G22.1170: Fundamental Algorithms I
 Problem Set 1
 (Due Thursday, February, 22 2007)

Problems from Cormen, Leiserson and Rivest:

2-4 Algebra with big-Oh \& 2-5 Variations on O and Ω. Also, 7.5-3 Data Structure.

2-4 Asymptotic notation properties
Let $f(n)$ and $g(n)$ be asymptotically positive functions. Prove or disprove each of the following conjectures.
a. $f(n)=O(g(n))$ implies $g(n)=O(f(n))$.
b. $f(n)+g(n)=\Theta(\min (f(n), g(n)))$.
c. $f(n)=O(g(n))$ implies $\lg (f(n))=O(\lg (g(n)))$, where $\lg (g(n))>0$ and $f(n) \geq 1$ for all sufficiently large n.
d. $f(n)=O(g(n))$ implies $2^{f(n)}=O\left(2^{g(n)}\right)$.
e. $f(n)=O\left((f(n))^{2}\right)$.
f. $f(n)=O(g(n))$ implies $g(n)=\Omega(f(n))$.
g. $f(n)=\Theta(f(n / 2))$.
h. $f(n)+o(f(n))=\Theta(f(n))$.

2-5 Variations on O and Ω

Some authors define Ω in a slightly different way than we do; let's use ${ }_{\Omega}^{\infty}$ (read "omega infinity") for this alternative definition. We say that $f(n)=\stackrel{\infty}{\Omega}$ $(g(n))$ if there exists a positive constant c such that $f(n) \geq c g(n) \geq 0$ for infinitely many integers n.
a. Show that for any two functions $f(n)$ and $g(n)$ that are asymptotically nonnegative, either $f(n)=O(g(n))$ or $f(n)=\Omega_{\Omega}^{\infty}(g(n))$ or both, whereas this is not true if we use Ω in place of $\stackrel{\infty}{\Omega}$.
b. Describe the potential advantages and disadvantages of using $\stackrel{\infty}{\Omega}$ instead of Ω to characterize the running times of programs.

Some authors also define O in a slightly different manner; let's use O^{\prime} for the alternative definition. We say that $f(n)=O^{\prime}(g(n))$ if and only if $|f(n)|=O(g(n))$.
c. What happens to each direction of the "if and only if" in Theorem 2.1 under this new definition?

Some authors define \tilde{O} (read "soft-oh") to mean O with logarithmic factors ignored:
$\tilde{O}(g(n))=\left\{f(n):\right.$ there exist positive constants c, k, and n_{0} such that $0 \leq$ $f(n) \leq c g(n) \lg ^{k}(n)$ for all $\left.n \geq n_{0}\right\}$.
d. Define $\tilde{\Omega}$ and $\tilde{\Theta}$ in a similar manner. Prove the corresponding analog to Theorem 2.1.
7.5-3 Show how to implement a first-in, first-out queue with a priority queue. Show how to implement a stack with a priority queue. (FIFO's and stacks are defined in Section 11.1.)

Problem 1.1 Order the following functions by their growth rate (the most slowly-growing function appearing first); if two functions are same, group them together.
(1) 1
(2) 7
(3) $7^{\lg n}$
(4) $(\lg n)^{\lg n}$
(5) $\sqrt{n} \lg ^{2} n$
(6) n
(10) $n^{1+\frac{\lg \lg n}{\lg n}}$
(8) $n^{\frac{1}{1 g} n}$
(9) $n^{\lg 7}$
(13) $\left(1-\frac{1}{7}\right)^{n}$
(11) $n^{\lg \lg n}$
(12) $\left(1-\frac{1}{n}\right)^{n}$
(14) $\left(1+\frac{1}{n}\right)^{n}$
(15) $\left(1+\frac{1}{7}\right)^{n}$

Problem 1.2 a. Suppose $T_{1}(n)$ is $\Omega(f(n))$ and $T_{2}(n)$ is $\Omega(g(n))$. Which of the following statements are true? Justify your answer.

1. $T_{1}(n)+T_{2}(n)=\Omega(\max (f(n), g(n)))$.
2. $T_{1}(n) T_{2}(n)=\Omega(f(n) g(n))$.
b. Now answer the previous question for this definition of $\stackrel{\infty}{\Omega}$.
(See problem 2-5 in CLR pp. 39: $T(n)=\Omega_{\Omega}^{\infty}(f(n))$, if there is a positive constant C such that
$T(n) \geq C \cdot f(n) \geq 0, \quad$ infinitely often, $i . e .$, for infinitely many values of n.)
Problem 1.3 Solve the following recurrence equation

$$
T(n)=T(n-1)+4 n^{3}
$$

