G22.1170: FUNDAMENTAL ALGORITHMS I PROBLEM SET 1 (DUE THURSDAY, FEBRUARY, 22 2007)

Problems from Cormen, Leiserson and Rivest:

2-4 Algebra with big-Oh & 2-5 Variations on O and Ω . Also, 7.5-3 Data Structure.

2-4 Asymptotic notation properties

Let f(n) and g(n) be asymptotically positive functions. Prove or disprove each of the following conjectures.

a. f(n) = O(g(n)) implies g(n) = O(f(n)). b. $f(n) + g(n) = \Theta(\min(f(n), g(n)))$. c. f(n) = O(g(n)) implies $\lg(f(n)) = O(\lg(g(n)))$, where $\lg(g(n)) > 0$ and $f(n) \ge 1$ for all sufficiently large n.

d. f(n) = O(g(n)) implies $2^{f(n)} = O(2^{g(n)})$. e. $f(n) = O((f(n))^2)$. f. f(n) = O(g(n)) implies $g(n) = \Omega(f(n))$. g. $f(n) = \Theta(f(n/2))$. h. $f(n) + o(f(n)) = \Theta(f(n))$.

2-5 Variations on O and Ω

Some authors define Ω in a slightly different way than we do; let's use $\overset{\infty}{\Omega}$ (read "omega infinity") for this alternative definition. We say that $f(n) = \overset{\infty}{\Omega}$ (g(n)) if there exists a positive constant c such that $f(n) \ge cg(n) \ge 0$ for infinitely many integers n.

a. Show that for any two functions f(n) and g(n) that are asymptotically nonnegative, either f(n) = O(g(n)) or $f(n) = \overset{\infty}{\Omega} (g(n))$ or both, whereas this is not true if we use Ω in place of $\overset{\infty}{\Omega}$.

b. Describe the potential advantages and disadvantages of using $\tilde{\Omega}$ instead of Ω to characterize the running times of programs.

Some authors also define O in a slightly different manner; let's use O' for the alternative definition. We say that f(n) = O'(g(n)) if and only if |f(n)| = O(g(n)).

c. What happens to each direction of the "if and only if" in Theorem 2.1 under this new definition?

Some authors define \tilde{O} (read "soft-oh") to mean O with logarithmic factors ignored:

 $\tilde{O}(g(n)) = \{f(n) : \text{ there exist positive constants } c, k, \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \lg^k(n) \text{ for all } n \ge n_0\}.$

d. Define $\hat{\Omega}$ and $\hat{\Theta}$ in a similar manner. Prove the corresponding analog to Theorem 2.1.

7.5-3 Show how to implement a first-in, first-out queue with a priority queue. Show how to implement a stack with a priority queue. (FIFO's and stacks are defined in Section 11.1.)

Problem 1.1 Order the following functions by their growth rate (the most slowly-growing function appearing first); if two functions are same, group them together.

(1)		(2)	7	(3)	$7^{\lg n}$
(4)	$(\lg n)^{\lg n}$	(5)	\sqrt{n} lg ² n	(6)	n
	$n \lg n$	(8)	$n^{\frac{1}{\lg n}}$	(9)	$n^{\lg 7}$
(10)	lalan			(12)	$\left(1-\frac{1}{n}\right)^n$
(13)	$\left(1-\frac{1}{7}\right)^n$	(14)	$\left(1+\frac{1}{n}\right)^n$	(15)	$ \begin{pmatrix} 1 - \frac{1}{n} \end{pmatrix}^n \\ \left(1 + \frac{1}{7} \right)^n $

Problem 1.2 a. Suppose $T_1(n)$ is $\Omega(f(n))$ and $T_2(n)$ is $\Omega(g(n))$. Which of the following statements are true? Justify your answer.

- 1. $T_1(n) + T_2(n) = \Omega(\max(f(n), g(n))).$
- 2. $T_1(n) T_2(n) = \Omega(f(n) g(n)).$

b. Now answer the previous question for this definition of $\overset{\infty}{\Omega}$.

(See problem 2-5 in CLR pp. 39: $T(n) = \overset{\infty}{\Omega} (f(n))$, if there is a positive constant C such that

 $T(n) \ge C \cdot f(n) \ge 0$, infinitely often, *i.e.*, for infinitely many values of *n*.)

Problem 1.3 Solve the following recurrence equation

$$T(n) = T(n-1) + 4n^3.$$