢o) is p. It is not necessary to give a translation for formulas
p(t1) or to ~ t1, since they involve other free variables than ¢o. The translation
of a boolean connective of sub-formulas is the boolean connective of the transla-
tion of the sub-formulas. The only remaining case are formulas ¢ = 3t; 9 (to,t1).
Since the scope of the quantifier 3¢; is minimal, ¢ does not contain any proposition
p(to). That is, ¥ (to,t1) is a boolean combination of formulas p(t1), t¢ ~ t1, and
@' & 3ty ' (to,t1,t2). Replace every sub-formula ty < t by a new unary proposi-
tion future(t), replace every sub-formula ty = ¢ by a new unary present(t), and
replace every t < to by past(t). That is, ¢ now does not contain any to, and thus
each ¢’ is a formula with exactly one free variable #;. Since the nesting depth of
existential quantifiers in each ¢’ is smaller than that of ¢, we can apply the induc-
tion hypothesis to get temporal formulae LTL(p'). Reinserting these into ¢ and
replacing p(t1) in ¢ by p, and q(t1) by q for q € {future, present,past} gives
the temporal formula LTL(z). To translate ¢ = 3t; 1) we separate the temporal
formula (F~ LTL(¢) V LTL(¢)) V F" LTL(¢)). The resulting formula is a boolean
combination of pure future, pure past and pure present formulas. Replace in this
formula every future inside a pure future formula by T, every other future by
1. Similarly, replace every past inside a pure past formula by T, and every other
past by L. Finally, replace every present inside a pure present formula by T, every
other present by L. The resulting formula is the required translation LTL(yp).
Given any natural model M £ (U, Z,wp) for ¢, define Z(future) = {w | w >

1384 E. M. CLARKE AND H. SCHLINGLOFF

wo}, Z(present) £ {wp} and Z(past) 2 {w | w < wg}. Then every step in the
above translation preserves validity in M. Therefore, M = ¢ iff M = LTL(p). 2

To illustrate this construction, let us find the temporal equivalent of ¢ £ 3¢, (to <
t1 Ap(t1) AVia(to < ta2 < t1 — q(t2))). (We already know that the outcome should
be (qU" p).) The first replacement results in 319, where 1) £ (future(t;) Ap(t1) A
=ty (future(tg)/\tQ < t1/\—|q(t2))). The formula cp'(tl) =ty (t2 <t /\future(tg)/\
—q(t2))) inductively translates to LTL(¢') = F (future A =q) = = G (future —
q). Thus LTL(¢)) = (future Ap A G (future — q)). To obtain LTL(3t;%¢) we
have to separate F* LTL(y)) = F'LTL(y) V LTL(y) V F” LTL(). Separating
F'LTL(¢) = F' (futureApAG ™ (future — q)) gives G_(future — q)A(future —
q) A ((future — q) U'(future A p)) (see below). The disjuncts F~ LTL(y)) =
F (future ApA G (future — q)) and LTL(%)) = (future Ap A G (future — q))
are already separated. To obtain LTL(y), we now replace every future inside a pure
past or pure present formula by L and every future inside a pure future formula
by T. Then G (future — q) A (future — q) reduces to T, and ((future —
q) U (future A p)) reduces to (qU" p). The disjuncts F~ LTL(¢) and LTL(1)
reduce to L. Therefore, F* LTL()) reduces to (q U™ p), which is the expected result
for LTL(v).

In the above, we used the following equivalence to separate a nested occurrence
of future- and past- operators:

EF(QGAG ¥) o G YAYA (U)

PROOF: The left side of this formula states that sometimes in the future, ¢ and
always in the past 9 holds. In other words, there is some w; > wg such that ¢ holds
at wi, and for all wy < wy, the formula % holds at ws. In a natural model, each such
we must be in the past (w2 < wg), present (wa = wp) or future (wy < wa < wy)
of the current point wy. Therefore, for each wy < wg, the formula 1) holds, and
1 holds at wy, and there is some w; > wqg such that ¢ holds at w;, and for all
wy < we < wi, the formula v holds at w,. This is stated by the right side of the
formula. 2

A more convenient way to show the correctness of such formulas than by seman-
tical reasoning is by an automated proof procedure. In Section 7, we will show that
LTL is decidable. There are several automated provers freely available. In fact, the
above formula is checked by the STeP system within milliseconds.

To show expressive completeness, it remains to prove the following;:

2.6. LEMMA. LTL has the separation property for natural models.

Proor: Consider the case of a non-separated formula ¢ £ (p; U ¢,), which
contains a direct subformula ¢ £ (¢, U 4y) (i.e., ¥ is a boolean component of
¢1 and/or ¢,, and does not occur elsewhere in ¢; or ;). We write ¢, and
i for pi{¢p :== T} and ¢;{¢p := L}, respectively. By propositional reasoning,

MODEL CHECKING 1385

o1 (V) A=y V) and 3 < (v A) A (= V p7)). Therefore, ¢ is
equivalent to (4 V o) A (<) V])) U (% A ¢) V (% A o1))). By temporal
reasoning, this in turn is equivalent to (Vo) U (WA@d) V (Vi) U (—p A
e3) A (Ve) U W AR])) V (-$V el) U(— Apg))).

For each of the four boolean components of this formula, an equivalent separated
formula is given in Fig. 2. Though these formulas are hard to read and difficult
to prove manually, their validity can be easily checked by an automated theorem
prover. Intuitively, they are generalizations of the example given above. With the
separating clauses, ¢ can be rewritten such that v is not in the scope of any U

Since the formulas of Fig. 2 still hold if U™ and U~ are interchanged, each
(91U 2) containing a direct subformula 1 2 (1 U'4)2) can be rewritten such
that 1 does not occur in the scope of a U . The general case of several different
pasttime-subformulas nested within future-subformulas and vice versa can be han-
dled by repeated application of these transformations. Formally, the claim follows
by induction on the nesting depth and number of U sub-formulas within U and
vice versa. 2

Since in the separation step of this construction subformulas may be duplicated,
the resulting LTL formula can be nonelementary larger than the original FOL
formula.

() (1 U 3) V o1) U (401 U ¢hy) A p2)) &
(%1 U 2) A (@ Vi1 A (991 U h2))V
(1 V b2 V =(=ha U =) I;(% AU o)A
(292U =1) V(2 VY1 A (1 U ¢2)))

(i) (Y1 U o) Vv <P1)P+<_‘(¢1 U) Ag2)) &
(o1 A=t2) U p2) A (=42 A (21 V (1 U 9h2))V
(1 Vo V (01 U (02 V 01 At2))) U {1 A=tp2 A ((p1 A ~¢ha) U™ 02)))A
(1 U {1 Ath2)) V(P2 Vb1 A (1 U 92))

(i) ((=(¥1 U 42) Vfl) U (11 U ¢h) A P2)) ¢
({pr A1) U @2) A2 Vpr A (1 U 4))V N
(=92 V (01 U2 Vo1 A=th A=p2)) U (2 A ({1 A1) U~ 02)))A
([p1 U {1 A =th1 A =p2)] V [=92 A (—th1 V = (91 U 4h2))])

(iv) ((=(e1 U ¢h2) V o1) U (=(t01 U 1h2) Apa))
(= (1 U =1) V (1o A (—hy Vo U go)))A
(W1 Vdbo V (=02 U 2)) U2 A (1 U 1))V
. . (=2 U 4@2) A {(=h2 A(=91 V =(¢1 U %2)))))/\
(F'[p1 A =aha A (—ap2a U 2)] V [(—1h2 U 2) A (mth2 A (=1 V =(31 U 4h2)))])

Figure 2: Separation clauses for LTL

1386 E. M. CLARKE AND H. SCHLINGLOFF

3. Second Order Languages
3.1. Linear and Branching Time Logics

As we have seen, linear temporal logic is expressively complete for natural mod-
els. The same result (with minor modifications) can be proved for finitely branch-
ing trees [Schlingloff 1992a, Schlingloff 1992b], and for certain partially ordered
structures [Thiagarajan and Walukiewicz 1997]. In computer science, the possi-
ble executions of a program can be modelled as a set of erecution sequences.
Alternatively, it can be modelled as a unique ezecution tree, where branches de-
note nondeterministic decisions. This view is adopted in branching time temporal
logic [Lamport 1980, Ben-Ari, Manna and Pnueli 1983, Emerson and Halpern 1986].

Statements about correctness of program can involve assertions about all mazimal
paths in a tree. A path in a model is a (finite or infinite) nonempty sequence of
points ¢ = (wp, w1, ...), where for each ¢ with 0 < i < |o| there exists an R; € R
such that (w;,w;y+1) € Z(R;). A path is mazimal, if each of its points which has a
successor in the model also has a successor in the path. In other words, a maximal
path is either infinite, or its final point w,, is terminal (there is no w such that
wy, < w). Computation tree logic (CTL) [Clarke and Emerson 1981, Emerson and
Clarke 1982] has the following syntax:

CTL := P | 1| (CTL— CTL) | E(CTLU CTL) | A(CTLU" CTL).

CTL is interpreted on tree models. A tree is defined as usual: it has a single root
wg, and every node w, can be reached from wy by exactly one finite path. The
transitive closure “<” of the successor relation “<” then denotes the usual tree-
order: (w1, wsz) € Z(<) iff wy is on the (unique) path from the root wo up to ws.

e wy = E(pU) iff there exists wi > wo such that wy }= ¢, and for all
wy € U, if wg < wy < wy then ws | .

o wy = Ay U’) iff for all mazimal paths p from wo there exists wy > wo
on path p such that wy = ¢, and for all wy < wa < wy, we = ¢

Thus, the E U -operator is defined similar to the LTL until-operator. However, the
intended models for CTL are trees, whereas LTL usually is interpreted on natural
models. In CTL weak and derived operators can also be defined as abbreviations.
However, in branching time, there are two variants of each derived operator.

EXy2E(LU), AXyp 2 ALU),
EXy 2 -AX), AXy £ -EX—,
EF ¢ 2E(TU), AF ¢ 2 A(TU),

EG ¢y 2 -AF —y, AG Y2 -EF —,
(wUﬁm*(Avawafwm (wUWMz(wvafwlﬁWL
*waVEEyL TWVAFyL
EG ¢y =yWAEG ¢), Yv=WAAG Y),

MODEL CHECKING 1387

E(eW'y) £ -A(p U =(p V1Y), AW)2 -E(pU ~(pVy)).

Informally, E X ¢ means that some successor node satisfies 1, and A X ¢ holds
if all successors are . In a terminal point, A X 1 is valid, but AX L not: if
wo has no successors, then the only maximal path p from wqg is the one-element
sequence 0 = (wp). On this unique path o there is no wy; > wyp, therefore each
formula A(pU"4) and E(p U") must be invalid. As a special case, in such a
point EX T is not valid, but EX T and EX L are valid. In a nonterminal point,
(EXp < EX @) and (AX ¢ <> AX). Thus, if we restrict attention to models
without terminal points, these operators coincide. The operators A X and EX can
be expressed by EX and AX (with at most linear increase of formula length)
via AXp o AXPpAEXT) and (EXp & EXpVAX 1), that is, (EX ¢ ¢
(EXT — EXy)). Thus, all CTL nexttime-operators can be expressed in terms
of EX.

The formula EF 1) means that some node in the computation tree satisfies 1),
and A F ¢ specifies that 1) must hold somewhere along every maximal computation
path. Dually, A G" ¢ means that every node in the (sub-) tree satisfies 1/, whereas
E G" % indicates that 1 is globally valid along some path.

In the above picture, nodes satisfying ¢ are shown solid (or as a shaded area),
whereas 1 nodes are indicated by a circle.

The operator A U" can be expressed by EU" and AF". This characterization is
similar to the definition of the unless-operator in linear temporal logic, cf. page 1380:

AU) & (AW) AAF) = (E(-9 U =(p V1)) AAF).

Therefore, it is sufficient to consider only the two basic operators E U and AF in
formal proofs and algorithms. Similarly, the formula E(o W™ 1) can be replaced by
(E(p U) VEG'). However, there is no negation-free “dual” characterization
of AW and EU"

We now give some examples of CTL formulas. The following properties are typ-
ical correctness requirements that might arise in the verification of a finite state
concurrent program.

— EF'(started A —ready): it is possible to get to a state where started holds
but ready does not hold.

— A G'(req = AF" ack): if a request occurs, then it will be eventually acknowl-
edged

1388 E. M. CLARKE AND H. SCHLINGLOFF

— AG" AT stack is_empty: the proposition stack_is_empty holds infinitely
often on every computation path

— A G EF restart: from any state it is possible to get to a restart state.

For many CTL formulas it is possible to formulate similar correctness properties in

LTL. Possibility properties like the last one mentioned above can not be formulated

in LTL. On the other hand, certain fairness properties cannot be formulated in

CTL.

How can we compare the expressivity of CTL with (the future fragment of) LTL?
Direct comparison is difficult, since models are different: on natural models, which
are special tree models with branching degree one, A U™ and E U'-operators coin-
cide. On tree models with higher branching degree, LTL obviously cannot express
A(pUTy).

Therefore, one considers LTL and CTL on (nonlinear, non-tree) Kripke-models
(U, Z,wo)- In contrast to natural or tree models, Kripke-models can contain reflexive
points, loops or even dense relations. We call an LTL future formula sequence-valid
in a Kripke-model M, if it is valid in all natural models ((wq, w1, -..),Z,wo) which
are generated from M, that is, for all maximal paths wg, w1, ...) in U starting from
wg- (A formal definition of this notion will be given in Section 4.) Similarly, a CTL-
formula is called tree-valid in a Kripke-model, if it is valid in the root of the unique
maximal tree generated from it.

With this definition, the expressivity of LTL and CTL can be compared. It
turns out that on Kripke models, neither of both is strictly more expressive than
the other one. For example, the LTL formula ¢ £ F G+p is not expressible in
CTL (it is not the same property as AF" A G'p). That is, there is no CTL-
formula ¢ such that 1 is tree-valid in exactly the same Kripke-models in which
¢ is sequence-valid. Similarly, AG"EF p is not expressible in LTL (it is not
the same as G* F' p). For more information on the expressiveness of linear versus
branching time see [Emerson and Lei 1985, Emerson and Halpern 1986, Clarke and
Draghicescu 1988, Emerson 1990].

On Kripke-models, the logic CTL" (see [Emerson and Lei 1985, Emerson and
Halpern 1986]) subsumes CTL and LTL by separating path quantification (E)
from temporal quantification (U+) Thus it is possible to write e.g. EG F p. The
logic CTL" is strictly more expressive than both CTL and LTL. On binary trees,
the expressiveness of CTL* can be compared to first order logic with additional
(second order) quantification on paths. For more information on the expressiveness
and complexity of various sublogics of CTL", see [Emerson 1990].

3.2. Propositionally Quantified Logics

Quantification over maximal paths is not a first-order notion. It is clear that for
natural models, which consist of exactly one maximal path, this quantifier is not
very useful. However, even for natural models, there might be other types of second-
order quantification which could be interesting. Wolper remarked that “temporal
logic can be more expressive”[Wolper 1982, Wolper 1983]. In temporal or first-

MODEL CHECKING 1389

order logic, it is not possible to specify that a certain proposition p holds on every
second point of an execution sequence, without constraining the values of p in
intermediate points. Formally, for a natural model where U = (wg,w;, ...), define
the new operator G>" by

w; =G iff wije, =@ foralln >0

We will show that this operator can not be expressed in LTL or FOL. First, note
that the following operators are not equivalent to G" ¢

Gl o2 W\G*(w - XX)
(G2)(to) 2 p(to) AVE > to(p(t) = Vi1, ta(t < t1 <t = p(t2)))

These formulas define a stronger property than required: they imply that if ¢ holds
in two adjacent states, it must hold always. Therefore, |= (G2, ¢ — G*™ ¢). The
reverse implication does not hold: there are models satisfying G*" ¢ but not G2% ¢
or G272 (ty), respectively.

3.1. THEOREM (Wolper). Let p be any atomic proposition. There is no LTL-
formula ¢ such that = ¢ < G>"p.

Proor: Consider the following sequence (Mg, M7, Ma,...) of models. For each
i > 0, define M; = (U,,L,wo) where (U;, <) is isomorphic to the integers:
U; 2 (... Wy, wl L, wh, wi,wh, ...). Furthermore, define Z;(q) £ U;\w! for all q € P.
That is, w?, |= q iff i # n for all atomic propositions q. Since (U;, Z;, w}) is isomor-
phic to (Uiy1, Ziy1,wi ™), we have wf = ¢ iff wit! = ¢ for all formulas . As a
consequence, wj |= ¢ iff wi™ | X .

In the next step, we prove that any LTL formula will almost always be true or
almost always be false in the sequence (M;): for any ¢ € LTL there exists an ¢
such that for all j > 4 it holds that M; = ¢ iff M |= ¢. This is proved by induction
on the structure of LTL formulas. The only interesting case is given by the until-
connectives. We prove the case of (o U"). For this case, the induction hypothes1s
guarantees that there is an ¢ such that for all j > ¢, both wo = piff w0+ Eoe (¥
and w) = o iff w)tt | (**). We have to show that w) [= (¢ U v) iff wit =
(¢ U). From the above consequence, w}, = (o U 9) iff wit! = X (o U ¢) (¥*¥).
The following recursive characterization is valid: |= (¢ U’ d}) (WVeAX(pU).
In particular, this implies = (¢ — (U ¥)) (1), E (-¢ = (¢ U 9¥) & (p A
X(pU 1)) (), and | (w6 > (¢ U %) = ¢) (1 1) |

If w) = 9, then w) = (¢ U 9) by (f). In this case, by (**), wé“ = 4, hence
also wi™ |= (U 9) by (). Therefore, if w |= 4, then w) = (o U) iff wit'
(p U 4)). Now we consider the case that wi H 4. By (11 1), w) | (p U ¢) iff
wé = ¢ and w) |= (o U 4). By (*) and (***), this in turn holds iff w)™" = ¢ and
wit = X(o U ¢). By (1), thls is the case iff w}™ = (o U ¢).

To complete the proof, we now show that this eventual stability property does
not hold for formulas which include the G?™ operator. It is not hard to see that
M; = G*"piff i is odd: recall that wi F p. Thus, if i is even, then for n £ i/2

1390 E. M. CLARKE AND H. SCHLINGLOFF

we have wi_,, F# p, which means wi F= G*"p. If i is odd, however, then for all
n >0, wh,,, = p, and thus wj = G*"p. Hence, we have shown that for every
LTL formula ¢ there is a model M; such that M; = (¢ < G>"p). 2

The above proof shows that the G operator cannot be defined in the basic tem-
poral or first order language. However, it can be defined if additional propositions
are allowed. To assert that G*" ¢ holds, it suffices to provide a “new” proposition
q (not occurring in ¢) such that G27, q holds, and that ¢ is valid wherever q is
valid. This puts an additional constraint on the “auxiliary variable” q, which can
be considered as an “implementation detail” in the context of ¢. If we disregard
the value of q, then the models satisfying (G272, q A G'(q —)) are exactly those
satisfying G*" . That is, for any model M such that M = (G2%, q A G'(q = ¢))
it holds that M |= G?™ ¢, and for every model M such that M = G>" ¢ it holds
that M’ = (G22. qAG'(q = ¢)), where M’ differs from M only in the fact that
Z(q) = {wo,ws,wy, ...}. Logically, this projection operation amounts to existential
quantification on temporal propositions or sets of points:

G ¢ ¢ (Gl ¢ AG (g = ¢))
(G™ @) (to) ¢ a((Gror @) (o) AVE > to(a(t) — (1))

The language used in the first of these formulas is called quantified temporal logic
qTL [Sistla 1983], the language of the second item is monadic second order logic
MSOL.

qTL == P | Q| 1| (qTL — qTL) |
(TLU"qTL) | (qTLU qTL) | 3Q qTL.

MSOL == P(T) | (T) | L | (MSOL — MSOL)|
R+(T,7) | 37 MSOL | 3Q MSOL

To define this syntax, we used another syntactic category Q = {q,qo,...} of
proposition variables. Any valuation in a model v assigns a set v(g) C U to each of
these (second order) variables. The formula Jq ¢ is valid in a model M = (U,Z,v)
if it is valid in some model M’ = (U,Z,v') which differs from M at most in the
valuation of the proposition variable ¢ € Q.

It is easy to lift the expressive completeness theorem 2.4 to second order.

3.2. LEMMA. On natural models, QTL has the same expressiveness as MSOL.

PROOF: In the proof of Theorem 2.4, it was shown how to construct the translation
LTL(yp) of a first order formula ¢. For any MSOL formula there is an equiva-
lent prenex formula of the form ogi0oqs...0¢,%, where ¢ is a first order formula
and each o is a second order quantifier. Thus, defining MSOL(cq10¢s...0¢,%) by
0G10G>...0q, LTL(1)) gives a translation from MSOL into qTL. 2

MODEL CHECKING 1391

3.3. LEMMA. On natural models, the U+—opemtor in QTL is definable by the oper-
ators G* and X:

(U) & Vg(GTX W Ve Aq) — q) = q).

PROOF: Since this lemma is used several times in subsequent sections, we give a
detailed proof. For one direction, assume that (o U"¢) is valid in M £ (U, Z,wo).
To prove that M Vq(Gi(X(z/J VoAq) = q) = q), let Z'(q) be an arbitrary
set of points, and show that (U,Z',wo) | (G*(X(WV @ Aq) = q) = q). In other
words, from the assumption wy |= Gi(X(’(/J VA q) — ¢) we have to show that
wo = ¢. In any natural model satisfying wy = (p U 9), there are wy, ..., w, € U
such that w; < w7 for all 0 < i < n, and p(w;) for all 0 < ¢ < n, and w, [9.
If wo | G (X Vo Ag) = q), then w; | (X(1 Vo Agq) =) for all i > 0.
Hence, w; = (X9 — ¢) and w; = (X(p Aq) — ¢q) for all i > 0. From w, E ¢ it
follows that w,—1 = X. Since w,—1 = (X9 — ¢), we have w,_1 |= g. Therefore
Wn—1 E (p A q), and wy_2 = X(p A q). Since w,—2 = (X(p A q) = q), it follows
that w,_2 | ¢. Continuing inductively, we find that w; |= ¢ for all 0 < i < n.
Therefore, wo = g.

For the other direction, assume that wo = Vg(G* (X Vo Aq) = q) = q)
and show that wo |= (o U"4). First, we show that there must be some w > wy
satisfying w |= 1. Assume for contradiction that this is not the case. Choose Z(q) =
{w | not w > wp}. In natural models, this is the set {w | w < wp}. It follows that
(i) w [¢ for all w such that not w > wy, (ii) we F ¢, and (iii) w ¥ ¢ for all
w > wy. We show that (*): w E (X(¢¥ Ve Agq) = ¢) for all w € U. According
to the contradiction assumption, w £ 9 for all w > wg. With (iii), it follows that
wH (WYVeAg for all w > wg. Hence, w = X(¢ Vo Agq) for all w > wp. As a
consequence, (*) holds for all w > wg. If not w > wg, then (*) is an immediate
consequence of (i). From (*), we infer that wo = G}(X(¢ V@ Agq) = q). Therefore,
wo = ¢, which is a contradiction to (ii).

Let wy, ..., w, be a set of points such that w; < w;4; for all 0 < i < n, and w, is
the smallest point satisfying ¢ (i.e., wy, = ¢ and w; = — for all wy < w; < wy).
If n = 1, we are done: in this case wo |= X ¢, which implies that wo = (¢ U™).
If n > 1, to prove wo = (¢ U'¢) we additionally have to show that w; |= ¢ for
any 0 < i < n. Substitution of ¢ with —¢ in the assumption yields the following
equivalent version: wo = Vg(qg — Fi(q A XV ¢ A=q))). Choose Z(g) = {w |
wo < w < w;}. It follows that wy = F* (¢ AX(¥ V¢ A —q)). That is, there is some
w € U such that w |= (¢ AX (% V ¢ A—q)). Since n is minimal, there is no w € Z(q)
which satisfies w = X). Therefore, it follows that there is a w > wg such that
w = (g AX(p A —q)). Since w;—; is the only point with w;—; E (¢ A X —¢) we can
conclude that w;_; | X ¢, i.e., w; = . 2

As a sideline we remark that this proof does not make essential use of the “past-
” + . ..
component” of the G™ -operator; in fact, the same proof holds verbatim if we replace
G* by G" and F* by F". Thus, a corollary to Lemma 3.3 is (¢ U 1) ¢ Vg(G (X (pV
©Aq) = q) = q). (Since F* is somewhat more specific than F* this could be
considered as a somehow weaker result.)

1392 E. M. CLARKE AND H. SCHLINGLOFF

The characterization of the U+—0perator with second order quantification is a
special case of the general scheme Vq(Gi (6 = q) = q), where £ 2 X(V ¢ A q).
Dually, the operator (¢ w*) £ = (- U* —(¢ V 1)) is characterized by

(W) & Vg(G*(X(=(¢p V) V (- Ag)) = q) = q)
& Ig(~g A G (X((+9 A) V (7 A q)) = q))
©3g(~g NG (~g = ~X(~P A (=9 V g))))
& 3g(=g A G (=g > K (P V (¢ A g))))
©3g(g NG (g = X (Y V 9 Ag)))
This is an instance of the dual scheme J¢(g A Gi(q — &) with E 2 X (Y V o Ag).

For complexity reasons, it is not always advisable to allow quantifiers on arbi-
trary subsets of the universe U. Therefore, we introduce fixpoint quantification:
quantification on sets which follows these schemes. This results in the propositional
p-calculus pTL [Emerson and Clarke 1980, Pratt 1981, Kozen 1983, Kozen and
Parikh 1983]:

uTL == P | Q@ | L | (WTL—>uTL) | (R) pTL | »Q uTL.
The semantics of 4 TL can be defined by a translation into MSOL.

e MSOL(yp) is defined as in FOL(y), for the cases p € P, L, (¢1 — 12), and
(R)¢

e MSOL(q) £ ¢(ty), if g€ Q

» MSOL(vq) £ 3q(a(to) A Vi(q(t) = MSOL(p){to := t})).

Recall that p{to := t} denotes the formula which is formed from ¢ by replacing
every free occurrence of to by t¢. Similarly, ¢{q := ¢} denotes the formula which
results from ¢ by replacing every free occurrence of ¢ with . The formula pq ¢ is
short for ~wq —(¢{q := —q}). Thus, the translation of ug ¢ evaluates to

® MSOL(uq ¢)= —3q(—q(to) A Vt(—q(t) = -MSOL(p){t := t}))
= Vq(q(to) V ~Vt(—q(t) = “MSOL(yp){to := t}))
= VYq(Vt(MSOL(p){t :=t} — q(t)) — q(to))-

In this chapter, we use v as basic operator and p as a defined operator, since
the semantics of v is a restricted existential quantification on sets of points, and
p is a restricted universal second order quantifier. However, (¢ U" 1)), which is
defined by an existential first order clause, is often associated with a p-formula:
when interpreting uTL on natural models, we use the operator X for the unique
diamond operator (R). With this notation, Lemma 3.3 can be reformulated as
follows.

3.4. COROLLARY. For any natural model M,

ME@@U) iff MEpg X%V eAq)

ProoF: With Lemma 3.3, the equivalence follows almost immediately from the
definitions.

MODEL CHECKING 1393

MSOL(ug X(¢ V ¢ A q))= Vg(VE(MSOL(X (¢ V ¢ A q)){to := t} = ¢(t)) = ¢(to))
= MSOL(¥g(G*(X(4 V¢ A g) = q) = q))
< FOL((pU"¢)) (according to Lemma 3.3) 2
Corollary 3.4 does not hold for more general Kripke models. In natural models,
other operators can be characterized by similar yTL formulas:

MEFY i Mg X Va)
ME (W) if MEvg X($VeAg)
MEGY it MEve@AKg)
ME (pU¢) iff MEupg(VeArXg)

Similarly, on tree models all CTL operators can be defined by 4 TL formulas. The
same holds for most other programming logics which can be found in the literature.
A formal justification of this statement will be given below in Theorem 5.10.

For certain formulas, an alternative semantical description of the v and p quanti-
fiers in terms of greatest and least fixed points can be given. A function f : 2V — 2V
is called monotonic, if P C () implies that f(P) C f(Q). A set Q C U is called a
fized point of f,if Q = f(Q).

Let gfn(f) = U{Q | Q € £(Q)} and Ufp(f) = (@ | £(Q) C Q}. The Knaster-
Tarski fixpoint theorem [Tarski 1955] states that if f is monotonic, then gfp(f) and
Ifp(f) are the greatest and least fized point of f.

3.5. THEOREM (Knaster-Tarski). Let f : 2V — 2V be monotonic. Then

(a) gfo(f) = f(afp(f)) and IUfp(f) = f(ifp(f)), and
(b) If Q = f(Q), then Q C gfp(f) and Ifp(f) C Q.

PROOF: Since gfp and Ifp are dual, it suffices to prove the theorem for gfp.

If Q = f(Q), then @ C f(Q). If @ C f(Q), then Q € {Q | @ € f(Q)}, that

is, @ CU{Q | @ C (@)} = gfo(f). This proves (b). Furthermore, since f is
monotonic, it implies that f(Q) C f(gfp(f)). Hence for each @, if @ C f(Q) then

Q C f(gfr(f)) by transitivity of set inclusion. Since each individual @ is a subset of
f(afp(f)), this means that ({@Q | @ C f(Q)} € f(9fp(f)), i-e., 9fo(f) C f(9fp(F))-

This is one part of (a). Now, we use this result to infer the converse inclusion of (a):

since f is monotonic, f(gfp(f)) C f(f(afp(f))). Thus, f(gfp(f)) € {Q | Q C f(Q)},
which means f(gfp(f)) C U{@Q | Q@ C f(Q)}. Therefore, f(gfp(f)) C gfp(f)- 2

In fact, this proof shows that the second part of the theorem can be strengthened.

3.6. COROLLARY. If f: 2V — 2U is monotonic, then

o Q C £(Q) implies Q C gfp(f), and
o (Q) C Q implies fp(f) C Q.

For a more detailed discussion of other fixpoint theorems, see [Davey and Priestley
1990, Gunter and Scott 1990].

1394 E. M. CLARKE AND H. SCHLINGLOFF

In a frame F = (U,T), any formula ¢ defines a set p* C U of points in the
universe, namely o7 2 {w | (U,Z,w) | ¢}. Likewise, a formula ¢ with a free
proposition variable ¢ defines a function cqu : U — U from sets of points to sets of

points (a predicate transformer): if Q C U, then ¢7 (Q) £ {w | (U,T',w) & ¢},
where 7' differs from Z only in Z'(q) £ Q.

3.7. LEMMA. (vq ©)” = gfp(¢7) and (pq ©)” = ifp(e]).

PROOF: According to the definitions, w € gfp(e)) iff w € U{Q | Q C ¢7(Q)},
that is, if there is some) C U such that w € @ and @ C gof(Q). In MSOL
this condition can be denoted as w = Jq(q(to) A Vt(q(t) = MSOL(p){to := t})).
This clause is exactly the semantical translation MSOL(vq ; thus w € gfp(gof)
iff w | vq . For lfp((p{), the dual proof holds. 2

We say that a formula ¢ is monotonic in g, if the corresponding predicate trans-
former @7 is monotonic. In other words, ¢ is monotonic in ¢ iff (1 — ¢2) =
(p{q :== 1} = @{q := 92}) holds. ¢ is monotonic, if for each sub-formula vq 1,
the formula %) is monotonic in ¢. Call an occurrence of a proposition variable ¢ in
a formula ¢ positive or negative, if it is under an even or odd number of negations.
Formally, this notion is defined recursively: ¢ is positive in the formula ¢. An oc-
currence of ¢ in the formula (¢ — 1) is positive, if it is a negative occurrence in
(or a positive occurrence in 1, and negative, if it is a positive occurrence in ¢ or
a negative occurrence in 1. An occurrence of ¢ in (R) ¢ and vq' ¢ is positive or
negative, if it is positive or negative in ¢, respectively. A formula ¢ is called positive
in g, if every free occurrence of g in ¢ is positive. It is positive, if each sub-formula
vq 1) is positive in q.

3.8. LEMMA. If ¢ is positive in q, then cpf is a monotonic predicate transformer.

Proor: This statement can be proved by induction on the structure of . The in-
duction basis, namely formulas which are atomic propositions, proposition variables
or boolean constants, is immediate. For the inductive step, assume that P C Q.
If (¢ —) is positive in ¢, then ¢ must be positive and ¢ must be negative in q.
Therefore, ¢ is positive in ¢. The induction hypothesis is that ¢ (P) C ¢7(Q)
and —@7 (P) C =97 (Q). From this we can infer that ¢} (Q) C @7 (P). There-
fore, if o7 (P) C 7 (P) then ¢} (Q) C 7 (Q). This follows from ¢7(Q) C
o7 (P) C 4F(P) € 4 (Q). In other words, (p — D)Z(P) C (¢ — ¥)](Q).
For the case (R), the induction hypothesis is that ¢7 (P) C ¢7(Q). Then,
{w | Iw'(w,w') € ZI(R)Aw' € ¢F (P)} C {w | ' (w,w') € Z(R)Aw' € ¢ (Q)}. In
other words, ((R))7 (P) C ((R) ¢)7 (Q). Similarly, for formulas v¢'p, where ¢ and
¢' are different variables, the induction hypothesis is that @7 , (P, X) C ¢7 ., (Q, X)
for all X. Therefore, X C ((p)q}:q, (P, X) implies X C ((p)iq, (Q,X) for all X. Con-
sequently, {w | for some X, w € X and X C goiq, (P,X)} C{w | for some X, w €
X and X C goi # (@, X)}. According to the definition, this is the semantics of

MODEL CHECKING 1395

(vg'p)T (P) C (vg'¢)] (Q). The last case is vgy. Since this formula has no free
occurrence of variable g, its denotation (l/qc,o);T is a constant function. Trivially,
constant functions are monotonic. 2

The converse of this statement does not hold in general. In particular, [Ajtai
and Gurevich 1987] shows that there is a formula which is monotonic on all finite
structures but has no positive equivalent.

3.9. COROLLARY. If ¢ is positive, then
e =(vg o & pla=vq ¢}) and = (pg ¢ < ¢{q:= pg ¢}).
o If (U,T) E (x ¢ ¢{q := x}) then both (U,I) E (x = vq ¢) and (U,I) |=
(g ¢ = X)-
* (UI) E (x = ¢lq:=x}) implies (U,I) E (x = vq ¢), and
(U,T) E (plg = x} = x) implies (U,Z) = (ng ¢ = x)

PRroOF: If ¢ is positive in ¢, then goqf is monotonic according to Lemma 3.8. The-
orem 3.5 asserts that gfp(¢)) = ¢ (gfp(¢7)). In the notation of Lemma 3.7, this
means (vq ¢)* = ¢ (vg ¢)7). Moreover, 7 (vg ¥)7) = (po{a = va ¥})”.
Therefore, M = (vq ¢ ¢ ¢q{q := vq ¢}). The other statements are shown
similarly. 2

According to Corollary 3.4, (p U"¢) and (o W' ¢) in natural models are least
and greatest fixed points of X(1) V¢ Aq) and X (1) V ¢ A q), respectively. Therefore,
the following recursion and induction axioms hold:

(U)X VeA(pUTY)) and = (9 W) &RV AW),

« (U,I) E (X% Vg Ax) —x) implies (U,) |= (0 U"¢) = x), and

(U,T) = (x = X($ V p AX)) implies (U, T) = (x = (¢ W').
In particular, for F*, G*, F" and G", we have

o = (F'y) & X(yVF) and = (G) & X(p AG).

o £ (F4) 0 (0 VXE'Y) and = (G'¢) & (p ARG).

o (U,7) | (X(¢ V x) = x) implies (U,7) | ((F"¢) = x), and

(U,2) = (x » X (p A) implies (U, T) = (x = G*).
* (UI) E (¢ vVXX) = x) implies (U,) | (F %) = x), and
(U, T) E (x = (¢ AX X)) implies (U,Z) E (x = G o).

As we have shown, positive uTL formulas denote greatest or least fixed points
of predicate transformers. For nonmonotonic formulas, the existence of fixed points
is not granted. For example, there is no @) C U satisfying @ = U \ Q; thus, there
is no fixed point of (ﬁq){ . However, the MSOL semantics of vq —q is ¢(q(ty) A
Vt(q(t) — —q(t))), which is equivalent to the well-defined value L. On general
Kripke-models, positive pTL is strictly weaker in expressiveness than unrestricted
#TL. Even unrestricted 4 TL can, in turn, express fewer properties of Kripke models
than monadic second order logic:

1396 E. M. CLARKE AND H. SCHLINGLOFF

3.10. LEMMA. Consider the class of all Kripke models.
(a) There is no positive pTL formula which is equivalent to vq({R) —q).
(b) There is no uTL formula which is equivalent to Vip(t)

ProoF¥: For (a), consider ¢ £ vq({R) —~q). Then MSOL(yp) = Jq(q(to) AVt(q(t) —
' (tRt' A—q(t')))). This formula is equivalent to the first order condition 3t(to Rt A
to # t): in one direction, if there is some ¢ such that w € Z(q) and w |= Vt(q(t) —
t' (tRt' A—q(t'))), then there must be a point reachable from w which is not in Z(q),
i.e., different from w. For the reverse implication, assume that w = Jt(to Rt Ato # t)
and let Z(q) £ {w}. Then w | q(to) and w | Vt(q(t) — I (tRt' A =q(t"))).
Therefore, w |= ¢.

There is no positive formula which can express this property: consider the frame
F £ (U,T), where U £ {wg, w1 }, Z(R) £ {(wo, wo), (wo,w1), (w1, w;)} and Z(p) =
{} for all p € P. Then wy = ¢ and w; F ¢. For each positive formula 1, however, it
holds that wy | ¢ iff wy = 9. To prove this, we show by induction on the structure
of 4 that ¥ = {} or 4y¥ = U. For propositional formulas, this is immediate; the
case (R) 1 follows from the definition of F. The only remaining case are formulas
vqip. According to the induction hypothesis, either ({q :== T})¥ = {} or (¢¥{q :=
T1)¥ = U. In the first case, from the fact that (vq))” C T and monotonicity of 1
we infer that (¢{q := vqy})” C (v{g:= T})* = {}. The first part of Theorem 3.5
implies that (vqy)” C (¥{q := vqy)})”; therefore, (vqy)” = {}. In the second case,
U =T = (4{q :== T})”. With the second part of Theorem 3.5, it follows that
TF C (vgy)”, ie., (vqy)” =U.

Statement (b) holds since the truth of pTL formulas is preserved under disjoint
unions of models, whereas ¢ 2 Vip(t) can be invalidated by adding an isolated
point w with w £ p. Formally, consider the models My £ (Uy,Z,wp) and M; £
(U, T,wo), where Uy £ {wo}, Uy £ {wy,w}, Z(R) £ {} and Z(p) £ Z(q) £ {wo}.
Then My = ¢ and M; H ¢, whereas for each pTL formula ¢ it holds that
Mo E ¢ iff My | ¢. As above, the only interesting case is vqy. If Mo = vqy
then wg |= v, which implies M; | vqy. In the other direction, M1 = vqy implies
that either M; = v or M} £ (Uy,Z1,wo) | ¢, where Z;(q) = Uy. In the first
case, Mo = vqy follows directly. In the second case, M1 | ¥{q := T}, which
implies My = ¢¥{q := T} by the induction hypothesis. From this, it follows that
Mo | vay. 2

If the model is connected (that is, Vw,w'(w < w' Vw = w' Vw > w')), then
. . . - +
every point is reachable from the current point. In this case, the operator G~ (the
um’versail modality) can replace the first-order universal quantifier: M |= Vip(t) iff
M E G p. In this case,

MEvge i MPEIgAG(g—),
MEpgye it MEVY(G (¢ —q) —q).

Hence, on connected models (and, in particular, on natural models) uTL is at most
as expressive as qTL (and MSOL). Since pTL does not contain any past-operators,
there is no p'TL formula which is equivalent to F~ T. Subsequently, however, we will

MODEL CHECKING 1397

show that for initial validity in natural models a translation from qTL (or MSOL)
into positive pTL exists. Since the proof uses w-regular languages and w-automata,
it is postponed to subsection 3.4.

3.3. w-automata and w-languages

Given a (finite or infinite) natural model M 2 (U,Z,wy), the interpretation Z
defines a mapping Z : P — 2V from propositions into subsets of the universe.
Define a labelling function £ : U — 27 by

p € L(w) iff w € Z(p)

That is, £L(w) £ {p | w € Z(p)} is the label of point w € U. If U = (wo, w1 ,ws, -..),
then the sequence o = (L(wo), L(w1), L(ws),...) is called the w-word of M over the
alphabet © £ 2P A set of w-words is called an w-language.

Let F £ (U,T) be the frame of a natural model. Formula ¢ is initially valid
in F, if (U,Z,wo) E ¢, where wy is the unique initial point of U (which has no
predecessors). For any such frame F it holds that ¢ is universally valid iff G" ¢ is
initially valid, and ¢ is initially valid iff (G~ L — ¢) is universally valid.

We say that a linear-time logic formula defines the set of all natural frames in
which it is initially valid. Thus every such formula defines the w-language given by
these frames. We now show that in order to define languages by formulas it suf-
fices to restrict attention to the future fragment of temporal logic. The separation
Lemma 2.6 states that any LTL-formula can be separated into a boolean combi-
nation of pure future, pure present and pure past formulas. It can be extended to
qTL:

3.11. LEMMA. qTL has the separation property on natural models.

ProOF: Note that the formula 3g(p V) < (I¢ ¢ V Iq ¢) is valid. Moreover, if
1,-.-,Pr, are pure past, P ,...,80,, are pure present and xi,...,x; are pure future, then
Jg(A ¢i A ANY; AN xk) is equivalent to (3g A i A g A¢; A g A xx). Informally,
this can be seen as follows: Jg(p A ¥) — (Jgp A Jqv)) is a tautology. In the other
direction, assume that the past-formulas ¢1,...,;0, are valid in the model (U, Z, wq)
where Z(g) £ Q1, the present-formulas 1; are valid with Z(g) £ Q2, and the future-
formulas xy are valid if Z(q) £ (O3, then the conjunction of past, present and future
part is valid if Z(¢q) £ ({w | w < wo} N Q1) U (wo N Q2) U ({w | w > wo} N Q3).
Now assume that ¢ = 3g¢, and show that there is an equivalent separated
formula. The induction hypothesis is that for ¢ there exists an equivalent formula
)" which is a boolean combination of pure future, past and present formulas. Let
" £ \/ A(pi Aj A xx) be ' in disjunctive normal form, where all ¢; are pure
past, ¢; pure present and xj, pure future. Applying the above formulas we see that
Agy" &\ A(Bgpi A 3qp; A3gx)- This formula is separated and equivalent to ¢.2

1398 E. M. CLARKE AND H. SCHLINGLOFF

3.12. LEMMA. For any LTL or qTL formula ¢ there exists an LTL or qTL future
formula (without U™ -operators) defining the same language.

PROOF: Given a separated formula ¢, let ¢ be the formula ¢ where every sub-
formula (o U %) is replaced by L. Then ¢ is initially valid in any natural model
M iff ¢t is initially valid in M. Thus ¢ and ¢ define the same language. 2

Languages can also be defined by (w-)regular expressions and by finite (w-) au-
tomata.

The language of (w-)regular expression is defined similar to the language of usual
regular expressions, with an additional operation denoting infinite repetition of a
subexpression.

e Every letter from the alphabet is an w-regular expression.
e If ¢ and 8 are w-regular expressions, then so are ¢, (a + 3), (a;3) and at.
e If a is an w-regular expression, then so is a®.

Every w-regular expression defines an w-language: the letter a C P defines {(a)},
i.e., a one-word language (one-element set) consisting of a one-letter word (one-
element sequence). € denotes the empty language, and (a + 3), (a;8) and ot
denote union, sequential composition and finite iteration of languages. & denotes
the language of all words consisting of an infinite concatenation of words from a.
A language is called w-regular if it can be defined by an w-regular expression.

We use boolean terms over P to denote (unions of) letters. For example, if P =
{p1,p2} then (—p1Ap2) denotes the letter {p2}, and (—p1Vp2) denotes {}+{p2} +
{p1,p2}.

As an example for an w-regular expression, consider (—p1)“ + (T*;p2)¥. This
expression defines the set of all infinite words (og, 01,02, ...) such that either for all
i it holds that pl ¢ oy, or for infinitely many ¢ it holds that p2 € o;. That is, it
defines the set of natural models M such that M = G'(-p1 AX T) VvV G F' p2.
Since this formula implies G" X T, each of its natural models must be infinite.

An w-automaton or fair transition system over the alphabet ¥ = 2% is defined like
a usual (nondeterministic) automaton with an additional recurrence set (“fairness
constraint”); it is a tuple (S, A, So, Saces Srec), Where

e S is a set of states,

¢ A C S x X x S is the transition relation,

e So C S is the set of initial states,

e Succ C S is the set of accepting states (for finite words), and

e Srec C S is the set of recurring states (for infinite words).
A Biichi-automaton is a finite w-automaton, that is, a fair transition system where
the set S of states is finite. A transition system (or labelled transition system) is
a fair transition system where S,cc = Spec = S. A weakly fair transition system is
an w-automaton where S, = S and S, = {s | Va,s'(s,a,s') ¢ A}. That is, in
a weakly fair transition system all states are recurring, and states are accepting iff

MODEL CHECKING 1399

they are terminal. Usually, when talking about labelled and weakly fair transition
systems, we omit the redundant components S,.. and Syec.

A (finite or infinite) nonempty word o £ (09,01, ...) is accepted by an automaton
(S, A, So,Sace, Srec), if there is a function p assigning to any ¢ < |o| a state p(o;) € S
of the automaton such that

d p(O) € S0,

e For all 0 <i < n, (p(i),04,p(i+1)) € A, and

e (p(n),on,s) € A for some s € Sy, if o is finite with last letter w,, and

o inf(p) N Spec # {}, if o is infinite, where inf(p) is the set of states that appear

infinitely often in the range of p. That is, at least one recurring state must be

selected infinitely often.
For alternative acceptance conditions, see [Thomas 1990]%. We say that an automa-
ton accepts a natural model M, if it accepts the w-word of M. The language of a
transition system consists of all paths through the transition graph; this language
is prefix-closed (for any word in the language, all of its prefixes are also contained).
The language defined by a weakly fair transition system consists of all maximal
paths through the graph.

Figure 3: A Biichi automaton accepting (—p1)¥ + (T+;p2)*

As an example of a Biichi-automaton, consider Figure 3. This automaton accepts
(i.e., defines) exactly the same language as the example w-regular expression above.
In general, for any w-regular expression we can construct such a Biichi-automaton
and vice versa; Biichi-automata can define all and only w-regular languages.

3.13. LEMMA. w-regular expressions and Bilichi-automata are of equal expressive
power.

PROOF: The proof of this statement is similar as for automata on finite words: for
one direction, we have to show that the Biichi acceptance condition can be captured

4In the literature, a fairness constraint in a transition systems is sometimes defined to be a
set of pairs (s,e), where s € S is a state and e € A is an edge. It imposes the condition that
if s appears infinitely often, then e must be taken infinitely often in each accepted word. It can
be shown that for our purposes these definitions are equivalent. See [Anuchitanukul 1995] for the
relationships and translations between these two notions for various acceptance conditions.

1400 E. M. CLARKE AND H. SCHLINGLOFF

by an appropriate regular expression. Let L(s;, s;) be a regular expression for the
language of finite nonempty words sending an automaton from state s; into state
s;. Then the w-regular expression associated with any Biichi-automaton is

Y{L(s0,5) | s0 € So, 5 € Sacc} + X{L(s0,5); L(5,5)° | S0 € So, 5 € Srec}

For the other direction it must be shown that Biichi-automata are closed under
single letters, the empty language, union, concatenation, and finite and infinite
repetition. All of these constructions are straightforward extensions of the appro-
priate constructions for automata on finite words [Hopcroft and Ullman 1979]. 2

The automaton resulting from this proof is highly nondeterministic. An automa-
ton is called deterministic, if its transition relation is a function A : Sx X — S. For
each nondeterministic finite automaton on finite words an equivalent deterministic
one is given by the well known powerset construction of Rabin and Scott [Hopcroft
and Ullman 1979]. The same holds for finite transition systems. In contrast, for non-
deterministic Biichi-automata it is not always possible to construct an equivalent
deterministic one. For example, consider the language £ of all words containing only
finitely many p. This language is defined by the formula F* G* —p or the w-regular
expression (T + (T+; —p¥)). However, there is no deterministic Biichi-automaton
defining £: Assume for contradiction that £ is the language of A. Then 4 must
accept (o; (—p)¥) for any finite word o. In particular, from any reachable state
some recurring state is reached by a finite number of —p-transitions. Let m be the
maximum of these numbers. Therefore, in the run of A on the word (p; (-p)™)“
infinitely often recurring states are visited. Thus, this word also is accepted by A.
This is a contradiction, since it is not in L.

3.4. Automata and Logics

Biichi [Biichi 1962] showed that his automata are closed under complement; this is
a highly nontrivial proof. The best known construction for complementing Biichi-
automata was given in [Safra 1988]; it involves an exponential blowup of the number
of states of the automaton. More precisely, if A has n states, then it can be shown
that the smallest automaton accepting the complement language of A in general
has O(2"1°8") states. For more information on the complementation problem for
Biichi automata, see [Sistla, Vardi and Wolper 1987, Thomas 1990].

Closure under complement can be used to show that Biichi-automata are at least
as expressive as qTL.

3.14. LEMMA. For every qTL formula there is a Bichi-automaton defining the
same language.

PROOF: According to Lemma 3.12 it suffices to give a translation for formulas with-
out U™ . An automaton for the proposition p € P is given by the trivial two-state ma-
chine ({50, Sacc}, A, {s0}, {Sacc}>{}), where (so,a, Sqcc) € Aiff p € a. An automaton

MODEL CHECKING 1401

for L is one which never accepts. From an automaton for ¢, an automaton for X ¢
and F* ® can be built by an appropriate prefixing with a single step or loop on the
initial states. According to the remark following Lemma 3.3, U" can be expressed
with X, F* and second order quantification. Implications (¢ — 1)) can be written as
(= V1) and thus be reduced to unions and complements. Finally, existential sec-
ond order quantification amounts to the projection of the automaton onto a smaller
alphabet: given an automaton A = (S, A, Sq, Sace, Srec) Over the alphabet 2(PUQ)
which accepts the models of ¢, the automaton A'(S,A’, Sy, Sace, Srec) accepts all
models of 3¢ ¢, where (s;,a,s;) € A" iff (s;,a\ {q},s;) € A or (s;,aU{q},s;) € A"

2

In particular, since LTL is a sublanguage of qTL, for every LTL formula there
exists a corresponding Biichi-automaton. In Section 7, we will describe a tableaux
decision procedure, which can be seen as an efficient algorithm to construct a Biichi-
automaton from a formula. Other aspects of the connections between temporal
logics, monadic logics and automata can be found in [Thomas 1999].

We now show that w-regular expressions are at most as expressive as uTL:

3.15. LEMMA. For every w-regular expression there exists a pTL-formula describ-
ing the same language.

Proor: The proof associates with every w-regular expression ¢ a pTL-formula
uTL,(p) with at most one free proposition variable ¢ indicating the end of the
sequence.
e uTL,(P) £ (ApepPANpgpPAq), ifPE 27
o 4TL,(e) £
o uTLy(p +1) £ (WTLy(p) V uTL,(¥))
* WTLy(p;9) £ pTLy(9){g := X pTL, ()}
o uTLy(¢p") £ par (WTLg(9){a:=qVXaq})
o WTLq(¢*) £ var (WTLg(){g:=Xa1})

If ¢ defines a language of infinite strings, then yTL,(y) does not contain any free
occurrence of g. However, if ¢ defines a language of finite strings, then puTL,(p)
contains the free proposition variable ¢ denoting the final point. A finite string is
characterized by the fact that in its last point the formula X | holds. Therefore, the
pTL-formula corresponding to an w-regular expression ¢ is defined as pTL(p) £
uTL,(){q := X L}. It can be shown that yTL(yp) defines the same language as
the w-regular expression . 2

As an example, consider the expression (—p1)¥ + (T+;p2)~.
pTL((-p1)¥ 4+ (T*;p2)¥)
=vq (WTL(-p1){q:= X q1}) V vg2(uTL(T*;p2){q := X g2}
=vq ((pP1AQ{q:=Xq}) Vve((WTL(TH){g := X uTL(p2)}){q := X ¢2})
=vq (-plAXq)V
vga(pgs(T A@{g:=qV Xg}{g:=XP2A) Hq =X g})

1402 E. M. CLARKE AND H. SCHLINGLOFF

=vq (-P1AXq) Ve (pg(X(p2Aq) VX g3){q:= Xga})
=vq (-pL1AXq) Vg (ugs X(p2AX g2V g3))
v (PIAXTAX)V rg(pgs X(p2V g3) A X g2)
=G (-ptAXT)VG Fp2
This lemma closes the circle in the expressiveness results of second order languages.

3.16. THEOREM (Biichi, Wolper, Sistla). To define w-languages, the following for-
malisms are of equal expressive power:

i. uTL
it. qTL
1. MSOL

w. Bichi-automata
v. w-regular erpressions

PRrROOF: For every pTL-formula there exists an equivalent qTL-formula by defini-
tion; on natural models qTL is equal in expressiveness to MSOL by Lemma, 3.2;
according to Lemma 3.14, for every qTL (or MSOL) formula there is a Biichi-
automaton defining the set of its models; by Lemma 3.13, Biichi-automata are
equivalent to w-regular expressions; and these in turn can be described by uTL-
formulas as shown in Lemma 3.15. 2

Similar results can be proved about logics with past operators on integer mod-
els (bi-infinite words) and two-way automata, and about branching time log-
ics (WTL/qTL on tree models) and tree automata (A C S x 2% x (R x S)")
(see [Niwinsky 1988, Thomas 1990, Schlingloff 1992)).

4. Model Transformations and Properties

As we have seen, linear temporal formulas and w-automata both can be used to
describe sets of infinite sequences. The practical difference is, that logic tends to
be more “descriptive”, specifying what a system should do, whereas automata tend
to be more “machine-oriented”, indicating how it should be done. Logical formulas
are “global”, they are interpreted on the whole structure, whereas automata are
“local”, describing single states and transitions.

Therefore, traditionally automata or related models are used to give an abstract
account of the system to be verified, whereas formulas are used to specify proper-
ties of these systems. But, since it is possible to translate between automata and
formulas and back, this choice is a matter of complexity, of available algorithms
and of taste. We could equally well define both system and properties in temporal
logic; in this case we would have to prove an implication formula (Section 7 will
explain how to do this). Another alternative is that both the implementation and
the specification are given as automata, where the latter is more “abstract” than
the former. Then we have to prove that one can simulate the other.

MODEL CHECKING 1403

In the next sections, we describe various transformations between models such as
simulations and refinements, and investigate the preservation of logical properties
under these transformations.

4.1. Models, Automata and Transition Systems

The previous section related w-automata and linear temporal formulas via the w-
language accepted by the automaton and the set of natural models in which the for-
mula is initially valid. There is, however, a more direct connection on the structural
level. Let M = (U,Z,wq) be a Kripke-model with predicates from P and accessi-
bility relations from R. Consider the alphabet ¥ = 27 x R, and let o = (0p0103...)
be an w-word, where o; = (a;, R;). We say that o is generated by M if there exists
a mapping p from indices of letters of o into points of U, such that

b p((]) = Wo,

e if p(i) = w, then a; = L(w),

o if p(i) = w and p(i + 1) = w', then (w,w') € Z(R;), and

e if ¢ is finite with last letter o, and p(n) = w, then w is terminal (i.e., there is

no w' such that w < w').

(Recall that L(w) £ {p | p € Z(w)} is the label of point w.) The fourth condition
guarantees that generated words represent maximal paths in the model®. Define
the language generated by M to be the set of all w-words generated by M. With
these definitions, Kripke-models can be regarded as weakly fair transition systems
for the alphabet ¥ = 27 x R. (Recall that in a weakly fair transition system all
states are recurring, and all terminal states are accepting.)

4.1. LEMMA. For any Kripke-model M = (U,Z,wy) there exists a weakly fair tran-
sition system M = (S, A, Sy), such that the language generated by M is equal to
the language accepted by M 4.

PRroOOF: To prove this lemma, there are several alternative constructions. One pos-
sibility is to define S £ U U {stop}, where stop is a special accepting state for finite
paths. Furthermore, Sy £ {wo}, and (w, (P, R),s) € A iff w € U, L(w) = P, and
either (w,s) € Z(R) or w is terminal and s = stop. Then, M 4 accepts exactly the
set of all natural models which are generated by M. 2

Thus, models can be seen as automata. Likewise, formulas can be seen as au-
tomata: in the previous section we observed that for every LTL formula there exists
an equivalent Biichi-automaton. Since this proof is constructive, it yields a method
to obtain such an automaton. However, a much more concise way of constructing
it is the tableau construction sketched in Section 7 below.

5Some texts omit this condition, with the consequence that all prefixes of a generated word are
also generated. Other authors impose the even stronger condition that all generated words must
be infinite; this implies that all points in a model should be nonterminal.

1404 E. M. CLARKE AND H. SCHLINGLOFF

Let ¢ be an LTL-formula, and M be a Kripke-model with a single accessibility
relation. Then ¢ is sequence-valid in M iff the language generated by M (i.e., the
language accepted by the weakly fair transition system M 4 for M) is a subset of
the language accepted by the Biichi-automaton M, for ¢. That is,

MEg iff L(Ma) C LMy).

The latter condition is equivalent to L(M 4)NL(M) = {},or LM 4xM_,) = {}.
Here, M; x M5 denotes the product of w-automata, where the product automa-
ton M; X M accepts an infinite word o iff each component automaton accepts
o. Formally, if M;) (Si;Ai;Si,O;Si,acc;Si,rec) for i = 1,2, then M; x Mo =
(S, A, So, Sace, Srec), where

e S£5; xS x{1,2},

b ((31a527i)7a1 (sllasl2aj)) € Aiff (Slaa:sll) € Ala (32aa7512) € AQ: and i = ja or

i=1and s1 € Si,pec and j =2, 0ri =2 and so € S2 ec and j = 1.

o So £ S1,0 % Sa0 x {1},

L4 Sacc é Sl,acc X S2,acc X {OJ 1}7

L Srec é Sl,rec X SZ,rec X {2}5
Intuitively, the definition of S,¢. enforces that in an infinite run of M; x M both
a state from Sj .. and a state from Sp ;.. must be visited infinitely often. With
this construction, model checking of LTL sequence-validity in finite models reduces
to the nonemptyness problem of Biichi-automata: a feasible way to check whether
M = ¢ is to construct the Biichi-automata M4 for the model and M-, for
-, and to check whether the language of the product automaton M 4 x M_, is
empty. This approach is implemented in the SPIN and COSPAN model checking
tools [Holzmann 1991, Kurshan 1994].

If both system M and property ¢ are given as automata, then “specification”
o can be regarded as a “more abstract version” of the “implementation” M. We
write My = Mg if L(M1) C L(Mg), i.e., if (the language of) M is a subset of
(the language of) M. A property ¢ is defined to be just any w-language ¢ C X,
where ¥ = 27 x R.

4.2. THEOREM. Let M; and My be Bichi-automata. Then
o My = Ms iff for all properties @, if Ms = ¢ then M1 E .
o M; E My iff for all w-regular ¢, if M2 |= ¢ then M; [o.

PROOF: One direction is immediate by transitivity of the subset relation: if
L(M;) C L(Ms) and L(Mz) C L(p), then L(M;) C L(p). The other direc-
tion follows from instantiating ¢ with L(M;) and, in the strong form, from the
fact that the Biichi-automaton M defines a regular language. 2

This theorem can help to reduce the complexity of checking whether a model
satisfies a formula. In order to prove My |= ¢, it can be helpful to look for a
“small” model M such that M; = Mz and My [¢.

MODEL CHECKING 1405

4.2. Safety and Liveness Properties

A similar characterization result as the above 4.2 holds for finite transition systems
and a special class of w-languages called safety-properties. For natural models M
and M’, let M[- be the model consisting of the first i points of M, and M o M’
be the concatenation of the two models M and M'. (If M is infinite, then define
MoM &2 M)

e © is a safety property, iff for every natural model M,
Mg if ViaM': Mo M ¢

This definition is from [Alpern and Schneider 1985]. An w-language ¢ is a safety
property if for every model not satisfying ¢ there is a finite prefix M1 which
can not be completed by any continuation M’ such that M1 o M’ = . In
other words, for every model dissatisfying ¢ something “bad” must have happened
after some finite number of steps which cannot be remedied by any future good
behavior. Hence, in Lamport’s popular characterization, safety properties express
that “something bad never happens” [Lamport 1983].

e o is a liveness property, iff for every natural model M,
ViaM' - M[..z’] oM |: 0

A liveness property ¢, on the other hand, can never be refuted by observing only
a finite prefix of some run. It holds, if and only if every finite sequence can be
completed to a model satisfying ¢, hence ¢ states that “something good eventually
happens”. Notice, however, that in contrast to the “bad thing” referred to above,
the occurrence of the “good thing” does not have to be observable in any fixed time
interval. Thus, liveness failures cannot be detected by testing.

Without proof we state some facts about safety and liveness from [Alpern and
Schneider 1985]:

4.3. THEOREM. (Properties of safety and liveness)
o Safety properties are closed under finite unions and arbitrary intersections.

o Liveness properties are closed under arbitrary unions, but not under intersec-
tions.

T 14s the only property which is both a safety and a liveness property.
For any property ¢ there exists a safety property s and a liveness property ¢y,
such that ¢ = (s NyL).

The last of these facts is known as the decomposition theorem and can be proved by
topological arguments. The safety-part of a property ¢ is the topological closure of
, that is, the least safety property containing ¢. As an example, on natural models
the LTL-formula (p U" q) is equivalent to ((p W' q) A F'q), where the language
defined by (pW+q) is a safety property and the language defined by F'q is a

1406 E. M. CLARKE AND H. SCHLINGLOFF

liveness property. Similarly, total correctness statements about programs can be
decomposed into invariance (safety) and termination (liveness).

We now give a syntactical characterization of LTL safety properties.

4.4. THEOREM. FEvery temporal formula built from literals with L, T, A, V and
W defines a safety property.

Proo¥r: The proof is by induction on the structure of the formula. The only inter-
esting case is (g0W+¢). Assume that any model M falsifying both ¢ and 1 has
a finite prefix MU such that any extension of Ml falsifies these formulas. If
M H (9 W' 1), then there is a w; > wo such that w; = (~¢ A), and wy = —¢
for wo < wr < wj. Therefore, in any model MU+ o M' the formula (¢W+¢)
must be invalid. 2

An alternative characterization of safety in linear temporal logic is with past-
operators. Any LTL formula G" 1), where 1 is a past formula, defines a safety
property. Moreover, any LTL-definable safety property can be defined by a formula
of this form [Lichtenstein et al. 1985].

A binary relation A C U x U is called image finite, if for any z € U the set
{y € U | (z,y) € A} is finite. In particular, any finite relation is image finite. We
call a transition system (S, A, So) finitary, if Sp is finite and A is image finite. Of
course, any finite transition system is finitary. Intuitively, finitary transition systems
allow only “finite nondeterminism”. The following statement extends Theorem 4.4
to finitary transition systems:

4.5. THEOREM. Any finitary transition system defines a safety property.

ProoOF: Consider the language L of a finitary transition system. We have to show
that for every sequence o, if Vido' : ol oo’ € L then o € L. In other words,
assume that any finite prefix of ¢ can be extended to a string in L and show
o € L. If o is finite, then it is a finite prefix of itself; thus there exists some o’
such that o oo’ € L. Since every state of a transition system is accepting, it follows
that ¢ € L. If ¢ is infinite, consider the following computation tree: each node is
marked by (s, o), where s is a state of the transition system and ol is a finite
prefix of o. The root is marked (s, ()), where s is any state. For any initial state
so € Sp of the transition system there is a child of the root in the computation
tree which is marked (so, o), where oo = o9 is the first letter of . Given a node
marked (s,ol*~1) (where i > 0), for any s’ such that (s,05_1,s') € A there is
a child node in the tree marked (s, (09, ..., 0;)). Thus there exists a node marked
(s,0l-1) iff there is a path from some initial state to state s which is labelled by
(09, -.-,04_1)- Since Sy is finite and A is image finite, the computation tree is finitely
branching. Since every prefix of ¢ can be extended to a string which is accepted
by the transition system, the tree contains infinitely many nodes. Thus, by Konig’s
lemma from elementary set theory, it must contain an infinite branch. Therefore,

MODEL CHECKING 1407

there is a path in the transition system labelled by o. Since all states in a transition
system are recurring, it accepts o. 2

Figure 4: A non-finitary Kripke-model

Without the finitary restriction, Lemma 4.5 does not hold: consider the infinite
transition system M of Figure 4. It shows a tree, such that for every natural number
i a path of length ¢ starts from the root. This transition system defines the set of all
finite strings (F~ X L), which is not a safety property. Similarly, the same language
can be defined by an image finite transition system with infinitely many starting
states. In particular, Lemma, 4.5 implies that any finite transition system defines
an w-regular safety property. A weaker inverse statement also holds:

4.6. LEMMA. For every w-reqular safety property there is a finite transition system
defining this property.

PROOF: Assume that a Biichi-automaton defining a certain safety property ¢ is
given. We transform this automaton into a suitable normal form. First, any nonac-
cepting state s can either declared to be accepting or deleted, depending on whether
an accepting state is reachable from s or not: since safety properties are prefix-closed
languages, if there is an accepted path which passes through nonaccepting states,
then there must be an equivalent path passing only through accepting states. Sim-
ilarly, nonaccepting SCCs can be deleted: these are nontrivial strongly connected
components in the automaton which do not contain a recurring state. Since ¢ is a
safety property, for any accepted path p passing through states in a nonaccepting
SCC there must be an equivalent path which avoids this SCC. Otherwise, assume
that p = p; o p2, where p; leads into the nonaccepting SCC. Consider the (nonac-
cepted) path p; o 0“ which passes infinitely often through the nodes of this nonac-
cepting SCC. Any finite prefix p; o 0™ of this path can be extended to the accepted
path p; 00™ o ps; hence the whole path would have to be accepted. After the deletion
of nonaccepting SCCs, each nontrivial SCC contains a recurring state. Therefore,

1408 E. M. CLARKE AND H. SCHLINGLOFF

the automaton accepts all finite and infinite paths through its state graph. Con-
sider the transition system with the same state set and transition relation, where
all states are accepting and recurring. The language of this transition system is the
same as that of the (reduced) automaton. 2

For LTL safety properties ¢, a deterministic transition system M, corresponding
to ¢ can be obtained directly by a tableau procedure; see section 7.

Given a finite Kripke model M and an w-regular safety property ¢, checking
whether M sequence-validates ¢ is especially easy. Let M 4 be the weakly fair
transition system corresponding to M according to Lemma 4.1, and let M, be a
deterministic finite transition system defining the same language as ¢. As above,
M [¢ iff L(M4) C L(M,). Language containment can be decided by executing
My (program) and M, (specification) in parallel and checking that for every
step in M 4 the corresponding step in M, exists. This approach is also used in
specification-based testing, where a number of test runs o € L(M) is checked
whether they conform to the specification, that is, 0 € L(M,). The test runs
are either determined by the system under test, or selected by the specification
according to some coverage strategy.

Safety properties can be used to characterize language containment for finitary
transition systems just as w-regular properties for Biichi-automata (cf. Fact 4.2).
For finitary transition systems, it is sufficient to check whether Ms |= ¢ implies
M [¢ for all safety properties ¢ in order to establish M; = Ma:

4.7. THEOREM. Let M1 and My be finitary transition systems. Then My = M,
iff for all safety properties v, if Mz |= ¢ then My [o.

PROOF: Assume that M; E Ms, and that M; F . Then there exists a word o
accepted by M such that o ¢ ¢. Since L(M;) C L(M3), this counter model is also
in the language of M», hence M» H . For the other direction, since the set of all
natural models generated from a finitary transition system is a safety property and
by the fact that My = M, the assumption immediately reduces to M; = Ma. 2

4.8. Simulation Relations

The above characterization results concentrate on containment between the w-
languages generated by models and (linear time) formulas. However, there are two
reasons to consider also weaker preorders between models than containment: firstly,
for large nondeterministic transition systems language containment may not be easy
to check. Secondly, sometimes it is desirable to formulate properties which depend
on the structure of the system under consideration rather than on its behavior. Such
properties may not be preserved even for systems generating the same language.
For example, consider the two models M; and Mj of Figure 5 over P = {} and
R = {a,b,c}.

MODEL CHECKING 1409

M1: Mz:

Figure 5: Two sequence-equivalent but branching-inequivalent Kripke-models

Clearly, L(M;) = L(Ma,), and therefore M; = Msy. That is, if we observe
sequences of transitions, then every possible behavior of M; is also a possible
behavior of Ms. However, if we observe not only transitions which are taken, but
also transitions which could be taken, then the behavior of M; and M- differs:
if “possible continuations” are indicated by small light bulbs, then in the first
system after performing a both the b and ¢ lights will be lit, whereas in the second
system only one of both is on. Formally, for every LTL-formula v it holds that
is sequence-valid in M iff 1 is sequence-valid in Ms. For ¢ £ [a]([b] L V [c] L), it
holds that M2 |= ¢, but My £ ¢.

Given two models M; = (U1,Z1,w1) and My = (Uz, Tz, ws), we say that M, isa
submodel of My (denoted by My C M»), if Uy C Uy, Iy = I | Uy (the restriction
of 7o to Us), and wy; = ws. Intuitively, a submodel consists of some parts of the
original model. In the proof of Lemma 4.6 we constructed a special submodel which
preserves all execution sequences. Generally, all temporal properties are preserved
when a model is replaced by the generated submodel, i.e., the submodel consisting
of all points reachable from the current point. However, usually properties are not
preserved when a model is replaced by an arbitrary submodel. Instead of simply
omitting parts of a model, it is better to collapse several points into a single point.

For any two models M; = (U;,Z;,w;) and My = (Us,Zs,ws), a relation H C
Uy x Us is called a simulation relation between M; and M, if

o (wy,ws) € H,

e Forallpe P, u € Uy, and v € Us, if (u,v) € H then u € Z:1(p) iff v € Z»(p).

e For all 4 and v such that (u,v) € H and all R and ' such that (u,u') € Z;(R)

there is a v’ with the property that (v,v") € Zo(R) and (u',v') € H.
Figure 6 illustrates the third condition.

We say that M is simulated by Ms, or Mo simulates M; (denoted by M; =
M), if there exists a simulation relation H between M; and M. Simulation
relates a model M; to an abstraction My of the model M. It guarantees that
every behavior of the model is also a possible behavior of the abstraction. However,
since a point in the abstract model usually represents a set of points in the original
model, the abstraction might have behaviors that have no counterpart in the original
model. Thus, the term “simulation” is used as in “the PC simulates a gameboy” or
“this program simulates the development of bacteria cultures”.

1410 E. M. CLARKE AND H. SCHLINGLOFF

D
@_fh

Figure 6: Simulation condition for v and v

=]

4.8. FACT. 2 is a preorder on the class of all models.

PROOF: The proof of reflexivity is immediate. For transitivity, note that the rela-
tional product of two simulation relations is again a simulation relation. 2

If M; C Ms, then M; =2 My. Moreover, if M; 2 My, then My |E Ma: if My
can simulate M, then for every maximal run o generated by M; there exists a
corresponding ¢’ € M.

A model is called deterministic, if for every w € U and R € R there is at most
one w' € U such that (w,w') € Z(R). (This definition is somewhat weaker than
the definition of deterministic automata on page 1400.) For deterministic Ms also
the converse holds: M; = Ms iff M; =2 M,. This is true because for any word
there is at most one path through a deterministic transition system. Deterministic
models and properties are an important special case. Whereas for many problems
in nondeterministic transition systems an exponential search via backtracking is
used, in the deterministic case the same problems can be solved with polynomial
complexity.

4.9. LEMMA. Let H be a simulation relation between My = (U1, Ty, w1) and Ma =
(U2, Io,w2), and (w},wh) € H. Then (U1,Zy,wy) = (U, Iy, w)).

PRrROOF: The proof is immediate from the definition of simulation relations. 2

A modal box formula is a formula not involving any diamond operator. More
precisely, literals (propositions and negated propositions) and L, T are modal box
formulas, and if ¢ and ¢ are modal box formulas, then (pA%), (V) and [R] ¢ are
modal box formulas. Similar to Lemmas 4.2 and 4.6, the following lemma relates
simulations between models and preservation of modal box formulas:

4.10. LEMMA. Let My = (U1, Zy,w1) and Mo = (Us,Zo,wz) be Kripke-models.
M1 = Mo implies that for all modal box formulas ¢, if My |= ¢ then My [¢.

MODEL CHECKING 1411

PROOF: The proof is by induction on ¢. The base cases L, T are trivial. For p € P,
the assumption (wq,w2) € H implies wy € Z; (p) iff wy € Zo(p). For boolean opera-
tors A, V, the statement is an immediate consequence of the induction hypothesis.
Finally, if w; # [R]¢, then there is a w; € U; such that (wy,w)) € Z3(R) and
w} # . Since M; =2 Mo, there is a w) € Uy such that (wq,w}) € Zy(R) and
(w},wh) € H. Lemma 4.9 asserts that (U, Z1,w}) = (Ua, I, wh). According to the
induction hypothesis, w) H . Therefore, we = [R] ¢, which was to be proved. 2

This lemma makes it possible to check safety in the abstracted (small) model M,
rather than in the original (large) model Mj: if M; violates a modal box formula,
then this violation will also occur in M.

The above statement can be extended to more expressive logics. The logic
ACTL [Long 1993, Clarke, Grumberg and Long 19944, Clarke, Long and McMillan
1989, Josko 1993, Dams, Grumberg and Gerth 1994] is “CTL without E quanti-
fier”. That is, literals and T, L are ACTL formulas, and if ¢ and ¢ are ACTL
formulas, then (p A ¢), (¢ V z@ A(pU"¢) and A(ch 1) are ACTL formulas,
where A(p W 4}) £ “E(~) U" (o V).

4.11. THEOREM. Let M1 and My be Kripke-models and ¢ be an ACTL formula.
If M1 =2 Ms and My = ¢, then My E .

PROOF: Intuitively, this theorem is true because formulas in ACTL describe prop-
erties that are valid in all paths of a model. They cannot express the existence of a
specific path in the model. If M; 2 M., then every behavior of M is a behavior
of Ms. Thus every formula of ACTL that is valid in Ms must also be valid in
M;.

Formally, the theorem is proved by induction on the structure of ¢. Again, the
only interesting cases are A U" and A W'. We show the case of p £ A(XU+¢).
Note that ~A(x U ¢) ¢ (B(-p U =(x V¢))) VE G =) (cf. page 1387). Assume
that My =2 Mj and My £ ¢, and show that My B ¢. If wy # A(x U’ 1), then
in M there is either a finite sequence of nodes w}, w?, ..., w}, such that wi H ¢
for 0 < i < m, and w} £ (x V%), or a maximal path w}, w?, w3, ..., such that
wi B 1 for all i > 0. Similar to the above, the induction hypothesis proves that a
corresponding finite or infinite sequence wi, w2, ..., w¥ or wi, w3, w3, ..., exists,
such that wi ¢ for 0 < i < n, and wd F (x V), or wé = 1 for all i > 0. Thus
wy b A(x U). 2

In general the converse of the above lemma and theorem are not valid. Essentially,
this is due to the same reason why Lemma 4.5 fails to hold for non-finitary transition
system: consider the counterexample of Figure 7.

Both models have infinitely many branches from the root, one branch of length
one, one branch of length two, one branch of length three, and so on. M; has an
additional branch of infinite length. These two models cannot be distinguished by
any modal formula:

4.12. LEMMA. For any ¢ € ML it holds that M1 = ¢ iff Ma E ¢

1412 E. M. CLARKE AND H. SCHLINGLOFF

10N AN
oo O ® oo O
w SN
o ® c O

O ® O

Figure 7: Two modally indistinguishable models

PRroOF: The statement is proved by induction on ¢. The crucial case is ¢ = (R) 1),
M1 [¢, and the successor wi of wy for which w{ =1 is on the additional infinite
branch of M;j. Choose any branch of Mz of length at least n, where n is the
number of modal operators in (. Denote the i-th point on the infinite branch of
M, and on the chosen branch of My by w? and wi, respectively (where w9 = w;
and w§ = ws). Then for all i < n and all sub-formulas &; of ¢ with at most (n — i)
modal operators it holds that wi | &; iff w§ = &. This is proved by subinduction
on n —4: if n — i = 0, then it holds by definition of the models. If n — ¢ > 0 and
wit! | &y iff wit! = &40, then wi = (R) &4 iff wh = (R) &.1. Especially, since
¢ has n modal operators, w{ = ¢ iff w9 = . 2

In particular, Lemma 4.12 implies that for every modal box formula ¢, if M, = ¢
then M; |= ¢. Yet, Ms does not simulate Mj: assume a simulation relation H
mapping the first node w of the infinite path of M; to any node w' of any finite
path in Ms. Then H must map the successor of w to the successor of w', the
successor of the successor of w to the successor of the successor of w', and so on.
There are finitely many successors from w’, but infinitely many successors from w.
Thus, after a finite number of steps, there will be nodes u € M; and v € M5 such
that (u,v) € H, and u has a successor in Mj, but v has no successor in Mo.

This is a somewhat contrived counterexample. In “many” cases, the converse will
hold. Recall that a model is called image finite, if every point has only finitely many
successors.

MODEL CHECKING 1413

4.13. THEOREM. Let M and My be image finite Kripke-models. Then M1 = M,
iff for all modal boz formulas ¢, if Mz |= ¢ then M [= .

PROOF: Assume that all modal box formulas holding in Mo) (Ua, Iz, w) are
also valid for M; £ (Uy,7h,w1), and construct a simulation between M; and M.
Define H by (u,v) € H iff for all modal box formulas ¢, if v |= ¢ then u |= ¢. Then
(w1, w2) € H by definition, and (u,v) € H implies £1(u) = L2(v), since literals are
modal box formulas. Assume (u,v) € H and (u,u') € Z;(R). We have to show that
there is a v' such that (v,v") € Zy(R) and for all modal box formulas ¢, if u' F ¢
then v' F£ . Assume for contradiction that for each v' with (v,v') € Zy(R) there
is a @, such that u' ¥ ¢, and v' |= ¢,. Since Mo is image finite, \/ ¢, exists
and is a modal box formula. Moreover, for all such v/, we have v' = \/ ., which
means v |= [R] \/ ¢,r. This implies u = [R]\/ ¢, and therefore u' |=\/ ¢,. This is
a contradiction to the assumption that u' £ ¢, for all ¢,. 2

We already mentioned that the above theorems can be used to reduce the com-
plexity of model checking. To prove that M |= @, it can help to find an appropriate
abstraction Ms, and to prove M; = M, and Mz E ¢. For more information,
see [Bensalem, Bouajani, Loiseaux and Sifakis 1992].

Extremely efficient algorithms are known to check language inclusion for deter-
ministic finite automata [Hopcroft and Ullman 1979]. These algorithms can be used
to check the simulation preorder for deterministic models. For nondeterministic fi-
nite models My = (U1, 71, w1) and Ms = (Us, T, ws), to check whether M; = M,
we define a sequence of relations H°, H!, ...on U; x U, as follows:

e (u,v) € HO iff for all p € P it holds that u € Z; (p) iff v € Zr(p)
e (u,v) € H"*1iff (u,v) € H™ and for all R and «' € Uy such that (u,u') € Z; (R)
there is a v’ with the property that (v,v') € Io(R) and (u',v') € H™.

The intersection H* of all H™ is the largest simulation relation between M; and
Ma. That is, M1 2 My iff (w1, w2) € H*. Algorithmically, if H® = H"!, then
H* £ H" and the construction terminates. In other words, we construct the greatest
fixed point of the one-step simulation relation. Since the structures are finite, there
are only finitely many different H™. Thus, termination is guaranteed. In Figure 8§,
R(u) denotes the set {u’ | (u,u') € Z(R)}, and [; is the first component of a tuple.
In the next section, a more elaborate implementation of a similar algorithm for
symmetric simulation relations is given, which is based on partition refinement.

5. Equivalence reductions

In this section, we consider symmetric preorders, i.e., equivalences, and equivalence
transformations between models. There are various possibilities for defining equiv-
alences on models. For any preorder < from the preceding section, an equivalence
can be defined by M; ~ M, iff M; < My and M5 < Mj. In this way, the equiv-
alence induced by the submodel ordering C is isomorphism. For M; | Mas, the

1414 E. M. CLARKE AND H. SCHLINGLOFF

procedure Sim _check (Model (Uy,7Z1,w1), Model (Us,Zo, ws)) =
Hmew = {(u,v) | ue U, ve U, £1(u) = ,CQ(’U)}
repeat
Held .— Hrew, [new .— {}
for all (u,v) € H do
add := T; for all R € R do
if not R(u) C ((R(u) x R(v)) N H%?)|, then add := L
if add then H™ v := H™* U {(u,v)}
until H"*v = Hold,
if (wl,wg) € H"ew
then print(“(Ul,Il,wl) is simulated by (U2,Iz,11)2)”)
else print(“There is no simulation between (Uy,Z;, w1) and (U, Iz, ws)”);

Figure 8: Algorithm for simulation checking

symmetric version is equality of the generated languages. Other model equivalences
are introduced by equivalence with respect to logical formulas, and by symmetric
simulations.

5.1. Bisimulations (p-morphisms)

A classical notion from modal logic is p-morphism [Segerberg 1968], [Segerberg
1971, p37] or bisimulation [Milner 1980, Park 1981]. A bisimulation is a relation £
between the universes of two Kripke-models (Uy,7Z;,w;) and (Us,Zs,ws) such that

o w; Lws,

o If u € v, then u € Z; (p) iff v € Z(p)

e If u £ v and (u,u’) € Z1(R), then there exists v’ such that (v,v') € Zo(R) and
u 2.

o If u € v and (v,v') € Zo(R), then there exists u' such that (u,u') € Z; (R) and
u 2.

Two Kripke-models M; and My are bisimilar (denoted by M; £ M,), if there
exists a bisimulation between them. Figure 9 shows some examples of bisimilar
models.

This example demonstrates the following statements:

5.1. FacT.
e Each model is bisimilar to one where duplicate states (which have the same
input and output) are removed,
¢ Each model is bisimilar to its unfolding, and

MODEL CHECKING 1415

Figure 9: Bisimilar models

e Each model is bisimilar to its reachable part.

If M; € My, then M; 2 My and My = Mjy; the other direction of this statement
is not necessarily true. For example, each of the models in Figure 10 simulates the
other one, but they are not bisimilar.

a b a b la

O O O

Figure 10: Not-bisimilar models

Another important equivalence relation between models is that of being indistin-
guishable by formulas of a certain logic. We say that the models M; and M, are
equivalent with respect to the logic L (M =1, Ms) if for all well formed formulas
of L it holds that M; = ¢ iff Ms |= ¢. The relation =poy, is called elementary
equivalence. Bisimulation relations are precisely those equivalences which preserve
all modal formulas:

5.2. LEMMA. Bisimilar models are modally equivalent: if M, € M., then
My =mrL Mo

The proof is by induction on the structure of ¢, analogous to the proof of
Lemma, 4.10.

Hence, it is “safe” to substitute a model by a bisimilar one in a structured software
development process: all multimodal formulas which are valid for the original model
will remain valid for the substituted model. The converse of this lemma again
requires image finiteness:

1416 E. M. CLARKE AND H. SCHLINGLOFF

5.3. THEOREM (Segerberg7l). I'mage finite models are modally equivalent iff they
are bisimilar: if M1 and My are image finite, then M; € Ms iff My =y Mo

Again, the proof is similar to the proof of Theorem 4.13 in the previous section.
The only difference is that bisimulation is a symmetric relation.

In general, this theorem does not hold for more expressive logics. For finite
Kripke-models, however, it can be lifted even to logics like positive uyTL. Given
any formula ¢ which is positive in ¢, and a natural number n, we define 1% p £ T,

and v"q p £ p{q:=v"q p}. That is, v"q ¢ 2 p{q:= p}Ha:= ¢} ---{g¢:==T}.

5.4. LEMMA. Let M = (U,Z,w) be a finite model, where |U| = n, and let ¢ be a
monotonic pTL formula. Then M |=vq ¢ iff M = v™q ¢

PROOF: One direction of this lemma follows from the fact that vq ¢ denotes a fixed
point, i.e., (vg ¢ = ©{q := vq ¢}). Since ¢ is monotonic, this implies (p{qg :=
vq v} — p{q := ¢{q := vq p}}). By chain reasoning, (vg ¢ = ¢{q := ¢{q =
vq ¢}}). By induction, (vq ¢ = @{q := p}{q := ¢}...{q := vq ¢}). Again, since ¢
is monotonic in g, it holds that (p{q := vq ¢} = ¢{q:= T}), thus (vqg ¢ = v™q @)
is valid.

For the other direction, let F £ (U,7) be the frame on which M is based.
Consider the sequence ((v"q ¢)7)n>0 of sets of points. Clearly, (1% ¢)7 =
TF = U 2 (v'q ¢)”. Since ¢} is monotonic (cf. Fact 3.8), (v'q ¢)* =
eF((VPq ©)7) 2 ol ((v'q v)7) = (¥q ¢)”. Continuing this argument, we con-
clude that ((v"q ¢)”)n>0 is a descending chain of sets. There are two possibil-
ities: either there exists an i < |U| such that (v'q ¢)¥ = (¥'*lq)7, hence
(vig)T = (v"q)7, or (v"q ¢)7 = { }. In either case, the sequence stabilizes after
at most |U| steps: (v"q @) = (v™"*1q ¢)”. As a consequence, (v"q ¢ — v"T1q)
is universally valid in F.

Now assume that M H vq ¢, and show that M # v"g ¢. According to the
definition on page 1392, (U,Z,w) # vq ¢ means that for all C U such that
w € @ there exists a v € @ such that (U,Z',v) H ¢, where 7'(q) = Q. (*) Let
Q = (v"q o)7. T w ¢ Q, then (U,Z,w) # v"q ¢ and we are done. If w € Q,
then by (*) for some v it holds that (U,Z,v) | v"™q ¢, and (U,7',v) F ¢, where
T'(g) = (v"q ¢)”. In other words, (U,Z",v) H ¢{q := v"q ¢}, which means that
(U,Z,v) f v™* . Since (U,Z,v) = (v"q ¢ — v"F1q), this is a contradiction. 2

This lemma is important for model checking of yTL on finite Kripke models.
Moreover, it allows to prove the following result.

5.5. THEOREM. Finite models are monotonic pTL-equivalent iff they are bisimilar:
if My and My are finite, then My € M, iff My =11 M>

PrOOF: Trivially, finite models are also image finite. Any two models which are
equivalent with respect to monotonic uTL are modally equivalent, since modal logic
is a sublanguage of uTL. Hence as an immediate consequence of Theorem 5.3, any
two finite models which are yTL equivalent are bisimilar.

MODEL CHECKING 1417

For the other direction, assume that M; = ¢ and Ma £ ¢, where ¢ is a
monotonic yTL-formula. Let n £ max(|U;|, |Us|), and ¢™ be ¢ where every sub-
formula vq 9 is replaced by v"q 1. As a consequence of Lemma 5.4, M; = ¢ iff
M; E ™ for i = 1, 2. Therefore, M1 |= ¢™ and My [~ ¢™. Since ™ is a multimodal
formula, M; and M, are modally inequivalent. Theorem 5.3 implies that M; and
M are not bisimilar. 2

5.6. COROLLARY. Any two finite Kripke-models which can be distinguished by a

monotonic uTL-formula can also be distinguished by a multimodal formula: if My
and My are finite, then My =,11, M2 iff M1 =mL Mo

[Browne, Clarke and Grumberg 1988] proved that if two finite models can be dis-
tinguished by a formula of the logic CTL", then they can be distinguished by a
CTL formula. Every CTL* formula has a positive 4TL equivalent [Dam 1994]
(on tree models, CTL* can be translated into monadic second order logic, which
is of the same expressiveness as yTL). Therefore this result can be obtained as a
consequence of the above.

5.2. Distinguishing Power and Ehrenfeucht-Fraissé Games

The previous theorems showed that logics with different expressiveness can have
the same distinguishing capabilities. We wish to formalize these notions. A logic L2
is said to be at least as expressive as L1 (or L1 is at most as expressive as L2) iff
for any formula ¢; € L1 there exists a formula ¢y € L2 such that for all models M
we have M = @1 iff M | 2. L1 and L2 have the same expressive power if L1 is
at least as expressive as L2 and L2 is at least as expressive as L1. In other words,
two logics have the same expressive power iff for any formula of one logic there is
an equivalent formula from the other logic. For example, Theorem 2.4 states that
on natural models, FOL and LTL have the same expressive power.

Logic L2 is at least as distinguishing as L1 (or L1 is at most as distinguishing as
L2) if any two models which are inequivalent with respect to L1 are also inequiva-
lent with respect to L2. That is, L2 at least as distinguishing as L1 iff My =12 My
implies M; =11 My. L1 and L2 have the same distinguishing power if L1 is at
most as distinguishing as L2 and L2 is at most as distinguishing as L1. In other
words, L1 and L2 have the same distinguishing power iff for all models M; and
Mz it holds that Ml =L1 M2 iff Ml =L2 MQ.

Expressiveness is a finer equivalence relation on the class of all logics than dis-
tinguishability:

5.7. Fact. If L1 is at most as expressive as L2, then it is at most as distinguishing.
If L1 and L2 have the same expressive power, then they have the same distinguish-
ing power (but not vice versa).

PROOF: Assume that for any formula ¢; € L1 there exists an equivalent formula
o € L2. Assume further two models M; and Msy which are inequivalent with

1418 E. M. CLARKE AND H. SCHLINGLOFF

respect to L1, that is, for some ¢; € L1 we have M; |= ¢ and Ma # ¢1 or vice
versa. According to the first assumption there exists p2 € L2 equivalent to ¢;.
Therefore My = @3 and My H 2 or vice versa, which means that M; and M,
are inequivalent with respect to L2. The second statement follows by symmetry. As
example of logics with equal distinguishing power but different expressive power,
consider multimodal logic and positive uTL. 2

For any formula ¢, we say that ¢ is preserved under bisimulations, if for all models
M; £ M, it holds that My = ¢ iff M2 | ¢. A logic L is bisimulation invariant, if
all well-formed formulas of L are preserved under bisimulations. Lemma 5.2 shows
that multimodal logic is bisimulation invariant. In other words, if a property can
be defined by a multimodal formula, then it is preserved under bisimulations. The
same holds for more expressive logics like monotonic pTL:

5.8. LEMMA. puTL is bisimulation invariant: if My & Ma, then for any positive
uTL formula ¢ it holds that My = ¢ iff Ms = .

In his thesis, van Benthem investigated the reverse direction, and gave a con-
nection between bisimulations, first order and modal expressiveness (see [van
Benthem 1983]). He showed that for first order formulas, bisimulation invariance
implies multimodal definability:

5.9. THEOREM (Expressive completeness of ML). For any first order formula ¢
(with one free variable) which is preserved under bisimulations there exists an equiv-
alent multimodal formula.

Thus, exactly those first order formulas which are preserved under bisimulations
can be translated into modal logic. [Janin and Walukiewicz 1996] extended this
theorem for second order formulas and pTL, which is a converse to Lemma 5.8:

5.10. THEOREM (Expressive completeness of uTL). Let ¢ be any MSOL prop-
erty. Then o is preserved under bisimulations iff ¢ is definable by a positive uTL
formula.

In particular, this result implies that every logic which is bisimulation invariant and
has a semantical translation into MSOL can be also translated into mT L. As a
corollary, many propositional logics of programs (CTL*, PDL, ...) which have been
suggested can be translated into the p-calculus.

Segerberg’s theorem 5.3 relates modal equivalence to bisimilarity. Bisimilarity
can also be defined in terms of a so-called Ehrenfeucht-Fraissé game [Fraissé 1954,
Ehrenfeucht 1961]: there are two players, Ann and Bob. They play on a board on
which two Kripke-models are drawn. Ann’s goal is to show that these models are
not bisimilar, whereas Bob’s goal is to show that they are bisimilar. (So, this is not
really a fair game, since the outcome is predetermined by the shape of the board.)

Each player has an unlimited amount of pebbles which are numbered consecu-
tively: ag, a1, as, ... and bg, by, b, To start the game, each player places his first

MODEL CHECKING 1419

pebble ag, by on the current point of one of the models. If the current points have
a different label, Bob has lost immediately.

Thus, round 0 consists of placing ag and by on the board. Similarly, round j
consists of the placement of a; and b;: Ann chooses any point wg on one of the
models on which some pebble (say, a; or b; for i < j) had been placed previously,
and puts her next pebble a; on some point w; which is an R-successor of wy. Bob
then locates the i** pebble (that is, b; or a;, respectively) on the other model, say
in point wy. He looks for a point w}] such that wyRw], and w; and wys have the
same label. If he can’t find such a point he has lost and the game ends; otherwise
he chooses any such point and puts his next pebble b; on it.

If the game continues forever, then Bob has won. Ann can force a win within n
rounds, if she can place her pebble in such a way that Bob immediately loses the
game, or if she can choose a point such that for each possible answer of Bob she
can force a win within n — 1 rounds. Ann has a winning strategy if there is some n
such that she can force a win within n rounds. Bob has winning strategy iff Ann
does not have one; i.e., if in each round and for each possible move of Ann there is
a response by Bob to continue the game.

Ehrenfeucht-Fraissé games are a convenient way to imagine bisimulations.

5.11. THEOREM. Ann has a winning strategy in this game iff the two models are
not bisimilar; i.e., Bob has a winning strategy iff they are bisimilar.

Proor: From Bob’s winning strategy, it is easy to construct a bisimulation be-
tween the two models: w; € w} iff Bob would have chosen w; or w} as a reply to
Ann’s choosing w} or w;, respectively. For the other direction, every bisimulation
determines a winning strategy for Bob: he just replies by choosing any point which
is related to the point chosen by Ann via the bisimulation relation. 2

It is easy to modify the rules of the game such that it captures the equivalence
of two models with respect to other logical languages. For example, in a game for
MSOL we allow both Ann and Bob in any move to place an arbitrary set of pebbles
on one of the models on the board. Then the two models can be distinguished by
a monadic second order formula iff Ann has a winning strategy.

5.3. Auto-bisimulations and the Paige/Tarjan Algorithm

In this subsection we show how to minimize a given Kripke-model with respect to
bisimulation equivalence. Note that our definitions did not exclude bisimulations
from a model to itself (auto-bisimulations); i.e., some points in a model can be
related by a bisimulation to other points in the same model.

5.12. LEMMA. The union of any number of auto-bisimulations on a model is again
an auto-bisimulation.

PRrooOF: This follows directly from the definition of bisimulation relations. 2

1420 E. M. CLARKE AND H. SCHLINGLOFF

Thus, for any model, there exists a largest auto-bisimulation, namely, the union of
all auto-bisimulations of this model. Additionally, the reflexive transitive symmet-
ric closure of any auto-bisimulation is again an auto-bisimulation. Hence, for any
auto-bisimulation £ there is a largest equivalence relation = containing it (£C=)
which is again an auto-bisimulation. And, the largest auto-bisimulation must be an
equivalence relation on the set of points of a model.

Given any model M £ (U, Z,w), and any equivalence relation = on U. Define
the quotient of M with respect to = to be the model M= £ (U=,7=,w5), where U=
is the set of equivalence classes of U with respect to =, w§ is the equivalence class of
wo, w= € I=(p) if there is some w € w= such that w € Z(p), and (wf,w5) € I=(R)
if there are wy € wi and wy € w5 such that (wy,w2) € Z(R).

5.13. LEMMA. If the equivalence relation = is an auto-bisimulation, then M &
M=,

ProOOF: Define u € v= iff u = v. That is, each point in the original model is
mapped to its equivalence class in the quotient model. We have to show that for
this relation the four conditions defining a bisimulation (cf. page 1414) hold. For
the initial point, wy € w§ holds because wy = wy. Since = is a bisimulation,
u = v implies that £(u) = L(v). Thus if u € v= then u € Z(p) iff v= € Z=(p).
Furthermore, if (u1,u2) € Z(R) and u; € oF, then by definition (uf,u5) € Z=(R)
and uy = v;. Therefore, uf = vf, i.e., (vF,u5) € Z=(R). For the last condition,
assume that (v,v5) € Z=(R) and v £ u;. Then there exist wy and wy such that
w1 = v1, w2 = ve and (w1, ws) € Z(R). From vF £ u; we infer u3 = v; and thus
u1 = ws. Since = is a bisimulation, there exists a us = ws such that (uq, us) € Z(R).
From uy = we and wy = vy we conclude that us = v, ie., us 205, 2

The quotient of a model with respect to its largest auto-bisimulation can be
regarded as a minimal representation of this model. In finite models, this minimal
representation can be constructed very efficiently.

For any set of points P C U, let (R) P 2 {w | 3w’ € P,(w,w') € Z(R)}. Given
any partition of U into equivalence classes, call a component w= wuniform, if for
all p € P it holds that w= C Z(p) or w= NZ(p) = {}. That is, w= is uniform if
L(wr) = L(w2) for all wy,wy € w=. A component w= is called stable with respect
to P, if for all R either w= C (R) P or w= N {R) P = {}. The partition is called
stable, if all components are uniform and stable with respect to all components.

5.14. THEOREM. The coarsest stable partition is the largest auto-bisimulation.

PRroOF: First, we show that any stable partition is an auto-bisimulation. Trivially,
wo = wp- Since u= is uniform, v = v implies L(u) = L(v). If (u,u') € Z(R), then
u= C (R)u'=, because u= is stable with respect to u'=. In other words, u= C {w |
Juw' =4, (w,w') € Z(R)}. Therefore, if u = v, then there is a v' = ' such that
(v,v") € Z(R). The symmetric condition is proved symmetrically. Vice versa, every
auto-bisimulation defines a stable partition: to show that = is stable with respect to
v=, assume that u; = us € u=. Since = is a bisimulation, for every (u1,u}) € Z(R)

MODEL CHECKING 1421

and u} € v= there must be a wjy = u} € v= such that (us,u}) € Z(R). Therefore,
u= C (R)v= or u= N (R)v= = {}. If = is the coarsest stable partition, then for any
auto-bisimulation £ it holds that € C =. Assuming for contradiction that u, v
and £ exist such that v € v and not u = v, according to Lemma 5.12 the union of
€ and = would be a stable partition coarser than =. 2

The following algorithm can be used to construct the coarsest stable partition:
— Start with the trivial partition consisting of only one component
— Repeat

— Choose a component wg and a proposition p € P;

— Split w5 into wi NZ(p) and w5 \ Z(p)

or

— Choose components wj and wf, and a relation R € R;
— Split w§ into wg N (R) wi and w5 \ (R) wT

until no new components can be obtained that way

The Paige-Tarjan algorithm [Paige and Tarjan 1987] given in Figure 11 is a
sophisticated implementation of this idea; it maintains two partitions: a coarser
one, C, and a finer one, F'. All components in F' are stable with respect to any
component in C. The nondeterministic choice in the above repeat-loop is replaced
by a systematic split of the finer partition with respect to all components of the
coarser partition. Initially, C' is the trivial partition and F' is the split of C' w.r.t. all
p € P and R € R. Then, a w= € C is split into wF € F and w5 = w= \ wi. Any
w5 € F is split into four parts: First, it is split with respect to (R) wF, and then
again with respect to (R) w3 .

In this split of wg, either the last or the first three parts must be empty: since
wg is stable with respect to C, either wg C (R)w= or wy N (R)w= = {} for all
R. If wy C (R)w=, then (w5 \ (R)wT) \ (R) w5 = {}. If wy N (R)w= = {}, then
both wg N (R) wF = {} and wi N (R) w5 = {}: since w= = wf U w5, it holds that
(R) w= = (R) wi U(R) w3 .

The overall complexity of the algorithm is O(m - logn), where n is the number
of points in the original model, and m is the number of points (partitions) in the
result.

6. Completeness

Logicians are interested in logical truths, i.e., in the set of formulas which are valid
in all models of the logic. How does it help to know about the set of all valid
formulas when we want to find out whether a particular formula ¢ holds for a
given model or theory? The answer is to encode the model or theory as a set of
assumptions ® and check whether the formula in question follows from ®.

In fact, a logic can be defined to be any set of well-formed formulas which is
closed under provable consequence; and a theory is a set of well-formed formulas
which is closed under semantical consequence.

Thus there are three notions of consequence involved here:

1422 E. M. CLARKE AND H. SCHLINGLOFF

function Bisimulationminimize (Model (U,Z,v)) : Model =
C:={U}}, F:=={{U}}
for allp € P and w= € F do
F= (F\{w=}) U{w=nZI(p), w=\I(p)};
for all R € R and w= € F do
Fi= (F\{w=}) U{w=n(R{U}, w= \(R{U}};
while C # F do
choose w= € C'\ F and wf € F such that wf C w=
wf = we\wf; C = (C\{w=}) U fuf, uil;
for all R € R and wg € F do
F:=F\ {w5}U
{(w§ N(R) wT) N(R)
(w§ \ (R) wT) N (R)

w§, (uf
w3,

end;
return (F,7=,v=)

Figure 11: Paige-Tarjan algorithm for bisimulation minimization

e ® |- if o follows from P,

i.e. if any model in which all formulas from & are valid also validates ¢,

e &+ ¢ if ¢ can be proved from &,

i.e. if there is a proof of ¢ which uses only assumptions from ®, and

e (®—) if ¢ isimplied by ®.

This is a statement of the object language which is only defined if ® is a single
formula. To be liberal, we can identify a finite set of formulas & £ {¢, ..., on}
with the conjunction & £ (o1 A ... A @y).
Note that @ |- ¢ is different from M |= . The notations || ¢ and F ¢ are short
for {} |F ¢ and {} I ¢, respectively.

Of course, the semantical notion of walidity sometimes is restricted to certain
classes of models, e.g., to those satisfying certain axioms, or to natural or tree
models.

Also, the algorithmic notion of provability sometimes is parameterized by a cer-
tain proof-system. In this section, we will use Hilbert-style proof-systems, consisting
of a set of arioms and derivation rules. Although such proof systems are not very
practical, often they can illustrate the principles underlying completeness proofs.
Usually, axioms and derivation rules contain proposition variables ¢ € Q and a
substitution rule allowing consistent replacement of proposition variables with for-
mulas. Conceptually, proposition variables are not the same as propositions, though
many authors do not distinguish between these syntactic categories. A free propo-
sition variable in an axiom can be thought of more or less as if it were universally
quantified.

MODEL CHECKING 1423

To complicate things even more, there are two notions of validity of a formula:
local validity (U,Z,wp) |= ¢ (in a model, where the evaluation point is given), and
universal validity (U,7) | ¢ in a frame (U,Z). Traditionally, focus has been on
complete axiom systems for universal validity rather than for the local version;
proofs are much simpler. Thus, in this section we are interested in formulas which
are valid in all models at all points.

One of the major concerns after defining a logical language and its models is
to find an adequate proof-system for the logic, i.e. one which is both sound and
complete. That is, for any ® and ¢,

o if & F ¢, then @ || ¢ (Soundness), and
o if & |} ¢, then ® - ¢ (Completeness).

It is obvious that any proof system should be sound: we don’t want to be able to
“prove” false statements. Usually is very easy to prove soundness. We just have to
show that the axioms are valid, and that all formulas which can be deduced from
valid formulas by the derivation rules are valid. Completeness is often much harder
to show, if not impossible. However, it is important to strive for completeness.
Firstly, we would like to make sure that any specification which is satisfied by
a program can be proved from the program axioms, provided the specification
is expressible in the logic. Secondly, and more important, in many cases decision
algorithms for automated verification can be obtained from the completeness proofs
or vice versa.

6.1. Deductions in Multimodal Logic

To illustrate the basic idea, we start with a simple deductive system for multimodal
logic. A number of similar proofs can be found in [Burgess 1984]. We use the
following axioms and rules:

(taut) propositional tautologies

(MP) p, (p—qtgq

N) aF[R]q

X) F(Rl(p—4q9— (Rlp—[R]q)

Since this axiom system is based on the [R]-operator rather than the (R)-operator,
we identify (R) ¢ with = [R] —.

To prove ® ¢ we have to give a derivation of ¢ from the assumptions @, i.e.,
a sequence of formulas such that the last element of this sequence is ¢, and every
element of this sequence is either from ®, or a substitution instance of an axiom,
or the substitution instance of the consequence of a rule, where all premisses of the
rule for this substitution appear already in the derivation.

As an example, let us assume (p — q) and derive some consequences:

1424 E. M. CLARKE AND H. SCHLINGLOFF

1. (p—aq) (assumption)
2. [Rl(p—q) (1, N)

3. ([Bl(p—a) = ([B]p — [R]q)) (K)

4. ([R]p— [R]q) (2, 3, MP)
5. (-q = —p) (1, taut)

6. ([R]—q— [R]-p) (5, as in 1-4)
7. (—| [R] -p— [R] —lq) (6, taut)

8. ((R)p— (R)q) (7, (R) ¢ 2 = [R] ~¢)
Lines (4) and (8) form the basis for an inductive proof of the following replacement
and monotonicity rules:

(repl) (p<+ q) F (p(p) <> ¢(q)), and

(mon) (p—q)F (p(p) = ¢(q)), where ¢(q) is positive in g.
(mon) is a syntactical analog of Lemma 3.8. The requirement that ¢(g) is positive
in ¢ means that every occurrence of ¢ is under an even number of negation signs
(cf. the definition on Page 1394). For example, [R] g, {R) ¢, and (¢ A[R](gqV (R)q))
are positive in gq.

6.1. THEOREM (Soundness of ML axiom system). If & - ¢ then ® || ¢.

PROOF: Soundness of (taut) and (MP) is immediate. (IN) is the so called neces-
sitation rule. Its validity depends on the universal interpretation of validity: f some
formula is valid in every point of a model, it is valid in every point which is the
R-successor of some other point in that model. (K) is the classical Kripke-axiom
which holds for all normal modal logics. If in all accessible points p holds, and in
all accessible points (p — ¢) holds, then in all accessible points ¢ must hold. 2

The classical way to prove this theorem is the so—called Henkin-Hasenjiger con-
struction. A set ¥ of formulas is consistent with ®, if there is no finite subset
{¥1,..,¢¥n} C ¥ such that ® (1 A ... A, = L). Given a set ® of assumptions
and a formula ¢ which is consistent with ®, we will construct a model in which ®
is universally valid and ¢ is locally valid. Call a set w of formulas mazimal, if for
any formula 1), either ¢ or = is in w.

6.2. LEMMA (Lindenbaum’s extension lemma). For any formula ¢ which is consis-
tent with ® there exists a maximal consistent set wy such that ¢ € wy and & C wy

PROOF: Start with ® U {¢}; for every formula 1 according to a fixed enumeration
add either ¢ or =) to w, whichever is consistent with the set constructed so far. 2

The canonical model for @ is (U,Z,w), where
e U is the set of maximal consistent sets which include &,
¢ Z(R) 2 {(wo, w1) | ¢ € wy implies (R)q € wo}, and
e Z(p) £ {wo | p € wo}, and
e w is any element from U such that ¢ € w.

MODEL CHECKING 1425

The following result is sometimes called the “truth” lemma. Intuitively, it states
that any point in the canonical model contains exactly those formulas which are
satisfied by this point.

6.3. LEMMA (Truth lemma). Let ¢ be any formula and w be a mazimal consistent
set in the canonical model. Then ¢ € w iff (U,Z,w) = ¢.

PRroOF: The proof is by induction on the structure of ¢. In the inductive step,
there is one interesting case. We must show that (R) ¢ € wy iff (U,Z,wo) |E (R) ¢.
We first prove that (U,Z,wp) | (R) ¢ implies (R) ¢ € wg. Since wy = (R) ¢, there
exists a wy such that wgRw; and w; |= ¢. By definition of R, we have (R) ¢ € wq for
all ¢ € w;. Since wy = ¢, the induction hypothesis implies ¢ € w;. Consequently,
(R) ¢ € wo.

For the other direction, assume that (R)¢ € wg. We have to show that there
exists a maximal consistent set w; such that (wo,w;) € Z(R) and ¢ € w;. First
observe that the formula F (({(R) ¢ A [R]) = (R)(¢ A 1)) is derivable:

L. [R)W —) = ((Rlv — [R]) (K)
2. (~[R]-¢ A [RlY) = ~ Rl » ~p)) (1, taut)
3. (BYpA[R]Y) = (R)(p AY) (2, repl, taut)

Recall that [R] ¢ is a syntactical abbreviation of = (R) —¢. In line 3., we replaced
== by ¢ and —(¢» = —p) by (¢ Av). This derivation can be generalized to obtain

E((R) o AR Y1 A=~ A [R]Yn) = (R) (0 Apr A== 4hn))

Because of this result, the set {¢} U {¢ | [R]Y € wp} must be consistent with
®. Otherwise, by the definition of consistency on page 1424, there would exist
a finite set {91, ...,¢n} of formulas such that [R]); € wp for all 1 < i < n, and
(pAY1A-- -1, = L) must be derivable from ®. Since - ((R) L — L), we would have
B b ((R)(A1 A-+-thn) — L). Therefore, @ b ((R) ¢ A [R] g1 A+ [R]thn) — L).
Since {(R) ¢, [R]¢1,...,[R]¥n} C wo, the set wy would be inconsistent with &,
which is a contradiction.

Since {¢} U {¢ | [R]¥ € wo} is consistent with @, there exists some maximal
consistent extension wy of this set. Moreover, if 1) € wq, then [R] - can not be in wq
(otherwise, both ¢ and — would be in w;). Since wy is maximal, ¥ € w;y implies
- [R]—¢ = (R)¢ € wg. From the definition of Z(R), it follows that (wq,w;) €
Z(R). Since ¢ € wy, the induction hypothesis gives (U,Z,w;) |= ¢. Together with
(wo,w1) € Z(R) we have (U,Z,wy) = (R) ¢, which was to be shown. 2

6.4. LEMMA (Satisfiability of consistent formulas). Every multimodal formula ¢
consistent with ® is satisfiable in some model validating ®.

PRrOOF: Since for the canonical model (U,Z,w) it holds that ® C w and ¢ € w,
Lemma 6.3 asserts that (U,Z,w) E ® and (U,Z,w) | ¢. Thus every consistent
formula is satisfied in its canonical model. 2

1426 E. M. CLARKE AND H. SCHLINGLOFF

6.5. THEOREM (Completeness). The deductive system for ML is complete:
If ® | ¢ then @ I .

PRrooF: Without loss of generality, we can assume ® to be consistent with itself: if
® is inconsistent, then ® I ¢ holds trivially. If ® ||~ ¢, then no model in which & is
universally valid contains a point which satisfies {—¢}; therefore with 6.4 it follows
that {—¢} is inconsistent with ®, hence ® F (—p — L), which is ® - . 2

We now show how this proof can be extended for natural models. Recall that
a model is called deterministic, if all accessibility relations R € R are univalent:
for any given point w there is at most one R-successor of w. The following axiom
describes this property.
(U) - ((R)a — [R]a)
Soundness of this axiom in deterministic models is immediate: if there is any R-
successor satisfying ¢, then all R-successors must satisfy ¢. In the completeness
proof, axiom U forces the canonical model to be deterministic: for every wo € U of
the canonical model and every R € R there can be at most one wy with (wg,w) €
Z(R). To see why this is true, assume for contradiction that (wg,w1) € Z(R) and
(wo,w)) € Z(R). If wy # w}, then there must be a formula) such that ¢ € wy and
-1 € wj. Therefore (R)1 € wo and (R) 1) € wy. This is a contradiction to the
consistency of wg: from axiom U it follows that if (R) 1) € wg, then = {R) =) € wy,
since maximal consistent sets are closed under modus ponens. Thus, (R) —1) & wo.
Therefore, we have shown

6.6. THEOREM. (U) is sound and complete for deterministic models.

There are a number of other axioms which impose specific conditions on the
canonical model. To investigate such connections is the topic of correspondence
theory, see [van Benthem 1984]. Correspondences between modal axioms and rela-
tion algebraic expressions can be found in [Schlingloff and Heinle 1997]. (Such an
expression is built from basic relation symbols with union, complement, concate-
nation, and transitive closure.)

As an example for the use of axiom (U) in verification, we prove
{(on = (R)—on A[S]Ll), (—on—{S)on A(R)-on)} F [R](S)[S]L.

The assumptions can be seen as describing the actions of a semaphore with two
states, on and —on, which can be set with an S-operation when it is not on, and can
be reset with an R-operation at any time. The semaphore cannot be set when it is
in state on. We want to show that after a reset it is possible to set the semaphore
once and only once; that is, for all points reachable with an R operation there exists
an S successor from which no further S operation is possible.

1. on— (R)-onA[S]L (assuumption)

2. —on— (S)onA (R)—on (assumption)

3. on— (R)-on (1, taut)

MODEL CHECKING 1427

4. —on — (R)-on (2, taut)

5. (R)-on (3, 4, taut)
6. (R)-on — [R]-on (V)

7 [R] —on (5, 6, MP)
8 —on— (S)on (2, taut)

9. [R]—-on — [R](S)on (8, mon)
10. [R]{S)on (7,9, MP)
11. on—[S]L (1, taut)
12. [R]{S)on — [R](S)[S]L (11, mon)

13. [R]{S)[S]L (10, 12, MP)
As we see, even in such simple examples it can be quite difficult to find a Hilbert-
style proof “by hand”; therefore it is important to develop automatic proof methods.
Algorithms for this purpose are the topic of Section 7.

Consider the case that the logic contains only one accessibility relation (R =
{R}). Then each path through a deterministic canonical model forms a natural
model: let the formula ¢ be consistent with all substitution instances of the ax-
iom (U). Consider a sequence o 2 (wo,wy, w2, ...) of points in the (deterministic)
canonical model for ¢ such that ¢ € wy and w; Rw;41 for all i. Obviously, o is a
natural model which initially satisfies ¢. Therefore, with axiom (U) each consis-
tent formula is satisfiable in a natural model; in other words, (U) is complete for
monomodal logic in natural models. The same holds if we require univalence of the
transition relation <= [JR:

(N) ¢k %gq

(K) F(X(p—q) = (Xp—>Xq))

(U) F(Xq—Xq)
Together with (taut) and (MP), these axioms are sound and complete for the
X-operator in natural models.

6.2. Transitive Closure Operators

A major difference between temporal and modal logic is that temporal logic has
operators for the transitive closure of the transition relation. In order to motivate
the discussion in the completeness proofs for CTL and LTL, in this subsection we
extend the above completeness proof to handle such operators. For simplicity, we
first give the proof for the logic with operators X (or, equivalently E X) for the
transition relation and F~ (or EF") for its reflexive transitive closure (plus derived
operators X p 2 X —p, G" ¢ £ = F —p, etc.). The necessary generalizations for
CTL and LTL are indicated at the end of this subsection.

Close inspection of the semantics of F~ reveals a fundamental problem, com-
pared to the completeness proof given above. Consider the set ® 2 {p, Xp, XXp,
XX Xp, ... }. Then clearly ® |- G" ¢. However, ® I G" ¢, since every proof of G" ¢
from ® can use only a limited number of premisses (proofs are finite sequences).

1428 E. M. CLARKE AND H. SCHLINGLOFF

But there does not exist a finite subset ®; C ® such that the statement &, - G ¢
holds.

Thus, the above completeness proof fails. For an arbitrary set @, it may not be
possible to construct a maximal consistent extension, since we can not apply an
axiom to show the consistency of an infinite set of premisses.

When dealing with second order concepts like transitive closure we have to limit
ourselves to a weaker form of completeness. An axiom system is called weakly com-
plete, if ® |- ¢ implies ® - ¢ for all finite .

In first order logic, the deduction theorem makes it possible to discard any finite
set of assumptions: ¥ | ¢ iff |- (V¢ — ¢), where V4 is the universal closure of 1.
In temporal logic, a similar deduction theorem holds:

6.7. THEOREM (Deduction theorem). ¥ | ¢ iff |- (G ¢ — ¢).

Therefore, to prove weak completeness it is sufficient to prove that | ¢ implies
F . We use the following axiom system (in addition to modus ponens (MP) and
propositional tautologies (taut)):

(N) qFXgq

(K) F(X(p—q) = (Xp—Xqg))
(Rec) F(G'g— (gAXGq)
(Ind) (p— (gAXp)F(p— G o)

Dually, the last axiom and rule can be written as

(Rec) F((gvVXFgq)—Fyg)
(Ind) ((gvXp)—=p+ (Fqg—p)

(N) and (K) are “nexttime-versions” of the respective modal rule and axiom given
above. In this subsection, we prove completeness for general Kripke structures (with
a possibly nondeterministic accessibility relation), thus there is no need for the
temporal version of (U). Axiom (Rec) and rule (Ind) are sometimes attributed
to Segerberg. They reflect the definition of the transitive closure as the minimal
transitive relation which includes all accessibility relations. (Rec) is the recursion
axiom which can be used to unfold a G"-operator (cf. Subsection 3.2, Page 1395):

G o= (PAX(pAX(pA.L))).

(Ind) is the induction rule which can be used to deduce a property G” ¢ from an
invariant 1, i.e., from a formula ¢ for which (¢ — X ¢) and (¢ —) are derivable.

6.8. LEMMA. (Rec) and (Ind) are sound: & ¢ implies = .

For the soundness of (Rec), observe that w = G" ¢ means that for all u > w it
holds that u = ¢. Thus w |= ¢, and for all v = w and u > v we have u |= ¢, which
means w = X G .

For the soundness of (Ind), assume that (p — (¢ A X p)) is universally valid in
a frame F £ (U, 7), that is, for any w € U, if w |= p, then w |= ¢ and v |= p for all

MODEL CHECKING 1429

v > w. Assume further that wy |= p, and show that w |= ¢ for all w > wy. We show
that w = p for all w > wy. From this the claim follows since w = p implies w |= g.
The proof is by induction on the length of the shortest path between wy and w. If
this length is zero, then wy = w, and there is nothing to show. For the inductive
step, assume that the shortest path from wg to w has n + 1 elements. Then there
exists a predecessor w’' < w such that wg < w’, and the shortest path between wq
and w' has n elements. From the induction hypothesis, w' |= p. Since w' < w, it
follows that w |= p. 2

Next, we show that these axioms are complete for transitive closure. Up to the
truth lemma, the proof is almost the same as for modal logic. But, we only use
finite maximal consistent sets: we start with a single (finite) consistent formula ¢
for which we have to construct a model. The set ESF(p) of extended sub-formulas
of ¢ (sometimes also called Fischer-Ladner closure, [Fischer and Ladner 1979]) is
the following set of formulas:

e 1 and 9 are extended sub-formulas of (¢1 — ¢2),

(thus ¢ is an extended sub-formula of —¢)

e is an extended sub-formula of X ¢,

e ¢ and X F ¢ are extended sub-formulas of F ¢,

¢ ¢ is an extended sub-formula of ¢, and

e every extended sub-formula of an extended sub-formula of ¢ is an extended

sub-formula of ¢.
For any given ¢, the set ESF(p) is finite. A consistent set of formulas is called
finitely mazximal, if it is maximal with respect to ESF(¢); that is, for every extended
sub-formula ¥ of ¢, either ¢ or =) is in the finitely maximal consistent set.

As in the infinite case, for any consistent formula ¢ there exists at least one
consistent set wp which is finitely maximal with respect to ESF(y) such that
© € wo. Consider the following finite canonical model (U, T, w):

e U is the set of finitely maximal consistent sets,

o (<) £ {(wo,w1) | "X q € wy implies —¢q € w; }, and

e 7(p) = {wo | p € wo}, and

e w is any element from U such that ¢ € w.

Compare this with the canonical model for modal logic on Page 1424. Similar as in
Lemma 6.3, for any extended sub-formula ¢ and finitely maximal consistent set w,
the following statement holds:

6.9. LEMMA (Truth lemma for transitive closure operators). w = ¢ iff ¢ € w.

From this truth lemma, completeness follows exactly as in the multimodal case.
Proor: The proof is by induction on ¢. The case ¢ = X< is proven almost
exactly as in the completeness proof for modal logic. If (U,Z,wo) E X1, then
there exists a w; such that wy < wy and w; |= ¢. Assuming for contradiction that
X1 ¢ wp, we have =X 1) € wy, since the set of extended sub-formulas is closed
under (single) negation. From the definition of Z(<) we can infer that) € wy, i.e.,
¥ ¢ wy. According to the induction hypothesis, wy F ¢, which is a contradiction.

1430 E. M. CLARKE AND H. SCHLINGLOFF

In the other direction, assume that X € wg, and let w; be any finitely maximal
consistent extension of {¢} U {=¢ | - X € wp}. Since ¥ € wy, the induction
hypothesis gives (U,Z,w;) |= ¥. According to the definition of Z(<) it holds that
wo < wi. Therefore (U,Z,wq) = X 1.

Thus, it remains to show that F' ¢ € wy iff (U,Z,wq) | F 4. For one direction,
assume that F~ ¢ ¢ wg. We have to prove that wo | F* 1. In other words, if wy < wp,
then it has to be shown that w, F 1. Note that wy < w, iff there is a finite path
(wg, w1, ..., wy) such that w; < w1 for all i < n. We show by induction on n
that = F ¢ € wy,, hence F ¢ ¢ w,. For n = 0, there is nothing to show. For
n > 0, the induction hypothesis guarantees that F ¢ ¢ w,_1, i.e., = F ¢ € w,,_1.
Both X F 1) and -~ X F" 1) are extended sub-formulas of F* ¢, therefore one of them
must be in w,_;. From axiom (Rec), the formula (=F ¢ — —XF ¢) can be
derived. Consequently, = X F 1) € w,_1. Thus by the definition of Z(<), we have
- F 9 € w,. Now we show that w,, 1. Since axiom (Rec) derives (= F ¢ — —))
and ~F ¢ € w,, the assumption ¢ € w,, would contradict the consistency of w,,.
Therefore, ¢ ¢ w,,. According to the induction hypothesis, w,, F .

Now we prove that F ¢ € wy implies wg = F 1. For any finitely maximal
consistent set w and any (finite) set W of such sets, let w = A{% | ¢ € w}, and
W £ \/{w | w € W}. Furthermore, let X,, 2 {w' | w < w'}. An important step is
to prove

(%) F (- X X,)

Since F (X1 A Xh2) = X (Y1 A1ba)), we can infer H (A{X ¥} — X A{¥i}).
Therefore, F (& = X A{—¢ | - X g € w}). Since U is the set of all finitely maximal
consistent sets, - U can be proven by propositional reasoning: for each ¢ and p,
it is valid that ¢ F ((¢ Ap) V (¢ A —=p). Since U is the disjunction of all possible
conjunction of positive and negative literals from P, it is derivable from this formula.
Therefore, - (i — X U7). Together, this gives - (@0 — X (U A A{~q | ~ X q € w})).
Consequently, - (& — X \V{aAA{~¢| " Xqgew}|ueU}). Ifw 2uU{-q|
~X ¢ € w} is inconsistent, then F (w' — L1). If w' is consistent, then w < w'
according to the definition of Z(<), i.e., w' € X,,. Therefore, - (W — X \/{w' |
w' € Xy}), which proves (x).

Since there are only finitely many extended sub-formulas, the universe U is finite.
Let W £ {wq, w1, ..., w,} be the set {w' € U | wg < w'}. From (%), it follows that F
(V{w|weW}—= V{X X, |weW}). Furthermore, I (\V/{X X} = %X V{X,}).
Since {X,, | w € W} C W, it holds that F (\/{X,, | w € W} — W). Therefore,

(+%) W - X W)

Assume that wo f£ F" 4 and show that F" ¢ ¢ wq. From the assumption, w F 4 for
all w € W. As above, the induction hypothesis implies that ¢ ¢ w for all w € W,
i.e., ~1p € w. Consequently, (i — —)) for all w € W, which implies - (W — —)).
Together with (x%) we have - (W — (—~¢)AX W)). Thus, by (Ind), - (W — G —¢)).
Since wy € W, it holds that + (wy — W). Therefore, I (W — = F). Since wy is
consistent, F 1) ¢ wp. 2

MODEL CHECKING 1431

6.10. LEMMA. ((N), (K), (Rec), (Ind)) is complete: if = ¢ then | .

PRroOOF: The theorem follows from Lemma 6.9 similar as Theorem 6.5 follows from
Lemma 6.3 for multimodal logic. 2

This completeness proof can easily be extended to CTL [Emerson and Halpern
1985]. The following axiom system (in addition to propositional logic) is sound and
complete:

(N) g AXq

(K) FAX(p—q > (AXp—> AXg)
(RecEU") FEX(@VaAE@U @) > EqU g)
(RecAU") F(AX(@VaAA@U ¢) = Al U g))
(IndEU") (EX(g2Vai Ap) = p)F (B(q1 U g2) = p)
(IndAU") (AX(g2VaiAp) = p)F (Al U g2) = p)

For LTL, proving completeness for natural models is more intricate, since we
have to construct a natural model from the canonical model. The axiom system
for the future fragment uses suitable versions of (N), (K), (Rec), (Ind) and
(U). For LTL with past operators, additional axioms are necessary which describe
the relation between U and U™. Several elaborate proofs can be found in the
literature [Prior 1957, Gabbay et al. 1980, Burgess 1984, Lichtenstein et al. 1985,
Kroger 1987].

A sound and complete proof system for qTL was described in [Kesten and Pnueli
1995]. We just briefly indicate how the above axioms can be extended for yTL:

(Recv) F (vq ¢ = ©{q:=vq ¢})
(Indv) (p—= p{g:=p}) F (p—vq)

An equivalent formulation which is based on the least fixpoint operator is

(Recp) F (p{g:= pg v} = pg)
(Indp) (p{g:=p} = p)F (ug ¢ = p)

All recursion and induction axioms above can be obtained as special cases of
these very general axioms. For their soundness, we refer to the Knaster-Tarski
fixpoint properties in Corollary 3.9. The completeness proof can be adapted to
show completeness for a certain subclass of positive pTL formulas, the aconjunc-
tive ones [Kozen 1983]. This restriction enforces that if vr 11 and vs 12 are sub-
formulas of vq v each containing an occurrence of the same variable g, then no two
occurrences of variables r and s are conjunctively related.

The problem of completeness of these axioms for all pTL formulas was solved
in [Walukiewicz 1995]. It can be shown that for any formula there exists an equiv-
alent aconjunctive formula. Thereby it suffices to derive this aconjunctive formula
from the axioms in order to prove any given formula.

In these proofs, there is a pattern which will frequently reappear in subsequent
sections. An invariance is a negative occurrence of a least fixpoint operator, or a

1432 E. M. CLARKE AND H. SCHLINGLOFF

positive occurrence of a greatest fixpoint operator (e.g., G, W, v). Dually, an
eventuality (F”, U+, i etc.) is a positive occurrence of a least fixpoint operator,
or a negative occurrences of greatest fixpoint operator. In the completeness proof,
invariances are unfolded via the recursion axiom, whereas eventualities are fulfilled
using the recursion axiom.

7. Decision Procedures

In this section we derive decision procedures for some of the logics introduced above.
As shown by Biichi and Rabin [Biichi 1962, Rabin 1969], monadic second order
logic on natural and tree models is decidable. Therefore, all logics which have a
validity-preserving standard translation into MSOL or SnS (second order logic of
n successors) are decidable. However, this proof does not yield efficient decision
algorithms. In this section, we will develop such algorithms from the completeness
proofs of the previous section. Given a set of assumptions ® and a formula ¢, we
want to decide whether ® ¢ or not. By completeness, ® ¢ iff & |- ¢. Even
though multimodal logic is complete, for arbitrary sets ¢ of assumptions and a
given formula ¢ it is not decidable whether ® |- ¢. Therefore, we restrict attention
to finite sets of assumptions. Hence we need an algorithm which, given a formula ¢
and a finite set of assumptions ®, decides whether there is a model which globally
validates ® such that ¢ is satisfied in the initial point.

If such a model exists, then often the size of the canonical model for & and ¢
can be bounded by a function of the length of the formulas $ and o (“finite model
property”). Therefore, many propositional modal and temporal logics are decidable:
it is sufficient to check all models up to a certain size whether they are appropriate.
However, this is not practical. In this section, we show how to construct a model
effectively.

There are two main appraches. “Global” algorithms start with the largest possible
model and shrink it to an appropriate size. “Local” algorithms start with a minimal
model which is extended until it is a model for the formula. For technical reasons,
global algorithms seem to be more adequate for the branching time approach, and
local algorithms seem to be better suited for linear temporal logics.

7.1. Deciding Branching Time Logics

To decide whether a given multimodal formula ¢ is satisfiable with assumptions
®, we try in a systematic way to construct the canonical model for ® || ¢. In
the universe of this model, points are maximal consistent sets of formulas. Since we
assume that the set ® of assumptions is finite, it is sufficient to consider maximality
with respect to all sub-formulas of & and ¢. In the following, we assume that ¢ and
® are given and write SF for the (finite) set of all of these sub-formulas. We use
subsets of SF to represent maximal sets of sub-formulas. That is, a set w C SF
represents the maximal set {¢ | ¥ € w}U{-¢ | ¥ ¢ w}. A set w C SF of

MODEL CHECKING 1433

subformulas is called propositionally consistent, if

e | £w, and

o if (Y1 = 1)y) € SF, then (1 — 1») € w iff ¢); € w implies ¢» € w.
That is, (¢1 — ¥2) € w iff ¢ ¢ w or 12 € w. Expanding the definitions it can be
shown that

o if)€ SF, then) € wiff ¢ ¢ w,

o if (Y1 Apa) € SF, then (¢4 Atr) € w iff ¢ € w and ¥y € w, and

o if (11 Vb)) € SF, then (91 Vbs) € w iff 1)1 € w or 12 € w.
Any propositionally consistent set is “consistent for propositional logic”: if we con-
sistently replace any modal formula in w by a new proposition, then the resulting
set of formulas is satisfiable in propositional logic. A satisfying interpretation is
given by Z(p) £ true iff p € w.

To construct the canonical model of a consistent formula, let the universe U
initially be the set of propositionally consistent sets of sub-formulas which contain
all assumptions. That is, U 2 {w C SF | ® C w}. The obvious choice for Z(p) then
is {w | p € w}. The initial interpretation of any (R) operator is the universal relation
U x U. The decision procedure iteratively deletes ‘bad arcs’ and ‘bad points’ until
stabilization is reached. Bad arcs are pairs (wg,w;) € Z(R) such that wo contains
[R] 4 but it is not the case that ¢ € w;. More precisely, an arc (wg,w;) is bad if for
some sub-formula (R) ¢ it holds that (R) ¢ ¢ wo and ¢ € w. Bad points wo contain
a formula (R) 1), but there does not (or no longer) exist a tuple (wo,w1) € Z(R)
with ¢ € w;. If upon termination there is a point w which was not deleted such
that ¢ € w, it returns “satisfiable”, else it returns “unsatisfiable”.

7.1. LEMMA. The modal logic decision procedure is sound: ¢ is satisfiable in some
model which universally validates ® iff the procedure returns “satisfiable”.

ProOF: For one direction, let M = (U,Z,wq) be the result of the above deletion
procedure. That is, assume that M does not contain a bad arc or bad point, and that
wg € U is some point with ¢ € wy. We show that (U,Z) E ® and (U, Z,wo) = ¢.
Similar to the truth Lemma 6.3, for every w € U and every ¢ € SF' it holds that
(v € w) iff (U,Z,w) . This is shown by induction on the structure of 1): for
atomic propositions and boolean combinations of formulas the statement is just a
consequence of the respective definitions. For modal subformulas, it follows from
the deletion rules in the decision procedure: if [R] ¢ € w, then for all w' € U such
that (w,w') € Z(R) it must be the case that ¢ € w'. This holds since M does
not contain any bad arcs. By the induction hypothesis, w' = 4, and therefore
w = [R] 9. If (R)4¢ € w, then there is some w’ € U such that (w,w') € Z(R) and
1) € w'. This holds since M does not contain any bad points. As above, it follows
that w | (R) 1. Thus, the assumption ¢ € wq implies that wy | . Moreover,
since every w € U contains & we have shown that ¢ is satisfiable in a model which
globally validates ®.

For the other direction, assume that for some (finite or infinite) model M =
(U,Z,wp) it holds that wo = ¢, and w | ¥ for all w € U. We have to show that

1434 E. M. CLARKE AND H. SCHLINGLOFF

the above procedure terminates successfully. For any w € U, let w= £ {¢) € SF |
w =1}, Since SF is finite, there are only finitely many such w=. Let the filtration
of M be M= £ (U=,I=,w§), where

e U=2 {w|w = u= for some u € U},

o (wy,ws) € I=(R) iff there are uy,us € U such that w; = uF and ws = u5 and

(ulau2) € I(R),

e w € I=(p) iff p € w, and

o wf = {1 € SF | wy = v}
Clearly, M= is a submodel of the initial model of our decision algorithm. Moreover,
no point or arc of M= is ever removed by the decision procedure. Therefore, the
algorithm terminates with a nonempty result. Since wg |= ¢, it holds that ¢ € w§ .2

Since the decision algorithm iterates over all of the points and sub-formulas, there
are two ways to implement it. First, we can implement it by a search of all points
using nested iteration for all sub-formulas of this point. The second technique is to
use a bottom up search of all sub-formulas, where we check all points and arcs to see
whether they are ‘bad’ with respect to this formula. In both cases, it is important
to repeat the search after some deletions have taken place, until stabilization is
reached. A pseudo-code description is given in Fig. 12. Recall that R(w) denotes
the set of successors of point w with respect to relation R. Furthermore, for any set
of points U and formula %, let Uy denote {w € U | ¥ € w}.

Depending on the data structures used for the representation of sets, it may
not be necessary to implement set operations by a traversal of all elements of the
set. For example, all set operations which are used in the comment lines of the
pseudo-code can be implemented directly with a BDD representation for U and R
as described in Section 10.

In a concrete implementation of this algorithm, there is a tradeoff between com-
putation time and space: for any sub-formula ¢ £ (1) = v») and any point w,
it can be determined whether ¢y € w by deciding whether ¢ ¢ w or 2 € w.
Hence, it is not necessary to represent a propositionally consistent set by the set of
sub-formulas it consists of; boolean combinations of sub-formulas can be omitted.
A point then is represented by

e the set of sub-formulas which are atomic propositions, and

e the set of sub-formulas which are of the kind (R) 9.

If we use this representation, then we may have to calculate the value of boolean
combinations of formulas from their constituent parts. This value is needed in order
to determine whether the representation of a point is propositionally consistent with
the assumptions.

We now show how to extend this algorithm to transitive closure operators. The
recursion axiom for the F -operator can be written as follows: (cf. page 1428):
(Rec) F(=Fqg—-qAX-F q)
This axiom indicates that if F'1 ¢ wp, then ¢ ¢ wy and for all w; such that
wo < wp it should hold that F*¢ ¢ wy. Thus, in the model all points for which

MODEL CHECKING 1435

procedure ML_sat (Formula ¢, Formulaset) =
/x Input ® and @, determine if ¢ satisfiable with global assumptions ® x/
U={wCSF|®Cw, L¢uw}
/* delete propositionally inconsistent points */
for all o) = (1)1 — 1)) € SF do
[* U:=UN(Uy \Uy,) UUy NUy,) U Uy, \Uy \Uy,)) */
for all w € U do
if(YewAprewAY gw)V () gwA (Y1 ¢wV s €w))
then U :=U \ {w};
R:=U xU;
repeat until stabilization
for all ¢ = (R)y; € SF do
/* delete bad arcs x/
/* R:=RN((Uy xU)UU x (U\Uy,))) =/
for all (wo,w:) € R do
if wo ¢ UVu ¢ UV(¢¢’LUO Ay E'LU1)
then R := R\ {(wo,w1)};
/* delete bad points x/
[* U:=U\Uyp) UUNn{w]| (R(w) NUy,) #{}}) =/
for all w € U do
if (Y € wAVw' € R(w) (41 ¢ w')) then U := U \ {w};
iU, = {}
then print(yp, “is not satisfiable with assumptions”, ®)
else print(yp, “and the assumptions”, ®, “are satifiable in”, U,)

Figure 12: Modal logic decision algorithm

F'¢ ¢ wo and ¢ € wp have to be deleted. Similarly, ‘bad arcs’ (wg,w;) are those
for which F" ¢ ¢ wo and F" ¢ € w;.

In modal logic, a ‘bad point’ was defined to be one which contains (R) v, but no
R-successor contains . For transitive closure operators, however, it is not sufficient
to delete all points wq for which F" ¢ € wo, ¢ ¢ wo and no successor contains F 1.
There might be a closed loop of points all of which contain F" ¢, but no point
containing 1) is reachable from the loop. A point is bad, if it contains F" 1), but
does not fulfill this eventuality, i.e., no reachable point w, contains . To check
this condition, we need another iteration: for each sub-formula of the form F" 1)
we iteratively mark all points which can reach a point containing . We initially
mark all points which contain . We then continue to mark all points which have
a marked successor. After stabilization all formulas F* ¢ in unmarked points are
unsatisfied and the respective points can be deleted. The algorithm, which is an

1436 E. M. CLARKE AND H. SCHLINGLOFF

for all ¢y = F ¢, € SF do

/* delete bad ‘arcs’ x/

U:U\{w| ’(ﬁ¢ﬂ)0/\¢1 EU)()};

R:= R\{(U)o,’wl) |] ¢ wo AP € ’11)1};

/* mark all points which can reach ¢y */

New = {UJO | Jw, € U : ('LU(),'wl) €ERANY; € wl};

Marked := New;

repeat
New:= {wq | 3wy € New: (wo,w1) € R}\ Marked,;
Marked := Marked U New;

until New={};

/* delete bad points x/
U:=U\{w|¢1 € wAw¢ Marked};

Figure 13: marking algorithm for transitive closure

extension of the algorithm in Figure 12, is given in Figure 13. For a correctness
proof and an extension to CTL, see [Emerson and Sistla 1984, Emerson 1990]

7.2. Satisfiability Algorithms for Natural Models

The branching time decision procedures described in the previous subsection con-
struct a “most general” model for any satisfiable formula. For any sub-formula, all
propositionally consistent sets are traversed. The number of propositionally consis-
tent sets of sub-formulas is exponential in the length of the formula; therefore, with
an explicit representation of sets these algorithms are limited to “small” formulas.

Natural models for linear time logics are sequences of points. Each point deter-
mines a propositionally consistent set of sub-formulas, namely the set of those sub-
formulas which are valid in this point. Often, the number of different propositionally
consistent sets determined by a specific linear-time model is small, compared to the
number of all propositionally consistent sets. Thus, in the decision procedure it can
be more appropriate to build a model incrementally:

e Start with some initial point, and

e iteratively choose the next point for the constructed sequence.
In this way, only those propositionally consistent sets have to be stored which actu-
ally appear in the model. Of course, in the worst case all propositionally consistent
sets will be traversed; however, we can expect a better average-case behavior.

This procedure involves a nondeterministic choice. Therefore, it is implemented
using backtracking search. Similar to the presentation in the previous subsection,
we first give an algorithm for modal logic before considering operators which involve
recursion. Since we are aiming at natural models, we use deterministic monomodal

MODEL CHECKING 1437

logic, that is, modal logic with a single accessibility relation R for which axiom U
is required (cf. page 1423).

We want to decide whether a formula ¢ is satisfiable in a natural model glob-
ally validating the assumptions ®. We start with the set W of all propositionally
consistent extensions of ® U {¢}. That is, w € W iff

* pEw,

«dCuw,

o | ¢w,and

e for all sub-formulas v = (¢1 —) it holds that ¢ € w iff ¢; € w implies

P € w.
We choose some wy € W and try to construct a model with wq as initial point.
At level ¢ in the construction, we are given a propositionally consistent set w;. If it
does not contain any formula (R)), we are finished. In this case, we have found a
finite model of length ¢ with final point w;. Otherwise, we construct the set

wi & {y | (R)y € w} U{ |~ (R)¢ €wi}UD

We refer to {¢p | (R)¢ € w;} as the positive future obligations and to {—¢ |
—(R)v € w;} as the negative future obligations of w;. Thus, wF is the set of all
future obligations of w; (with respect to R), plus the global assumptions. We then
build the set S of all propositionally consistent extensions of wf. Since there are only
finitely many subformulas of (é A), the set S is finite. If wZR is not propositionally
consistent, then S = {}. In this case, we backtrack to level i — 1 (or report failure,
if 4 = 0). Otherwise, we choose some w; 1 € S as successor of w; and continue ad
infinitum. If we hit upon a point which is already contained in the constructed sub-
model wy...w;, then the infinite cyclic model wyg...w; (Wiy1...w;)* initially satisfies ¢
and globally satisfies ®. Since there are only finitely many maximal propositionally
consistent sets, the construction must terminate. A pseudocode description of this
algorithm is given in Figure 14.

In this algorithm, there is some redundant calculation.

e Firstly, whenever we backtrack from a point, there cannot be a successful con-
tinuation from this point. Therefore, we can add all points which are popped
from the stack to a list M. If procedure depth_first_search is called with an
argument which is contained in M, it can backtrack immediately.

e Secondly, we already noted that it is not necessary to represent a propositionally
consistent set by an enumeration of all sub-formulas it consists of. It is sufficient
to mark for every proposition variable and for every sub-formula starting with
an (R)-operator whether they are contained in the maximal consistent set.

¢ Thirdly, in the calculation of the set S of possible successors of a point, it is
sufficient to consider propositionally consistent sets which are subsets of (pos U
neg U®). That is, for sub-formulas 7 of ¢ which are neither future obligations of
w nor sub-formulas of global assumptions from &, it is not necessary to fix their
value in the successor w'. Both possible extensions, where ¢ € w' or ¢ ¢ w', are
propositionally consistent and will lead to the same result. This improvement

1438 E. M. CLARKE AND H. SCHLINGLOFF

procedure ML_sat_lin (Formula ¢, Formulaset &) =
W :={w CSF |y € w,® C w,w propositionally consistent };
Stack = {};
for all w € W do depth first_search(w);
print(yp, “is unsatisfiable with assumptions”, ®);

procedure depth first_search (w) =
if w € Stack then print(yp, @, “satisfiable by”, Stack); exit;
push(w, Stack);
posi= () € SF | (R)w € w}; neg:= {i) € SF | (R)o ¢ w}:
if pos= {} then print(p, ®, “satisfiable by”, Stack); exit;
S:={w C SF | posC w,wN neg= {},® C w,w prop. consistent };
for all w' € S do depth first_search(w');
pop(Stack);

Figure 14: Modal logic decision algorithm for linear models

can be implemented for example by using a three-valued characteristic function
for sub-formulas and propositionally consistent sets (contained, not contained,
don’t care) in the representation of points.

In Figure 15 we give a set of tableau rules for monomodal logic on deterministic
models. The tableau rules can be seen as an implicit formulation of the algorithm
in Figure 14, where the above improvements are included by definition. Similar
tableau rules for modal logics can be found in [Fitting 1983] and for temporal
logics in [Wolper 1985].

T, (1 — 42) T, =(1 = 42)

(=) (=—)

Fa _'1/)1 Fa ¢2 F: 'l:[}la _‘¢2

F, y 1 F,J_ F,—|L
() 2 (L) M=

L, (R) 1,0y (R) 00, 7 (R) Y1, e, 7 (R) Y r
(R) 1 1 (IR) =
‘1’;801;---;90n,_‘¢1;---;_‘¢m

Figure 15: Tableau rules for monomodal logic on deterministic models

In these rules, I' denotes any set of formulas, and & is the set of global assump-
tions. The double line in rules ((R)) and ([R]) indicates a transition from one point
in the constructed model to the next, and the star indicates that a branch is closed.
Each tableau rule allows to derive zero, one or two sets of formulas from any set of
formulas. Additional regulations are:

MODEL CHECKING 1439

e Rule (—) can only be applied if ¢2 # L.

e Rules ({R)) and ([R]) can only be applied if no other rule is applicable.
e Rule ((R)) can only be applied if no other (R) ¢ or = (R) is in T.

e Rule ([R]) can only be applied if no (R) ¢ is in T.

~

A tableau is a finite tree of sets of formulas such that

e The root of the tableau is ® U {¢}, and
e The children of each node are constructed according to some tableau rule.

A leaf is called closed, if it consists of the symbol *. It is called open, if it consists
of a subset of formulas of some other node on the path from the root to this leaf.
(In particular, if rule ({R)) regenerates the root, the new leaf is open. Also, any
empty node constructed by rule ([R]) is open). A tableau is completed, if any leaf
is closed or open. A completed tableau is successful, if it contains an open leaf.

There is a strong connection between the tableau method and the local satis-
fiability algorithm sketched above. The propositional tableau rules systematically
generate all necessary propositionally maximal consistent extensions of a given set
of formulas, and the modal rules fix the structure of the accessibility relation(s) in
the generated model graph.

For any given root, there are several different tableaus, since we did not specify
any order in which the rules have to be applied. Nevertheless all these tableaus are
equivalent: if there is some successful tableau for ¢ and ®, then every completed
tableau for it is successful.

7.2. THEOREM. ¢ is satisfiable with assumptions ® iff ® U {p} has a successful
tableau.

ProoOF: For one direction, assume that there is some natural model M £
((wo, w1, wa,...),Z,wo), where wy = ¢ and w; = @ for every ¢ > 0, and show
that there is a completed tableau for ¢ and ® with an open leaf. Equivalently,
assume that any completed tableau for ¢ and ® is given, and show that it contains
an open leaf. We construct a sequence of tableau nodes n;, and associate with any
n; a point w(n;) in the model. As an invariant of this construction, we show that
for all formulas ¢ € n; it holds that w(n;) |= 4.

Initially ng is the root of the tableau, with w(ng) £ wq. Since wy = ¢ and
wo = ®, the invariant is satisfied. Given any tableau node n; with w(n;) = w;, no
closing rules can be applicable, because this would contradict the invariant. Assume
the child n;4; of n; is constructed by rule (= —) or (T). Then w(ni1) £ w;, and
the invariant is preserved. If two children of n; are constructed by rule (—), then any
one of them is chosen which preserves the invariant, and again w(n;1) = w;. If n;
has a child obtained by rule ({(R)), then w(niy1) £ w;;1. The specific formulation
of the rule guarantees that the invariant is preserved. Since the tableau is finite,
and we can never apply one of the closing rules, we must hit an open leaf sooner or
later.

1440 E. M. CLARKE AND H. SCHLINGLOFF

For the other direction, we have to show that from any completed tableau with
open leafs we can construct a model. The construction is similar to above. We
consider the unfolding of the tableau. This is the tree arising from the repeated
substitution of any open leaf with the subtableau rooted at the node subsuming
this open leaf. In particular, an empty node generated by rule ([R]) can be replaced
with any node on the path from the root to this node. If the tableau contains open
leaves, then the unfolding contains infinite paths. In the unfolding, call any node
whose child is constructed by rule ((R)) or ([R]) a pre-state. It can be shown that
the sequence of pre-states of any infinite path from the root constitutes an infinite
model. 2

As an example for the tableau construction, consider the semaphore from
page 1426. A linear time modelling of the transitions is given by

®2 {(on—=r A(R)-on), (mon—=r A(R)-onVs A(R)on), —(rAs)}.

Here, r and s denote the semaphore-operations “reset” and “set”, respectively. We
prove that after a reset the semaphore can be set only once:

¢ £ (= [R](s = [R](s —» 1))

To show that ® |- ¢, we construct the tableau with root I' £ ® U {—¢} and show
that it is closed. The tableau is given in Figure 16.

In this tableau, we omitted boolean decompositions. All leaves are closed because
they contain both r and s. This is a contradiction to the assumption —(r A s)
expressing that only one action is performed at a time.

Tableaus for LTL

We now extend these methods to linear time temporal logic. For simplicity, we
restrict attention to the operators X and F'. The algorithms are similar to the
modal logic case described above. To decide whether a formula ¢ is satisfiable
in a natural model, we apply the same depth-first search algorithm as sketched
in Figure 14, where X replaces (R), and extended sub-formulas (ESF') are used
instead of subformulas (SF). (Recall that both ¢ and X F" ¢ are extended sub-
formulas of F").)

There are two further modifications. Firstly, assume we are given a sub-formula
F" 4 and a node w such that one of the following holds.

e F¢ycwandt ¢ wand XF ¢ ¢ w, or

eF¢y¢w andy € wor XF ¢ € w.
In this case, we can discard node w. Even though it may be propositionally consis-
tent, it does not respect the recursion axiom

F FyoypVXFy.

Thus, this node cannot appear as a point in the model.

®, r, o1 (where p; £ (Rfs A(R)s))

on, r, {R)-on, ¢ -on, r, (R)-on, ¢; —-om, s, (R)on, r, ¢1
®, —on, s, (R)s ®, —on, s, (R)s *
T, s, —om, s,{(R)s,(R)on
* ®, s, on

s,on, T, (R) —on

*

Figure 16: Tableau for ® and (r — [R]s — [R|s — 1))).

DONIMDHEHD THAON

i)

1442 E. M. CLARKE AND H. SCHLINGLOFF

Secondly, when the depth-first-search finds a node w which is already on the
stack, it would be preliminary to report a success. Consider the set of nodes w £
wWo, W1, ..., Wn, which are on the path from w to w. It could be the case that there
is some sub-formula F" 1), such that each node contains both F" ¢ and X F" 1, but
none of them contains . That is, the eventuality ¢ is required but not fulfilled in
Wo, ..., Wy. The fulfillment of F* ¢ is “postponed forever” from each w; to the next
in a cyclic manner.

However, we cannot discard wg, w1, ..., w,, because they might contribute to a
satisfying model. Consider the following situation:

ws W4
p q

We assume that all nodes in this picture contain F" p and F q. The only node con-
taining p is ws, and the only node containing q is w4. When the backtracking search
encounters wy as child of ws, it finds that in the loop wi,ws,ws the proposition q
is required but not fulfilled. Thus it backtracks to we and finds w4 as second child.
This time, in the loop wo, w1, w2, w4 the proposition p is required but not fulfilled.
However, both p and q are satisfied in the model (wq, w1, w2, w3, w1, w2, ws)*.
Thus, when the depth-first-search finds a backward arc, it has to search the
strongly connected component of nodes of the current node. A strongly connected
component (SCC) is a set W of points such that for all wy,ws € W, if w; # wa,
then there is a path from w; to ws and back. An SCC W is called terminal, if for
all w € W, w' ¢ W, it is not the case that w < w'. It is called self-fulfilling, if
all required formulas are fulfilled, i.e., if for any w € W and (¢ U+cp2) € w there
exists a w' € W such that ¢ € w'. For the decision algorithm, the depth-first-
search graph has to be partitioned into strongly connected components. The given
formula is satisfiable iff a self-fulfilling SCC is reachable from some initial node.

We postpone the algorithmic formulation of this partitioning to the next section,
where the same algorithm is given in the context of model checking. Instead, we
sketch the necessary modifications in the tableau construction. As additional rules
to those of Figure 15, we add:

MODEL CHECKING 1443

. LF 4 . T,-F 4
(F) . (-F) -
Fa'lp F7XF'¢ F7_'¢7_'XF¢

To deal with unfulfilled eventuality formulas, a backward loop can only be re-
garded as open, if for any F" ¢ which occurs in any w; in the loop, there is a w; in
the loop such that ¢ € w; (loop condition). If the loop condition is not met, the
unfolding of the tableau has to continue until all nodes of the SCC are contained
in the loop. In this case, the respective branches are closed.

As an example for the loop condition, we show transitivity of <:
F(FFp—Fp)

The root of the tableau is marked with the negation of this formula, i.e. with F' F p

and - F p.

FFp -Fp
F'p, -Fp XFFp -Fp

* XFFp, -p, " XFp
FFp -Fp

*3k

The leaf marked (*) closes because it is contradictory. The leaf (xx) closes because
it is subsumed by the root above, and the SCC to which it belongs contains the
unfulfilled eventuality F* F p.

There is a close connection between tableaus for temporal logics and w-automata.
The pre-states in the tableau (i.e., nodes immediately above a double line) can
be seen as states of a generalized Biichi-automaton. The set of open leafs are
the accepting states, and the recurring states are determined as follows: for any
sub-formula ¢ £ F ¢ it must hold that ¢ is infinitely often not contained in
an accepting run, or % is contained infinitely often. This can be formulated
as generalized Biichi-acceptance condition on the states [Clarke, Grumberg and
Hamaguchi 1997]. The formula then is satisfiable iff the language of the corre-
sponding automaton is nonempty, and it is valid iff this language is £ (the set of
all finite and infinite strings over X). Therefore, the decision problem for LTL
can be regarded as an instance of the language problem of generalized Biichi
automata [Wolper 1985, Emerson 1985, Vardi and Wolper 1986, Kurshan 1994].
In [Vardi 1995] other embeddings of tableau-based satisfiability procedures for tem-
poral logics into decision algorithms for w-automata, based on alternating automata,
are described.

8. Basic Model Checking Algorithms

In this section, we will show how the most commonly used model checking proce-
dures can be obtained from the above decision procedures.

1444 E. M. CLARKE AND H. SCHLINGLOFF

Given a model M and a formula ¢, the model checking problem is to decide
whether M |= ¢. In principle, this can be done by encoding M as a set of assump-
tions (“premisses” or “program axioms”) ®, and deciding whether ® + ¢. However,
some experiments will quickly convince the reader that a naive approach of doing
so is doomed to failure. Usually, the program axioms all have a very special form,
such as

(state_i — (X succ_il V---V X succ_in))
in a linear time modelling, or
(state_i — ({a1) succ_il A--- A {an) succ_in))

in a branching time approach. The decision procedure in general can not take
advantage of this special form of the assumptions and will in every step break
down all assumptions to its basic propositional components. This results in a very
inefficient behavior; usually only very small systems can be verified and debugged
that way.

Therefore, model checking algorithms avoid the encoding of the models as a set of
program axioms; they use the models directly instead. Model checking determines
whether a given specification formula is satisfied in a given Kripke-model, i.e.,
whether a tree or natural model satisfying the formula can be generated from it.

There are two variants of this task, depending on whether the initial or universal
definition of satisfaction of a formula in a model is used. In the usual definition, a
Kripke-model M £ (U, T, wq) is given, which consists of universe U, accessibility
relation(s) defined by Z, and current point wg € U, and we have to check whether
the formula ¢ is satisfied: (U,Z,wo) = . In the universal definition, we are given
a frame F £ (U,7) consisting of universe and interpretation, and want to know
whether the formula is satisfied in all models based on this frame: (U,Z) | ¢ iff
for all wg € U it holds that (U, Z,wq) = . Equivalently, we want to know whether
@7 = U, where ¥ £ {w € U | w |= ¢} is the set of points satisfying ¢.

Of course, any algorithm which calculates ¢” can also be used to decide whether
(U,Z,wo) | ¢ holds: wy | ¢ iff wy € ¢”. Vice versa, if we have an efficient
algorithm to decide whether wg = ¢, we can calculate ¢’ by an iteration on all
states.

The model checking problem has two parameters: model M and formula ¢. Algo-
rithms which iterate on the structure of ¢ and in each step traverse the whole of M
are sometimes called global. Algorithms which iteratively extend the checked part
of M and in each step determine the truth of each sub-formula of ¢ are sometimes
called local. Although the theoretical worst-time complexity is not influenced by
this choice, the average case behavior may differ significantly.

In principle, the three axes (branching/linear, universal/initial, global/local) are
independent. In practice, however, for branching time logics mostly global algo-
rithms for universal validity are used, whereas for linear time logics local algorithms
for initial validity have been suggested.

MODEL CHECKING 1445

8.1. Global Branching Time Model Checking

Given a Kripke frame F = (U,) and a multimodal formula ¢, the set ¥ £ {w €
U | w [¢} of points validating ¢ can be calculated by a recursive descent on the
structure of ¢:

e If p is an atomic proposition, then p* £ Z(p).
IR

o (p=9)F £ U\ U

o (R)y)” 2{weU| 3 €¢7,(w,v') € Z(R)}.

This algorithm seems to be just a trivial reformulation of the semantical definition
for the logical operators. However, there are some important observations.

e Firstly, ((R) ¢)” can be calculated from 47 in two ways: we can check for each
w € U, whether the intersection of 17 and R(w) is nonempty. Alternatively,
we can calculate |J{R™'(w') | w' € %7}, where R~'(w') £ {w | (w,w') €
Z(R)} is the inverse image of point w under the relation R. This inverse image
calculation can be accomplished by a traversal of all arcs (w,w') € Z(R): if
w' € 7, then w € ((R))7 .

e Secondly, to avoid recalculation of common subformulas, we use a table, where
for each sub-formula 1 the set ¢7 is stored. The size of ¥/* can be of the same
order of magnitude as |U|. Thus, we need an efficient data structure for large
sets of points.

e Thirdly, the overall complexity of this algorithm is linear in the number of
different sub-formulas and in the size of the model. However, even for infinite
models which are given by some symbolic description, e.g., Petri nets or Turing
machines, some model checking problems can be decidable [Andersen 1994,
Gurov, Berezin and Kapron 1996, Burkart and Esparza 1997]. In such cases,
17 can be of infinite size, and must be represented by a symbolic description
as well.

Similar to the above modal logic procedure, the CTL model checking algorithm
proceeds by marking each point with the set of sub-formulas which are valid for
this point. Suppose we have already marked the set of points satisfying v and
the points satisfying 1. To label the set of points satisfying ¢ 2 E(i, U 1)1) or
02 A(h, U 4y), we use the fixpoint unfoldings

E(1p2 U ¢1) ¢ EX(¢h1 V2 AE(2 U 4y))

A U hy) ¢ AX (11 V iho A A(h2 U 4hy))

For ¢ £ E(¢» U* 1), we label all points with ¢ which have a successor that is
labelled with v, or with 15 and also ¢. This process is repeated until stabilization
is reached. For ¢ 2 A (1), U"¢;), note that AX y < (EX T A AX x). Thus, we
label all points with ¢ which have at least one successor, and for which all successors
are labelled with 41, or with 15 and also . Again, this process must be repeated

1446 E. M. CLARKE AND H. SCHLINGLOFF

procedure CTL_check (Model (U,Z,wq), Formula ¢) =
if wy € eval(y)
then print(“yp is satisfied at wo in (U,Z)”)
else print(“y not satisfied at wg in (U,Z)”);

function eval (Formula ¢): Pointset =
case @ of
p : return Z(p);
1 :return {};
(1 = 1q) : return U\ eval(y;) U eval(y)s);
E(, U 4y) : El:= eval(yy); E2:= eval(yy); E :={};
repeat until stabilization
E:= EU{w| (succ(w)N(E1U (E2NE))) # {}};
return E;
A, U 4py) 1 El:= eval(yy); E2:=eval(yn); E = {};
repeat until stabilization
E:=EU{w|{} # succ(w) CE1IU(E2NE)};
return FE;
function succ (Point w): Pointset = return {w' | (w,w') € Z(<)};

Figure 17: naive CTL model checking algorithm

until no new points can be marked. The procedure is comparable to the marking
algorithm in Figure 13. A recursive formulation of this algorithm is given in Fig. 17.

Since the Kripke-model has a finite number of points, each repeat in the al-
gorithm stabilizes after at most |U| passes. In the worst case, each pass searches
the whole model (|U|? transitions), hence the complexity is linear in the number of
different sub-formulas, and cubic in |U].

This bound can be improved if the search is organized better. In [Clarke, Emerson
and Sistla 1986], an algorithm is given which is linear in the size of the model as
well. For the E F'-operator, the problem of marking all points for which EF+g0
holds, given the set of point satisfying ¢, is equivalent to the inverse reachability
problem: given a set of points, mark all points from which any finite path leads
into the given set. Assuming that for any two points we can decide in constant
time whether they are connected by an arc, this can be done with time complexity
quadratic in the number of points.

The algorithm given in Fig. 18 calculates the set Source of all points from which
any point in given set Target is reachable. In this algorithm, every point enters
the set Search in the while loop at most once. Moreover, all set operations can be
performed in time linear in the size of these sets, i.e., in the number of points; thus
the overall complexity is quadratic in |U| or linear in the size of the Kripke-model.

MODEL CHECKING 1447

function reach (Pointset Target): Pointset =
Source := {}; Search := Target;
while Search # {} do
Search := pred (Search) \ Source;
Source := Source U Search
enddo;
return Source;
function pred (Point w): Pointset = return {w' | (w',w) € Z(<)};

Figure 18: Inverse reachability calculation

For the E U'-operator, this idea can be refined to give an evaluation procedure
of linear complexity. The A U'-operator can be expressed by

A U 1) & =(E(—p1 U (=(1h1 Atp2)) VEGT)

Thus, we only need a procedure marking all points for which EG" © holds. This
can be done as follows:

e restrict the model to those states satisfying ¢

o find the maximal strongly connected components in the restriction

e mark all points in the original model from which a nontrivial SCC or a point

without successors can be reached by a path in the restricted model.

These operations can be accomplished with time complexity which is quadratic in
U. Thus, the overall complexity of CTL model checking is linear in the size of the
formula and in the size of the model.

Fairness Constraints

Some automated model checkers for CTL (for example, SMV [McMillan 1993] and
SVE [Dingel and Filkorn 1995]) allow to specify a set of constraints ® together with
the Kripke-model. These constraints are assumed to hold in the whole model; i.e.,
they restrict the model to those parts where they are valid. This use of constraints is
somewhat different from the assumptions in the previous sections, which were used
to constrain the set of possible models. For example, an w-automaton can be re-
garded as a Kripke-model, together with global eventuality and fairness constraints
(accepting and recurring states). Constraints can be formulated in the same lan-
guage in which the formula to be checked is specified; however, “mixed” approaches
have been suggested [Josko 1993], where e.g. the constraints are described in LTL
and the property is described in CTL.

As an example for the use of such constraints, often the path-quantifiers A and
E are restricted to fair paths. Simple fairness constraints are of form F* ¢, where 1)
is a boolean combination of propositions. For example, the condition F* T specifies
that each run must be infinite. As another example for a simple fairness constraint,

1448 E. M. CLARKE AND H. SCHLINGLOFF

we might want to restrict our attention to execution sequences in which every
component is always eventually scheduled. Streett fairness constraints are of form
(GJr F' P — G'F 12) and are useful to restrict attention to strongly fair sched-
ulers: if a component infinitely often requests a resource, it will be granted infinitely
often. Historically, different fairness constraints were discussed in [Lehmann, Pnueli
and Stavi 1981, Quielle and Sifakis 1982]. A comprehensive treatment of fairness
concepts and proofs is given in [Francez 1986].

The above algorithm can be modified to deal with such fairness constraints by
building the tableau of the LTL-assumption and checking the CTL-formula on the
product of Kripke-model and tableau. The complexity increases by a factor which
depends on the type of LTL-formulas in the assumption. For more information,
see [Emerson and Lei 1986, Kupferman and Vardi 1996, Emerson, Jutla and Sistla
1993, Clarke, Grumberg and Long 1993].

8.2. Local Linear Time Model Checking

For a given Kripke-model M = (U, Z,wp) and CTL-formula ¢, the relation M = ¢
holds iff the maximal tree generated from M at wy satisfies . For linear time logics,
M = g is interpreted by sequence-validity. That is, we want to check whether every
mazimal sequence generated from M at wy satisfies . Equivalently, we have to
decide whether — is satisfiable in some natural model generated from M. In some
sense, this is a more complex question than the one for branching time, because a
whole set of natural models has to be checked. Hence, we cannot simply mark a
point in the Kripke-model with the set of linear-time formulas which are valid for
this point: for example, F* 1 can be valid for one of the generated sequences, and
not valid for another one.

We first consider sequence-validity of modal logic with a single accessibility re-
lation R. Given a Kripke-model M = (U,Z,wy) and a modal formula ¢, we want
to determine whether there is a maximal sequence generated from M at wy which
satisfies ¢ in wg. This is done by a depth-first-search in the product of the set of
propositionally maximal consistent sets of sub-formulas and the set of points in the
model.

Formally, an atom « is any pair (w, m), where w € U is a point, and m C SF(p)
is a propositionally consistent set of sub-formulas. An atom is admissible, if w and
m agree on the interpretation of propositions. That is, if p € SF(¢p), then p € m iff
w € Z(p).

An initial atom is any admissible atom o = (wg,mg), where wp is the current
point of M, and ¢ € my. We define a relation Xp between admissible atoms:
Xg((w,m), (w',m'")) holds iff the following conditions are met:

1. (w,w'") € Z(R),

2. if (R)¢ € SF(p) and ¢ € m', then (R) ¢ € m,
3. if (R)1 € m, then ¢ € m', and

4. some (R) ¢ € m.

MODEL CHECKING 1449

The first condition reflects the fact that the steps in the generated sequence are
predetermined by the Kripke-model. The second condition is imposed by the se-
mantics of the (R)-operator. The third condition is a reformulations of the axiom
(U) and the corresponding tableau rule ({(R)) on page 1438. The fourth condition
corresponds to the tableau rule ([R]); it allows the generated sequence to be finite
when no (R) ¢ is contained in a node.

Now we can construct a forest of atoms as follows:

e initial nodes are all initial atoms

e any node « has as children all o' such that Xg(a,a’)

Since for any finite Kripke-model there are only finitely many atoms, each branch
in this forest can be made finite by appropriate backward arcs. As in the tableau
definition, a leaf is called open, if it has no (R) formulas in its first component (m);
otherwise, it is closed.

An accepting path through the resulting structure starts with any initial node
and is either infinite or ends with an open leaf. Any accepting path is a sequence
generated from the Kripke-model which satisfies the given formula -, thereby
forming a counterexample to the specification .

To implement the search for an accepting path, we perform a depth-first search
with backtracking from the set of initial atoms to all of its successors. In order to
be able to terminate loops in this search, we have to store all atoms which were
encountered previously. Though there are several possibilities to represent such a
set of atoms, the method of choice seems to be to employ a hash table. It is not
necessary to use all components of m as hash indices, since the value of propositions
is determined by w, and boolean combinations of formulas can be recovered from
their constituent parts. Therefore, it is sufficient to store only the value of (R)-
subformulas.

In general, since we are only looking for some counter-model, we can terminate
the search if a counter-model is found. Although in the worst case (if no counter-
model exists) the whole forest must be searched, it is possible to find errors very
quickly by an appropriate ordering of the depth-first search successors.

In the depth-first search, we have to remove closed atoms from the list of possible
loop points. A better way is to mark these nodes as closed while backtracking;
then the search will not recurse again if such an atom reappears. Also all other
improvements mentioned on page 1438 can be used for this algorithm.

Ezxtensions for LTL
We have seen that the local model checking algorithm for modal logic is almost
the same algorithm as the local tableau decision procedure. Similarly, the local
model checking for LTL is very close to its respective satisfiability algorithm. For
simplicity, in this subsection we restrict attention to the future fragment of LTL.
In the definition of Xg((w,m),(w',m')), we replace (R) by X and require in
addition
5.if F ¢ € SF(p) then F oy e miff p e mor XF o) € m

This requirement corresponds to the recursion axiom F F v < ¢V X F 4. As in

1450 E. M. CLARKE AND H. SCHLINGLOFF

the case of modal logic, we try to thread an accepting path through the graph of
atoms which arises from this definition. However, we can only accept those paths
in which all eventualities F" ¢ are fulfilled. Since we can not guarantee that several
eventualities are simultaneously fulfilled in some single loop, we have to calculate
the strongly connected components of the reflexive transitive closure of Xp. An SCC
W of atoms is called self-fulfilling, if for any F" 1) in some a € W there exists some
o' € W with 1 € o. Any atom which does not contain positive future obligations
X 1) is a trivial SCC, because it is a terminal node in the atom graph. Such a node
forms a self-fulfilling SCC, because the above condition (5.) guarantees that for any
F 4 € o, also 1) € a. The given formula ¢ is satisfiable in M iff there exists a
self-fulfilling SCC which is reachable from some initial atom. In this case, a natural
model for ¢ generated by M is given by any sequence of atoms from an initial
atom which ends in a terminal atom or infinitely often passes through all atoms of
a self-fulfilling SCC.

For U+—0perators, each positive occurrence (¢ Ut 19) in some a € W is an
eventuality which has to be fulfilled at some point; thus the SCC W is defined to
be self-fulfilling, if it is nontrivial and for any (1)1 U" 15) in some o € W there exists
some o € W with ¢ € &, or it is trivial and does not contain any (¢ U™ 4)5).

To construct maximal SCCs, two different algorithms have been suggested (see,
e.g. [Aho, Hopcroft and Ullman 1974]). For model checking, Tarjan’s algo-
rithm [Tarjan 1972] is particularly well-suited, since it enumerates the strong com-
ponents of a graph during the backtrack from the depth-first search. If a maximal
SCC W is found, all required and fulfilled eventualities in all nodes of W can be
collected. W is self-fulfilling if all required eventualities are fulfilled. Thus model
checking can be performed “on-the-fly” during the enumeration of the reachable
atoms of the model. An appropriate depth—first—search LTL model checking algo-
rithm is given in 19.

In this algorithm, the function children constructs for a given atom « the set
of all possible successor atoms according to the transition relation of the Kripke-
model and to the fixed point definition of the until-operator. One way to implement
this function is to represent atoms by bitstrings which contain one bit for each
proposition pe P and one bit for each sub-formula (1, U* ;) € SF(p). New atoms
are included into a hash table, which contains one bitstring for each atom. For each
entry into the hash table, the function children returns a list of pointers to the hash
table. For more information on bitstate hashing techniques and state space caching,
see [Courcoubetis, Vardi, Wolper and Yannakakis 1992, Holzmann 1995, Godefroid,
Holzmann and Pirottin 1995].

The procedure depth first_search realizes Tarjan’s algorithm and the test
whether an SCC is self-fulfilling. It recursively builds all atoms reachable from
a given atom «. When the procedure backtracks, « is the root of a maximal SCC iff
there are no atoms in the subtree below a such that « is also in the subtree of 5.
In this case, the maximal SCC containing « consists of all nodes in the subtree be-
low «, and this maximal SCC can be checked for acceptance. table is implemented
as a hash table from atoms to natural numbers. table[a] contains

MODEL CHECKING 1451

procedure LTL_check (Model M, Formula ¢) =
Nat depth_first_count := 0; /* number of recursive call x/
Atomset stack :={}; /* Stack of searched atoms x/
Natarray table; /[« Hashtable from atoms to natural numbers x/
Atomset init := {a | « is an initial atom of M and ¢};
for all o € init do depth_first_search(a);
print(“p is not satisfiable in M”);

procedure depth first_search (Atom «) =
if (table [@] = UNDEFINED) then /% a is a new atom %/
Nat dfnumber := depth_first_count; [+ save current count %/
depth_first_count := depth_first_count+1;
table[a] := dfnumber; /x initialize with current depth %/
push(stack, a);
Atomset succ := children(a);
for all (8 € succ) do
depth first_search(f);
table[a] := min(table[a], table[B]); /* B above a? x/
if (table[a] = dfnumber) then /x « is the root of an SCC %/
Formulaset required := {}, fulfilled := {};
repeat
B := pop(stack);
table[3] := MAXNAT;
required := required U {41 | (1, U 4y) € B};
fulfilled := fulfilled U {¢ | ¢ € B}
until (a = 3); [+ all elements of SCC are popped x/
if required C fulfilled /% SCC is self-fulfilling =/
then print(“p satisfiable in M”); exit;
function children (Atom (w,m)) : Atomset =
if {(, U 1) € m} = {} then return {} /*no future obligationsx/
else return {(w',m') | w < W',

(2 U 4py) € miff oy € m' or ¢y € m' and (¢, U ¢y) € m'}

Figure 19: Depth—first—search LTL model checking algorithm

¢ UNDEFINED, as long as atom « has not occurred,
¢ the depth-first-number of «, when « is first encountered,
¢ the depth—first—number of the first encountered atom belonging to the same
strongly connected component as «, after return from the recursive call, and
e MAXNAT (any value for which min(n, MAXNAT) is always n), after the max-
imal strong component containing « has been analyzed.
To check whether an SCC is self-fulfilling, during its enumeration two sets are built:

1452 E. M. CLARKE AND H. SCHLINGLOFF

required contains the union of all eventualities which are required, and fulfilled
contains the union of all eventualities which are fulfilled in the atoms of this SCC.
The SCC is self-fulfilling if required C fulfilled.

The main program calls depth first_search for all initial atoms, where for an
initial atom (wgq,mg)

1. wq is the current point of M, and

2. mg C SF(yp) is any propositionally consistent set such that ¢ € my.
If during the construction of the atom graph a maximal self-fulfilling SCC is found,
the algorithm reports success; if the whole graph is searched without success we
know that the formula is not satisfiable, and the program terminates with this
result.

This algorithm is exponential in the number of U+—formu1as, because every set
of such sub-formulas determines a propositionally consistent set. It is linear in the
size of the Kripke-model. In general, it can be shown that the problem of LTL-
model checking (including past-operators) is PSPACE-complete in the size of the
formula and NLOGSPACE in the size of the model (see [Sistla and Clarke 1986,
Lichtenstein and Pnueli 1985]). The exponential complexity in the length of the
formula usually is not very problematic, because specification formulas tend to be
rather short. The linear complexity in the size of the model is a more serious limiting
factor, since in the worst case (i.e., if the formula is unsatisfiable) all atoms have
to be traversed. Current technology limits the applicability of such algorithms to
models with approximately 10° — 108 reachable atoms. In Section 11 we will discuss
approaches which try to overcome this limit.

8.3. Model Checking for Propositional p-Calculus

Both the local and the global model checking algorithms can be easily adapted to
uTL. Global model checking for CTL unfolds the fixpoint definition of the AU"
and EU" operators. If we restrict our attention to continuous pTL-formulas (see
below), then this idea can be used to obtain a global model checking algorithm
for these formulas. Moreover, as we will discuss in Section 10, this algorithm can
be efficiently implemented using BDDs (see [Burch, Clarke, McMillan, Dill and
Hwang 1992]).
According to the Knaster-Tarski theorem proved in Section 3.2,

U,Zw) Evgp if we| {Q|QC ¢ {g:=0Q}}

U,T,w) g iff we[Q¢ {a:=0Q}CQ}

A function f : 2Y — 2V is called union-continuous, if f(U;c {z:}) = User f(2:)
for any index set I. If the functional defined by ¢ is union-continuous, then the
fixpoints can be obtained as

vqg p = limi_w(,oi("l')

MODEL CHECKING 1453

g @ = limi 0" (L)

If U is finite, then every monotonic function is union-continuous. Moreover, accord-
ing to Lemma 5.4, on finite models it is sufficient to consider the limit up to the
cardinality of the universe:

vq ¢ = limi<)y 9" (T)

g o = limi<jp o' (L)

Consequently, for finite domains model checking of positive uTL can be performed
by extending the naive global algorithm. The result is depicted in Figure 20.

function eval (Formula ¢): Pointset =
case ¢ of
p : return Z(p); /* interpretation of proposition p */
q : return v(q); /* valuation of proposition variable q */
1 :return {};
(1 = 1b2) : return U\ eval(yy) U eval(ys);
(R) 4 : return R™'(eval(y));
va(®) : H = U;
repeat until stabilization
H := eval(y{q:= H});
return H;
pg(Y) = H == {};
repeat until stabilization
H := eval(y{q:= H});
return H;

Figure 20: naive global branching time pTL model checking algorithm

Since every repeat in this algorithm can iterate up to |U| times, the complexity
is of order || - |U|4%%®) where qd(i) is the depth of nesting of fixpoint operators in
. This high complexity is due to the fact that the computation of any inner fixed
point formula has to be restarted from scratch for every new iteration of an enclosing
fixed point operator. For example, consider the CTL-formula EF (p; AEF p,).

WTL(EF (p, AEF p,)) = ugi (X q1 V (p; A pg2(X g2 V py)))-

This formula is alternation-free: in the inner fixed point formula pg2(X g2 V ps)
there is no occurrence of g;. Therefore, in the evaluation of gy, this formula has
a constant value. For such formulas, model checking can be done with linear time
complexity [Emerson et al. 1993, Cleaveland and Steffen 1993]. In contrast, consider
the uTL formula

pg1(py A pga(X g1 VX Vp,)).

1454 E. M. CLARKE AND H. SCHLINGLOFF

Here the inner formula pg2 (X ¢1 VX g2 V p,) is re-evaluated for every new iteration

of gi. That is, if ¥(q1,¢2) = (X a1 VX g2 Vpy)” and o(q1) £ (p; A pgo(a1, 42))”
we calculate pugi1¢(q1) by iterating

2L,
YO0 & |
PO 2 (0, 00 = (X LV X L Vp,),

P02 2 (0,90 = (X LVX (X LVp,) Vp,),
¢0,3 L w(9007¢0’2) = (XJ_ v X ()(J_\/)(()(L VPQ) VPQ) Vp2)7

PO £ (0 pOm) = gy (X LV X go Vpy), if pOmtt = p0m

o' 2 o(¢°) = (py Apge(X LV X g2 Vpy)) = (py AT,
,1/11,0 4 n

Pl £ (et 1) = (X (py A pge(X LV X g Vp,)) VX LVp,),
PL2 2 (et b)) = (Xt vXybl vp,),

and so on. A more sophisticated algorithm was given in [Emerson and Lei 1986].
Each sequence vqj...vq, or pgi...uq, of nested fixpoints of the same type can be
calculated by a single loop. Since 1) is monotonic, and ¢° C ¢!, we have %" C 1",
To compute a least fixed point, it is sufficient to start with any value below the
result. Therefore, 91'° can be initialized with 1)*" instead of L. Generally, when
restarting the computation of an inner fixed point of the same type, we can use
the last approximation result as a starting value. Thus, the value of this inner
fixed point can increase at most |U| times. The overall complexity of this improved
algorithm is (|¢p|-|U])2¥), where ad(¢) is the alternation depth of different fixpoint
operators in ¢.

In [Long, Browne, Clarke, Jha and Marrero 1994] the authors observe that by
storing even more intermediate values, the time complexity for evaluating fixpoint
formulas can be reduced to O(|U|L2%/2141), Tt can be shown that the complexity of
model checking pyTL is in NP N co-NP; however, no lower bound is known to date.
For more information, see [Berezin, Clarke, Jha and Marrero 1996].

For the local version, there have been a number of algorithms proposed in the lit-
erature [Winskel 1991, Cleaveland 1990, Bradfield and Stirling 1991, Stirling 1991].
We give a sketch of the tableau method from [Stirling and Walker 1991], which
illustrates the basic ideas. The algorithm explores only a (small) part of the model
by depth-first search. Each node in the tableau is marked by a sequence A, w = 1,
where w € U is a point in the model, ¢ is a sub-formula of the given formula and A
is a definition list. This is a sequence of declarations (¢; = ¥4, ..., ¢ = ¥,,), where
the proposition variables ¢; are pairwise disjoint and %); uses at most variables from
¢, -.-,gi—1- For simplicity, we use V, A, {R), [R], p and v as basic operators and
assume that negations only occur in literals. Furthermore, we assume that in the

MODEL CHECKING 1455

formula to be checked each g and v quantification binds a different proposition
variable.

Since in [Stirling and Walker 1991] the p-calculus is interpreted on branching
structures, the tableau rules given in Figure 21 are nondeterministic. Any node
marked A, w |= (11 A1)2) has two children, where one is marked A, w = 1; and the
other A, w |= 1. For a node marked A, w |= (31 V 92) there is only one child node
which is either marked A,w | ¢4 or A,w [= 9. Thus, for a given point w and
formula ¢, there are several nonequivalent completed tableaus; w |= ¢ iff some of
these tableaus is successful. A tableau is successful, if each leaf is successful. To turn
the tableau method into a concrete model checking algorithm, we have to perform
a depth-first search through all possible tableaus.

A,w = (Y1 Vha) A,w = (Y1 Aha)
(Vi) Ge{,2p) (A
Aw =1 AwEld AwE
A,w EA(R)Y (R) A,w = [R]Y
Aw' = Aw EyY - Aw, EY
A, w = pgy AwEvgy
W) ———————— v) T
Alyw =1 Alyw =1
(PVar) 4
Aw =y

Figure 21: Tableau rules for branching time yTL

The additional regulations for the tableau rules in Figure 21 are:

e Rule ((R)) can only be applied if w' € R(w).

e In rule ([R]), it must hold that R(w) = {wq, ..., wn}.

e In rule (x) and (v), A’ 2 AU {q =1}

e Rule (PVar) can only be applied if (¢ =) € A, and there is no ancestor node

which is labelled A',w |= ¢ (with the same w and).

Intuitively, to check whether pgy holds in point w, we record that ¢ must be
interpreted as a fixpoint of 1(g), and check whether v holds in w. Whenever we hit
upon the proposition variable ¢ in the further decomposition of ¥ (q), we can unfold
this occurrence to 1. However, to guarantee that the unfolding terminates, each
proposition variable may be unfolded at most once in every branch of the tableau
and every point of the model. Thus, for finite models each tableau is finite.

A tableau is maximal, if there is no leaf for which any rule is applicable. In a
maximal tableau, a leaf A, w |= 1) is called successful, if

ey =p€P and w € Z(p), or ¥ = —p and w ¢ Z(p),

o) =q€Q,q¢ A wev(g),orp=-gq¢ A w¢v(g),or

e ¥y = [R]¢' and R(w) = {} (Rule ([R]) produces no children),

1456 E. M. CLARKE AND H. SCHLINGLOFF

e) =q € Q and ¢ was included in A by rule (v).

In other words, a maximal tableau is not successful if it contains some unsuccess-
ful leaf A, w = ¢ which satisfies

ey =p€P and w ¢ Z(p), or ¢ = —p and w € Z(p),

*p=qg€Q,qg¢ A wgv(g),ory=-g qg¢ A wev(g),or

e Yy = (R)¢' and R(w) = {} (Rule ({R)) not applicable),

e) =q € Q and ¢ was included in A by rule (p).

With these definitions, soundness and completeness of the tableau decision

method is stated in the following theorem, a proof of which can be found in [Stirling
and Walker 1991].

8.1. THEOREM. w € @7 iff there exists a successful tableau with root {},w = .

More efficient local model checking algorithms for fragments of yTL can be found
in [Cleaveland and Steffen 1993, Bhat and Cleaveland 1996].

A somewhat different approach for model checking of u-calculus was suggested in
[Mader 1992]. It is based on Gauss-elimination: proving a formula in this approach
is similar to solving a system of linear inequalities.

9. Modelling of Reactive Systems

Up to now, we assumed that a system is given as a single Kripke-model. However,
real-life systems usually are composed of a number of smaller subcomponents. Even
if the target system is a single sequential machine, it is often advantageous to model
it as a set of processes running in parallel:
e usually the functionality suggests a certain decomposition into modules; se-
quentialization is not the primary issue in the design;
e certain subcomponents (e.g. hardware components) actually are independent
of the rest of the system and, therefore, conceptually parallel,
e the environment can be seen as a process running in parallel to the system;
e software-reusability and object-oriented design require modularity.

9.1. Parallel Programming Paradigms

Hence, we have to consider systems of parallel processes, that is, processes which
are executed during the same time period, and the synchronization between these
processes. We distinguish between two main paradigms of parallel systems: dis-
tributed systems, where the subcomponents are seen as spatially apart from each
other, and concurrent systems, where the subcomponents use common resources
such as processor time or memory cells.

MODEL CHECKING 1457

Message Passing vs. Shared Variables

Consequently, there are two main paradigms for synchronization between parallel
processes: via message passing (for distributed systems), and via shared variables
(for concurrent systems).

Of course, there is no clear distinction between distributed and concurrent pro-
grams. It is not possible to formalize the concept of being spatially apart, since this
is dependent on one’s own point of view: from the United States, all computers in
a local area network in Europe can be regarded as a single system. From the pro-
cessor’s viewpoint, a hard disk controller can be regarded as a remote subsystem.
On the other side, every component of a distributed system shares some resource
with some other component; if it were totally unrelated it would not make sense to
regard it as being part of one system.

Consequently, from a certain point of view, passing a message between process
A and B can be seen as process A writing into a shared variable which is read by
B. On the other side, writing a shared variable can be seen as sending to all other
processes which might use this variable the message that its value has changed.
In fact, this transition from the message passing paradigm to an implementation
via shared variables occurs in every network controller; and the transition from
the shared variables paradigm to an implementation via message passing occurs in
every distributed cache.

However, different paradigms produce different techniques; many parallel pro-
gramming languages and many verification systems support only one of these two
paradigms.

Synchronous vs. Asynchronous Systems

Another issue is the modelling of a process execution in time. In discrete processes
a computation consists of a sequence of steps, whereas in continuous systems the
value of state parameters changes gradually as time passes. Hybrid systems combine
discrete and continuous components. Usually, the model of time which is used in
verification is determined by the type of system under consideration.

For parallel systems of discrete processes, there are various ways to model their
execution. Synchronous processing is characterized by the fact that in each step, ev-
ery parallel component advances. For example, a circuit in which each gate switches
at the pulse of a global clock can be seen as a synchronous system. In contrast, in an
asynchronous execution in each step an arbitrary (nonempty) subset of all compo-
nents proceeds. For example, a set of agents working independently and synchroniz-
ing via mailboxes is a typical asynchronous system. With synchronous processing,
the transition relation of the system is the conjunction of the transition relations
of the components, with asynchronous processing it is the disjunction.

If each process can perform an “idle” step at any time (“stutter”), then syn-
chronous and asynchronous processing coincides. Both synchronous and asyn-
chronous executions can be implemented by interleaving, where in each step at
most one process is active. A typical example is a set of threads in a time-sharing
operating system on a mono-processor machine. With interleaving execution, usu-

1458 E. M. CLARKE AND H. SCHLINGLOFF

ally some fairness constraints are imposed on the scheduling to ensure that all
processes can progress.

Related to the execution mode is the mode of interaction between parallel com-
ponents. With synchronous communication, each component wishing to interact
is blocked until all partners it requires are willing to participate in the commu-
nication. The information is then broadcast to all communication partners. With
asynchronous communication each process decides whether it wants to wait at a
certain point or not; usually some kind of buffering mechanism is used for messages
which are not needed immediately.

Synchronous communication can be seen as a special case of asynchronous com-
munication where the length of each buffer queue is limited to one, and each process
decides to wait after writing into or before reading from that queue until the queue
is empty or full again, respectively.

Vice versa, a buffer can be seen as a separate process in a synchronous system
which is always willing to communicate with other processes. If the size of the
buffer is unbounded, the system is not finite state. Even if their size is bounded,
the buffers can be the biggest part of the modelling of an asynchronously commu-
nicating system.

9.2. Some Concrete Formalisms for Finite State Systems

Recall that a (labelled) transition system is a tuple (%, S, A, Sp), where
e ¥ is a nonempty finite alphabet,
¢ S is a nonempty finite set of states,
e A C S x X x Sis the transition relation, and
e Sy C S is the set of initial states.
A parallel transition system is a tuple T = (T4, ..., T,,) of transition systems, such
that S; NS; = {}, for i < j. The global transition system T associated with a
parallel transition system (T4, ...,T,) is defined by T = (%, S, A, Sp), where
oY = U Z,
e S=5%x---x8,
e So =851 X -+ X Spo, and
o ((81,.,8n),0a, (8], ..., 5,)) € Aiff for all T;
— if a € 3, then (s;,a, ;) € A;, and
—ifa ¢ %;, then s; = s}
Thus, in a parallel transition system synchronization between components is by the
common alphabet. The size of the state space of the global transition system is the
product of the sizes of all parallel components.

An elementary Petri net is a tuple N = (P, T, F, sg), where
e P is a finite set of places,

o T is a finite set of transitions (PNT = {}),

e FC(PxT)U(T x P) is the flow relation, and

e mgy C P is the initial marking of the net.

MODEL CHECKING 1459

A marking m of the net is any subset of P. By ot 2 {p | (p,t) € F} and te =
{p| (t,p) € F'} we denote the preset and the postset of transition ¢, respectively. A
transition ¢ is enabled at marking m if ¢ C m (all its input places are occupied at
m) and te N'm C et (all its output places are empty at m, or they are also input
places). Marking m/ is the result of firing transition ¢ from marking m, if ¢ is enabled
at m and m' = (m\ et) Ute. In contrast to condition-event Petri nets [Reisig 1998],
where each place can be occupied by an arbitrary number of tokens, elementary
Petri nets inherently are finite-state.

For every elementary Petri net there is an associated transition system: the al-
phabet is the set of transitions, the state set is the set of markings, the initial state
is the initial marking, and (m,t,m’) € A iff m' is the result of firing ¢ from m. The
number of states of this transition system is exponential in the number of places of
the net. Alternatively, for any elementary Petri net we can obtain a parallel tran-
sition system of the same order of magnitude: for each place p in the net there is
a transition system with two states p' and p°, denoting the fact that p is occupied
or empty, respectively. For each t € T, we let (p',t,p°) € A iff p € ot \ te and
(p°,t,p') € Aiff p € t o\ o t. Furthermore, (p',t,p') € A iff p € ot N te. The lan-
guage of the global transition system associated with this parallel transition system
is the set of firing sequences of the net. Vice versa, every parallel transition system
can be formulated as an elementary Petri net of the same order of magnitude. The
construction is straightforward.

A shared variables program is a tuple (V, D, T, sq), where

o V = (vy,...,v,) is a set of program variables,

e D =Dy x---x D,) is the state space, where each D; = {d;1, ..., dim,; } is a finite

domain for variable v;,

e T'C D x D is a transition relation, and

e 5o = (dy1,...,dn1) is the initial state.
A state of a shared variables program is a tuple (di,...,d,), where each d; € D;.
Thus the number of states in a shared variables program is the product of the size
of all domains. The transition relation T can be defined by a propositional formula
@1 with the set of atomic proposition P = {(z = y) | z,y € (VUV'ulUD,)},
where V' = {v],...,v},}. If s = (d1, ...,dp) and s' = (d, ...,d})), then (s,s') € T iff
T = o1, where Z(v;) = d; and Z(v}) = d}.

Using relational semantics, a shared variables program can be obtained for almost
all other models for concurrency. Therefore, shared variable programs are widely
used to model reactive systems.

9.3. Example Applications

A Combinatorial Game

As a first example, we describe the use of model checking in a combinatorial search.
Although this example is not very typical for real applications, it can demonstrate
the capabilities and limits of present technology. A well-known puzzle from 1870

1460 E. M. CLARKE AND H. SCHLINGLOFF

by the American Sam Loyd consists of a h x v grid in which there are (h-v) — 1
numbered tiles and one blank space. A move consists in moving any tile into the
position of the blank. The goal is to achieve a certain predetermined order on the

tiles.

L)
— o))
0IRI0

This puzzle can be described by a shared variables program as follows. For each
tile there is a program variable which notes its horizontal and vertical position.
Furthermore, there is a program variable move indicating whether the next move
will be a shift up, down, left or right of the blank space. If the move would bring it
out of the borders, nothing is changed; otherwise, its position is swapped with the
respective adjacent tile.

MODULE main
DEFINE v := 3; h := 3;
VAR move: u,d,l,r;
hpos: array 0..(h*v-1) of 1..h;
vpos: array O..(h*v-1) of 1..v;
ASSIGN
next (hpos[0]) := case
(move=1) & !(hpos[0]=1) : hpos[0] - 1;
(move=r) & !(hpos[0]=h) : hpos[0] + 1;
1: hpos[0]; esac;
next(vpos[0]) := case
(move=u) & !(vpos[0]=1) : vpos[0] - 1;
(move=d) & !(vpos[0]=v) : vpos[0] + 1;
1: vpos[0]; esac;
for all i:
next (hpos[i]) := case
(move=1) & !(hpos[0]=1) & vpos[i]=vpos[0] & hpos[i]=hpos[0]+1 |
(move=r) & !(hpos[0]=h) & vpos[:]1=vpos[0] & hpos[¢]=hpos[0]-1 : hpos[0];
1: hpos[i]; esac;
next(vpos[i]) := case
(move=u) & !(vpos[0]=1) & hpos[¢]=hpos[0] & vpos[i]=vpos[0]-1 |
(move=d) & !(vpos[0]=v) & hpos[:]1=hpos[0] & vpos[i]=vpos[0]+1 : vpos[0];
1: vpos[i]; esac;
init(vpos[Z]) := ¢ div h + 1; init(hpos[z]) := ¢ mod h + 1;
DEFINE goal := A (vpos[i] = v - (i div h) & hpos[i] =h - (i mod h))
SPEC !EF goal

Figure 22: SMV Code for Loyds Puzzle

MODEL CHECKING 1461

The SMV code corresponding to this description® is shown in Figure 22. For
h = 3 and v = 3, the internal representation of the transition relation takes about
3KB. There are 4 - (h-v)! = 1.4 - 10° states, of which 50% are reachable from any
initial state. The specification claims that a certain final state is not reachable; the
model checker contradicts this claim by showing a sequence of moves (rrddlluur-
rddlluurrddlluurrdd) which gives a solution to the puzzle. The solution is found
within a couple of minutes on a 32 MB Pentium 133.

For h = 4, v = 3, there are approximately 10° reachable states. Although the
symbolic model checker detects rather quickly that some solution must exist, for the
construction of a concrete solution sequence the state space has to be partitioned
into strongly connected components. This requires several days of CPU time and
approximately 1GB RAM on a Sparc Ultra. For model checking applications, virtual
memory is not very useful; if the representation of the reachable state space exceeds
the available main memory, then constant swapping occurs. To find a solution for
h = 4, v = 4 by exhaustive state space exploration seems to be beyond the limits of
present technology. In [Edelkamp and Reffel 1998], a combination of model checking
and heuristic search is used to automatically construct solutions to this and other
combinatorial games.

A Sequential Circuit

Our second example is from hardware verification. We consider a shift register for
interfacing a parallel data bus. The register is from the 74x95 TTL family and is
described in [Nowicki and Adam 1990]. It is used to exchange data between the
bus and a serial device. It thus acts as parallel-serial converter and vice versa. A
functional diagram of the register is given in Figure 23.

The register has a mode control input mc to choose between parallel or serial

access mode. For each mode, there is a corresponding input clock (pc and sc).
Parallel loading is performed if mc is high and a pc clock pulse arrives. In this case,
data is read from the bus into the associated flip-flops. The data appears at the Q
outputs at the pulse of the pc clock.
For serial loading, mode control should be low. Data is input serially with every
tick of the sc clock. At each pulse the state of all flip-flops is transferred one stage
to the right. After n cycles, the data is positioned at the parallel output and can
be sent to the bus by an oc command. A right shift occurs if the serial input inp is
held low. By a sequence of n right shifts, data which has been obtained in parallel
from the bus can be written serially to the out port.

The register is implemented with SR-bistables which have the following charac-
teristic function. If both inputs are low, the bistable keeps its state. The output Q
is set if input S is high, and reset if input R is high. If both S and R are high, then Q
is undefined. This can be modelled by a nondeterministic internal choice between
high and low output. The latch is triggered by a negative edge of the clock pulse.
That is, a change of output occurs only at the time instant when the clock line

8In the actual SMV code, variable array bounds or indices, e.g., vposli], are not allowed and
have to be replaced by the respective constant values vpos[1],vpos[2],...

1462 E. M. CLARKE AND H. SCHLINGLOFF

j; EEmE: wg
IR
sc — | |

R R R R
n 2 1
S Q S Q S Q S Q

oc

n
~
<

bus

Figure 23: A shift register for data bus interfacing

wn
o

= O = O
= = O Oflw
O = B

goes from high to low. If the value of the clock line is part of the state space, then
the clock value would be low in every new state. For an accurate state-based model
(e.g., of an asynchronous circuit), we would have to include timing information of
all gates. However, if the clock is only used as trigger, an event based modelling is
more adequate: the high-to-low change of the clock line is considered as an event
occurrence. In each state, this event may or may not occur. To prevent executions
in which the input or output clocks are indefinitely blocked, we require infinitely
many input and output clock ticks in every infinite run.

The model is just a representation of the circuit’s truth table, where the outputs
are a boolean function of inputs and latch states. It can be derived automatically
from any standard hardware description language; in fact, several model checkers

MODEL CHECKING 1463

MODULE main

VAR Q, bus: array 1..m of boolean; -- n SR-latches, n databits
inp, mc, pc, sc, oc: boolean; -- input lines
DEFINE out := Q[1]; ic := ((mc & pc) | ('mc & sc));
Al7] := mc & pc & bus[¢]; B[] := !'mc & Qi+ 1];

R[z] := !(A[] | B[i1); S[] := !'R[];
ASSIGN next(Q[7]) := case ic: case

'S[] & 'RLe]: QLel; --hold
S[z] & 'R[]: 1; --set
'S[] & RM]: 0; --reset
Sl & R[: {0,1}; esac; --undef
'ic: Q[Z]; esac; -- unchanged if no input
next(bus[i]) := case oc: Q[i]; l!oc: {0, 1}; esac;

FAIRNESS ic FAIRNESS oc

Figure 24: Model of shift register

support such front-end translations. Correctness of parallel and sequential input is
expressed by the following formulas, where n is the width of the data bus:

A G (mc Apc — \/ (bus[i] ¢+ A((oc = A Xbus[i]) U ic)))

i=1

A G (-mcAsc — \/(Qli] & AQli-11U" ic)))

i=2

Intuitively, these formulas assure that data which is input into the register re-
mains there until a new input occurs. If the mode control is set to parallel and
there is a tick of the parallel clock, then the data which is currently on bus ¢ will
be delivered at each tick of the output clock, until a new input occurs. If the mode
control is set to serial, and there is a tick of the serial clock, then the latches will
remain stable until the next input.

The SMV model checker can verify these formulas for a bus width of 32 bit in
less than a second. Similar formulas can be used to verify that after a sequence of
n sequential load operations, the correct data word will be put onto the bus on a
subsequent output pulse.

If the connection structure of wires within the circuit is “well-behaved”, then
automatic verification is successful even on much bigger circuits. A circuit is “well-
behaved” if there exists an ordering of all wires such that the value of a wire only
depends on the value of wires which are close in the ordering. For a formal definition
of this condition see [McMillan 1993]. A large number of circuits with hundreds of
storage places have been verified automatically in this way.

1464 E. M. CLARKE AND H. SCHLINGLOFF

A Communication Protocol
The third example is a set of communicating processes within the operating system
of a Siemens cellular phone. In this system, there are a number of basic processes
communicating with one another by priority messages. Each of the processes imple-
ments a finite state machine, which is described by a set of SDL diagrams. Basically,
a process waits in a certain state until it receives a message from some other process.
It then performs some specified operations, sends a number of messages to other
messages, and transitions to another state. Figure 25 shows part of the transition
graph of a process and the corresponding SDL diagram. The displayed part is used
to implement the following quote from the GSM international standard.
“Initially the mobile station looks for a cell which satisfies the suitability con-
straints by checking cells in descending order of received signal strength. If a suit-
able cell is found, the mobile station camps on it and performs any registration
necessary.”
A property to be verified is that the system never deadlocks:

AG'EF init

That is, no sequence of user actions can bring the phone into a state from where
it cannot be reset. Since the number of merchandised units is expected to be very
high, correctness is an important design issue. In this particular example, a number
of potential problems in the design could be identified by model checking before
the actual implementation took place [Schlingloff 1997].

In the model to be checked, there are five basic processes, plus the operating
system kernel. There are approximately 50 different types of messages which can be
sent by the processes, and each process has between 10 and 20 states. The operating
system is responsible for the scheduling of processes according to a priority scheme,
and for the storage and delivery of messages. Therefore, it has to maintain a buffer,
in which for each process all messages are kept. The size of these buffers turns
out to be the most important parameter in the verification. Basically, each buffer
slot could be filled with every message; thus a combinatorial explosion similar to
the one in our first example can occur. However, a buffer overflow almost certainly
indicates an error in the implementation; for example, if some high-priority process
keeps resending the same message, it will eventually fill up any bounded buffer. In
the modelled system, a total number of 15-20 buffer slots was sufficient; a fairness
assumption is used to select only those computations in which no buffer overflow
occurs. Moreover, the buffer contents usually follows a regular pattern, therefore the
above mentioned state explosion is avoided. In practical applications, an exponential
growth in the number of reachable states almost certainly indicates an error. For
buffers in which all messages have the same priority, the transition relation of a
bounded buffer can be defined by the transition table in Figure 26.

In the right half of this table, an empty entry means that the respective program
variable is set by the environment. An input value of nil in 7 indicates that there is
no message to be sent; in this case the next value of ¢ is determined by the sender.
If this process has put a non-nil value z into 7, then this value is appended to the
buffer, and ¢ is reset to nil. The last line indicates a buffer overflow: if a message

MODEL CHECKING 1465

Cell_Selection:
Init_State

Start_Request?

Start_Request?
Pimn:=false

Cell_Selection:
Wait_for_
Received_Levels,

Scan_Completed?
No_Cell_Found!
PowerDown_Req!

Scan_Completed?
Start_Camping!

Deactivate_Request?
Stop_Request!

Cell_Selection:
Wait_for_
Stop_Deactivate

Cell_Selection:
Wait_for_
Synchronized

Cell_Selection:

Wait_for_
Received_Levels

Start_Request Deactivate_Requ Scan_Completed
from from from
Radio_Resource Radio_Resource Power_Handler
true
PimnList := false

Stop_Request No_Cell_Found
to to
Power_Handler Radio_Resource

Start_Camping
to
Main_Module

PowerDown_Req
to
Power_Handler

Cell_Selection:
Wait_for_
Synchronized

Cell_Selection:
Init_State

Cell_Selection: Cell_Selection:

Wait_for_ Wait_for_
Received_Levels Stop_Deactivate

Figure 25: Transition graph and SDL diagram

1466 E. M. CLARKE AND H. SCHLINGLOFF

i b 0 i’ b o'
nil) nil () nil
x) nil nil () z
nil (x1,...,x,) nil (1, Tv—1) Ty
z (x1,.,m,) mil nil (T, T1, .., Ty_1) T,

nil 0 y ()

z 0 y il (z)

nil (x1,...,2,) ¥ (T1yeeer Ty)
T (X1, y) Y w<w | nil (z,T1,...,Ty)
T AT1,Tn) Y x (T1yeeey Tn)

Figure 26: Transition relation of a bounded buffer

is to be sent with the message buffer already filled, i remains stable. Thus, the
formula A G'(i # nil — X (i = nil)) can be used to determine whether a buffer
overflow can occur. If the output variable o is nil and there is a message to deliver,
it is copied into 0. When the operating system delivers a message y from o, it resets
o to nil.

The content of the buffer b is given as a sequence (z1, ..., x,) of messages, where ()
denotes the empty buffer. There are various possibilities to model such sequences.
In Figure 27 we show a modelling which uses n program variables by, ..., b,, such
that b; contains the front element of the message queue, and incoming messages
are appended into the smallest b, which is empty (contains nil as value).

next(b[j]) := case

(i=nil) & !(o=nil) : b[jl;

(i=nil) & (o=nil) : b[j+1];

'(i=nil) & !'(o=nil) : if !(b[j-1]=nil) & b[j]=nil then i
else b[j] fi;

'(i=nil) & (o=nil) : if b[jl=nil then nil
else if b[j+1]=nil then i
else b[j+1] fi fi; esac;

Figure 27: Model of bounded buffer

In this modelling, we rely on the fact that whenever b; = nil, then for all £ > j,
also by, = nil. This assumption only holds for the reachable states of a buffer which
is initially empty; there are many transitions from illegal, i.e., non reachable states
to other illegal states in this model. In an explicit representation of the transition
relation, one should try to avoid these redundant entries. Below, we discuss symbolic
representations with BDDs. With such a representation, even though the size of

MODEL CHECKING 1467

the transition relation is much bigger than the transition relation restricted to the
reachable states, its representation is much smaller. Since the value of each buffer
slot depends only on its immediate neighbors, in fact the size of the representation is
linear in the (fixed) number and width of the buffer slots. For modelling unbounded
queues, efficient data structures are discussed in [Boigelot and Godefroid 1996,
Godefroid and Long 1996].

10. Symbolic Model Checking

Model checking methods derive a great deal of their success from the efficiency of
the data structures that are used. A propositional formula can be regarded as a
boolean function, mapping an interpretation of the propositions into {true, false}.
Since very powerful techniques exist for manipulation of such functions, it makes
sense to represent temporal and predicate logic formulas as well as frames in terms
of boolean functions. The general idea is to encode each domain element by a
boolean sequence. Predicates and relations are then represented by their charac-
teristic functions. Temporal operators are interpreted algorithmically according to
their fixpoint definitions.

For any shared variables program, we can obtain an equivalent shared variables
program which uses only binary domains of the form D = {0,1}". To do so, we use
an arbitrary binary encoding of domain D; and introduce for any program variable
v; over domain D; new binary program variables v;1, ..., vk, where k = [log,(|D;|)].
This encoding is comparable to the implementation of arbitrary data types on
digital computers, where each bit can take only two values.

If all program variables V = {v1, ...,v,} of a shared variables program are over a
binary domain, then any propositional formula ¢ over P = {vy,...,v,} describes a
set of states of the program, namely the set of all propositional models (interpre-
tations) which validate the formula. Here we assume the substitution 0 for false
and 1 for true. Vice versa, for any set of states there is a propositional formula
describing this set. However, this formula is not uniquely determined; the problem
of finding a shortest formula describing a given set of states is co-NP-hard.

The transition relation of a shared variables program with binary program vari-
ables V = {vy,...,un} can be represented as an ordinary propositional formula over
P = {v1, ..., Up, v, ..., v }. If the transition relation is given as a propositional for-
mula with equalities, we replace 0 by L, and 1 by T, and (v = v') by (v < v)7.
For example, the formula

v1 =0 ((v; = 1) A (v3 = v2) A (v5 # v3))
in this notation becomes

w1 = (V] A (v ¢ va) A =(vg > v3))

"Recall that L and T are propositional formulas, false and true are truth values and 0 and 1
are domain elements.

1468 E. M. CLARKE AND H. SCHLINGLOFF

For a shared variables program with n program variables over binary domains the
size of the state space is 2". Therefore e.g. the state space of a buffer of length
10 with values between 1 and 1000 is 2'°° ~ 103°. The reachable state space is
a subset of this state space, which can be of the same order of magnitude. The
transition relation for this buffer consists of pairs of states and therefore has a size
of approximately 10°.

To perform global model checking on systems of this or bigger size, we need an
efficient representation of large sets.

10.1. Binary Decision Diagrams

Clearly, a set could be represented by a table of boolean values. Containment of an
element in such a set could then be calculated by selecting the appropriate element
from the table. Another possible representation of a set is the explicit enumeration
of its elements, e.g., as a list or array. However, these representations can be rather
wasteful, since they pay no respect to the internal structure of the set. For example,
given the domain D = {0, 1, ..., 15}, the explicit enumeration of the set “all numbers
which are even or bigger than 117 is

S =1{0,2,4,6,8,10,12,13,14,15}
The bitstring representation is
S =(1010101010101111).

These representations take O(|D| - [logy(|D])]) memory bits. Bitstrings provide
extremely efficient (constant-time) access. In model checking applications, however,
the space used by the data is usually more important than the execution time. So,
it is desirable to have a concise data structure for representing large sets which still
permits efficient access to the elements.

Given a binary encoding ¥ = wvjvovsvs of the domain D, the above explicit
enumeration is

S = {0000, 0010, 0100, 0110, 1000, 1010, 1100, 1101, 1110, 1111}

This description corresponds to a propositional formula in disjunctive normal form.
A much more succinct representation of the same set can be given by the formula

S:{ﬁ|U4ZOV1)1:1/\’l)2:1}

Usually it is hard to find a minimal propositional formula describing a given set of
elements. Therefore attention is restricted to formulas in some normal form. A bi-
nary decision diagram (BDD, [Bryant 1986, Bryant 1992]) is such a canonical form
for a propositional formula. BDDs often are substantially more compact than tra-
ditional normal forms such as conjunctive or disjunctive normal form, and they can
be manipulated and evaluated very efficiently. Hence, they have become widely used

MODEL CHECKING 1469

for a variety of applications in computer-aided design applications. Many present
tools in symbolic simulation and verification of combinational logic and sequential
circuits use a BDD library for manipulating large sets. The size of the BDD depends
more on the structure of the represented set than on its cardinality. For example,
the BDD representation of the empty set and the full set are both of constant size
one. Because of this dependence on the structure of the represented object, the de-
scription of a system with BDDs is sometimes called a symbolic representation, and
techniques using BDDs to represent objects are called symbolic techniques. Subse-
quently, we describe symbolic model checking. For an alternative introduction to
BDDs and BDD based algorithms in automated theorem proving, see [Moore 1994].
The use of BDDs in checking language containment for w-automata, is described in
[Touati, Brayton and Kurshan 1991].

In model checking, binary decision diagrams are a preferred datatype for the
representation of propositional formulas. They can be understood as an efficient
implementation of binary decision trees. Usually, the BDD is much more succinct
than the original decision tree. Efficiency is gained by sharing of subtrees and by
elimination of unnecessary nodes.

Consider a three-place boolean connective lte (“if-then-else”), such that

Ite(p, 91, 92) £ (9 = 1) A (mp = ¢2)).

Equivalently, Ite(p, ¢1,%2) <> (9 A1) V (= A2)). Then (¢ —) ¢ Ite(p, 9, T),
hence all boolean operators can be expressed with Ite, L and T. A formula v is said

to be in tree form, if v = L, or ¢ = T, or ¢ = lte(v, 91,12), where v € P and 1,
and 9 are in tree form. In other words, a formula 9 is in tree form, if it uses only
Ite, L, T, and propositions, and, additionally, for every subformula lte(y, 11, 12) of
1, the formula ¢ is an (atomic) proposition, and 1, and 12 are not propositions. A
tree form formula can be drawn as binary decision tree, where for each subformula
Ite(v, 11,12) there is a node labelled v which has 2 and 9, as left and right child
nodes, respectively.

Assume a linear ordering < on the set P of propositions. A tree form formula
is said to be in ordered tree form, if for every subformula lte(v, p1,¢2) of ¢, and
every subformula lIte(vy, 11, 12) of 1 or o, it holds that v; < vs. An ordered tree
form formula is called reduced, if it does not contain any redundant subformula
Ite(v, 9,4) (with equal second and third argument). The sequence of leaves of the
formula tree in a reduced ordered tree form formula is called the logical spectrum of
the formula. For any given ordering, the reduced ordered tree form is a normal form.
That is, for every propositional formula there is exactly one equivalent formula in
reduced ordered tree form. This formula can be obtained by repeated application
of the so-called Shannon expansion:

¢ o lte(v,p{v =T}, o{v:=1}),

and boolean reductions like Ite(v,1,%) <> ¢ and (L = T) & T.

For example, truth table and tree form formula for the above set are given in
Figure 28. The reader should also compare the tree form formula to the tree given
on the following page.

1470 E. M. CLARKE AND H. SCHLINGLOFF

vi vy vz v || S

1 1 1 111

11 1 0|1 S = lte(vy,

1 1 0 111 Ite(vs,

1 1 0 0|1 ltel(v3, e
P eor 77
1 0 1 01 Ite(vs,

1 0 0 14}0 lte(vy, L, T),
1 0 0 011 lte(vs, L, T))),
0 1 1 10 'tel(vza

0 1 1 oqgl tel(ti?’(,m, 1,7),

0 1 0 140 lte(vg, L, T)),
0 1 0 01 lte(vs,

0 0 1 110 lte(vs, L, T),
0 0 1 o0]1 Ilte(vs, L, T))))
0 0 0 110

0 0 0 01

Figure 28: Truth table and tree form formula

The reduced ordered tree form formula for the ordering (vy,vs, v3,v4) of propo-
sitions is obtained by repeatedly replacing every redundant subformula lte(v,),)
in the above tree form formula by :

S = lte(vy, Ite(va, T, lte(vy, L, T)), lte(vs, L, T))

In a reduced ordered tree form formula, there might be several identical subfor-
mulas. In order to further reduce the length of the formula, we introduce names
for subformulas. An abbreviated formula is a formula over the extended alpha-
bet Py £ P U {d1,...,0,}, together with a (nonrecursive) list of abbreviations
(61 & 41, .., 6, 2 4,). In each abbreviation, ¢; is an abbreviated formula
Ite(v, @, ') over the alphabet P; & P U {§;;1,...,0,}. The introduction of names
for subformulas is comparable to the introduction of pointers in formula trees: an
abbreviated formula can be drawn as a dag (directed acyclic graph), where each
node represents a subformula or abbreviation. A formula is mazimally abbreviated,
if

1. no compound subformula lte(v, @1, p2) appears twice, and

2. no two abbreviations have the same right hand side.
For the above example, a maximally abbreviated formula is

S = lte(vy, Ite(va, T, 6),6), where § 2 Ite(vy, L, T)

MODEL CHECKING 1471

In an implementation an abbreviation can be a pointer or array index to the corre-
sponding subformula. A maximally abbreviated formula is in BDD form, if for all
subformulas Ite(v, p,4), both ¢ and ¢ are from {L, T, dy, ..., }. In the example,
this normal form can be obtained by introducing further definitions:

S = lte(vy, 01, 8,), where &; 2 lte(vy, T,82) and dy 2 lte(vg, L, T)

Actually, a BDD form formula is given by a list of abbreviations (§; = Ite(v, ¢;, ¥;))
and an entry point to this list. It can be drawn as a binary decision diagram: for
any 6 £ Ite(v, d;,0,), draw a node labelled v with reference 8, which has the nodes
referenced by d2 and §; as left and right children, respectively. To illustrate these
ideas with pictures, we give the binary decision tree for the above example S:

This tree is just a transcription of the truth table of S’s characteristic function.
It has many isomorphic subtrees. For any two isomorphic subtrees it is sufficient to
maintain only one copy. We can replace the other one by a link to the corresponding
subtree.

In the resulting structure, there are nodes for which both alternatives lead to the
same subtree. These nodes represent redundant decisions and can be eliminated.

1472 E. M. CLARKE AND H. SCHLINGLOFF

1 0

The resulting graph is the (ordered) binary decision diagram for this set with or-
dering (v1,va,vs,v4). Given a variable ordering, there is a canonical BDD for every
formula. It can be constructed using the Shannon expansion in a simple recursive
descent:

P(vi-.vn) © Ite(vi, o{v; := T Hvig1...0n), p{vi ;= L}(Vig1...0n))

This gives the unique binary decision tree for the chosen ordering. To obtain the
BDD for ¢(v;...vn) we recursively calculate the BDD §; for ¢{v; := T }(viq1...0n)
and &, for p{v; := L}(vit1...vs). Upon backtrack, a new node § 2 Ite(v;, d1,d2)
is added to the BDD. However, we do not create a new node if both branches in
the recursion are equal (return a common result), or if an equivalent node already
exists in the BDD. To check this latter condition, we implement the set of BDD
nodes 8§ £ Ite(v, 61,02) as a hash table from (v, d1,d2) to 9.

Each entry in the hash-table is a quadruple (d,v, 01, d2): pointers to BDD nodes
are represented as integer numbers. A BDD is identified by its topmost node, and
0 is a pointer to L and 1 is a pointer to T. That is, the type “Bdd” is defined
as “Int”. Likewise, variable names are represented as integer numbers; for clarity
we introduce the type “Bddvar” which is also defined as “Int”. Thus, for each
BDD node (d,4,01,d2) in the hash table, § (of type “Bdd”) is the number of the
BDD node, i (of type “Bddvar”) is the number of a BDD variable, and ¢; and d-
(of type “Bdd”) are links to other BDD nodes. For each (7, d1,02) the hash table
returns the pointer ¢, if this node exists in the BDD.

The resulting algorithm is given in Figure 29. It takes as input a PL formula
with P = {v1,...,v,} and calculates the table of BDD nodes and a pointer to the
topmost node for the variable ordering (vy, ..., vp).

In the BDD representation of sets, several operations can be performed very
efficiently. Checking whether a given element w is contained in a set W C U is done
in time O(log |U|) by traversing the BDD of W according to the bitstring encoding
of w. Addition and deletion of elements as well as union and intersection of sets can
be done by recursive descent. We now describe this procedure for the implication.
Note that the lte-operator commutes with other boolean connectives:

(Ite(p, p1,2) =)« lte(p, (p1 =), (p2 = 7))
(Y = Ite(q, 1,92)) < lte(q, (¥ = 1), (¥ = 2))

MODEL CHECKING 1473

function PL2BDD (Formula ¢) : (Nodeset, Bdd) =
/* Calculates the BDD of ¢
as a set of nodes and a pointer to the topmost node */
Nodeset table := {}; /* Table of BDD nodes (4,i,81,02) */
Bdd maz := 1; /* Index of mazimal table entry =/
Bdd result := BDD(y,1); /* Index of topmost BDD node */
return (table, result);

function BDD (Formula ¢, Bddvar i) : Bdd =
/* @ is the current subformula, ¢ is the current BDD variable */
/* Return value is a pointer to the maximal BDD node x/
if i > n then return eval(y) /* ¢ is a boolean constant x/
else 01 := BDD(p{v; := L}, i +1); 62 := BDD(p{v; := T}, i+ 1);
if §; = 6> then return §;
elsif 30 : (4,4,01,02) € table then return §
else maz := maz + 1; table := table U {(maz,i,d1,02)}; return maz;

Figure 29: Transformation of propositional formulas into BDDs

Similar equivalences hold for A, V, etc. We prove only the first one of these equiv-
alences. Recall that Ite(p, o1, p2) is defined by Ite(p, p1,92) < ((p = Y1) A (—-p —

¥2))-

(Ite(p, o1, 02) 2 ¢¥) < (PA@1) V(TP Ap2)) = o)
© (((pV—e1) APV —p2)) V)
< ((pV 1 V) A (pV —p2 Vo))
< ((pA(pr = ¥) V(P A (92 = ¥)))
o le(p, (g1 = 6, (92 =))

Given BDDs for ¢ and ¢, the BDD for (p — 1) can be constructed as follows.
Since BDD(p) and BDD(3) can be either 0, 1, or Ite(v, d1,d2), there are nine cases
which have to be considered. If BDD(yp) is 0 or BDD(4) is 1, the resulting BDD is
1. If BDD(yp) is 1, the resulting BDD is BDD (). If BDD(yp) is an internal node
Ite(v, 61,02), and BDD(%) is the leaf 0, we use the equivalence:

(Ite(v,61,62) — J_) <~ Ite(v, (61 — J_), (62 — J_))

Since ¢ £ (p — L), this means that the BDD for -y is constructed from the
BDD for ¢ by exchanging all leafs 0 and 1. The only remaining case is that both
BDD(p) = lte(v,¢1,92) and BDD(1)) = Ite(v',41,12) are internal nodes. There
are three subcases:

1474 E. M. CLARKE AND H. SCHLINGLOFF

Lov =" (lte(v, p1,p2) = lte(v,91,92)) < Ite(v, (p1 = 1), (p2 = ¥2))
2. v < v' in the order of variables:
(Ite(v, ®1, (102) - |te(1)l,’(/11,if}2))
< Ite(”; Y1 — Ite(v', ¢1; w2)7 Y2 — Ite(v’, ¢17 ¢2))
3. v > v’ in the order of variables:
(Ite(v, p1, p2) — Ite(v', ¥1,72))
Ang Ite(v’, Ite(v, P1, 902) - wla Ite(v, ®1, ‘PZ) - ’(ﬂg)
In all of these subcases, the BDD for (¢ —) is constructed by a recursive call ac-
cording to the indicated equivalence. Again, upon backtrack a new node is created
only if both links are different and no equivalent node exists so far. The algorithm
is given in Fig. 30. Some BDD implementations use negated edges to avoid the re-
cursive descent for —p. Other implementations hash subformulas, such that certain
recursive descents can be avoided all together. For more information, see [Brace,
Rudell and Bryant 1990].

The complexity of the function BDD_imp is linear in the size of the argument
BDDs. In principle, all 16 two-argument boolean operations on BDDs can be im-
plemented with linear complexity via this procedure. For example, the BDD for
the intersection of two sets ¢ and 1 can be calculated from the BDDs of ¢ and
1 using the definition (¢ A ¥) + —(¢ — —). In practice, however, most BDD
libraries achieve a better performance by providing for each connective a special re-
cursive procedure which takes symmetries and idempotences in the arguments into

function BDD_imp (Bdd ¢,) : Bdd =

/* Calculates the BDD of (¢ — 1) from the BDDs of ¢ and ¢ %/

if p =0or 9 =1 then return 1

elsif ¢ = 1 then return v

elsif ¢ = 0 and (p,i,¢1,p2) € table,
then return new node(i, BDD_imp((;,0), BDD_imp(ips, 0))

else (p,4, p1,92) € table, and (¢, j,11,12) € tabley
if 4 = j then return new_node(4,BDD_imp(1, 11), BDD_imp(p2, 12))
elsif 7 < j then return new node(i,BDD_imp(y1,%), BDD_imp(p2, 1))
elsif i > j then return new node(j, BDD_imp(y, 1), BDD_imp(¢p, 12));

function new node (Bddvar i, Bdd 1, d2) : Bdd =
/* Returns a pointer to a new or existing BDD node */
/* i is the number of a BDD variable, d;, d> pointers to BDD nodes */
if 61 = > then return §;
elsif 34 : (4,¢,01,02) € table then return ¢
else maz := maz + 1; table := table U {(max,i,01,02)}; return maz;

Figure 30: Combination of BDDs

MODEL CHECKING 1475

respect. [Bryant 1986] gives a uniform scheme to handle all 16 boolean connectives.
In Fig. 31 this generic BDD_apply function is given; the idea of using a co-factoring
function is from the BDD library by D. Long.

function BDD_apply (Fun o, Bdd ¢, ¥) : Bdd =
/* Calculates the BDD of (p o 4)) from BDDs of ¢ and ¢ =/
if o € {0,1} and ¢ € {0,1} then return po
else m := min var(y, 1);
(fo, f1) := co_factor(p,m); (go,g1) := co_factor(y, m);
61 := BDD.apply(o, fo, go); d2 := BDD.apply(o, f1, 91);
return new node(m,d1,02);

function min var (Bdd ¢, v) : Bddvar =
/* Returns the minimal BDD variable in ¢ and 9 */
if ¢ € {0,1} and (%, j,%1,v2) € table then return j
elsif (p,4,p1,p2) € table and ¢ € {0,1} then return i
elsif (p,i,p1,¢2) € table and (v, j,11,v2) € table then return min(i,);

function co_factor (Bdd 4, Bddvar m) : (Bdd, Bdd) =
/* Returns two BDD pointers to combine */
if 6 € {0,1} then return (4, 9)
else /x (d,i,01,02) € table x/
if i > m then return (4,0) else return (41, d2);

Figure 31: Applying arbitrary functions to BDDs

For a given boolean function, the size of the BDD depends critically on the
ordering of the variables. For the example formula above (cf. page 10)

v =0 ((vp = 1) A (vy =v2) A (v3 # v3))
and the variable ordering (vi,va,vs, v}, v, v5), the above algorithm yields the fol-
lowing BDD. (We omit all branches leading to negative leaves.)
vl
v2
v3
vl

v2

v3

1476 E. M. CLARKE AND H. SCHLINGLOFF

For the variable ordering (vi,v1, v2, v}, v3,v%), however, we obtain the following
much smaller BDD:
vl
vl
v2
v2'

v3

v3

This is a common phenomenon when working with BDDs. In general, a good
heuristics is to keep “dependent” variables as close together in the ordering as
possible [Fuji, Ootomo and Hori 1993, Enders, Filkorn and Taubner 1993]. For a
more formal treatment in the context of sequential circuits, see [Bermann 1991,
McMillan 1993]. Unfortunately, the problem of finding an optimal variable order-
ing is NP-hard[Bryant 1991]. Basically, for every possible ordering one has to con-
struct the BDD and compare their sizes, which is not feasible. Automatic reordering
strategies usually proceed by steepest ascend heuristics [Felt, York, Brayton and
Vincentelli 1993, Rudell 1993, Bern, Meinel and Slobodova 1995].

10.2. Symbolic Model Checking for CTL

In [Burch, Clarke, McMillan, Dill and Hwang 1992], the term symbolic model check-
ing was introduced for algorithms which use a BDD representation of the Kripke
model (cf. Page 1467).

Assume that the transition relation is given as a BDD over the variables
(V15 a0y U, V4, ...y 0)), and for each p € P a BDD over (vy,...,v,) is given which
represents the set Z(p). We will show how the naive CTL model checking algo-
rithm in Fig. 17 on P. 1446 can be implemented directly with this representation.

Assume that ¢ is a propositional formula given as a BDD. Substitution ¢{v := b}
of a proposition v in ¢ by a constant value b € {1, T} can be done by assigning
a pointer to the appropriate leaf (0 or 1) to each v node. Thus, the function that
restricts some argument of a boolean function can be computed in time which is
linear in the representation of the function. By using the substitution algorithm,
boolean quantification Jv ¢ can be reduced to restriction by

(F @) & (o= L} Ve{v:=T})

Of course, it would be inefficient to implement simultaneous quantification 3 ¢ on
a set @ £ (vy...v,) of variables by a sequence of such substitutions and disjunctions.
Fig. 32 shows how to calculate 3 ¢ in a more direct way.

We now describe how to obtain a BDD representation of ¢” for any CTL for-
mula ¢ from the given BDD representation of F. The BDDs for L and p € P

MODEL CHECKING 1477

function BDD_exists (Set_of Bddvar w, Bdd ¢) : Bdd =
/* w = {w;..w,} is a set of BDD variables, ¢ the BDD of a formula x/
/* Result is a BDD for Jw;...3w,, ¢ * /
if ¢ € {0,1} then return ¢
else /x (v,1,01,p2) € table x/
01 := BDD_exists(w, p1); J2 := BDD_exists(w, v2);
if i € w then return BDD_apply(or, d1, d3)
else return new node(i, d1, d2);

Figure 32: Boolean quantification on BDDs

are trivial. The calculation of boolean composites of BDDs was described in the
previous subsection. The evaluation of EU" and A U involves computing a fixed
point. This is done according to the iteration given in Figure 17. In the evaluation
of E(¢o U"41), we have to build the set {w | Juw'(w < w' Aw' € (T UL NE))},
where E is an intermediate result of the iteration. This formula is an instance
of the scheme {w | Jw'(p(w') A Y(w,w'))}. Assume we are given a BDD for ¢
defined over the variables @ £ (vi,...,v,), and a BDD for ¢ in the variables
(V15 eeey U, V4, ...y v),). The BDD for Jw'(p(w') A ¢(w,w")), which uses variables
(v1, ..., vp), can be obtained as follows. We first rename all variables v; in the BDD
for ¢ by v}. Then we intersect this BDD with the BDD for ¢ to obtain a BDD
over (U1, ..., Un, V], ..., v},). Finally, all primed variables are “thrown away” by exis-
tential quantification on w' £ (v}, ...,v,). The case of A(1, U 4)1), where we have
to calculate {w | Vw'(w < w' = w' € (¢ U3 N E))}, is similar.

In fact, all of the above BDD operations for one iteration step can be performed
during a simple BDD traversal, if v; and v} are always kept together in the variable
order. This so-called relational product algorithm is similar to the BDD_apply and
BDD_exists algorithms in Figs. 31 and 32. Assume that we are given BDD repre-
sentations of ¢ and v, where the variable ordering in the BDD for ¢ is wy...w,
and in ® it is v;...v2p,, Where w; = v2;—1 and w) = vy;. Function relprod BDD in
Fig. 33 calculates the representation of 3w’ (p{@ := w'} A 1). The result contains
BDD variables v1v3...va,_1; renaming to w; ...w,, can be done whenever a new node
is created (v; = wjy1/2).

In theory, the complexity of the CTL model checking algorithm based on BDDs
is not better than with an explicit representation. In practice, however, the BDD
representation of large sets of points in realistic systems tends to be quite man-
ageable. Moreover, the number of iteration steps required to reach a fixed point is
often small (< 10%). For hardware systems, that is, in the verification of sequen-
tial circuits, most states are reachable in very few steps, but the BDDs tend to
grow exponentially in the first few steps. For software systems, especially if there is
not much parallelism contained, the BDD often grows only linear with the number

1478 E. M. CLARKE AND H. SCHLINGLOFF

function BDD_relprod (Bdd ¢, ¥) : Bdd =

/* Calculates a BDD for Jw'(p(w') A ¢(w,w')) */

/* ¢ has variables 1..n and ¢ has variables 1...2n */

/* Result contains BDD variables 1,3,5...,2n — 1 %/

if ¢ =0 or ¢ =0 then return 0

elsif ¢y = 1 then return 1

else m := min var_2(p, ¢); /* Substitution {w = w'} in ¢ */
(fo, f1) := co_factor(p,m div 2); (go,91) := co_factor(y, m);
01 := BDD_relprod(fo, go); 02 := BDD_relprod(fi, g1);
if even(m) then return BDD_apply(or, d1, d2)
else return new node(m, d1,02);

function min_var_2 (Bdd ¢, ¢) : Bddvar /x Ass.: (¢, j,¥1,¢2) € tabley x/ =
/* Returns an appropriate variable number for BDD_relprod */

if ¢ € {0,1} then return j
else /x (p,4,¢1,p2) € table, */ return min(2 - 4, j);

Figure 33: Relational product on BDDs (Fw'(¢(w') A p(w,w")))

of steps, until the whole state space is traversed. The following picture shows the
relation between the BDD size and number of steps in typical examples.

BDD nodes

2
reachablestates 10 - 10 100

500 000

)

200 steps

10.3. Relational p-Calculus

The global algorithm for model checking the propositional y-calculus can be imple-
mented with BDDs similar as the CTL algorithm above. The relational product
algorithm can be used to calculate each single step in the fixpoint iteration of
modal formulas. We now show how this technique can be extended to a richer

MODEL CHECKING 1479

logical language which is closer to other programming paradigms. We use a rela-
tional p-calculus similar to the one presented in [Park 1974]. In computer science,
[Chandra and Harel 1980] were the first to use similar fixed point operators for the
specification of queries in relational databases. In contrast to these papers, we do
not use function symbols; they could be added easily to this framework as special
relations. Informally, the relational u-calculus can be seen as first order predicate
logic with an additional recursion operator. More information on the logical prop-
erties of this calculus can be found in [Vardi 1982, Immerman 1986, Gurevich and
Shelah 1986, Dawar, Lindell and Weinstein 1996).

A (typed) structure S consists of a collection of disjoint sets called domains,
and a collection of relations over these domains. (In some textbooks, structures are
called algebras.) Elements of the domains are called objects. Models for propositional
temporal logics can be regarded to be special structures with a single domain U,
unary predicates P C U and binary relations R C U x U on this domain.

A signature ¥ = (D, R) consists of a finite set D of domain names, and a finite
set R of relation symbols. Associated with each relation symbol is its type 7, which
is a sequence of domain names. Unary relation symbols are called predicate symbols.

An interpretation T for a signature X on a structure S is a mapping Z : ¥ — S
assigning a nonempty domain Z(D) for each domain name D and a relation of
appropriate arity for each relation symbol. That is, if 7(R) = (Dy,...,Dy), then
Z(R) C (Z(D1) X --- x Z(Dy,)). If the interpretation of a predicate symbol P is a
singleton set, we say that P is a constant.

Given a signature X, let V be a set of variables, each of which is either an
individual variable or a relation variable. Again, we assume that each variable has
an appropriate type. In the relational u-calculus, there are two more syntactic
categories: well-formed formulas and relation terms of type 7. Assuming that the
symbols (,), L, =, =, 3, p and X are not in the signature, a well formed formula
¢ is built according to the following syntax:

e 1, (p— 1), where ¢ and 1 are well formed formulas,

e (r1 = x2), where x; and z, are individual variables of the same type,

e Jx ¢, where ¢ is a well formed formula, and z is an individual variable, or

® p x1...Tp, where p is a relation term of type (D1, ..., D,) (see below), and z; is

an individual variable of type D; for all i < n.
In first order logic, a relation term is just a relation symbol from the signature.
In second order logic, a relation term can either be a relation symbol or a relation
variable ¢ € Q. In the relational p-calculus, more complex relations can be speci-
fied via A-abstraction and p-recursion. In this calculus, a relation term p of type
(Dl, —ey Dn) is

e a relation symbol R or relation variable X of type (Dy, ..., Dy),

e \z1..x, @, where ¢ is a well formed formula and each z; is an individual

variable of type D;, or

e uX p, where X is a relation variable of type (D1, ..., Dy,), and p a relation term

of the same type which is positive in X.
As in the propositional case, in this definition p is defined to be positive in X,

1480 E. M. CLARKE AND H. SCHLINGLOFF

if every occurrence of X is under an even number of negation signs. Positiveness
ensures that the functional defined by p is monotonic in the lattice of values for X
and thus the least fixpoint of the functional exists.

A wariable valuation v is a mapping assigning an object v(z) € D to every
individual variable z of type D, and a relation v(X) C D; x --- x D,, to every
relation variable X of type (Di, ..., D). A relational model M £ (S,T,v) for the
signature Y consists of a structure S, an interpretation Z, and a variable valuation
v. Similar to first order and temporal logics, we say that the model M £ (S,Z,v)
is based on the frame F 2 (S,7). Any relational model M £ (S,Z,v) determines
an object zM for every individual variable x, a relation p™ of appropriate type for
each relation term p, and a unique truth value o™ € {true, false} for any formula
. This denotation of variables and formulas is defined in the usual way:

e 2M 2 v(2), if € V is an individual variable,

o 1M 2 falge,

e (p = P)M = true iff ™ = true implies Yy = true,

o (21 = z2)™M
S,

o (Fz)M = true iff p(5TV) = true for some valuation v/ which differs from
v at most in z,

o (p 21..2,)M = true iff (2, ..., 2M) € pM,

e RM 2 T(R), if R is a relation symbol,

e XM 2 y(X), if X is a relation variable,

o A\zy...zy)M 2 {(dy,...,dy) | ¢7 (dy,...,d,) = true}, where % (dy,...,d,) 2
@S T¥) and v' differs from v only in the assignment of d; to z; for 1 < i < n;

i.e., (A\z1...zn(p))M is the relation consisting of all tuples of objects for which
 is true, and

o (uX PM 2 N{Q | p7(Q) C Q}, where p”(Q) £ p(5T:V), and v' differs from
v only in v/(X) = Q; i.e., uX(p)™ is the least fixpoint of the functional p”.

= true iff M = 2, i.e., iff z; and x5 denote the same object in

The relational operators A and p are similar to the operators used in A-calculus
and in denotational semantics. In fact, we could define well formed formulas to be
object terms of the special type {false, true}. Relation terms could then be defined
as function terms with boolean result, and the A abstraction builds such a function
term from a boolean object term.

The relational p-calculus extends first order logic in a similar way as the proposi-
tional p calculus extends modal logic. In fact, the standard translation from modal
into first order logic can be trivially extended into a standard translation from
propositional into relational y calculus. In addition, the relational p calculus offers
some restricted form of non-monadic second order quantification. It contains classi-
cal first-order logic as a sublanguage. Note, however, that in the relational p-calculus
there is no A-abstraction on relation variables. This would result in a second-order
calculus. In contrast to second order logic, there is no p-calculus formula express-
ing that domain D is finite [Park 1974]. On the other hand, the minimization
operator can be expressed in second order logic similar as in the propositional case

MODEL CHECKING 1481

(cf. Page 1392):
uX(p)Z & VX (VE(pZ - XZ) - XIT)

Since the induction axiom for arithmetic can be formulated as a least fixpoint for-
mula, the natural numbers have a categorical theory in the relational u-calculus (for
details, see also [Park 1974]). Therefore, the set of valid formulas is not recursively
enumerable, and its expressiveness lies properly in between first and second order
logic.

The p-recursion operator can be used to give recursive definitions of boolean
functions, similar to the use of recursion in functional and logic programming.
As an example, the addition-relation on natural numbers can be defined from the
constant Z (zero) and the successor relation S by uX (Azyz(Zz Ay = zV Juv(Suz A
Svz A Xuyv))). All recursive functions of arithmetic can be defined in this way;
therefore, on infinite domains, the relational p-calculus has the expressive power
of Turing machines. On finite domains, the model checking problem is polynomial
in the size of the structure. Therefore, only those functions are definable which
can be computed with time complexity polynomial in the size of the structure
([Chandra and Harel 1980]). For a restricted converse of this statement, see [Vardi
1982, Immerman 1986].

Given a finite relational frame F £ (S,7) and a relational term p or formula ¢,
model checking can be used to determine the denotation p” or ¢’ respectively.
In [Burch, Clarke, McMillan, Dill and Hwang 1992], a symbolic model checking
algorithm for the relational p-calculus is given (see Figure 34). Assume for simplicity
that each domain is binary; for non-binary domains the algorithm can be extended
by an appropriate encoding. In the frame, the interpretation Z of a relation of type
(D4, ..., Dy,) is represented by a BDD with variables v1, va, ..., Un.

A term or formula with free individual variables zi,...,x,, is represented as a
BDD with additional BDD variables 1, ..., Z,,. A relation variable is represented
by its name; each BDD node can contain (the name of) a relation variable as one
of its successors. In other words, each BDD node is a tuple (6,4, d1,d2), where § is
the name of this node, i is a variable from the set {v1,...,05, 21, ..., T }, and each
d; is one of the BDD constants 0 or 1, a name of another BDD node, or the name
of a relation variable. Substitution of a relation variable with a relation in a BDD
can be done by a simple BDD traversal.

The model checking algorithm is divided into two functions, BDD_form and
BDD_term, which recurse over the structure of the formula and term. BDD_form
inputs a formula ¢ and (the BDD representation of) the interpretation Z in frame
F, and returns a BDD which is satisfied by a given valuation v iff (S,Z,v) | ¢.
The first five cases in the function derive directly from the respective semantic def-
initions and should require no explanation. The last case, application of a relation
term p, uses the function BDD_term(p,Z) to find a representation of the relational
term p (under the interpretation Z), then substitutes the argument variables zy,
..., Zp, for the place-holder variables vy, ..., v,,, producing a BDD which is satisfied
iff p holds for z1, ..., 2.

The function BDD_term takes as arguments a relational term p and the BDD rep-

1482 E. M. CLARKE AND H. SCHLINGLOFF

resentation of the interpretation Z. It returns a BDD which represents the relation
term in the manner described above. The first and second case in the definition
of BDD_term, a relation symbol or relation variable, simply return the BDD repre-
sentation of the relation in the interpretation or the name of the relation variable,
respectively. The third case, A-abstraction, produces a BDD with variables vy, ...,
vy, substituted for the variables vy, ..., v,. This is the representation for an n-ary
relation which holds iff its arguments satisfy the formula ¢ when assigned to 1,
.-, - The most interesting case is the last: the fixed point operator u. To find the
fixed point of a relational term with respect to a free relation variable X we use
the standard technique for finding the least fixed point of a monotonic functional
in a finite domain. First we evaluate BDD_term(p,Z) to get a BDD r for p. Then we
compute the fixed point by a series of approximations X%, X!, ..., beginning with
the empty relation (which is represented by the BDD constant 0). To compute the
BDD X! from X* we substitute all occurrences of the variable X in the BDD r
with X . Since the domain is finite and p is positive in X, the series must converge
to the least fixed point (cf. Lemma 5.4 and Section 8.3). Convergence is detected

function BDD_form (Formula ¢, Interpretation Z) : Bdd =

/* Calculates the BDD of formula ¢ in the interpretation Z */

case @ of
z € V: return lte(z, 1,0);
(1 = z2): return lte(zy, lte(z2, 1,0), Ite(z2,0,1));
L: return 0;
(¢1 = ¥2): return BDD_imp(BDD_form(y;, Z), BDD_form(pa, 7));
2 ¢: return BDD_exists(z, BDD_form(p, 7));
pPL1...%Ty: return BDD_term(p, Z){v1 = 21 }...{vp := 2 };

function BDD_term (RelationalTerm p, Interpretation Z) : Bdd =
/* Calculates the BDD of term p in the interpretation Z %/
case p of
R € R: return Z(R) /* pointer to BDD for R x/;
X € V: return X /x name of X */;
ATy ..., @i return BDD_form(p, 7){z1 := vi }...{zy, := v, };
uX p: r:=BDD_term(p,Z); return BDD_1fp(r,0);

function BDD_1fp (BDD r, BDD X*¢) : BDD =
/* Fixpoint iteration of BDD r for p with substitution {X := X} x/

X+l = p{X := X},
if X*+! = X then return X*
else return BDD_1fp(r, X*+1);

Figure 34: Symbolic evaluation of formulas and terms

MODEL CHECKING 1483

when X1 = X% In this case, X¢ is the BDD for uX p. Note that testing for
convergence is easy, since with a hash-table implementation of BDD nodes equality
can be determined in constant time (cf. the algorithm in Fig. 29).

The pcke model checker [Biere 1997] is one of the first tools for model checking
the relational p-calculus. For each non-binary domain, an appropriate binary en-
coding is generated automatically. The model is given in a C-like input language.
It is compiled automatically into an internal BDD representation. Since ucke uses
several sophisticated heuristics for the allocation of BDD variables, its performance
is comparable to more specialized systems like SMV.

11. Partial Order Techniques

With symbolic methods we try to tackle the complexity problem which arises from
the parallel composition of modules by using the BDD data structure which can
handle very large sets. Partial order methods, on the other hand, try to avoid the
generation of large sets: they only generate a minimal part of the state space which
is necessary to evaluate the given formula.

Several variants have been suggested: stubborn sets ([Valmari 1990]), sleep sets
([Godefroid 1990, Godefroid and Wolper 1991, Godefroid and Pirottin 1993]), inter-
leaving and ample sets [Katz and Peled 1988, Peled 1993], and others. Subsequently,
we describe an algorithm for partial order model checking of linear time temporal
logic properties which is based on [Yoneda, Nakade and Tohma 1989, Valmari 1990].
For an overview of other methods, see [Clarke, Grumberg, Minea and Peled 1999].
Partial order methods for branching time logics and symbolic methods have been
investigated in [Gerth, Kuiper, Peled and Penczek 1995, Alur, Brayton, Henzinger,
Quadeer and Rajamani 1997]. A somewhat different approach to partial order model
checking by unfolding of Petri nets was suggested in [McMillan 1992, Esparza 1994].

The interleaving definition of parallel program semantics determines the state
space of the global system to be the product of all state spaces of its parallel
components. This can lead to wasteful algorithms. In general, each (nondetermin-
istic) execution of a program generates a partial order, where points are ordered
by causality. In interleaving semantics this partial order is represented by the set
of all of its interleaving sequences.

For example, the following elementary Petri net represents a system with two
processes synchronizing via tg and t3:

t11 t12

o -0 -
OO

t21 t22

This system generates the following partial order:

1484 E. M. CLARKE AND H. SCHLINGLOFF

S

1 ta2 1 t22
Some of the interleaving sequences are

to t11 t12 t21 t22 3 ...

to t11 t21 t12 t22 i3 ...

to t11 t21 t22 t12 t3 ...

to to1 t11 t22 t12 t3 ...

to t21 t11 t12 a2 t3 .
However, it may not be necessary to c0n51der all of these interleavings to determine,
e.g., the truth value of the formula G'F t3. The main idea of partial order methods
is to try to inspect only some “representative” interleaving sequences for the formula
in question. Thus, we do not alter the semantics to deal with “real” concurrency
(where independent transitions can occur at the same time), and we do not extend
the logic to be able to express partial order properties. On the contrary, we will
limit the expressiveness of temporal logic and use the partial order to improve the
efficiency of model checking.

11.1. Stuttering Invariance

Given an elementary Petri net N and a formula ¢, we want to find whether there
exists a run p of N satisfying (. In general, there are infinitely many runs through
the system; therefore we partition them into a finite number of equivalence classes,
such that the existence of a satisfying run p implies that every element of the
equivalence class [p] satisfies . Thus we only have to check a finite number of
equivalence classes, and a coarser partition yields a better algorithm.

To do so, we need a stuttering invariant temporal logic. Consider a formula
with the atomic propositions {p;,...,p;} C P. Two natural models M and M’ are
strongly equivalent with respect to {p,,...,p,}, if they are of the same cardinality,
and for all ¢ > 0 and all p € {p;,...,p,} we have w; € I(p) iff w; € Z'(p). A
point wiy1 in M is stuttering w.r.t. {p,,...,p.}, if for all p € {p,;,...,p,} we have
w; € I(p) iff wiy1 € Z(p). For any model M £ (U, Z,wy), define the stutter-free
kernel M° w.r.t. {p,...,p; } to be the model obtained by eliminating all stuttering
states from M. More formally, M? contains all non-stuttering points from M, and
w < w in M° iff w < w' in M, or there are stuttering points ws, ..., w, such
that w < w; < -+ < w, < w' in M. Two models M; and M, are stuttering
equivalent w.r.t. {p;,...,ps}, if their stutter-free kernels are strongly equivalent
w.r.t. {p;,---,Pr}-

A formula ¢ is stuttering invariant or preserved under stuttering, if for any two
models M; and Ms which are stuttering equivalent with respect to the set of
atomic propositions of ¢ it holds that M = ¢ iff My |= . A language is stuttering
invariant, if all of its formulas are stuttering invariant.

MODEL CHECKING 1485

In general, formulas involving the operator X are not stuttering invariant.
For example, the formula Xp holds in the model ({wo,w;,w2},Z,wg), where
Z(p) = {wo, w1} and wg < w; < w2, but not in the stuttering equivalent model
({wo,ws},Z,wp). The next-operator has always been a topic of discussions in tem-
poral specification [Lamport 1983]. Most notions of refinement of systems do not
preserve properties with next-operators. Recall that X is definable with U, but
not with U" (see Lemma 2.1 and Page 1379). Let LTL — X be the logic built from
propositions p € P, boolean connectives L, — and the reflexive until operator U".

11.1. LEMMA. Any LTL — X formula is stuttering invariant.

PROOF: Assume that ¢ is an LTL — X formula, M £ (U,Z,w,) a model and
M & (U°,T° wy) the stuttering-free kernel of ¢ w.r.t. the propositions in .
Furthermore, for any w € U, let w® € U be the maximal non-stuttering point such
that w? < w. We show that for any w € U

*) UILuw ke i U0k e

In particular, since w§ = wg, this implies that M [¢ iff M° | ¢. From this,
the claim follows immediately: if M¢ and M$ are strongly equivalent w.r.t. the
atomic propositions of ¢, then clearly M$ | ¢ iff M§ E ¢. If M; and M,
are stuttering equivalent, then the stutter-free kernels M¢{ and M$ are strongly
equivalent. Therefore, in this case M; |= ¢ iff M{ |= ¢ iff M3 = ¢ iff My |= .
The proof of (x) is by induction ¢. For atomic propositions, wi+1 = p iff w; = p
for each point w;41 which is stuttering w.r.t. {p,p;,...,p;}. Therefore w = p iff
w° | p. For boolean connectives the statement is obvious. For the U-operator,
we treat only the case ¢ = F'¢) = (T U 4); the general case ¢ = (1) U ¢y) is
similar. (U,Z,wo) = F 1) means that there is a w; > wg such that (U,Z,w;) = 1.
By the inductive hypothesis, this is equivalent to the claim that for some w; > wy,
(U°,7°w?) |= +. This claim in turn holds iff for some v; € U°, v; > wf§ and
(U°,Z°,v1) | %1. This means that (U°,Z°,wg) = F 9. Note that this proof is not
valid for the F+—operator, since it is possible that w; > wp but w{ = wy. 2

In [Peled and Wilke 1997], a converse to this lemma is proved:

11.2. THEOREM. Any LTL formula which is stuttering invariant is expressible in
LTL - X.

Stuttering invariance allows to group all stuttering equivalent runs into the same
equivalence class, thereby reducing the average complexity of the model checking.
Of course, the reduction will be better if ¢ uses fewer propositions. Usually, a given
formula mentions only a small subset of the system, allowing the equivalence classes
to be rather large. In particular, consider a system with two independent transitions
t; and ¢, (a formal criterion of independence is given below). All runs which differ
only in the interleaving of ¢; and t, are stuttering equivalent with respect to all
atomic propositions not related to ¢; or t». Therefore, each LTL — X formula not
referring to t; and t» has the same truth value for all of these runs.

1486 E. M. CLARKE AND H. SCHLINGLOFF

11.2. Partial Order Analysis of Elementary Nets

First, we need an appropriate stuttering-invariant restricted logical language to
express “interesting” properties of elementary Petri nets. Recall that a state of the
net is just a marking of its places. Thus, it is reasonable to use places as atomic
propositions, where a proposition p is valid in a state iff the place p is marked in
that marking.

Assume that we are given an elementary Petri net and an LTL — X formula
describing a property of this net. Now, we define when two transitions are inde-
pendent of one another. Firstly, independent transitions must neither disable nor
enable each other; that is, if ¢; is enabled in s and s’ is a successor of s with respect
to the firing of #;, then ¢, is enabled at s iff ¢5 is enabled at s’, and vice versa for to
firing. Secondly, if the independent transitions ¢; and ¢2 are both enabled in s, then
they must be able to commute; that is, each execution obtained by first firing #;
and then ¢ must be stuttering equivalent (w.r.t. the property under consideration)
to one obtained by first firing ¢ and then #;.

However, it is not practical to check these two properties for all pairs of transitions
in all global states of the system. Therefore, we use a syntactic condition which
ensures that some transition is independent from another one.

Call a set T of transitions persistent in s, if whatever one does from s while
remaining outside of T' does not affect T'. Formally, T is persistent in s iff for all
t € T and all firing sequences tg, t1, -.., t,, t such that ¢; € T for all 0 < ¢ < n there
exists a stuttering equivalent firing sequence starting with ¢.

If T is persistent, we do not have to consider the firing of transitions outside of
T when constructing the children of the given state in the depth-first-search; there
will be a stuttering equivalent sequence constructed by the firing of some ¢ € T'.

However, this definition still is not effective. There is no efficient way to compute
a minimal persistent set of transitions for a given state. Therefore, we compute
an approximation. There is a tradeoff between the amount of time spent in the
calculation of minimal persistent sets, and the reduction of the state space obtained.
As a general strategy, some simple heuristics can gain a lot, and sophisticated
methods don’t add too much.

We start with a single enabled transition T' = {t} and repeat until stabilization to
add all transitions which can “interfere” with some transition in 7. Here “interfere”
means that they can enable or disable, or cannot commute with some transition in
T.

Given any marking m, firable transition ¢y and disabled transition ¢, we have
to find a set of firable transitions such that the firing of any transition in this set
could lead to the firing of ¢ before t;. A set NEC(t,m) of transitions is necessary
for t in m, if NEC(t,m) = {t' | p € t'e} for some p € (ot \ m). We use a functional
notation here, since NEC(t,m) is determined by the chosen heuristic strategy.
Similarly, the set NEC*(t,m) is defined to be any set of transitions containing ¢
which is transitively closed under necessity; that is, for any t' € NEC*(t,m) such
that ¢ is disabled in m there exists a set NEC(t',m) of transitions necessary for
t' such that NEC(t',m) C NEC*(t,m). If ¢ is disabled in m, then ¢ cannot fire

MODEL CHECKING 1487

unless some transitions from NEC*(¢,m) fire before.

If ¢ is in conflict with ¢, then the firing of any transition in NEC*(t,m) could
eventually enable ¢; therefore all transitions in N EC*(t, m) have to be fired as alter-
natives to the firing of ¢;. But, there is still another class of dependent transitions.
We want to obtain stuttering equivalence with respect to the atomic propositions
in . Therefore, we have to take into account that ¢ might fix an order onto the
firing of independent transitions. Usually, ¢ contains only a few propositions. Call a
transition visible for ¢, if et U te contains any place p appearing in . If ¢ is visible,
the firing order with other visible transitions is important. A visible transition can
be regarded to be in conflict with all other visible transitions. Define the conflict

of t by
C(t) = {t'| ot' Net £ {}}U{t}.

The extended conflict of t is just the conflict of ¢, if ¢ is invisible; otherwise, it is the
conflict of ¢ plus all other visible transitions. Now a dependent set DEP(ts, m) of
ty is any set of transitions such for any ¢ in the extended conflict of ¢ there exists
a set NEC(t,m) C DEP(ty,m).

Finally, the set of transitions which are fired should be transitively closed un-
der dependency; thus, let READY (m) be any (smallest) nonempty set of firable
transitions, such that

DEP(ty,m) C READY (m) if t; € READY (m).
Correctness of this reduction method is guaranteed by the following theorem:

11.3. THEOREM. For any firing sequence p of the net there exists a firing sequence
p' generated only by firing ready transitions such that p and p’' are equivalent with
respect to oll LTL — X safety properties.

Consider the depth-first model checking algorithm for LTL in Figure 19. During
the construction of the set of children of a state in the depth first search we can
neglect all firable transitions which are not ready. This can result in a considerable
average case reduction; in fact, for examples with many concurrent and “almost”
independent processes it can logarithmically reduce the state space which has to be
traversed. Though the worst case complexity of constructing a ready set is cubic in
the size of the net, in average examples it is only linear in the number of transitions.

The above construction can be extended to deal also with liveness and other
linear temporal logic properties. To do so, we need to assure that whenever a state
is reached for the second time, a different ready set is constructed, to make sure
that no eventuality is delayed infinitely often. For a detailed exposition and an
extension to real-time logics, see [Yoneda and Schlingloff 1997].

12. Bounded Model Checking

The model checking algorithms of the previous sections were based on the idea of
calculating the greatest or least fixed point of a certain continuous function. Model

1488 E. M. CLARKE AND H. SCHLINGLOFF

checking can also be done by translating temporal logic into classical logic and using
well-established automated deduction methods. In particular, in Subsection 2.3
on Page 1381 we defined a translation FOL from linear temporal logic to first
order logic. If the model to be checked is finite, then each first order existential
quantifier can be replaced by a finite disjunction, and every universal quantifier can
be replaced by a finite conjunction of variables. Moreover, as described in section 10,
each finite model can be coded as a boolean combination of atomic formulas p(t)
and t < t'. Likewise, for sequence-validity, the condition that a finite set {¢1,...t,}
of points forms a maximal path in a model can be coded as such a formula.

Consider the conjunction of the propositional translation of the formula and the
boolean encoding of the model. This is a formula which can be tested for satisfia-
bility by standard SAT algorithms. In [Biere, Cimatti, Fujita and Zhu 1999, Biere,
Cimatti and Zhu 1999], the term bounded model checking is introduced for check-
ing sequence-validity of future LTL formulas with this approach. The execution
sequences of a Kripke model are enumerated by increasing length and combined
with the translation of the formula. These are converted into conjunctive normal
form and tested for satisfiability by propositional theorem provers. With appropri-
ate heuristics, in some cases this method turned out to give even better results than
BDD based methods.

12.1. An Example

Before giving the technical details, we show an example. Consider the Kripke model
in Fig. 35. There are four points in the model. Each point w is represented by two

Figure 35: A two-bit model

state variables, w £ (vy,vg), denoting the value of the high bit and the low bit,
respectively. The initial state is (00). Thus the initial state predicate I (w) is defined
as (—wv1 A —wg). The only terminal state is (11), thus the terminal state predicate
T(w) is (v1 Avp). The transition relation is represented by the formula R(w,w') =
(mv1 A—wg A=y Avg) V (—o1 Avg Avi A=) V (v1 A—wg A=) A—wg) V (—og A—wg Avt Avg)

MODEL CHECKING 1489

Suppose we are interested in the fact that any execution eventually reaches state
(11). In LTL, this amounts to checking whether F"(v; Avp) is sequence-valid. Equiv-
alently, we can check whether there is a maximal path in the model in which state
(11) is never reached. That is, we check whether G" =(v; A vp) is satisfiable in the
model. According to the definition, this is the case iff there is a path in the model
starting in an initial point and ending in a terminal point or in a cycle, such that
every point on the path satisfies —w; or —wg. In bounded model checking, we restrict
our attention to paths of length k, that is, paths with k + 1 states. We start with
k = 0, and increment k until a witness is found. Consider the case where k equals 2.
We name the k+ 1 states as w®, w!, w?. Since every state is encoded by two boolean
variables, there are six propositional variables altogether: v9, v3, vi, v}, v, v3. We
now formulate a set of constraints on these variables in propositional logic which
guarantee that the path o = (w°, w!, w?) is indeed a witness for G"(—v; V —wyp).

e First, o must start in an initial point. This is expressed by I(w®) as described
above: @1 £ (-0 A Q)

e Second, each wit! must be a successor of w? according to the transition relation,
ie., R(w® w') A R(w!,w?) must hold. This expands to
s 2(—) AW A—wf Avd) V(=0 Avd Avl A) Vv

(W A =0 A —vf A=) V (=0 A —0d Avi Avd) A
(—vf A= A—vE AV3)V (—vf Av AvEA-wE) V
(v} A=wg A =02 A -03) V (-] A AvE A V)

e Third, the path must be either terminal or end in a loop. That is, either T'(w?)
holds, or there must be a transition from w? to one of w®, w' or w?. The
formula @3 2 T(w?) V R(w?, w®) V R(w?,w') V R(w?,w?) is expanded similar
to PY2.

e Fourth, G" =(v; Avg) must hold in the first point of the sequence, i.e., =(v1 Avg)
must hold for w®, w' and w?. Therefore, g5 2 AZ_ ~(vi A vd).

It is easy to see that there is a propositional model for ¢ £ 1 Aps A3 Ay iff there
is a maximal path consisting of three model states validating the given formula.
Satisfiability of ¢ can be checked by SAT procedures like SATO [Zhang 1997] or
Stalmarck’s algorithm [Stalmarck 1989, Stalmarck and Saflund 1990, Borélv 1997].
Thus, by increasing the number of states allowed in the search, we get an alternative
model checking procedure.

In this example, the formula is indeed satisfiable. The satisfying assignment cor-
responds to a counterexample that is a path from the initial point (00) over (01)
to (10) followed by the loop from (10) to (00). If the transition from (10) to (00) is
changed to point (11), then the original formula becomes unsatisfiable.

12.2. Translation into Propositional Logic

Assume that we are given a Kripke model M, an LTL formula 4 and a bound k.
Subsequently, each wt is a vector of [log | M|] boolean variables. We will construct
a propositional formula in w®. .. w* which is (propositionally) satisfiable iff there is
a maximal path of length k in M validating 1.

1490 E. M. CLARKE AND H. SCHLINGLOFF

The initial and terminal state predicates I(w) and T'(w) and the transition rela-
tion R(w,w") are given by M. The following propositional formula describes that
the points to which the variables w'...w* refer form a maximal path in M:

k k
[M]i 2 1) A \/ Rw™",w') A (T(wk) vV R(wk,wl))

=1 =0

Now we define the translation [¢)]% of a temporal formula 9 evaluated at point
w? in the sequence (w? ... w"). In general, the constraint imposed by the temporal
specification depends on whether the path under consideration is terminating or
not. Consider the formula (¢ U™) in a terminating path (w® ...w*). This formula
holds in point w? iff there is a 4 < j < k such that such that ¢ holds at w’, and
¢ holds at all w™ such that ¢ < m < j. This can be translated by a disjunction
over all possible positions w? at which ¢ eventually might hold, and a conjunction
for each of these positions ensuring that ¢ holds for all points between w' and w’.
That is, in this case [(p U)], £ Vi_ i (W1 A AL [el7)

Now consider the case that the path (w°...w'...w*) ends with a loop from w

to w'. The formula (¢ U") is satisfied in w? iff one of the following holds:

e as for terminating sequences, there exists some i < j < k such that ¢ holds at
w?, and ¢ holds at all w™ such that i < m < j, or

e there exists some ! < j < i such that ¢ holds at w?, and ¢ holds at all w™ such
that i < m < k, and ¢ holds at all w™ such that [<m < j.

Figure 36 visualizes these two possibilities.

k

wO0 wl wi wi wk

Figure 36: Two possibilities for “until” in a loop

The definition of [¢/]¢ is by recursion on the structure of v, where the current
point ¢ changes but the length of the path k stays the same. For this translation,
let 4 < k be natural numbers, and let (V;-:l) 2 1 for I >i.

o [p]}, = p(w’)

c[i2L

o (o =)i = [eli — 1)

MODEL CHECKING 1491

[U D 2 Vi (W AN S [l v
Vo (Anin [l A R(w*,0') A Vi (W1 A NZTR))

For the last of these clauses, cf. Figure 36. Correctness of our translation can be
stated as follows.

12.1. THEOREM. There exists a mazimal path of length k generated by M which
ingtially validates v iff (M A [¢]2) is propositionally satisfiable. In other words,
¥ is sequence-valid in M iff ([M]x — [¢]%) is propositionally valid for all k > 0.

An upper bound for the length k of the path to be considered is |[M| x 2!%| (for
the complexity of LTL model checking, see Sect. 8.2). In principle, bounded model
checking could be extended to other specification logics such as yTL. In practice,
however, the number of boolean propositions which are introduced tends to be too
big for currently available SAT provers.

13. Abstractions

Even though BDD representations, partial order methods and SAT procedures allow
to apply model checking to rather large systems, one of the main topics still is the
size of the models. To verify an implementation of several thousands of lines of code
by model checking, it is necessary to find a suitable abstraction.

13.1. Abstraction functions

Numerous authors have considered the problem of reducing the complexity of verifi-
cation by using abstractions, equivalences, preorders, etc. For example, in [Graf and
Steffen 1990] a method is described for generating a reduced version of the global
state space, given a description of how the system is structured and specifications
of how the components interact. In [Wolper 1986] it is demonstrated how to do
model checking for programs which are data independent. The method described
in [Kurshan 1989], which is based on w-language containment, was implemented in
the COSPAN system [Har’El and Kurshan 1990, Kurshan 1994]. In this system, the
user may give abstract models of the system and specification in order to reduce
the complexity of the test for containment. To ensure soundness, the user specifies
homomorphisms between actual and abstract processes. These homomorphisms are
checked automatically. We describe a general framework elaborated in [Long 1993].

Traditionally, finite-state verification methods focus on the control flow of the
system. Symbolic methods have made it possible to handle even some systems that
involve nontrivial data manipulation, but the complexity of verification is often
high. However, specifications of systems that include data paths usually involve
fairly simple relationships among the data values in the system. For example, the
correctness of a communications protocol might be independent of the particular

1492 E. M. CLARKE AND H. SCHLINGLOFF

data transmitted, provided that no two subsequent messages are identical. As an-
other example, in verifying the addition operation of a microprocessor, we might
require that the value in one register is eventually equal to the sum of the values in
two other registers. The complexity of the verification can be reduced in such cases
by suitable abstractions. An abstraction is specified by giving a mapping between
the actual data values in the system and a small set of abstract data values. By ex-
tending the mapping to states and transitions, we can produce an abstract version
of the system under consideration. The abstract system is often much smaller than
the actual system, and, as a result, it is usually much simpler to verify properties
at the abstract level.

N N N N

° e <Oat17ae) 07t17a0

odd(x)

T .= () T =
z div2| [€Y"T) 3441

a e éOJtljae éO;elaao)

(a) Concrete system (b) Abstraction

Figure 37: The dining mathematicians

For example, consider the program from Figure 37. This example called the
“dining mathematicians” is from [Dams et al. 1994] and is reconsidered in [Merz
1997]. It consists of two processes communicating via a shared variable 2 which
ranges over the domain D, of all integers. Initially z is any positive integer. Both
processes have a “thinking” and an “eating” state and start in the former. That is,
the state space is {to, €0 } X {t1, €1 } X D, and the initial states are {(to,?1,d) | d > 0}.
Note that both of these sets are infinite. The system ensures mutual exclusion to
the eating phase and starvation-freeness for both processes.

Assume that we are interested in proving mutual exclusion: A G" = (eg A ;). We
create a domain A, of abstract values for z, with 4, £ {a.,a.,a,}, and define the
abstraction mapping h, from D, to A, as follows.

a,, ifd=0,
az(d) £ a,, if d is even, and
a,, if d is odd.

Now we can use just three atomic propositions to express the abstract value of x:
“r = ag”, “z = a.”, and “z = a,”. We can no longer express properties about the
exact value of z using these atomic propositions. In many cases though, by judicious
choice of the abstraction mapping, knowing just the abstract value is sufficient.

MODEL CHECKING 1493

Two points wg = (weg,wo1,do) and w; = (w10, w11,d1) in the original Kripke
model are equivalent w.r.t. the abstraction mapping «, if wog = w19, w1 = w1 and
az(dy) = az(d2). That is, two points are equivalent if they have the same label, and
the abstracted variable values in both points are equal. The a-abstraction is the
quotient of the original model under this equivalence. Since the abstract domain
A, is finite, the a-abstraction is a finite Kripke model. Figure 37(b) shows the
reachable part of the a-abstraction of 37(a). It is easy to see (and can be confirmed
by model checking) that the abstracted system validates A G" —(eg A e1). As we
will see below, this implies that the original systems also guarantees this property.

Formally, abstractions are formed by giving surjections ai, ..., a, which map
each D; onto a set D of abstract values. The surjection a = (a1,...,ay) then
maps each program state to a corresponding abstract state. As explained above,
this mapping may be applied in a natural way to the initial states and the tran-
sitions of the program. The resulting transition system is the a-abstraction of the
original program. Applying abstractions to several or all of the program variables,
the specification has a much smaller number of atomic propositions and points. For
the abstracted system, various state space reductions discussed in previous sections
can be applied.

One way of obtaining a representation of the a-abstraction of a concurrent pro-
gram is to build a representation of the original state space and to construct the
a-abstraction from it. However, if the original state space is infinite as in the above
example, or it is too large to fit into memory, this may not be feasible. In the
finite state case, it might be possible to represent the system using BDD-based
methods, but the computational complexity of building the a-quotient from this
representation can still be very high.

To circumvent these problems, another way of producing abstract models in a
BDD-based verification tool is to start with a high level description of the system
and the abstraction function. The system could be given, e.g., as a program in
a hardware description language. From this, a BDD for the abstracted system is
generated directly. In order to perform the compilation process effectively, an ap-
prozimation to the a-abstraction is generated[Clarke, Grumberg and Long 19944].
This approximation might be somewhat larger than the a-abstraction, but it can
be built very efficiently. The techniques used in this construction are similar to
those involved in abstract interpretation [Cousot and Cousot 1977, Cousot and
Cousot 1979, Dams 1995]. This way, it is even possible to use abstractions to verify
systems in which the data path is not completely specified. By modeling the data
path as a collection of units that perform unspecified functions, the verification of
the data path and the verification of the control can be largely decoupled.

To be able to interpret specification formulas with respect to both the original
transition system and its abstraction, atomic formulas must be those specifying that
a program variable has a particular abstract value. In Theorem 4.11 we showed that
if M, is simulated by M, then any formula in the logic ACTL valid in M, is also
valid in M. An abstraction is a special simulation; thus if an ACTL formula is true
in the abstract system, we can conclude that it is also true in the original system. In
addition, if the equivalence relations induced by the «; are congruences with respect

1494 E. M. CLARKE AND H. SCHLINGLOFF

to the operations used in the program, then the formula is true in the abstract
system iff it is true of the original system. [Loiseaux, Graf, Sifakis, Bouajjani and
Bensalem 1995] discusses abstraction techniques which preserve properties specified
in pTL.

It should be emphasized that the choice of suitable abstractions «; is an inter-
active step in the verification. Usually, there are several possibilities to abstract a
given system, all preserving different properties. In our above example, the cho-
sen abstraction does not allow to prove starvation-freeness of the second process.
However, this situation is not typical for industrial applications. In [Clarke, Grum-
berg and Long 19944], the following abstractions are used to verify a pipelined
arithmetic/logical unit with over 4000 state bits and 10'3%° reachable states.

¢ congruence modulo an integer, for dealing with arithmetic operations;

e single bit abstractions, for dealing with bitwise logical operations;

¢ product abstractions, for computing abstractions such as the above; and

e symbolic abstractions. This is a powerful type of abstraction that allows to

verify an entire class of formulas simultaneously.

Another approach at implementing abstraction functions is directly at the level of
the BDD data structure. Given an abstraction function, we can reduce the size of a
BDD by merging nodes that have the same abstract value. Abstract BDDs (ABDDs)
are a generalization of Residue BDDs (RBDDs, see [Kimura 1995]). To obtain
an ABDD it is not necessary to build the full BDD: ABDDs can be constructed
directly from the abstraction function and the description of the system. For more
information, see [Clarke, Jha, Lu and Minea 1997].

13.2. Symmetry Reductions

Most large hardware circuits are highly symmetric. For instance, one can find sym-
metry in memories, caches, register files, bus and network protocols — any type
of hardware containing replicated structures. For symmetric systems, we can apply
special abstractions to avoid searching the entire state space of the circuit and to re-
duce the size of the BDDs representing the transition relation[Starke 1991, Emerson
and Sistla 1993, Clarke, Filkorn and Jha 1993, Ip and Dill 1993].

Suppose that we want to represent the boolean function (formula) ¢(v1, ..., vy)
of n variables by a BDD. Symmetry in a boolean function is modeled in terms of
a permutation group acting on the set of variables of the function. We say that ¢
is invariant under a permutation ¢ on vy, ..., v,, if the value of the function does
not change when the permutation o is applied to its arguments:

@(Ula ey Un) = (,0(0'(?)1), sy O(Un))

The function is said to be invariant under a group G of permutations, if it is in-
variant under each permutation ¢ in G. For example, let @(vy,vs,v3,v4) be the
function which tests whether two 2-bit numbers (v1,v3) and (vs,v4) are equal. The
function g is clearly invariant under the transpositions (1 2) and (3 4). The first per-
mutation corresponds to exchanging input bits v; and vs. The second corresponds

MODEL CHECKING 1495

to exchanging vz and vs. The function will, of course, also be invariant under the
group generated by the two transpositions.

Let B™ be the set of boolean vectors of length n, and let G be a permutation
group on 1,...,n. Assume that G acts on B™ in the natural way. For example,
applying the transposition (2 3) to (0,1,0,1) yields (0,0,1,1). We say that two
vectors v and v? are equivalent with respect to G if there is a permutation o in G
such that v! = v2. Since G is a group, this relation is an equivalence relation on
B™ and therefore partitions B™ into a number of equivalence classes. The number
of equivalence classes may be much smaller than the number of boolean vectors in
B™.

A boolean function ¢(vy, ..., v,) is uniquely determined by the set of vectors in B™
that cause it to have the value T. If ¢ is invariant under some group of permutations
G, it may be possible to compact the BDD representation for ¢: if any one of the
boolean vectors in some equivalence class determined by G makes ¢ true, then all of
the vectors in this equivalence class will. Consequently, in the BDD representation
for ¢ it is necessary to keep at most one representative from each equivalence class.
In many cases this significantly reduces the size of the BDD for .

Essentially the same idea can be used to reduce the size of the state space that
must be searched by the symbolic model checking algorithm. Let U be the set of
possible states of the system, which are determined by the values of vy, ..., v,. A
permutation of these state variables induces a permutation on the state-space of
the system. Let < be the transition relation of the system and = be an equivalence
relation. We say that < respects = if whenever wy = w{ and wy = wj, then
wy < we iff wi < wh. When the transition relation R respects the equivalence
relation = determined by a permutation group, it is possible to reduce the state
space to the set of equivalence classes U= determined by =. The corresponding
transition relation between these equivalence classes is <=. Since we only need one
point for each equivalence class, the model (U=, <=) is often much smaller than
the original model (U, <).

Similar as with abstraction functions, the reduced BDD can be constructed di-
rectly from a description of the system and the permutation group. For more in-
formation, the reader is referred to [Kannan and Lipton 1986, Clarke, Filkorn and
Jha 1993]. It is not clear, though, how the reductions obtained by symmetries in-
teracts with other abstraction techniques and partial order methods.

13.3. Parameterized Systems

A special case of a symmetry is that the system consists of an arbitrary number of
similar or identical processes. Systems of this type are commonplace — they occur in
bus protocols and network protocols, I/O channels, and many other structures that
are designed to be extensible by adding similar components. A number of methods
have been proposed for extending model checking to such designs [Clarke, Grumberg
and Browne 1986, Wolper and Lovinfosse 1989, German and Sistla 1992, Clarke,
Grumberg and Jha 1995].

1496 E. M. CLARKE AND H. SCHLINGLOFF

After using a model checker to determine the correctness of a system configured
with a fixed number of processors or other components, it is natural to ask whether
this number is enough in some sense to represent a system with any number of
components. This question was approached in [Browne, Clarke and Grumberg 1989,
who extended CTL to a logic called indezed CTL. This logic allows the restricted
use of process quantifiers as in the formula A, ¢;, which means that the formula ¢
holds for all processes i. Restricting the use of these quantifiers and eliminating the
next-time operator makes it impossible to write a formula which can distinguish
the number of processes in a system. By establishing an appropriate relationship
between a system with n processes and a system with n + 1 processes, one can
guarantee that all systems satisfy the same set of formulas in the indexed logic.
This method was used to establish the correctness of a mutual exclusion algorithm
by exhibiting a bisimulation relation between an n-process system and a 2-process
system, and applying model checking to the 2-process system.

One disadvantage of the indexing method is that the bisimulation relation must
be proved “by hand” in an ad hoc manner. Finite state methods cannot be used to
check it because it is a map between states of a finite state process and a process with
an arbitrary number of states. A method without this disadvantage was proposed
in [Kurshan and McMillan 1989], and independently in [Wolper and Lovinfosse
1989]. This method uses a process () to act as an invariant, as the number of
processes increases. If P represents one process in the system, then by showing
that the possible executions of P composed with () are contained in the possible
executions of (), we can conclude by induction that) adequately represents a
system of any finite number of processes. Since both P composed with) and () are
finite state processes, the containment relation can be checked automatically. This
method has been applied in [McMillan and Schwalbe 1992] to the Encore Gigamax
cache consistency protocol. By slightly generalizing the model of one processor, an
invariant process for this system could be obtained which stands for any number of
processors on a bus.

These induction techniques have been generalized by a number of authors
(e.g., [Marelly and Grumberg 1991]). However, the main problem in all of these
verification methods is that of constructing the invariant process. Currently, the
invariant process must be generated interactively. Counterexamples produced by
model checking tools are helpful for guiding the construction, but it would be use-
ful to have automated techniques for this purpose. To make these methods generally
accepted, more results on the combination of model checking and inductive theorem
proving and powerful heuristics are necessary.

14. Compositionality and Modular Verification

As explained in Section 9, most circuits and protocols are modeled as networks of
communicating parallel processes. The complexity of these models grows exponen-
tially in the number of processes; thus, monolithic verification of such designs can
be hard. Therefore, it may be necessary to verify small components separately and,

MODEL CHECKING 1497

from that, derive the correctness of the whole design, without building a model for
the entire system. This so-called compositionality paradigm has been investigated
by a number of authors [deRoever, Langmaack and Pnueli 1998].

14.1. Model Checking and Theorem Proving

Assume a process consisting of a parallel composition of several subprocesses, where
all subprocesses have associated formulas specifying their properties. Whenever a
property of a parallel composition is to be proven, we can first prove for each com-
ponent that the corresponding property holds, and then infer in an adequate proof
system that the global property of the composition also holds. Model checking can
be used to verify the individual components; then theorem proving techniques can
be used to derive global properties of their parallel composition. The composition
step substantially simplifies the verification problem, since it avoids building the
global state space. Thus, the compositionality paradigm is a promising perspective
for the combination of model checking with theorem proving.

Moreover, this approach supports the hierarchical design process. One can work
out specifications for all parts of a complex system and prove that if every compo-
nent satisfies its specification, then the whole system is correct. When the system is
implemented it is sufficient to verify each component separately. It is also possible
to change the actual implementation of some component without having to repeat
the verification of the entire system as soon as the new implementation meets its
local requirements.

For instance, consider the problem of verifying a communications protocol that
is modelled by three processes: a transmitter, some type of network, and a receiver.
Suppose that the specification for the system is that data is eventually transmitted
correctly from the sender to the receiver. Such a specification might be decomposed
into three local properties. First, the data should eventually be transferred correctly
from the transmitter to the network. Second, the data should eventually be trans-
ferred correctly from one end of the network to the other. Finally, the data should
eventually be transferred correctly from the network to the receiver. We might be
able to verify the first of these local properties using only the transmitter and the
network, the second using only the network, and the third using only the network
and the receiver. By decomposing the verification in this way, we never have to
compose all of the processes and therefore avoid the state explosion phenomenon.

Whereas model checking for the verification of the individual components is a
well-understood technique, for the derivation of global system properties from local
components properties an appropriate calculus is needed. There are two possibilities
for implementing a proof system for such a calculus. The first is to incorporate the
calculus into a general purpose theorem prover. For example, there are embeddings
of Lamport’s temporal logic of actions (TLA) into the theorem provers LARCH,
PVS and Isabelle (see, e.g., [Abadi, Lamport and Merz 1996]). However, the com-
putational complexity inherent in such an approach may prevent the resulting tool
from being applicable for large industrial designs.

1498 E. M. CLARKE AND H. SCHLINGLOFF

The second possibility is to build a special purpose theorem prover for the chosen
calculus. Several suggestions for a concrete framework following this approach have
been made. The proof system of [Stirling 1987] is, probably, the most compositional
in the sense that it clearly reduces the verification problem to the verification of
components. However, the logic which is used in this paper is too weak to be of
much interest in practice. In [Andersen, Stirling and Winskel 1994] the parallel
composition operator was eliminated basically by encoding one of the subprocesses
into the formula. In the worst case this results in an exponential blow-up in the size
of the formula, and the total complexity remains the same as for non-compositional
model checking. The proof system of [Dam 1995] is complete for finite-state pro-
cesses. However, it uses a silent 7 action for all synchronizations, and in the 7-rule
there have to be as many premises as there are actions in the model. Therefore,
one can only have a fixed set of actions.

The STeP system [Bjgrner, Browne, Chang, Colén, Kapur, Manna, Simpa and
Uribe 1995, Bjgrner, Browne, Chang, Colén, Kapur, Manna, Sipma and Uribe 1996]
implements another approach to combining model checking and theorem proving
under a single framework. However, the user must decide what has to be model
checked and what to be derived in a theorem prover. It would be desirable to create
the verification agenda automatically, such that the user will only have to supply
some intermediate properties and possibly assist the theorem prover during a proof
search.

14.2. Compositional Assume-Guarantee Reasoning

Ideally, compositional reasoning exploits the natural decomposition of a complex
system into simpler components, handling one component at a time. In practice,
however, when a component is verified it may be necessary to assume that the
environment behaves in a certain manner. If the other components in the system
guarantee this behavior, then we can conclude that the verified properties are valid
in the entire system. These properties can be used to deduce additional global
properties of the system.

The assume-guarantee paradigm (cf. e.g., [Pnueli 1984]) uses this method. Typi-
cally, a formula is a triple (¢)) M(p) where 9 and ¢ are temporal formulas and M
is a program. The formula is valid if whenever M is part of a system satisfying 1,
the system must also satisfy . A typical proof shows that (1)) M{p) and (T)M' (1))
hold and concludes that (T)M || M'(yp) is valid. This proof strategy can also be
expressed as an inference rule:

(LIM(p)
(MM Y)
(TIM | M (p)

The soundness of an assume-guarantee rule of this form is straightforward. A
more powerful form that also involves pure temporal reasoning is:

MODEL CHECKING 1499

(1) Ma{p1)
(2) Ma(p2)
SN Z B
NP2 = Y
p1 A2 = &
(E) M || M2(é2)

In the composed system M; || Ma, the module M, is part of the environment
of Mj and vice versa. My guarantees via 5 that the assumption ¢; of M; is met,
provided that its own assumption 1 holds. M, in turn, guarantees the assumption
of Ma, provided that its assumption holds.

As shown in [Pnueli 1984], careless application of this rule may lead to a circular
reasoning and, thus, may result in an erroneous conclusion. To avoid this, Pnueli
suggested associating a parameter over some well-founded set with each temporal
formula in the assume-guarantee rule. The rule then allows for a temporal for-
mula to be deduced only from formulas with smaller parameters. For an abstract
account of composition, see [Merz 1997]. Several tools have been developed that
permit this type of reasoning to be automated [Josko 1993, Long 1993, Grumberg
and Long 1994]. The tools provide a machinery for checking automatically the va-
lidity of formulas of the form () M({y). These tools, however, suffer from two main
deficiencies.

Firstly, they do not provide any mechanism to avoid or to locate circular reason-
ing. Thus, they count on the user “common sense” for correct application of the
method. An open problem is to develop an algorithm for checking non-circularity
in assume-guarantee reasoning. This could bridge the gap between the abstract
assume-guarantee paradigm and its computerized version.

Secondly, in order to obtain a powerful method, the preorder and the semantics
of the logics should both include a notion of fairness. This is essential for modelling
systems (hardware or communication protocols) at the appropriate level of abstrac-
tion. Unfortunately, no efficient technique exists to check or compute fair preorder
between models. In [Grumberg and Long 1994], it is suggested how to check the
fair preorder in some simple cases. In the general case, the problem is PSPACE-
hard [Kupferman and Vardi 1996]. A notion of fair preorder that, on the one hand,
is suitable for computerized assume-guarantee reasoning, and on the other hand,
can be checked efficiently, would make compositional reasoning less error prone and
could widen the applicability of this type of reasoning.

15. Further Topics

There are several extensions to each of the topics presented here, and in many areas
there is a lot of ongoing activity. Current research can be classified into two main
tracks:

¢ improve efficiency and applicability of present model checking techniques, and

1500 E. M. CLARKE AND H. SCHLINGLOFF

e extend the realm of application and merge model checking with other formal
methods.

A number of papers on industrial case studies, advanced heuristics, and improved

algorithms and data structures follows the first track. The second track encompasses

papers on model checking for infinite state systems, integration with simulation and

testing, as well as model checking for real-time, probabilistic and security related
applications.

15.1. Combination of Heuristics

Partial order techniques attempt to alleviate the state explosion problem by con-
structing a reduced state space to be searched by the model checking algorithm.
Originally introduced in the context of untimed models, they have been expanded
to handle real time systems [Yoneda and Schlingloff 1997, Sloan and Buy 1997]. In
turn, symbolic techniques have been applied to model checking for real-time sys-
tems. It seems to be a challenging task to combine the advantages of partial order
reduction with a symbolic representation for real-time system verification. One of
the intrinsic difficulties is that the partial order reduction, as described in section 11,
needs to have access to the search history, which is trivially implemented for explicit
state search but has no immediate correspondence in the symbolic case. Recent ad-
vances [Alur et al. 1997, Kurshan, Levin, Minea, Peled and Yenigun 1997] have
shown that this technique can be combined with symbolic model checking, which
in many cases allows much larger state spaces to be handled. One of these meth-
ods [Kurshan et al. 1997] allows partial order reduction to be performed statically,
by analyzing the state graph of each asynchronous system component. Existing
partial order methods for real-time models are dynamic in the sense that they use
timing information obtained during the state space search. However, probably a
significant part of the dependency information can be obtained statically as well,
making the combination with symbolic techniques possible [Minea 1999].

Partial order methods mostly have been investigated within the context of
(stutter-invariant) linear temporal logic model checking. The method reduces the
complex part of the model checking problem, namely the size of the model. The
tableau for an LTL specification is usually small. However, the state explosion prob-
lem is even more prevalent in the case of conformance checking and (bi-)simulation
between automata. A problem here is how to apply partial order reduction simul-
taneously to both models.

A key factor that affects the efficiency of partial order reduction is the number
of visible transitions, i.e., transitions that may change a predicate in the checked
property. With more and more complex specifications, the number of visible tran-
sitions increases and less reduction can be achieved. Some approaches to alleviate
this problem have been proposed in [Peled 1993]. One possibility is to take advan-
tage of the structure of the specification and rewrite it as a combination of simpler
properties. However, no optimal solution is known to date.

Other issues that are important in conjunction with the combination of heuris-

MODEL CHECKING 1501

tics are abstraction and compositionality. It is still unknown how the efficiency
improvement gained by symbolic representation and partial order analysis interact
with abstraction techniques and compositional reasoning. To be able to verify even
bigger systems, it is important to develop methods and tools that allow to combine
the benefits of several methods.

15.2. Real Time Systems

Within the last few years, several attempts have been made to apply formal analysis
methods also to real time systems. The ideas and techniques presented so far are
well-suited for the verification of systems in which only causal aspects of time are
important. In some applications it is desirable to consider quantitative aspects of
timing behavior. We say that a system has to satisfy hard real time constraints, if its
correctness depends on the value or progress of “the real” clock. In hard real-time
systems, not only the relative order of events is important, but also their absolute
duration with respect to a (conceptual) global clock. For example, in a traffic light
controller, it might not be sufficient to show that if a pedestrian pushes a button,
then eventually the green lights will be on. To allow approaching cars to pass, the
light should stay red after the button has been pushed for at least 10 seconds. To
avoid that pedestrians start crossing at red, it should also change not later than
30 seconds after the request. In this example, we assume that both the pedestrian
and the traffic light controller have the same measure of the duration of a second.
Of course, it is possible to model the global clock as separate concurrent part of
the system. Then this global clock synchronizes the local clocks of both pedestrian
and traffic light controller. Thus, it is possible to consider real-time verification as
special case of the untimed methods described above. However, in hard real-time
systems, global time is ubiquitous, therefore this approach may not be the most
efficient.

It is important to note that “hard real time” does not mean “as fast as possible”.
As the above example shows, predictability of timing behavior can also mean that
some events do not occur before a certain amount of time has elapsed. As another
example, consider a real-time protocol, where all necessary computation steps must
be performed in ezactly a fixed time slot. Currently, hard real time systems are
designed with trial and error: if a component is too fast, an idle waiting loop is
incorporated; if it is too slow, more expensive hardware is used. This procedure has
several disadvantages. Firstly, it can add intricate hardware-software dependencies
to a system. Therefore the migration to new hardware generations is complicated.
Secondly, the execution time of single statements can vary depending on input
data, nondeterministic scheduling, cache behavior, etc. Timing measurement can
not guarantee that the actual timing will be within required boundaries. Finally, in
applications like the design of asynchronous circuits, an arbitrary delay of signals
can be expensive.

In real time verification, clock values usually are assumed to be nonnegative real,
rational or natural numbers. As opposed to untimed systems, there is no gener-

1502 E. M. CLARKE AND H. SCHLINGLOFF

ally accepted representation of sets or regions of timing values. Common tools use
difference bound matrices [Dill 1989] and clock regions [Alur, Courcoubetis and
Dill 1990, Alur 1991] to represent timing constraints. Real time systems often are
modelled with timed automata [Alur 1998, Alur and Dill 1990] or timed transition
systems [Henzinger, Manna and Pnueli 1992]. For an overview on real time log-
ics and models, see [Alur and Henzinger 1992]. Reachability and model checking
algorithms for these models are given in [Alur et al. 1990]. Generally, the complex-
ity of verifying real-time systems is much higher than that for untimed systems.
Moreover, timing constructs are often represented using an explicit state represen-
tation. Consequently, the number of states that can be handled is relatively small
(105 — 107). Thus, at present, only highly abstracted examples (e.g., [Archer and
Heitmeyer 1996]) can be verified automatically by model checking tools like KrO-
NOS [Yovine 1997, Yovine 1998] or UpPAAL [Larsen, Petterson and Yi 1997, Aceto,
Bergueno and Larsen 1998].

It is a challenging research task to find a paradigm separating the real-time com-
ponent from the functional and reactive component in the specification of typical
real-time requirements. This could make model checking an integral component in
the development of reactive real-time systems.

15.3. Probabilistic Model Checking

Some safety-critical systems have a stochastic behavior. This may be either due
to the fact that some part of the outside world, which is stochastic in nature, is
modelled as part of the system, or because of hardware failures which may happen
stochastically. Available model checkers usually model the probabilistic behavior of
such systems non-deterministically, missing the ability to assess how probable some
system behavior is.

A number of theoretical papers have been written on probabilistic verification.
Efficient algorithms have been given by several authors; for example, there is an
LTL model checking algorithm which is exponential in the size of the formula and
polynomial in the size of the Markov chain [Courcoubetis and Yannakakis 1995].
However, currently there are no probabilistic model checking tools available which
can verify systems of realistic size. The bottleneck is the construction of the state
space and the necessity to solve huge systems of linear equations. A more efficient
alternative could be to perform the probability calculations using Multi-Terminal
Binary Decision Diagrams (MTBDDs).

MTBDDs [Bahar, Frohm, Gaona, Hachtel, Macii, Pardo and Somenzi 1993,
Clarke, Fujita, McGeer, Yang and Zhao 1993] differ from BDDs in that the leaves
may have values other than 0 and 1; in this case the leaves contain transition proba-
bilities. MTBDDs can be used to represent D—valued matrices efficiently. Consider
a 2™ x 2™-matrix A. Its elements a;;, can be viewed as the values of a func-
tion fa : {0,...2™ — 1} x {0,...2™ — 1} — D, where fa(i,j) = a;;. Using the
standard encoding ¢ : B™ — {0,...2™ — 1} of boolean sequences of length less
than m into the integers, this function may be interpreted as a D—valued boolean

MODEL CHECKING 1503

function f : B™ — D where f(z,y) = fa(c(z),c(y)) for x = (¢ ...Zm-1) and
¥ = (Yo---Ym—1)- This transformation now allows matrices to be represented as
MTBDDs. In order to obtain an efficient MTBDD-representation, the variables of f
are permuted. Instead of the MTBDD for f(zg---Zm_1,%0---Ym—_1), the MTBDD
obtained from f(xq, Yo, o, Y0, - - - Tm—1,Ym—1) can be used. This convention imposes
a recursive structure on the matrix from which efficient recursive algorithms for all
standard matrix operations can be derived.

MTBDDs can be integrated with a symbolic model checker and have the poten-
tial to outperform other matrix representations because they are very compact. For
example, in [Hachtel, Macii, Pardo and Somenzi 1996] symbolic algorithms were de-
veloped to perform steady-state probabilistic analysis for systems with finite state
models of more than 1027 states. While it is difficult to provide precise time com-
plexity estimates for probabilistic model checking using MTBDDs, the success of
BDDs in practice indicates that this is likely to be a worthwhile approach.

The standard model used in probabilistic model checking are finite state discrete-
time Markov chains ([Hansson and Jonsson 1989, Courcoubetis and Yannakakis
1995, Aziz, Singhal, Balarin, Brayton and Sangiovanni-Vincentelli 1995, Aziz, San-
wal, Singhal and Brayton 1996]). This model is a powerful notation for the depend-
ability analysis of fault-tolerant real-time control systems, performance analysis of
commercial computer systems and networks, and operation of automated manufac-
turing systems.

To specify properties of finite state discrete-time Markov chains, Probabilis-
tic Real Time Computation Tree Logic (PCTL) was introduced in [Hansson and
Jonsson 1989]. PCTL augments CTL with time and probability; it is a very ex-
pressive logic and offers simple model checking algorithms that can be implemented
using symbolic techniques in a straightforward manner [Baier, Clarke, Hartonas-
Garmhausen, Kwiatkowska and Ryan 1997].

However, in order to make model checking a standard method for probabilistic
verification, more experiences with industrial size examples, typical requirements
and efficient tools are necessary.

15.4. Model Checking for Security Protocols

Security protocols are another promising area for the application of model checking
techniques. The increasing amount of confidential information (such as monetary
transactions) sent over insecure communication links (such as the internet) requires
more and more sophisticated encryption protocols. Like hardware designs, these
protocols can have subtle bugs which are difficult to find. It may be possible to
use the same exhaustive search techniques as in model checking to verify security
protocols. By examining all possible execution traces of the protocol in the pres-
ence of a malicious adversary with well defined capabilities, it may be possible to
determine if an attack on the protocol could be successful.

Typically, security protocols can be thought of as a set of principals which send
messages to each other. The hope is that by requiring agents to produce a se-

1504 E. M. CLARKE AND H. SCHLINGLOFF

quence of formatted and encrypted messages, the security goals of the protocol can
be achieved. For example, if a principal A receives a message encrypted with a
key known only by principal B, then principal A should be able to conclude that
principal B created the message. However, it would be incorrect to conclude that
principal A is talking to principal B. An adversary could be replaying a message
overheard during a previous conversation between A and B. If the aim is to keep the
message secret, then as long as the adversary does not learn the key, this security
property is satisfied. If, however, the aim is to authenticate B to A, then clearly
this is not satisfied since the message was not necessarily sent by B.

Since the reasoning behind the correctness of these protocols can be sub-
tle, researchers have tried turning to formal methods to prove protocols correct.
In [Burrows, Abadi and Needham 1989], a logic of belief is developed in which one
could formally reason about security protocols by stating axioms about the protocol
and trying to derive theorems about its security. [Kindred and Wing 1996] added
some automation to this process by generating theory checkers for these logics.
In [Meadows 1994], a different approach is taken by modelling a security protocol
in terms of a set of rewrite rules. These rules capture the way that the adversary can
learn new information using encryption and decryption, and by receiving replies to
messages sent to participants of the protocol. In [Woo and Lam 1993], the authors
propose a model for authentication and provide a number of inference rules that
could be used for proving properties in this model. The paper [Mitchell, Mitchell
and Stern 1997] investigated the use of Muryp, a previously existing model checker,
for verifying security protocols.

A special purpose model checker for authentification protocols could contain two
orthogonal components. The first is a state exploration component. Each honest
agent can be described by the sequence of actions that it takes during a run of
the protocol, and can be viewed as a finite-state machine. A trace of the actions
performed by the asynchronous composition of these state machines corresponds
to a possible execution of the protocol by the agents. By performing an exhaustive
search of the state space of the composition, it can be determined if various security
properties are violated.

The second component would be the message derivation engine which is used
to model what the adversary is allowed to do. It can be implemented as a simple
natural deduction theorem prover for constructing valid messages. The adversary
can intercept messages, misdirect messages, and generate new messages using en-
cryption, decryption, concatenation (pairing), and projection. Each time a message
is sent, the adversary intercepts the message and adds it to the set of assumptions
it can use to derive new messages. Whenever an honest agent receives a message,
the message must have been generated by the derivation engine.

A first prototypical implementation shows that this framework can be success-
fully used to analyze threats and exhibit possible attacks in authentication proto-
cols. It is also general enough to handle other kinds of security protocols such as
key exchange and electronic commerce. Moreover, combining model checking with
other automated deduction techniques could make it possible to verify both the
encryption algorithm and the actual implementation at the same time. However,

MODEL CHECKING 1505

for a widespread use it is additionally necessary to integrate the model checking
approach with other, more well-established security design methods.

Acknowledgments

We would like to thank Wolfgang Heinle for help with initial versions of this chapter,
the editor for his patience with us during its preparation, and the referees for many
useful comments and suggestions.

1506 E. M. CLARKE AND H. SCHLINGLOFF
Bibliography

ABADI M., LAMPORT L. AND MERZ S. [1996], A TLA solution to the RPC—memory specification
problem, in M. Broy, S. Merz and K. Spies, eds, ‘Formal System Specification: The RPC-
Memory Specification Case Study’, Vol. 1169 of LNCS, Springer, pp. 21-66.

ACETO L., BERGUENO A. AND LARSEN K. [1998], Model checking via reachability testing for
timed automata, in B. Steffen, ed., ‘Proc. 4th Int. Workshop on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS ’98)’, Vol. 1384 of LNCS, Springer, Lisbon,
pp- 281-297.

AHO A. V., HOPCROFT J. E. AND ULLMAN J. D. [1974], The Design and Analysis of Computer
Algorithms, Addison—Wesley.

AJTAI M. AND GUREVICH Y. [1987], ‘Monotone versus positive’, Journal of the ACM 34, 1004—
1015.

ALPERN B. AND SCHNEIDER F. [1985], ‘Defining liveness’, Information Processing Letters 21, 181—
185.

ALUR R. [1991], Techniques for Automatic Verification of Real-Time Systems, PhD thesis, Stan-
ford University.

ALUR R. [1998], Timed automata, in ‘Verification of Digital and Hybrid Systems’, NATO ASI
Summer School Series, Springer.

ALUR R., BRAYTON R. K., HENZINGER T., QUADEER S. AND RAJAMANI S. K. [1997], Partial-
order reduction in symbolic state space exploration, in ‘Proc. 9th Int. Conf. on Computer
Aided Verification (CAV ’97)’, Vol. 1254 of LNCS, Springer, Haifa, Israel, pp. 340-351.

ALUR R., COURCOUBETIS C. AND DiLL D. [1990], Model-checking for real-time systems, in ‘Proc.
5th Ann. IEEE Symp. on Logic in Computer Science (LICS ’90)’, IEEE Comp. Soc. Press,
pp. 414-425.

ALUR R. AND DiLL D. [1990], Automata for modelling real-time systems, in ‘Proc. 17th Int.
Conf. on Automata, Languages and Programming (ICALP ’90)’, Vol. 443 of LNCS, Springer,
pp. 322-335.

ALUR R. AND HENZINGER T. A. [1992], Logics and models of real-time: A survey, in ‘Real-Time:
Theory in Practice’, LNCS, Springer.

ANDERSEN H. R. [1994], On model checking infinite—state systems, in A. Nerode and Matiya-
sevich, eds, ‘Logic at St. Petersburg. Symp. on Logical Foundations of Computer Science
(LFCS ’94)’, Vol. 813 of LNCS, Springer, St. Petersburg, Russia, July 11-14.

ANDERSEN H. R., STIRLING C. AND WINSKEL G. [1994], A compositional proof system for the
modal pg—calculus, in ‘Proc. 9th Ann. IEEE Symp. on Logic in Computer Science (LICS ’94)’,
IEEE Computer Society Press, Paris, France, pp. 144-153. BRICS Report RS—-94-34.

ANUCHITANUKUL A. [1995], Synthesis of Reactive Programs, PhD thesis, Stanford.

ARCHER M. AND HEITMEYER C. [1996], Mechanical verification of timed automata: A case study,
in ‘IEEE Real-Time Technology and Applications Symp. (RTAS’96)’, IEEE Computer Society
Press, Boston MA.

Az1z A., SANWAL K., SINGHAL V. AND BRrRAYTON R. K. [1996], Verifying continuous Markov
chains, in R. Alur and T. Henzinger, eds, ‘Proc. 8th Workshop on Computer Aided Verification
(CAV °96)’, Vol. 1102 of LNCS, Springer, pp. 269-276.

Az1z A., SINGHAL V., BALARIN F., BRAYTON R. K. AND SANGIOVANNI- VINCENTELLI A. L. [1995],
It usually works — the temporal logic of stochastic systems, in P. Wolper, ed., ‘Proc. 7th
Workshop on Computer Aided Verification (CAV ’95)’, Vol. 939 of LNCS, Springer, pp. 155—
166.

BaHAR R. 1., FROEM E. A., GaoNa C. M., HACHTEL G. D., Mac1 E., PARDO A. AND SOMENZI
F. [1993], Algebraic decision diagrams and their applications, in ‘Proc. Int. Conf. on Computer
Aided Design (ICCAD ’93)’, Santa Clara, pp. 188-191.

MODEL CHECKING 1507

BAIER C., CLARKE E. M., HARTONAS-GARMHAUSEN V., KWIATKOWSKA M. AND RYAN M. [1997],
Symbolic model checking for probabilistic processes, in ‘Proc. Int. Conf. on Automata, Lan-
guages and Programming (ICALP ’97))’, Vol. 1256 of LNCS, pp. 430-437.

BEN-ARI M., MANNA Z. AND PNUELI A. [1983], ‘The temporal logic of branching time’, Acta
Informatica 20, 207-226.

BENSALEM S., BOUAJANI A., LOISEAUX C. AND SIFAKIS J. [1992], Property preserving simula-
tions, in G. V. Bochmann and D. K. Probst, eds, ‘Proc. 4th Int. Conf. on Computer Aided
Verification (CAV ’92)’.

BEREZIN S., CLARKE E. M., JHA S. AND MARRERO W. [1996], Model checking algorithms for the
p—calculus, Technical Report CMU-CS-96-180, CMU.

BERMANN C. L. [1991], ‘Circuit width, register allocation and ordered binary decision diagrams’,
IEEE Trans. on Computer—Aided Design 10(8), 1059-1066.

BERN J., MEINEL C. AND SLOBODOVA A. [1995], Global rebuilding of BDDs — avoiding the
memory requirement maxima, in P. Wolper, ed., ‘Proc. 7th Workshop on Computer Aided
Verification (CAV ’95)’, Vol. 939 of LNCS, Springer, pp. 4-15.

BHAT G. AND CLEAVELAND R. [1996], Efficient local model checking for fragments of the modal pu—
calculus, in T. Margaria and B. Steffen, eds, ‘Proc. Tools and Algorithms for the Construction
and Analysis of Systems (TACAS ’96)’, Vol. 1055 of LNCS, Springer, pp. 107-126.

BIERE A. [1997], Effiziente Modellpriifung des u—Kalkiils mit bindren Entscheidungsdiagrammen,
PhD thesis, University of Karlsruhe, Germany.

BIERE A., CIMATTI A., FuiiTA M. AND ZHU Y. [1999], Symbolic model checking using SAT
procedures instead of BDDs, in ‘Proc. 36th ACM/IEEE Design Automation Conference (DAC
’99)°.

BIERE A., CIMATTI A. AND ZHU Y. [1999], Symbolic model checking without BDDs, in ‘Proc.
Tools and Algorithms for the Analysis and Construction of Systems (TACAS’99)’, Vol. 1579
of LNCS, Springer.

BiorNER N., BROWNE A., CHANG E., CoLéN M., KAPUR A., MANNA Z., SiMPA H. B. AND
URiBE T. E. [1995], STeP: The Stanford theorem prover — user’s manual, Technical Report
STAN-CS-TR-95-1562, Department of Computer Science, Stanford University.

BJORNER N., BROWNE A., CHANG E., CoLON M., KAPUR A., MANNA Z., STPMA H. B. AND URIBE
T. E. [1996], STeP: Deductive—algorithmic verification of reactive and real-time systems, in
‘Proc. 8th Workshop Computer Aided Verification (CAV ’96)’, Vol. 1102 of LNCS, Springer.

BLACKBURN P., DE RIJKE M. AND VENEMA Y. [2000], Modal Logic, Elsevier. draft, 395 pp.

BoIGELOT B. AND GODEFROID P. [1996], Symbolic verification of communication protocols with
infinite state spaces using qdds, in R. Alur and T. Henzinger, eds, ‘Proc. 8th Workshop on
Computer Aided Verification (CAV ’96)’, Vol. 1102 of LNCS, Springer, pp. 1-12.

BORALV A. [1997], The industrial success of verification tools based on stalmarck’s method, in
O. Grumberg, ed., ‘Proc. 9th Workshop on Computer Aided Verification (CAV ’97)’, Vol. 1254
of LNCS, Springer.

BRrRACE K. S., RUDELL R. L. AND BRYANT R. E. [1990], Efficient implementation of a BDD
package, in ‘Proc. 27th ACM/IEEE Design Automation Conference (DAC ’90)’, pp. 40-45.
BRADFIELD J. AND STIRLING C. [1991], Local model checking for infinite state spaces, in ‘Proc.

3rd Workshop on Computer Aided Verification (CAV ’91)’, LNCS, Springer.

BROWNE M. C. AND CLARKE E. M. [1986], SML: A high level language for the design and verifi-
cation of finite state machines, in ‘IFIP WG 10. 2 Int. Working Conf. from HDL Descriptions
to Guaranteed Correct Circuit Designs’, IFIP, Grenoble, France.

BrROWNE M. C., CLARKE E. M. AND DiLL D. [1985], Checking the correctness of sequential
circuits, in ‘Proc. 1985 Int. IEEE Conf. on Computer Design’, IEEE, Port Chester, New York.

BROWNE M. C., CLARKE E. M. AND DILL D. [1986], Automatic circuit verification using temporal
logic: Two new examples, in ‘Formal Aspects of VLSI Design’, Elsevier Science Publishers
(North Holland).

1508 E. M. CLARKE AND H. SCHLINGLOFF

BrROWNE M. C., CLARKE E. M. AND GRUMBERG O. [1988], ‘Characterizing finite Kripke struc-
tures in propositional temporal logic’, Theoretical Computer Science 59(1-2), 115-131.

BrOwWNE M. C., CLARKE E. M. AND GRUMBERG O. [1989], ‘Reasoning about networks with many
identical finite—state processes’, Information and Computation 81(1), 13-31.

BROWNE M., CLARKE E. M., DiLL D. AND MISHRA B. [1986], ‘Automatic verification of sequential
circuits using temporal logic’, IEEE Trans. on Computers C-35(12), 1035-1044.

BRYANT R. E. [1986], ‘Graph—based algorithms for Boolean function manipulation’, IEEE Trans.
on Computers C—35(8), 677-691.

BryanT R. E. [1991], ‘On the complexity of VLSI implementations and graph representations
of Boolean functions with application to integer multiplication’, IEEE Trans. on Computers
40(2), 205-213.

BryanT R. E. [1992], ‘Symbolic Boolean manipulation with ordered binary decision diagrams’,
ACM Computing Surveys 24(3), 293-317.

BtcHI J. R. [1962], On a decision method in restricted second order arithmetic, in ‘Proc. Int.
Congr. Logic, Method and Philosophy of Science 1960°, Stanford University Press, Palo Alto,
CA, USA, pp. 1-12.

BurcH J. R., CLARKE E. M., DL D., LoNGg D. E. AND McMILLAN K. L. [1994], ‘Symbolic
model checking for sequential circuit verification’, IEEE Trans. on Computer Aided Design
of Integrated Circuits 13(4), 401-424.

BurcH J. R., CLARKE E. M., GRUMBERG O., LoNG D. E. AND McMILLAN K. L. [1992], ‘Auto-
matic verification of sequential circuit designs’, Phil. Trans. R. Soc. Lond. A 339, 105-120.
BurcH J. R., CLARKE E. M. AND LoNG D. E. [1991a], Representing circuits more efficiently in
symbolic model checking, in ‘Proc. 28th ACM/IEEE Design Automation Conference (DAC

91).

BurcH J. R., CLARKE E. M. AND LoNG D. E. [1991b], Symbolic model checking with partitioned
transition relations, in A. Halaas and P. B. Denyer, eds, ‘Proc. Int. Conf. on Very Large Scale
Integration (VLSI 91)’, Edinburgh, Scotland.

BURCH J. R., CLARKE E. M., McMiLLAN K. L., DitL. D. AND HwaNG L. J. [1992], ‘Symbolic
model checking: 1020 states and beyond’, Information and Computation 98(2), 142-170. also
in 5th IEEE LICS 90.

BurcH J. R., CLARKE E. M., MCMILLAN K. L. AND D1LL D. L. [1990], Sequential circuit verifica-
tion using symbolic model checking, in ‘Proc. 27th ACM/IEEE Design Automation Conference
(DAC ’90).

BURGESS J. [1984], Basic tense logic, in F. G. D. Gabbay, ed., ‘Handbook of Philosophical Logic’,
Reidel, chapter II. 2, pp. 89-134.

BURKART O. AND EspPARzA J. [1997], ‘More infinite results’, Electronic Notes in Theoretical
Computer Science 6. http://www. elsevier. nl/locate/entcs/volume6. html.

BurrOWS M., ABADI M. AND NEEDHAM R. [1989], A logic of authentication, Technical Report 39,
DEC Systems Research Center.

BURSTALL M. [1974], Program proving as hand simulation with a little induction, in ‘Proc. IFIP
Congress, Stockholm’, North Holland, pp. 308-312.

CHANDRA A. AND HAREL D. [1980], ‘Computable queries for relational databases’, J. of Computer
and System Sciences 21, 156-178.

CLARKE E. M. AND DRAGHICESCU I. A. [1988], Expressibility results for linear time and branching
time logics, in ‘Linear Time, Branching Time and Partial Order in Logics and Models for
Concurrency’, Vol. 354 of LNCS, Springer, pp. 428-437.

CLARKE E. M., DRAGHICESCU I. A. AND KURSHAN R. P. [1990], A unified approach for showing
language containment and equivalence between various types of w—automata, in A. Arnold
and N. D. Jones, eds, ‘Proc. 15th Coll. on Trees in Algebra and Programming’, Vol. 407 of
LNCS, Springer.

MODEL CHECKING 1509

CLARKE E. M. AND EMERSON E. A. [1981], Synthesis of synchronization skeletons for branching
time temporal logic, in ‘Proc. Workshop on Logic of Programs’, Vol. 131 of LNCS, Springer,
Yorktown Heights, NY.

CLARKE E. M., EMERSON E. A. AND SIsTLA A. P. [1986], ‘Automatic verification of finite-state
concurrent systems using temporal logic specifications’, ACM Transactions on Programming
Languages and Systems 8(2), 244-263.

CLARKE E. M., FILKORN T. AND JHA S. [1993], Exploiting symmetry in temporal logic model
checking, in C. Courcoubetis, ed., ‘Proc. 5th Workshop on Computer Aided Verification (CAV
’93)’, Vol. 697 of LNCS, Springer, Elounda, Crete.

CLARKE E. M., FusiTA M. AND HEINLE W. [1997], Hybrid spectral transform diagrams, in ‘Proc.
1st Int. Conf. on Information, Communications and Signal Processing (ICICS ’97)’.

CLARKE E. M., FujitA M., MCGEER P., YANG J. AND ZHAO X. [1993], Multi-terminal binary de-
cision diagrams: An efficient data structure for matrix representation, in ‘Proc. Int. Workshop
on Logic Synthesis (IWLS ’93)’, Tahoe City.

CLARKE E. M., FusiITA M. AND ZHAO X. [1995], Hybrid decision diagrams —- overcoming the
limitations of MTBDDs and BMDs, in ‘Proc. IEEE Int. Conf. on Computer Aided Design
(ICCAD *95)’, IEEE Computer Society Press, pp. 54-60.

CLARKE E. M., FujitA M. AND ZHAO X. [1996], Multi-terminal binary decision diagrams and
hybrid decision diagrams, in T. Sasao and M. Fujita, eds, ‘Representations of Discrete Func-
tions’, Kluwer academic publishers, chapter 4, pp. 93-108.

CLARKE E. M. AND GRUMBERG O. [1987a], Avoiding the state explosion problem in tempo-
ral model checking algorithms, in ‘Proc. 6th Ann. ACM Symp. on Principles of Distributed
Computing’, pp. 294-303.

CLARKE E. M. AND GRUMBERG O. [1987b], Research on automatic verification of finite-state
concurrent systems, Technical Report CMU-CS-87-105, Carnegie Mellon University.

CLARKE E. M., GRUMBERG O. AND BROWNE M. C. [1986], Reasoning about networks with many
identical finite-state processes, in ‘Proc. 5th Ann. ACM Symp. on Principles of Distributed
Computing’, ACM, pp. 240-248.

CLARKE E. M., GRUMBERG O. AND HAMAGUCHI K. [1997], ‘Another look at LTL model checking’,
Formal Methods in System Design 10, 47-71.

CLARKE E. M., GRUMBERG O., HiraisHI H., JHA S., LoNG D. E., McMILLAN K. L. AND NESS
L. A. [1993], Verification of the Futurebus+ cache coherence protocol, in L. Claesen, ed.,
‘Proc. 11th Int. Symp. on Computer Hardware Description Languages and their Applications’,
North—Holland.

CLARKE E. M., GRUMBERG O. AND JHA S. [1995], Parametrized networks, in S. Smolka and
I. Lee, eds, ‘Proc. 6th Int. Conf. on Concurrency Theory (CONCUR ’95)’, Vol. 962 of LNCS,
Springer.

CLARKE E. M., GRUMBERG O. AND LoNG D. E. [1993], Model checking, in M. Broy, ed., ‘De-
ductive Program Design’, Springer NATO ASI series F, pp. 305-350.

CLARKE E. M., GRUMBERG O. AND LoNG D. E. [1994a], ‘Model checking and abstraction’, ACM
Transactions on Programming Languages and Systems 16(5), 1512-1542. also in 19th ACM
POPL ’92.

CLARKE E. M., GRUMBERG O. AND LoNG D. E. [1994b], Verification tools for finite-state con-
current systems, in J. W. de Bakker, W. P. de Roever and G. Rozenberg, eds, ‘A Decade of
Concurrency — Reflections and Perspectives’, Vol. 803 of LNCS, Springer, pp. 124-175. REX
School/Symposium, Nordwijkerhout, The Netherlands, June 1993.

CLARKE E. M., GRUMBERG O., MCMILLAN K. AND ZHAO X. [1994], Efficient generation of
counterexamples and witnesses in symbolic model checking, Technical Report CMU—-CS—-94-
204, Carnegie Mellon University, Pittsburgh.

CLARKE E. M., GRUMBERG O., MINEA M. AND PELED D. [1999], ‘State space reductions using
partial order techniques’, Int. Journal on Software Tools for Technology Transfer . to appear.

CLARKE E. M., GRUMBERG O. AND PELED D. [1999], Model Checking, MIT Press, Boston, MA.

1510 E. M. CLARKE AND H. SCHLINGLOFF

CLARKE E. M., JHA S., LU Y. AND MINEA M. [1997], Equivalence checking using abstract BDDs.
manuscript.

CLARKE E. M., KHAIRA K. AND ZHAO X. [1993], Word level model checking — a new approach
for verifying arithmetic circuits, in ‘Proc. 30th ACM/IEEE Design Automation Conference
(DAC ’93)’, IEEE Computer society press.

CLARKE E. M., Kmmura S., Long D. E., MicHAYLOV S., SCHWAB S. A. AND VIDAL J. P.
[1992], Symbolic computation algorithms on shared memory multiprocessors, in N. Suzuki,
ed., ‘Shared Memory Multiprocessing’, MIT Press, pp. 53-80.

CLARKE E. M., LonG D. E. AND McMiLLaN K. L. [1989], Compositional model checking, in
‘Proc. 4th Ann. IEEE Symp. on Logic in Computer Science (LICS ’89)’, Asilomar, Calif.
CLARKE E. M., Long D. E. AND McMILLAN K. L. [1991], ‘A language for compositional speci-
fication and verification of finite state hardware controllers’, Proc. IEEE T79(9), 1283-1292.
CLARKE E. M., McMiLLAN K. L., ZHAO X., FUJITA M. AND YANG J. [1993], Spectral trans-
forms for large Boolean functions with applications to technology mapping, in ‘Proc. 30th
ACM/IEEE Design Automation Conference (DAC ’93)’, IEEE Computer Society Press,

pp. 54-60.

CLARKE E. M. AND MiSHRA B. [1984], Automatic verification of asynchronous circuits, in ‘Proc.
Workshop on Logics of Programs’, Vol. 164 of LNCS, Springer, pp. 101-115.

CLARKE E. M. AND ZHAO X. [1994], Combining symbolic computation and theorem proving:
some problems of Ramanujan, in A. Bundy, ed., ‘12th Int. Conf. on Automated Deduction
(CADE °94)’, Vol. 814 of LNCS, Springer, Nancy, France, pp. 758-763.

CLEAVELAND R. [1990], ‘Tableau-based model checking in the propositional u—calculus’, Acta
Informatica 27(8), 725-747.

CLEAVELAND R. AND STEFFEN B. [1993], ‘A linear-time model—-checking algorithm for the
alternation—free modal u—calculus’, Formal Methods in System Design 2(2), 121-147.

CoURCOUBETIS C., VARDI M. Y., WOLPER P. AND YANNAKAKIS M. [1992], ‘Memory efficient
algorithms for the verification of temporal properties’, Formal Methods in System Design
1, 275-288.

COURCOUBETIS C. AND YANNAKAKIS M. [1995], ‘The complexity of probabilistic verification’,
Journal of the ACM 42(4), 857-907.

Cousor P. AND CousoT R. [1977], Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints, in ‘Proc. 4th Ann. ACM
Symp. on Principles of Programming Languages (POPL *77)’.

Cousot P. anp CousoT R. [1979], Systematic design of program analysis frameworks, in ‘Proc.
6th Ann. ACM Symp. on Principles of Programming Languages (POPL ’79)’.

Dam M. [1994], ‘CTL* and ECTL* as fragments of the modal p—calculus’, Theoretical Computer
Science 126, 77-96.

DAM M. [1995], Compositional proof systems for model checking infinite state processes, in ‘Proc.
6th Int. Conf. on Concurrency Theory (CONCUR ’95)’, Vol. 962 of LN CS, Springer, pp. 12-26.

Dawms D. [1995], Abstract interpretation and partition refinement for model checking, PhD thesis,
Technical University Eindhoven.

Dawms D., GRUMBERG O. AND GERTH R. [1994], Abstract interpretation of reactive systems:
Abstractions preserving VCTL*, 3CTL* and CTL*, in E.-R. Olderog, ed., ‘Programming
Concepts, Methods and Calculi (PROCOMET °94)’, IFIP Transactions, North Holland /
Elsevier, Amsterdam, pp. 561 — 581.

DAavEY A. A. AND PRIESTLEY H. A. [1990], Introduction to Lattices and Order, Cambridge
Mathematical Textbooks, Cambridge University Press.

DAWAR A., LINDELL S. AND WEINSTEIN S. [1996], First order logic, fixed point logic and linear
order, in H. Kleine-Biining, ed., ‘Proc. Computer Science Logic (CSL ’95)’, Vol. 1092 of LNCS,
Springer, pp. 161-177.

DEROEVER, W., LANGMAACK, H. AND PNUELI, A., EDS [1998], Compositionality: The Significant
Difference, Vol. 1536 of LNCS, Springer.

MODEL CHECKING 1511

DL D. [1989], Timing assumptions and verification of finite-state concurrent systems, in
J. Sifakis, ed., ‘Proc. Int. Workshop on Automatic Verification Methods for Finite State Sys-
tems’, Vol. 407 of LNCS, Springer, Grenoble, France, pp. 197-212.

DL D. L. AND CLARKE E. M. [1986], ‘Automatic verification of asynchronous circuits using
temporal logic’, IEEE Proceedings 133(5).

DINGEL J. AND FILKORN T. [1995], Model checking for infinite state systems using data ab-
straction, assumption—commitment style reasoning and theorem proving, in P. Wolper, ed.,
‘Proc. 7th Workshop on Computer Aided Verification (CAV ’95)’, Vol. 939 of LNCS, Springer,
pp. 45-69.

EDELKAMP S. AND REFFEL F. [1998], OBDDs in heuristic search, in O. Herzog and A. Giinter,
eds, ‘Proc. KI-98: Advances in Artificial Intelligence’, Vol. 1504 of LNCS/LNAI, Springer,
pp- 81-92.

EHRENFEUCHT A. [1961], ‘An application of games to the completeness problem for formalized
theories’, Fund. Math. 49, 129-141.

EMERSON E. A. [1985], Automata, tableaux, and temporal logic, in R. Parikh, ed., ‘Proc. Int.
Conf. on Logics of Programs’, Vol. 193 of LNCS, Springer, pp. 79-88.

EMERSON E. A. [1990], Temporal and modal logic, in J. van Leeuwen, ed., ‘Handbook of Theo-
retical Computer Science’, Vol. B, Elsevier, pp. 997-1072.

EMERSON E. A. AND CLARKE E. M. [1980], Characterizing correctness properties of parallel
programs using fixpoints, in ‘Proc. 17th Int. Coll. on Automata, Languages and Programming
(ICALP ’80)’, Vol. 85 of LNCS, EATCS, Springer, pp. 169-181.

EMERSON E. A. AND CLARKE E. M. [1982], ‘Using branching time logic to synthesize synchro-
nization skeletons’, Science of Computer Programming 2, 241-266.

EMERSON E. A. AND HALPERN J. Y. [1985], ‘Decision procedures and expressiveness in the
temporal logic of branching time’, Journal of Computer and System Sciences 30(1), 1-24.
EMERSON E. A. AND HALPERN J. Y. [1986], “‘sometimes” and “not never” revisited: on branching

time vs. linear time’, Journal of the ACM 33, 151-178.

EMERSON E. A., JutLa C. S. AND SISTLA A. P. [1993], On model-checking for fragments of
p—calculus, in C. Courcoubetis, ed., ‘Proc. 5th Workshop on Computer Aided Verification
(CAV 93)’, Vol. 697 of LNCS, Springer.

EMERSON E. A. aAND LEI C. L. [1985], Modalities for model checking: Branching time strikes back,
in ‘Proc. 12th Symp. on Principles of Programming Languages (POPL ’85)’, New Orleans,
La.

EMERSON E. A. aND LEI C. L. [1986], Efficient model checking in fragments of the propositional
u—calculus, in ‘Proc. 1st Symp. on Logic in Computer Science (LICS ’86)’, Boston, Mass.
EMERSON E. A. AND SISTLA A. P. [1984], ‘Deciding full branching time logic’, Information and

Control 61, 175-201.

EMERSON E. A. AND SISTLA A. P. [1993], Symmetry and model checking, in C. Courcoubetis,
ed., ‘Proc. 5th Workshop on Computer Aided Verification (CAV ’93)’, Vol. 697 of LNCS,
Springer, Elounda, Crete.

ENDERS R., FILKORN T. AND TAUBNER D. [1993], ‘Generating BDDs for symbolic model check-
ing’, Distributed Computing 6, 155-164.

EsparzA J. [1994], ‘Model checking using net unfoldings’, Science of Computer Programming
23(2-3), 151-195.

FeLr E., YORK G., BRAYTON R. AND VINCENTELLI A. S. [1993], Dynamic variable reordering
for BDD minimization, in ‘Proc. European Design Automation Conference (EuroDAC ’93)’,
pp. 130-135.

FiscHER M. J. AND LADNER R. E. [1979], ‘Propositional dynamic logic of regular programs’,
Journal of Computer and System Sciences 18(2), 194-211.

FrrTing M. [1983], Proof methods for modal and intuitionistic logics, Reidel, Dordrecht.

FrAIsst R. [1954], Sur quelques classifications des systemes de relations, Séries A 1, Publications
Scientifiques de ’Universit‘e d’Algerie.

1512 E. M. CLARKE AND H. SCHLINGLOFF

FRANCEZ N. [1986], Fairness, Text and Monographs in Computer Science, Springer.

Fui1 H., Ooromo G. AND Hori C. [1993], Interleaving based variable ordering methods for
ordered binary decision diagrams, in ‘Proc. Int. Conf. on Computer Aided Design (ICCAD
'93)’, IEEE.

GABBAY D. [1989], The declarative past and imperative future: Executable temporal logic for
interactive systems, in B. Baniegbal, ed., ‘Temporal Logic in Specification’, Vol. 398 of LNCS,
Springer, pp. 431-448.

GABBAY D., HODKINSON I. AND REYNOLDS M. [1994], Temporal Logic: Mathematical Foundations
and Computational Aspects, Vol. 1, Clarendon Press, Oxford.

GABBAY D., PNUELI A., SHELAH S. AND STAvI J. [1980], On the temporal analysis of fairness, in
‘Proc. 7th ACM Symp. on Principles of Programming Languages (POPL ’80)’, pp. 163-173.

GERMAN S. M. AND SISTLA A. P. [1992], ‘Reasoning about systems with many processes’, Journal
of the ACM 39, 675-735.

GERTH R., KUIPER R., PELED D. AND PENCZEK W. [1995], A partial order approach to branching
time logic model checking, in ‘Proc. 3rd Israel Symp. on the Theory of Computing and Systems
(ISTCS *95)’, IEEE Computer Society Press, pp. 130-140.

GODEFROID P. [1990], Using partial orders to improve automatic verification methods, in ‘Proc.
2nd Workshop on Computer Aided Verification (CAV ’90)’, Vol. 531 of LNCS, Springer,
Rutgers, New Brunswick, pp. 176-185.

GODEFROID P., HOLZMANN G. J. AND PIROTTIN D. [1995], ‘State—space caching revisited’, Formal
Methods in System Design 7(3), 1-15.

GODEFROID P. AND LoNG D. E. [1996], Symbolic protocol verification with queue BDDs, in
‘Proc. 11th Ann. IEEE Symp. on Logic in Computer Science (LICS ’96)’, New Brunswick.
GODEFROID P. AND PIROTTIN D. [1993], Refining dependencies improves partial-order verification
methods, in ‘Proc. 5th Workshop on Computer Aided Verification (CAV ’93)’, Vol. 697 of

LNCS, Springer, Elounda, Crete, pp. 438-449.

GODEFROID P. AND WOLPER P. [1991], A partial approach to model checking, in ‘Proc. 6th Ann.
IEEE Symp. on Logic in Computer Science (LICS ’91)’, Amsterdam, pp. 406-415.

GRAF S. AND STEFFEN B. [1990], Compositional minimization of finite state processes, in R. Kur-
shan and E. M. Clarke, eds, ‘Proc. 2nd Workshop on Computer Aided Verification (CAV ’90)’,
Vol. 3 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Amer-
ican Mathematical Society. Also in Springer LNCS 531.

GRUMBERG O. AND LONG D. E. [1994], ‘Model checking and modular verification’, ACM Trans-
actions on Programming Languages and Systems 16, 843-872.

GUNTER C. A. AND ScoTT D. S. [1990], Semantic domains, in J. van Leeuwen, ed., ‘Handbook
of Theoretical Computer Science’, Vol. B, Elsevier, pp. 633—-674.

GUREVICH Y. AND SHELAH S. [1986], ‘Fixed—point extensions of first—order logic’, Annals of Pure
and Applied Logic 32, 265-280.

GuRov D., BEREZIN S. AND KAPRON B. M. [1996], A modal y—calculus and a proof system for
value passing processes, in ‘Proc. Int. Workshop on Verification of Infinite State Systems (IN-
FINITY ’96)’, Electronic Notes in Theoretical Computer Science, Pisa, pp. 149-163. Report,
University of Passau, MIP-9614 July 1996.

HACHTEL G. D., MacI E., PARDO A. AND SOMENzI F. [1996], ‘Markovian analysis of large finite
state machines’, IEEE Transactions on Computer—Aided Design of Integrated Circuits and
Systems 15(12), 1479-1493.

HanssoN H. AND JONSSON B. [1989], A framework for reasoning about time and reliability, in
‘Proc. 10th IEEE Real-Time Systems Symp.’, pp. 102-111.

HAREL D. [1984], Dynamic logic, in F. G. D. Gabbay, ed., ‘Handbook of Philosophical Logic’,
Reidel, chapter II. 10, pp. 488-604.

HAREL D. AND PNUELI A. [1985], On the development of reactive systems, in K. R. Apt, ed.,
‘Logics and Models of Concurrent Systems’, Vol. F13 of NATO ASI Series, Springer, pp. 477—
498.

MODEL CHECKING 1513

HAR'EL Z. AND KURSHAN R. P. [1990], ‘Software for analytical development of communications
protocols’, AT&T Tech. J. 69(1), 45-59.

HENZINGER T., MANNA Z. AND PNUELI A. [1992], Timed transition systems, Technical Report
TR 92-1263, Dept. of CS, Cornell Univ.

HoLzMANN G. [1991], Design and Validation of Computer Protocols, Software Series, Prentice
Hall.

HoLzMANN G. [1995], An analysis of bitstate hashing, in ‘Proc. 15th Int. Conf. on Protocol
Specification, Testing and Verification’, INWG/IFIP, Chapman and Hall, Warsaw, pp. 301—
314.

HopcROFT J. E. AND ULLMAN J. D. [1979], Introduction to Automata Theory, Languages, and
Computation, Addison-Wesley.

HugHES G. E. AND CRESSWELL M. J. [1977], An Introduction to Modal Logic, Methuen.

IEEE [1994], IEEE Standard for the Futurebus+ Logical Protocol Specification, IEEE Computer
Society. IEEE Standard 896. 1, 1994 Edition.

IMMERMAN N. [1986], ‘Relational queries computable in polynomial time’, Information and Con-
trol 68, 86—104.

Ip C. W. AND DiLL D. [1993], Better verification through symmetry, in L. Claesen, ed., ‘Proc. 11th
Int. Symp. on Computer Hardware Description Languages and their Applications’, North—
Holland.

JANIN D. AND WALUKIEWICZ 1. [1996], On the expressive completeness of the propositional u—
calculus with respect to monadic second order logic, in ‘Proc. 7th Int. Conf. on Concurrency
Theory (CONCUR ’96)’°, Vol. 1119 of LNCS, Springer, Pisa, Italy.

Josko B. [1993], ‘Modular specification and verification of reactive systems’, Habilitationsschrift,
University of Oldenburg.

Kamp H. W. [1968], Tense Logic and the Theory of Linear Order, PhD thesis, Univ. of Calif. ,
Los Angeles.

KANNAN R. AND LIPTON R. J. [1986], ‘Polynomial-time algorithm for the orbit problem’, Journal
of the ACM 33(4), 808-821.

Karz S. AND PELED D. [1988], An efficient verification method for parallel and distributed
programs, in deBakker et al., ed., ‘Linear Time, Branching Time and Partial Order in Logics
and Models for Concurrency’, Vol. 354 of LNCS, Springer.

KESTEN Y. AND PNUELI A. [1995], A complete axiomatization of qptl, in ‘Proc. 10th Ann. IEEE
Symp. on Logic in Computer Science (LICS ’95)’, pp. 2-12.

KIMURA S. [1995], Residue BDD and its application to the verification of arithmetic circuits, in
‘Proc. 32nd Int. Design Automation Conference (DAC ’95)’.

KINDRED D. AND WING J. M. [1996], Fast, automatic checking of security protocols, in ‘USENIX
2nd Workshop on Electronic Commerce’.

KozeN D. [1983], ‘Results on the propositional y—calculus’, Theoretical Computer Science
27, 333-354.

KozeEN D. AND PARIKH R. [1983], A decision procedure for the propositional p—calculus, in ‘Proc.
Int. Symp. Logic of Programs’.

KozeEN D. AND TIURYN J. [1990], Logics of programs, in J. van Leeuwen, ed., ‘Handbook of
Theoretical Computer Science’, Vol. B, Elsevier, pp. 791-839.

KRIPKE S. A. [1963], ‘Semantical considerations on modal logic’, Acta Philosophica Fennica
16, 83-94.

KRIPKE S. A. [1975], ‘Outline of a theory of truth’, Journal of Philosophy 72, 690-716.

KROGER F. [1978], A uniform logical basis for the description, specification and verification of
programs, in ‘Proc. IFIP Work. Conf. Formal Desription of Programming Concepts’, North
Holland, St. Andrews, Canada, pp. 441-457.

KROGER F. [1987], Temporal logic of Programs, number 8 in ‘EATCS monographs on TCS’,
Springer.

1514 E. M. CLARKE AND H. SCHLINGLOFF

KUPFERMAN O. AND VARDI M. Y. [1996], Verification of fair transition systems, in R. Alur and
T. Henzinger, eds, ‘Proc. 8th Workshop on Computer Aided Verification (CAV ’96)’, Vol. 1102
of LNCS, Springer, pp. 372-382.

KURSHAN R. P. [1989], Analysis of discrete event coordination, in J. W. de Bakker, W. P.
de Roever and G. Rozenberg, eds, ‘Proc. REX Workshop on Stepwise Refinement of Dis-
tributed Systems, Models, Formalisms, Correctness’, Vol. 430 of LNCS, Springer.

KUrsHAN R. P. [1994], Computer—Aided Verification of Coordinating Processes: The Automata—
Theoretic Approach, Princeton University Press, Princeton, New Jersey.

KURsHAN R. P., LEVIN V., MINEA M., PELED D. AND YENIGUN H. [1997], Verifying hardware
in its software context, in ‘Proc. Int. Conf. on Computer Aided Design (ICCAD ’97)’, IEEE,
San Jose, CA, USA.

KURSHAN R. P. AND McMILLAN K. L. [1989], A structural induction theorem for processes, in
‘Proc. 8h Ann. ACM Symp. on Principles of Distributed Computing’, ACM Press.

LAMPORT L. [1980], “sometimes” is sometimes “not never”, in ‘Proc. 7th Ann. ACM Symp. on
Principles of Programming Languages (POPL ’80)’, ACM, Las Vegas, pp. 174-185.

LaMPORT L. [1983], What good is temporal logic?, in ‘Proc. IFIP’, pp. 657—668.

LARSEN K., PETTERSON P. AND YI W. [1997], ‘Uppaal in a nutshell’, Software Tools for Tech-
nology Transfer 1(1/2).

LEHMANN D., PNUELI A. AND Stavl J. [1981], Impartiality, justice, and fairness: The ethics
of concurrent termination, in ‘Proc. Int. Conf. on Automata, Languages, and Programming
(ICALP ’81)’, Vol. 115 of LNCS, Springer.

Lewis C. I. [1912], ‘Implication and the algebra of logic’, Mind 21, 522-531.

LICHTENSTEIN O. AND PNUELI A. [1985], Checking that finite state concurrent programs satisfy
their linear specification, in ‘Proc. 12th Ann. ACM Symp. on Principles of Programming
Languages (POPL ’85)’, ACM press, New Orleans, La.

L1CHTENSTEIN O., PNUELI A. AND ZUCK L. [1985], The glory of the past, in ‘Proc. Int. Conf.
Logics of Programs’, Vol. 193 of LNCS, Springer, pp. 196-218.

Loiseaux C., GRAF S., SIFAKIS J., BOUAJJANI A. AND BENSALEM S. [1995], ‘Property preserving
abstractions for the verification of concurrent systems’, Formal Methods in System Design
6(1), 11-44. also in CAV ’92, LNCS 663.

Long D. E. [1993], Model Checking, Abstraction and Compositional Verification, PhD thesis,
CMU School of Computer Science, CMU-CS-93-178.

LonG D. E., BROWNE A., CLARKE E. M., JHA S. AND MARRERO W. R. [1994], An improved
algorithm for the evaluation of fixpoint expressions, in ‘Proc. 6th Workshop on Computer
Aided Verification (CAV ’94)’, LNCS, Springer, pp. 338-350.

MADER A. [1992], Tableau recycling, in ‘Proc. 4th Workshop on Computer Aided Verification
(CAV ’92)’, LNCS, Springer.

MANNA Z. AND PNUELI A. [1981], “Verification of concurrent programs: The temporal framework’.

MANNA Z. AND PNUELI A. [19824], Verification of concurrent programs: Temporal proof princi-
ples, in D. Kozen, ed., ‘Proc. Workshop on Logics of Programs’, Vol. 131 of LNCS, Springer,
pp. 200-252.

MANNA Z. AND PNUELI A. [1982b], Verification of concurrent programs: The temporal framework,
in R. S. Boyer and J. S. Moore, eds, ‘The Correctness Problem in Computer Science’, Academic
Press, London, pp. 215-273.

MANNA Z. AND PNUELI A. [1987], A hierarchy of temporal properties, in ‘Proc. 6th Ann. ACM
Symp. on Principles of Distributed Computing’, Stanford University Press, Stanford, CA
94305.

MANNA Z. AND PNUELI A. [1989], The anchored version of the temporal framework, in ‘Linear
Time, Branching Time and Partial Order in Logics and Models for Concurrency’, Vol. 354 of
LNCS, Springer, pp. 201-284.

MANNA Z. AND PNUELL A. [1992], The Temporal Logic of Reactive and Concurrent Systems —
Specification, Springer.

MODEL CHECKING 1515

MANNA Z. AND PNUELI A. [1995], Temporal Verifications of Reactive Systems — Safety, Springer.

MARELLY R. AND GRUMBERG O. [1991], Gormel — grammar oriented model checker, Technical
Report 697, The Technion.

McMIiLLAN K. [1992], Using unfoldings to avoid the state space explosion problem in the ver-
ification of asynchronous circuits, in ‘Proc. 4th Workshop on Computer Aided Verification’,
Vol. 663 of LNCS, Springer, Montreal, Canada, pp. 164-177.

McMILLAN K. L. [1993], Symbolic Model Checking, Kluwer Academic Publishers.

McMiILLAN K. L. AND SCHWALBE J. [1992], Formal verification of the Encore Gigamax cache
consistency protocol, in N. Suzuki, ed., ‘Proc. Int. Symp. on Shared Memory Multiprocessing’,
MIT Press, pp. 111-134.

Meapows C. [1994], The NRL protocol analyzer: An overview, in ‘Proc. 2nd Int. Conf. on the
Practical Applications of Prolog’.

MERZ S. [1997], Abstraction as a proof rule, Technical report, Universitdt Miinchen.

MILNER R. [1980], A Calculus of Communicating Systems, Vol. 92 of LNCS, Springer.

MINEA M. [1999], Partial order reduction for model checking of timed automata, in ‘Proc. Concur
99’, LNCS, Springer.

MisHRA B. AND CLARKE E. M. [1985], ‘Hierarchical verification of asynchonous circuits using
temporal logic’, Theoretical computer science 38, 269-291.

MiTcHELL J. C., MITCHELL M. AND STERN U. [1997], Automated analysis of cryptographic
protocols using Mury, in ‘Proc. 1997 IEEE Symp. on Security and Privacy’, IEEE Computer
Society Press.

MOORE J. S. [1994], ‘Introduction to OBDD algorithm for the ATP community’, Journal of
automated reasoning 12, 33-45.

NiwiNsKY D. [1988], Fixed points vs. infinite generation, in ‘Proc. 3rd Ann. IEEE Symp. on
Logic in Computer Science (LICS ’88)’, pp. 402-409.

Nowickl J. R. AND ApaMm L. J. [1990], Digital Circuits, Edward Arnold.

PAIGE R. AND TARJAN R. [1987], ‘“Three efficient algorithms based on partition refinement’, STAM
journal on computing 16(6).

PArk D. M. [1974], Finiteness is mu-ineffable, Theory of Computation Report 3, University of
Warwick.

PArk D. M. [1981], Concurrency and automata on infinite sequences, in P. Deussen, ed., ‘Theo-
retical Computer Science: 5th GI-Conference, Karlsruhe’, Vol. 104 of LNCS, Springer, pp. 167—
183.

PELED D. [1993], All from one, one for all: on model checking using representatives, in C. Courcou-
betis, ed., ‘Proc. 5th Workshop Computer Aided Verification (CAV ’93)’, Vol. 697, Springer,
Elounda, Crete.

PELED D. AND WILKE T. [1997], ‘Stutter—invariant temporal properties are expressible without
the nexttime operator’, Information Processing Letters .

PNUELL A. [1977], The temporal logic of programs, in ‘Proc. 18th Ann. IEEE Symp. on Found.
of Comp. Science (FOCS ’77)’, pp. 46-57.

PNUELI A. [1981], ‘The temporal semantics of concurrent programs’, Theoretical Computer Sci-
ence 13, 45-60.

PNUELI A. [1984], In transition from global to modular temporal reasoning about programs, in
K. R. Apt, ed., ‘Logics and Models of Concurrent Systems’, Vol. 13 of NATO ASI series,
Springer.

PrATT V. [1976], Semantical considerations on Floyd-Hoare logic, in ‘Proc. 17th IEEE Symp.
on Foundations of Comp. Sci. (FOCS’76)’, pp. 109-121.

PRATT V. [1981], A decidable p—calculus, in ‘Proc. Ann. ACM Symp. on Foundations of Com-
puter Science (FOCS ’81).

PRIOR A. [1967], Past, Present and Future, Clarendon Press, Oxford.

PrIOR A. N. [1957], Time and Modality, Oxford University Press.

1516 E. M. CLARKE AND H. SCHLINGLOFF

QUIELLE J. P. AND SIFAKIS J. [1981], Specification and verification of concurrent systems in
CESAR, in ‘Proc. 5th Int. Symp. on Programming’.

QUIELLE J. P. AND SIrakis J. [1982], Fairness and related properties in transition systems,
Technical Report 292, IMAG.

RABIN M. O. [1969], ‘Decidability of second order theories and automata on infinite trees’, Trans.
AMS 141, 1-35.

REisic W. [1998], Elements of Distributed Algorithms, Springer.

RESCHER N. AND URQUHART A. [1971], Temporal Logic, Springer.

RUDELL R. L. [1993], Dynamic variable reordering for ordered binary decision diagrams, in ‘Proc.
IEEE/ACM Int. Conf. on Computer Aided Design (ICCAD ’93)’, pp. 42—-47.

SAFRA S. [1988], On the complexity of omega—automata, in ‘Proc. 29th IEEE Symp. on Foun-
dations of Computer Science (FOCS ’88)’, White Plains.

SALWICKI A. [1970], ‘Formalized algorithmic languages’, Bull. Acad. Polon. Sci. , Ser. Sci. Math.
Astron. Phys. 18, 227-232.

SCHLINGLOFF H. [19924], ‘Expressive completeness of temporal logic of trees’, Journal of Applied
Non—Classical Logics 2. 2, 157-180.

SCHLINGLOFF H. [19928], On the expressive power of modal logic on trees, in A. Nerode and
M. Taitslin, eds, ‘Proc. 2nd Int. Symp. Logical Foundations of Computer Science (“Logic at
Tver”)’, Vol. 620 of LNCS, Springer, pp. 441-451.

SCHLINGLOFF H. [1997], ‘Verification of finite-state systems with temporal logic model checking’,
South African Computer Journal 19, 27-52.

SCHLINGLOFF H. AND HEINLE W. [1997], Relational algebra and modal logics, in C. Brink,
W. Kahl and G. Schmidt, eds, ‘Relational Methods in Computer Science’, Advances in Com-
puting Science, Springer, chapter 5.

SEGERBERG K. [1968], ‘Decidability of S4.1°, Theoria 34, 7—20.

SEGERBERG K. [1971], An essay in classical modal logic, Technical Report Filosofiska Studier 13,
Department of Philosophy, University of Uppsala.

S1sTLA A. P. [1983], Theoretical Issues in the Design and Verification of Distributed Systems,
PhD thesis, CMU Dept. of Computer Science, CMU-CS—83-146.

SistLA A. P. AND CLARKE E. M. [1986], ‘Complexity of propositional temporal logics’, Journal
of the ACM 32(3), 733-749.

SisTLA A. P., VARDI M. Y. AND WOLPER P. [1987], ‘The complementation problem for Biichi
automata with applications to temporal logic’, Theoretical Computer Science 49, 217-237.
SLoaN R. H. aND Buy U. [1997], ‘Stubborn sets for real-time Petri nets’, Formal Methods in

System Design 11(1), 23-40.

STALMARCK G. [1989], ‘A system for determining propositional logic theorems by applying values
and rules to triplets that are generated from a formula’, Swedish Patent No. 467076 (1992),
US Patent No. 5 276 897 (1994), European Patent No. 0404 454 (1995).

STALMARCK G. AND SAFLUND M. [1990], Modelling and verifying systems and software in propo-
sitional logic, in B. K. Daniels, ed., ‘Proc. Int. Conf. on Safety of Computer Control Systems
(SAFECOMP ’90)’, Pergamon Press, pp. 31-36.

STARKE P. H. [1991], ‘Reachability analysis of Petri nets using symmetries’, Syst. Anal. Model.
Simul. 8(4/5), 293-303.

STIRLING C. [1987], ‘Modal logics for communicating systems’, Theoretical Computer Science
49, 311-348.

STIRLING C. [1991], Modal and temporal logics, in S. Abramsky, D. Gabbay and T. Maibaum,
eds, ‘Handbook of Logic in Computer Science’, Oxford University Press.

STIRLING C. AND WALKER D. J. [1991], ‘Local model checking in the modal p—calculus’, Theo-
retical Computer Science 89(1), 161-177. also in Proc. TAPSOFT °89, Springer LNCS 351,
369-386, 1989.

TARJAN R. E. [1972], ‘Depth first search and linear graph algorithms’, SIAM Journal of Com-
puting 1, 146-160.

MODEL CHECKING 1517

TARSKI A. [1955], ‘A lattice-theoretical fixpoint theorem and its applications’, Pacific J. Math.
5, 285-3009.

THIAGARAJAN P. S. AND WALUKIEWICZ I. [1997], An expressively complete linear time temporal
logic for Mazurkiewicz traces, in ‘Proc. 12th Ann. IEEE Symp. on Logic in Computer Science
(LICS ’97)’, pp. 183-194.

THOMAS W. [1990], Automata on infinite objects, in J. van Leeuwen, ed., ‘Handbook of Theo-
retical Computer Science’, Vol. B, Elsevier.

THOMAS W. [1999], Languages, automata, and logic, in G. Rozenberg and A. Salomaa, eds,
‘Handbook of Formal Language Theory’, Vol. III, Springer, pp. 389-455.

Touati H. J., BRAYTON R. K. AND KURSHAN R. P. [1991], Testing language containment for
w—automata using BDDs, in ‘Proc. 1991 Int. Workshop on Formal Methods in VLSI Design’.

VALMARI A. [1990], A stubborn attack on state explosion, in ‘Proc. 2nd Workshop on Computer
Aided Verification (CAV ’90)’, Vol. 531 of LNCS, Springer, Rutgers, New Brunswick, pp. 156—
165.

VAN BENTHEM J. [1983], Modal Logic and Classical Logic, Bibliopolis, Naples.

VAN BENTHEM J. [1984], Correspondence theory, in F. G. D. Gabbay, ed., ‘Handbook of Philo-
sophical Logic’, Reidel, chapter II. 4, pp. 167-249.

VAN BENTHEM J. [1991], The Logic of Time, 2nd edn, Kluwer, Dordrecht.

VARDI M. [1995], Alternating automata and program verification, in J. van Leeuwen, ed., ‘Com-
puter Science Today: Recent Trends and Developments’, Vol. 1000 of LNCS, Springer.

VARDI M. Y. [1982], The complexity of relational query languages, in ‘Proc. 14th Int. ACM
Symp. on the Theory of Computing’, pp. 137-146.

VARDI M. Y. AND WOLPER P. [1986], An automata—theoretic approach to automatic program
verification, in ‘Proc. 1st Symp. on Logic in Computer Science (LICS ’86)’, Boston, Mass.
WALUKIEWICZ 1. [1995], Completeness of Kozen’s axiomatisation of the propositional y—calculus,

in ‘Proc. 10th Ann. IEEE Symp. on Logic in Computer Science (LICS ’95)’, pp. 14-24.

WINSKEL G. [1991], ‘A note on model checking the modal v—calculus’, Theoretical Computer
Science 83, 157-167. also in Proc. ICALP ’89, Ausiello et. al. (ed.), LNCS 372, 761-772.

WoLPER P. [1982], Specification and synthesis of communicating processes using an extended
temporal logic, in ‘Proc. 9th Int. Symp. on Principles of Programming Languages (POPL
’82)’°, Albuquerque, pp. 20-33.

WoOLPER P. [1983], “Temporal logic can be more expressive’, Information and Control 56(1—
2), 72-99.

WOLPER P. [1985], ‘The tableau method for temporal logic: An overview’, Logique et Analyse
110-111, 119-136.

WoLPER P. [1986], Expressing interesting properties of programs in propositional temporal logic,
in ‘Proc. 13th ACM Symp. on Principles of Programming Languages (POPL ’86)’.

WOLPER P. AND LOVINFOSSE V. [1989], Verifying properties of large sets of processes with network
invariants, in J. Sifakis, ed., ‘Proc. Int. Workshop on Automatic Verification Methods for Finite
State Systems’, Vol. 407 of LNCS, Springer.

Woo T. Y. C. AND LAM S. S. [1993], A semantic model for authentication protocols, in ‘Proc.
IEEE Symp. on Research in Security and Privacy’.

YoNEDA T., NAKADE K. AND TOHMA Y. [1989], A fast timing verification method based on the
independence of units, in ‘Proc. of 19th Int. Symp. on Fault-tolerant Computing’, pp. 134-141.

YoNEDA T. AND SCHLINGLOFF H. [1997], ‘Efficient verification of parallel real-time systems’,
Formal Methods in System Design 11(2), 187-215.

YoVINE S. [1997], ‘Kronos: A verification tool for real-time systems’, Software Tools for Tech-
nology Transfer 1(1/2).

YovINE S. [1998], Model-checking timed automata, in G. Rozenberg and F. Vandraager, eds,
‘Embedded Systems’, LNCS, Springer.

ZHANG H. [1997], SATO: An efficient propositional prover, in ‘Proc. Int. Conf. on Automated
Deduction (CADE ’97)’, Vol. 1249 of LNCS/LNAI, Springer, pp. 272-275.

1518 E. M. CLARKE AND H. SCHLINGLOFF

List of symbols used in this chapter

Syntactic categories

‘P Propositions, Predicates {p, on,buffer_empty...}................... ... 1374
R Relations {R,a,b,a1,...}; RT 2 RU{<,<,=}eeiiiiiiiiiii 1375
T Time variables {f, 61, .} vueen it e 1375
Q Proposition variables {g, P, ..} «vuveniiii 1390
Operators

1, — basic boolean Operatorsc..oovuiiiiieiiii it 1374
T, V, A, <, Ite derived boolean operatorsooveeveiiierinieeennns 1374
& Conjunction (p1 A ... A pyp) of the finite set @ = {p1, ..., Pn}eeeeereeneen... 1422
(R) Multi-modal diamond, basic ML-0peratoroceuveuieraennn... 1376
[R] Multi-modal box, [R] 02 = {R) 0 .o eeeieee e e e 1376
X next, X2 (LU @) (e, X = (<)) eeeimioiiiai i 1377
X weak next, X 9 2 "X (e, X = [<])eeriiiiiiii 1377
F' sometime, FT o 2 (TU @) (e, F* = (<)) errriiiiii . 1377
G always, GTo 2 -F =g (e, F7 = [<])iieiiiiiiiiiiiiiiiann. 1377
F" reflexive sometime, F o £ (0 VF o) = (TU @) (ie, F = (<))..... 1377
G’ reflexive always, G 0 2 (0 AG @) =-F —p (e, F = [<])........ 1377
U" linear until, basic LTL operatorcoiiuiiiiiniiiiiiiinnnn 1378
U’ reflexive until, (0 U ¢) 2 (@ VoA (@U %)) eeiiiii i, 1379
U linear since, basic LTL OPErator..........vuuiueeiiiieiaaeaaaaaaaann 1380
F, G temporal past OPEratorseueueueeie et e a e ns 1380
F* temporal existential operator, F ¢ 2 (F o VF @) 1380
G* temporal universal operator, G* Y& F “p=(G oAG Q) .eeiinn.... 1380
AU" forall-until, basic CTL Operator.c..euueitaetneeiieaneaean.. 1386
E U" exists-until, basic CTL OPerator.ouuuueeeee e 1386
E X exists-next . .covntt i e 1387
A X forall-nextoiii e 1387
EF exiStsFULULeot 1386
AFT orall-FUbUre oo 1386
EG" exists-globally e 1386
A G" forall-globallyo i 1386
EF reflexive exists-future, EF o 2 (¢ VEF ¢)) ..., 1386
A G reflexive forall-globally, AG 0 £ g AAG o ... 1386
v maximization (greatest fixpoint) operatorc.oiiiiiiiii... 1392

p minimization (least fixpoint) operator, ug ¢ = —vg—(p{g:==¢}).......... 1392

MODEL CHECKING 1519

Logics

PL Propositional logic, €.g., (L = P) e vevnenetii i 1374
FOL First order logic, e.g., (R,) AP(E)) - ceeveeeeae i 1375
ML Multi-modal 10gic, €.8., (R) P euntneetiaee e 1376
LTL Linear temporal logic, €.g., (PU (QU D)) «veerrrreireeaiieeeaann. .. 1380
CTL Computation tree logic, e.g., AF" A(EXpU EF'p)................ 1386
ACTL All-fragment of CTL o i e 1411
CTL* Extended CTL, e.g., E(G F D) ..o 1388
qTL Quantified temporal logic, e.g., IJg(PU). vveereeii i 1390
MSOL Monadic second order logic, e.g., IgVt(p(t) = q(t)) oo vvvvneeeeaan .. 1390
uTL Modal p-calculus, €.g., ug(PV (RY Q) - oo voeee e 1392

Semantical notions

£ Equal by definition

U Universe of points in timettt 1374,1375,1376
T Interpretation of relations and propositions..................... 1374,1375,1376
v Valuation of logical variables........... 1375,1390
W POING .. e 1376
M Model M £ (U,Z,v) or M £ (U, Z,w) ot M £ (S,Z,v)....... 1375,1376,1480
O T (0 5 T 1376
L Label of a point, Lw) 2 {p | W € (P} -+vvrreeeeiieeeeeiiiiiaeeananns 1397
true, false Truth values oo i 1374
0,1 (, 2, ...) (Binary) Domain elements, Constant symbols................... 1467
I= Validation relation, language containment 1375,1404
|- Following relation, semantical consequencecoocieunn... 1422
F Derivation relation, syntactical consequence, 1423
R Accessibility relation (R € R) ...t 1375
< Transition relation; Z(<) £ J{Z(R)|[RE R} -+ eeeivreeeiiaiiiiaanne. 1375
< Transitive closure; (<) 2 T(=)* . vrreeeeieteee i eeeaaeenns 1375
©” Denotation of a formula; ¥ £ {w | (U,Z,w) E @}.eeeeiiireieeeiinn... 1394
C Submodel relationoueint i e e e e e 1409
= Simulation relation.ov i 1409
€ Bisimulation relation e 1414
= Equivalence 1420
=1, Equivalence with respect tologic L....... i, 1415

p{q := 1} Replacement of free variable ¢in o by ¢.............. ... 1381

1520 E. M. CLARKE AND H. SCHLINGLOFF

Index
A
abstract BDDse, 1494
abstractionol 1409
abstraction function 1491
acceptance condition 1399
accepting path 1449
accessibility relation 1375
admissible atom 1448
algebra ...l 1479
always operator 1377
ample set ..., 1483
assume-guarantee 1498
asynchronous communication 1458
asynchronous execution 1457
atom ... 1448
atomic proposition 1374
auto-bisimulation 1419
automaton, w-automaton 1398
F25<4 o1 '« KR 1422
B
Biichi automaton 1398
BDD 1468
binary decision diagram 1468
binary encoding00iien 1467
bisimulation 1414
buffer overflowo0l 1464
C
cache coherence 1370
canonical model 1424
closed leaf iiii.e 1439
combinatorial search 1459
completed tableau 1439
completenessc.ciiiiaiiia.n 1423
of multimodal logic 1424
of transitive closure 1427
compositionality 1497
computation tree logic 1386
connectednessieiiiaiiiann 1396
consequence relations 1421
consistencyooiiieiieiae, 1424
correspondence theory 1426
current pointo Ll 1376
D
decision procedures 1432
for branching time 1432
for natural models 1436
for transitive closure 1434

decision treeiiiaa. 1469
decomposition of properties 1405
deduction theorem 1428
defined language 1397
denotation, 1480
depth first search 1450
derivationo 1423
derivation rule oL 1422
deterministic automaton 1400
deterministic model 1410
domainoolell 1459, 1479
domain namec.iiiaann 1479
E
Ehrenfeucht-Fraissé games 1418
elementary equivalence 1415
elementary net 1458
equalityoooiiaii 1375
equivalence reduction 1420
eventualityl 1432
expressive completeness 1381
EXPIreSSIVENESS . cvvvvinnnrennennnnnnns 1417
extended sub-formula 1429
F
fairpathl 1447
fair transition system 1398
finitary transition system 1406
finitely maximalset 1429
first order logiccciiiiiiiinn 1375
first order variable 1375
fixed pointol 1393
framel 1376, 1480
functional system 1369
future formula 1383
future operator 1377
G
generated language 1403
generated submodel 1409
generated word, 1403
global model checking 1444
global operatorc..iuun 1377
H
Hilbert system 1422
hybrid system 1457
I

image finiteness 1406, 1412

MODEL CHECKING 1521

induction rule 1428
initial atom ..., 1448
initial stateooiil 1459
initial validity 1397, 1444
interleavingl 1457
interpretation 1374, 1479
invarianceoeiiiiiiina.n 1431
inverse image calculation 1445
K
Knaster-Tarski theorem 1393, 1452
Kripke axiom (K) 1424
Kripke model 1376
L
labellingol 1397
language containment 1408
language, w-language 1397
linear temporal logic 1380
literalc.oooiiiiiiiiii, 1374
liveness property 1405
local model checking 1444
local validityol 1423
logic ..oviiiii 1421
first orderooial 1375
fixpoint ...l 1392
modal ...l 1376
propositional 1374
quantified temporal 1390
second order 1390
temporaloal 1378
logical spectrumc.oiiienn 1469
loop conditions 1443
M
marking of anet 1459
maximal consistent set 1424
maximal path 1386
modal box formula 1410
modal logicl 1376
modell 1369
first orderol 1375
Kripke ...l 1376
natural ...l 1382
relationalol 1480
tree ... 1386
model checking00 1369
for p-calculus 1452
for CTL ...ooviiiiiiiiiiinin., 1445
for linear time 1448
for modal logic 1445
symbolic 1467, 1476, 1478
under fairness 1447

monotonic formulas 1393

multi-terminal BDDs 1502
N
natural model 1382
necessitation rule (N) 1424
nexttime operator 1377
(0]
openleaf 1439, 1449
ordered tree form 1469
P
p-morphism 1414
Paige-Tarjan algorithm 1421
parallel transition system 1458
partial order method 1483
partition refinement 1420
past formula, 1383
past operator 1380
path ... e 1386
persistent setiiiiaan. 1486
Petrinet ii.. 1458
POINL .ttt e 1375
positive formula 1394, 1479
pre-state i, 1440
predicate oo, 1375
predicate transformer 1394
probabilistic systems 1502
program variable 1459
3070753 o 1) 2 1369, 1404
Propositioniiiiieiiieiii e 1374
proposition variable 1390
propositional p-calculus 1392
propositional formula 1374
propositional logic 1374
Q
quantified temporal logic 1390
R
reachability relation 1375
reactive system 1369
real CONCUITENCY . ..vvuvvvvvvrvnnnnnnes 1484
real time system 1501
recurrence setciiiiiiiiiiein, 1398
recursion axiom0c0..a... 1428
regular expression 1398
relation symboll 1479
relation term Lol 1479
representative interleaving 1484
S
safety property 1405
SCC i e 1442

1522 E. M. CLARKE AND H. SCHLINGLOFF

second order logic 1390
security protocols 1503
self-fulfilling SCC 1450
separationoiiiialn 1383
sequence validity 1388
Shannon expansion 1469
shared variables program 1459
signatureoill 1479
simulation relation 1409
sleepsetooiiiiiiiiiiiiiia, 1483
sometime operator 1377
SOUNANESS ..vvviiiiii i 1423
specificationol 1369
automaton 1402
examplesol 1463
logicalccoiiiiiiiiiiat, 1373
stable partition, 1420
standard translation 1381
state ...l 1459
state explosion 1370
strongly connected component 1442
structure ool 1479
stubborn setol 1483
stutteringl 1457
stuttering equivalence 1484
stuttering invariance 1484
submodelol 1409
substitution 1381, 1392, 1422
successful tableau 1439
symbolic model checking 1467, 1469, 1476
for p-calculus 1478
for CTL ..o 1476
synchronous communication 1458
synchronous processing 1457
system
functionalol 1369
reactive, 1369
T
tableau ... 1439
Tarjan’s SCC algorithm 1450
temporal logic 1378
terminal point 1378
testing ...l 1408
theorem proving 1497
theoryooiiiiiiiiin 1421
transition relation 1375, 1459
transition system 1398, 1458
translation between logics 1381, 1390
tree modelo il 1386
tree validityoool 1388
truth lemmal 1425

10074 1479

U
unfoldingcoviiiiiiii i 1440
uniform component 1420
univalence axiom (U) 1426
universal validity 1377, 1423, 1444
UNIVETSE wovttieieeeiiaiiiieeennns 1375
until operator 1378
A%
variable
first orderl 1375
free ..oiiii 1381
individualcociiie 1479
PrOgrammcoviiueneennnnnns 1459
proposition0000ienn 1390, 1422
relationol 1479
variable valuation 1375, 1480
A\\%
weak completeness 1428
weakly fair transition system 1398
word, w-wordooiiieiiiea, 1397

