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The law of causality ... is a relic of a bygone age, surviving, like
the monarchy, only because it is erroneously supposed to do no
harm ...

—Bertrand Russell, On the Notion of Cause. Proceedings of the
Aristotelian Society 13: 1-26, 1913.
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A Short Introduction to Probability FEkEtEm vy MISEE

Random Variables

@ A (discrete) random variable is a numerical quantity that in
some experiment (involving randomness) takes a value
from some (discrete) set of possible values.

@ More formally, these are measurable maps
X(w),w € Q,

from a basic probability space (Q2,F,P) (= outcomes, a
sigma field of subsets of 2 and probability measure P on
F).

@ Events
wdw € QIX(w) =X }-..

same as {X = x;} [X assumes the value X;].

B Mishra Computational Systems Biology: Biology X



A Short Introduction to Probability FEkEtEm vy MISEE

Few Examples

@ Example 1: Rolling of two six-sided dice. Random Variable
might be the sum of the two numbers showing on the dice.
The possible values of the random variable are 2, 3, .. .,
12.

@ Example 2: Occurrence of a specific word GAATTC in a
genome. Random Variable might be the number of
occurrence of this word in a random genome of length
3 x 10°. The possible values of the random variable are 0,
1,2,...,3x10°
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The Probability Distribution

@ The probability distribution of a discrete random variable Y
is the set of values that this random variable can take,
together with the set of associated probabilities.

@ Probabilities are numbers in the range between zero and
one (inclusive) that always add up to one when summed
over all possible values of the random variable.
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Bernoulli Trial

@ A Bernoulli trial is a single trial with two possible outcomes:
“success” & “failure.”

P(success) = p and P(failure) =1 —p =q.

® Random variable S takes the value —1 if the trial results in
failure and +1 if it results in success.

Ps(s) = pl+s)/2qt=s)/2 g = 1,41,
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The Binomial Distribution

@ A Binomial random variable is the number of successes in
a fixed number n of independent Bernoulli trials (with
success probability = p).

® Random variable Y denotes the total number of successes
in the n trials.

n

Pv(y) = <y

>pyqn_y7 y20717”'7n'
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The Uniform Distribution

@ Arandom variable Y has the uniform distribution if the
possible valuesof Y area,a+1,...,a+ b — 1 for two
integer constants a and b, and the probability that Y takes
any specified one of these b possible values is b1,

Py(y)=b™', y=aa+1,...,a+b—1.
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The Geometric Distribution

@ Suppose that a sequence of independent Bernoulli trials is
conducted, each trial having probability p of success. The
random variable of interest is the number Y of trials before
but not including the first failure. The possible values of Y
are0,1, 2, ...

Py(y)=p’q, y=0,1,....
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The Poisson Distribution

@ A random variable Y has a Poisson distribution (with
parameter \ > 0) if

e )Y
Py(y) = I y=0,1,....

@ The Poisson distribution often arises as a limiting form of
the binomial distribution.
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Continuous Random Variables

@ We denote a continuous random variable by X and
observed value of the random variable by x.

@ Each random variable X with range | has an associated
density function fy (x) which is defined, positive for all x
and integrates to one over the range I.

b
Prob(a < X <b) = / fx (x)dx.
a
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The Normal Distribution

@ A random variable X has a normal or Gaussian distribution
if it has range (—o0, c0) and density function

1 (x—p)?

e 202 ;

fX (X) =

210

where i and ¢ > 0 are parameters of the distribution.
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Expectation

@ For a random variable Y, and any function g(Y ) of Y, the
expected value of g(Y) is

E(9(Y)) =D _a(y)Pv(y),
y
when Y is discrete; and
E(g(Y))zfyg(y)fv(y)dy,

when Y is continuous.

@ Thus,
mean(Y) = E(Y) = u(Y),

variance(Y) = E(Y?) — E(Y)? = 6%(Y).
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Conditional Probabilities

@ Suppose that A; and A, are two events such that
P(A2) # 0. Then the conditional probability that the event
A, occurs, given that event A, occurs, denoted by
P(A1|A2) is given by the formula

P(A1lAz) = %
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Bayes Rule

@ Suppose that A; and A, are two events such that
P(A1) # 0and P(Az) # 0. Then

P(A2)P(A1|A2) .

P(A2|Al) = P(Al)
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Markov Models

@ Suppose there are n states S1, Sy, ..., Sy. And the
probability of moving to a state S; from a state S; depends
only on S;, but not the previous history. That is:

P(s(t+1) =Sj[s(t) =S;,s(t—1)=S;,,...)
= P(s(t+1)=SjIs(t) =S)).

Then by Bayes rule:

P(s(0) =S 0 (1)_Sil""’s(t_1):Sit,1,5(t)ZSit)
= P(S(0) = Sy)P(SyISy) - P(S,ISi )
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HMM: Hidden Markov Models

Defined with respect to an alphabet -
@ A set of (hidden) states Q,

@ A |Q| x |Q| matrix of state transition probabilities
A= (ak|), and

@ A |Q| x |X| matrix of emission probabilities E = (ex(0)).

Q is a set of states that emit symbols from the alphabet 3.
Dynamics is determined by a state-space trajectory determined
by the state-transition probabilities.
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A Path in the HMM

@ Path N = mym, - - - 7y = @ sequence of states € Q* in the
hidden markov model, M.

@ X € Y* = sequence generated by the path I determined
by the model M:

n

P(x|M) = P(r1) | [T P(xilmi) - P(milmisa)
i—1
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A Path in the HMM

@ Note that

n

P(x|M) = P(m) [[TPOilm) - P(milmita)
i=1
P(Xilm) = en(x)
P(milmiy1) = Qi mijy
@ Let mg and 71 be the initial (“begin”) and final (“end”)
states, respectively

P(X“_I) = aﬁoﬂrleﬂl(xl)aﬂlﬂfzeﬂz(XZ) © B (Xn)aﬂnﬂfnﬂ
i.e.

n

P(X|M) = arg,r, H € (Xi)aﬂiﬂfiﬂ‘
i=1
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Decoding Problem

@ For a given sequence x, and a given path «, the model
(Markovian) defines the probability P (x|T)

@ In a casino scenario: the dealer knows I1 and x, the player
knows x but not I.

@ “The path of x is hidden.”

@ Decoding Problem: Find an optimal path 7* for x such
that P (x|7) is maximized.

" = argmaxP (x|r).
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Dynamic Programming Approach

Principle of Optimality

Optimal path for the (i + 1)-prefix of x
X1X2 * -+ Xit1

uses a path for an i-prefix of x that is optimal among the paths
ending in an unknown state m = k € Q.
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Dynamic Programming Approach

Recurrence: si (i) = the probability of the most probable path
for the i-prefix ending in state k

VkeqVic<i<n  Sk(i) = ex(Xi) - X si(i — L)a.

B Mishra Computational Systems Biology: Biology X



A Short Introduction to Probability iikaiem M@y MEdEs

Dynamic Programming

® | = 0, Base case

Sbegin (0) =1,s¢(0) = 0, Yk begin-

@ 0 < i < n, Inductive case
si(i +1) = e(Xiy1) - max[s(i) - aw]
keQ

@i=n+1
P(x|7*) = max sk (n)a end-
keQ
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Viterbi Algorithm

@ Dynamic Programing with “log-score” function

Si(i) = logs(i).

@ Space Complexity = O(n|Q]).
@ Time Complexity = O(n|Q}).
@ Additive formula:

Si(i+1)=loge(xit1) + T%[Sk(i) + log ay].
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[End of Lecture #4]
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