LOGIC HW #1 B. Mishra 15 October 2013 (due in 2 weeks)

Q1. [10] Augment the signature $\{\neg, \land\}$ by \lor and prove the completeness and soundness of the calculus obtained by supplementing the basic rules used so far with the rules:

$$(\vee 1)\frac{X\vdash\alpha}{X\vdash\alpha\vee\beta,\beta\vee\alpha};\quad (\vee 2)\frac{X,\alpha\vdash\gamma\mid X,\beta\vdash\gamma}{X,\alpha\vee\beta\vdash\gamma}$$

- Q2. [10] Prove: (Finiteness Theorem for \models) If $X \models \alpha$, then so too $X_0 \models \alpha$ for some finite subset $X_0 \subset X$.
- Q3. [10] Using the preceding theorem, prove that *if* $X \cup \{\neg \alpha | \alpha \in Y\}$ *is inconsistent and* Y *is nonempty, then there exist formulas* $\alpha_0, \ldots, \alpha_n \in Y$ *in* Y *such that*

$$X \vdash \alpha_0 \lor \cdots \lor \alpha_n.$$