
Lecture #23 • 0

V22.0490.001
Special Topics: Programming Languages

B. Mishra

New York University.

Lecture # 23

Programming Languages • MISHRA 2008



Lecture #23 • 1

—Slide 1—

Java: History

• Spring 1990–April 1991: Naughton, Gosling and Sheri-

dan (“The Green Team”) of Sun Microsystems for-

mulate a mission statement: “Behind the Green

Door”

“To develop and license an operating environment

[...] that enables services and informations to be

persuasively presented via the emerging digital in-

frastructure.”

• August 1992:

– Gosling creates an “industrial strength” object

oriented programming language named Oak ( (C++)--).

– Naughton designs an interface called “killer app.”

– A character named Duke (imp with a red nose)

is created with “killer app” to guide the user

through a cartoon house.

Programming Languages • MISHRA 2008



Lecture #23 • 2

—Slide 2—

Java: History (Contd.)

• October 1992: Sun is ecstatic. Sun tries to market

Oak.

• March 1993: Sun loses to Silicon Graphics. Sun is

NOT ecstatic. The project is practically killed.

• June 1993: The Web and the Mosaic Browser find

wide-spread use.

• January 1995: Oak is renamed Java. “Killer app”

becomes an interpreter for a Web browser and is re-

named HotJava. Java becomes famous.

• Happy Ending: Netscape buys Java. Microsft ac-

quires Java. Jim Gosling becomes a house-hold name

in the entire civilized world.

Programming Languages • MISHRA 2008



Lecture #23 • 3

—Slide 3—

Java: Motivation

• Multiple incompatible hardware architectures.

• Multiple incompatible OS’s for each archi-
tecture.

• Multiple incompatible GUI’s for each OS.

• Applications must work in a distributed client-
server environment.

• Want to take advantage of internet, WWW,
and “electronic commerce”.

Programming Languages • MISHRA 2008



Lecture #23 • 4

—Slide 4—

Java: Properties

Java: A simple, object-oriented, distributed,

interpreted, robust, secure, architecture neu-

tral, portable, high-performance, multithreaded,

and dynamic language.

— “The Java Language: A White Paper”

• Simple

–Based on C and C++

–Many problematic features of C++ removed

• Object-oriented

–Class : A collection of data and methods that operate on

that data

–Data and methods describe the state and behavior of an

object

–Classes are arranged in a hierarchy—Subclass can inherit

behavior from its superclass.

Programming Languages • MISHRA 2008



Lecture #23 • 5

—Slide 5—

Java: Properties (Contd.)

• Distributed

–Java classes can be transmitted over the net

–Library routines for network I/O

• Interpreted

–Java interpreter executes the compiled byte codes

–Byte codes provide an architecture neutral object file for-

mat

–Java Virtual Machine (JVM)

• Robust

–Strongly typed

–Many checks performed at runtime

–Automatic Memory Management—Garbage Collection(GC)

–Exception Handling

• Secure

–No way to forge pointers

–Java code is verified

–Restricted access to file systems and network

Programming Languages • MISHRA 2008



Lecture #23 • 6

—Slide 6—

Java: Properties (Contd.)

• Architecture Neutral

–Compiles to byte codes

–Easy to interpret or compile on any CPU/OS

• Portable

–Size and representation of primitive data types, defined by

the language

–Standard library, specified

• High-Performance

–Byte codes can be compiled to native code

–Potentially as fast as C

• Multithreaded

–Built-in threads and synchronization primitives

• Dynamic

–Adapts to an evolving environment

–Classes are loaded in as needed

–Run-time class definition allows classes to be dynamically

linked

Programming Languages • MISHRA 2008



Lecture #23 • 7

—Slide 7—

Portability

• Compiler compiles down to “byte codes” to run on a

“virtual machine” (JVM).

–The Java interpreter and run-time system for a par-

ticular machine take care of interpreting the byte

codes.

• Easy software distribution.

–Need only one version of software

–Various primitive types are built into the language—

Don’t depend on word size of a particular platform.

• Fully Specified

– All variables are assigned before they are used.

– All variables can refer only to objects of the correct
types.
(The run-time system keeps track of type of each ob-

ject.)

– All operands to all operators are guaranteed to have
the appearance of being evaluated in left-to-right order.

There are no legal expressions which have undefined
behavior.

Programming Languages • MISHRA 2008



Lecture #23 • 8

—Slide 8—

Object Oriented Programming

• Encapsulation

–To implement information hiding and modularity

• Inheritance

–Code re-use and code organization

• Dynamic Loading and Binding

–For maximum flexibility while a program is execut-

ing

– Classes are linked in as required and can be down-

loaded from across networks.

– Can look up a class definition given a string con-

taining its name

– Can compute a data type name and have it easily

dynamically-linked into the running system.

Programming Languages • MISHRA 2008



Lecture #23 • 9

—Slide 9—

Automatic Garbage Collection

• Allocate an Object

–Run-time system keeps track of the object’s status

–Automatically reclaims memory when objects are

no longer used.

• Memory Manager

–Keeps track of references to an object

–When there are no more references to it, it is a

candidate for garbage collection(GC).

• GC Runs as Low Priority Thread

–Thus (hopefully) avoids the problem of interrupting

the user to garbage collect.

Programming Languages • MISHRA 2008



Lecture #23 • 10

—Slide 10—

Java Security

• Must be able to run “untrusted” code securely.

• No pointers in traditional sense.

• Memory layout decisions made by the run-time system—

not the compiler.

• Cannot infer the physical memory layout of a class

by looking at its declaration

Cannot manufacture pointers to memory.

• These arguments are “trustable” as long as restricted

to using the Java compiler.

Programming Languages • MISHRA 2008



Lecture #23 • 11

—Slide 11—

Java Types

• Primitive Types: Part of language

• Classes: Derived from Object class

• Interfaces: Guarantee that methods will be provided

• Arrays: One array type for each of the other types

(Primitive, Classes and Interfaces)

• Values:-

– Primitive Types

–Variables which have primitive types are always passed
by value

–The only way to change the value of a primitive type
variable x is by explicitly changing the value of x.

– Dynamically Allocated Objects

–All other variables (non-primitive) are passed by ref-
erence
–If you wish to pass one of these by value, you must

explicitly copy it

Programming Languages • MISHRA 2008



Lecture #23 • 12

—Slide 12—

Primitive Types

• Arithmetic

– byte: 8-bit two’s-complement integer

– short: 16-bit two’s-complement integer

– int: 32-bit two’s-complement integer

– long: 64-bit two’s-complement integer

– float: 32-bit IEEE 754 floating-point numbers

– double: 64-bit IEEE 754 floating-point num-

bers

• Characters: char: 16-bit Unicode characters

• Boolean: boolean: possible values are true and
false

• Java can assign “narrower types” to “wider types”

byte < short < int < long < float < double

char < int

Programming Languages • MISHRA 2008



Lecture #23 • 13

—Slide 13—

Primitive Types (contd)

• Any integral type may be cast to any other arithmetic

type

• Java provides all the integral operators that C++

does

• Integer division by zero throws ArithmeticException

• Floating point types may be cast to any other arith-

metic type and char

Programming Languages • MISHRA 2008



Lecture #23 • 14

—Last Slide—

Classes

• Similar to C++ classes

• All classes are derived from the class Object

• Instance variables and methods can be public, protected,

or private (same definitions as C++).

• Anything not declared as public, protected, or

private is visible throughout its package.

This is the only way to get “friendly” behavior

• Single Inheritance

Each class (except Object) has exactly one super-

class.

• Initialized to null. Takes on value only through the

= operator or the new operator.

[End of Lecture #23]

Programming Languages • MISHRA 2008


