
Lecture #14 • 0

V22.0490.001
Special Topics: Programming Languages

B. Mishra

New York University.

Lecture # 14

Programming Languages • MISHRA 2008



Lecture #14 • 1

—Slide 1—

How LISP Works

• Lisp can be used as an interpretive or a
compiled language

• Interpreter
When a lisp program is interpreted, the lists that

represent the functions are examined by APPLY and

EVAL

APPLY and EVAL

1. Cooperate to walk recursively down the list struc-

ture

2. Associate symbols and values to handle argument

lists when functions are entered and to handle

LAMBDA argument lists in internal LAMBDA appli-

cation

3. (Other variable introduction mechanisms, e.g.,

LET and DO, are implemented via LAMBDA

Programming Languages • MISHRA 2008



Lecture #14 • 2

—Slide 2—

LISP Compiler

• Similar to the Interpreter

• Compiler

1. An assembly language program is produced

2. Semantically equivalent to what would be achieved

by interpreting the functions

3. Resulting code is highly efficient

Speed up of factor of 20 or higher

Programming Languages • MISHRA 2008



Lecture #14 • 3

—Slide 3—

LISP Storage Layout

Address space is divided into three parts:

• Stack
Temporary variables and return addresses from func-

tion calls

• Binary Program Space
Actual machine instructions

• Heap
Lisp data objects : Cons cells, symbols, numbers,

strings, etc.

• Initially, a Lisp starts off with pieces of itself in all

three parts

User program provides additional objects into all three

parts

Programming Languages • MISHRA 2008



Lecture #14 • 4

—Slide 4—

LISP Internals

Internally, user objects are indistinguishable from ob-

jects in the internal Lisp system itself

• The stack and heap are made of pointers. A pointer

typically consists of an address and few more bits of

additional informations.

• Cons cell ≡ Pair of pointers

• A symbol ≡ Collection of Pointers pointing to

a) Its value

b) Its print name (a string)

c) Its property list

d) Its functional definition

Programming Languages • MISHRA 2008



Lecture #14 • 5

—Slide 5—

Type of a LISP Object

A LISP object can be stored as:

• BIBOP (BIg Bag Of Pages)

Location of the objects within the address space pro-

vides sufficient information. Each page of memory is

dedicated to holding objects of a certain type.

• Encoding in the Pointer (Tag bits)

Each pointer contains the address of a Lisp object

and few tag bits specifying the type of the object

pointed to

• Encoding in the Object

The type of the object is encoded in the storage rep-

resentation of the object itself. Thus type check has

to access the object.

(Usually this scheme is used in combination with the pre-

ceding tag bits encoding.)

Programming Languages • MISHRA 2008



Lecture #14 • 6

—Slide 6—

OBARRAY or OBLIST

A vector of list of symbols
(Think of a Hash Table)

• Given the name of a symbol, first the string is “hashed”

to compute its “hash number.”

• The hash number is used to index into the OBARRAY

to retrieve one of the lists of symbols.

• The list is searched to find the symbol and construct

its cons cell representation.

Programming Languages • MISHRA 2008



Lecture #14 • 7

—Slide 7—

Garbage Collection

During Lisp computation, periodically the heap be-

comes full and it is necessary to free space by identifying

those cons cells that are no longer accessible (thus, us-

able).

A cons cell not accessible,

1. if either there is no pointer to it

2. or all objects that point to it are themselves

inaccessible.

• Each cons cell has an extra bit (“mark bit”) asso-

ciated with it.

• At the start of the garbage collection, all mark bits

are assumed to be “off.”

Programming Languages • MISHRA 2008



Lecture #14 • 8

—Slide 8—

Garbage Collection (contd)

• All the symbols and the stack are checked for pointers

to cons cell. starting with these pointers, during a

mark phase, every cons cell that is still accessible

by the user’s program has its mark bit set.

(DEFUN MARK-CELL (CONS-CELL)

(COND ((NOT (MARKEDP CONS-CELL))

(SETMARK CONS-CELL)

(IF (CONSP (CAR CONS-CELL))

(MARK-CELL (CAR CONS-CELL)))

(IF (CONSP (CDR CONS-CELL))

(MARK-CELL (CDR CONS-CELL))))))

Programming Languages • MISHRA 2008



Lecture #14 • 9

—Slide 9—

Garbage Collection (contd)

• The heap is “swept.” Each cons cell is examined

with a linear sweep through the heap. If it is marked,

the mark bit is turned off for the next round of

garbage collection; otherwise, it is added to a free-

list, *FREE-LIST*.

(DEFUN CHECK-CELL (CONS-CELL)

(COND ((MARKEDP CONS-CELL)

(UNSETMARK CONS-CELL))

(T (RPLACD CONS-CELL *FREE-LIST*)

(SETQ *FREE-LIST* CONS-CELL))))

Programming Languages • MISHRA 2008



Lecture #14 • 10

—Last Slide—

Lisp Function with Garbage Collection

Now, we can write the LISP CONS function as follows:

(DEFUN CONS (X Y)

(IF (NULL *FREE-LIST*)

(GARBAGE-COLLECT))

(LET ((CONS-CELL *FREE-LIST*))

(SETQ *FREE-LIST* (CDR CONS-CELL))

(RPLACA CONS-CELL X)

(RPLACD CONS-CELL Y)

CONS-CELL))

[End of Lecture #14]

Programming Languages • MISHRA 2008


