
AspectJ Tutorial
Introduction to AspectJ

Aspect-oriented paradigm

AspectJ constructs

Types of Join Points

Primitive

Lexical designators

Type designators

Control flow

Types of Advice

Before

After

Around

Receptions Join Points

Java method dispatch

Vs. executions join points

Exposing Context with

thisJoinPoint, thisStaticJoinPoint

Other ways to expose context

modularly

Aspect Instantiation

The of clause

Lexical Introduction

Additional members

Extension & implementation

Private introduction

Aspect Extension

Abstract aspects

Aspect Privilege

Aspect Composition

Priority & domination

Recursion

Additional Topics

Throwing checked exceptions

Current compiler limitations

AspectJ Tutorial Morgan Deters



AspectJ  &  AOP
General-purpose aspect-oriented extension to Java

Grew out of coordination library (COOL)

Aspect-oriented programming allows you to modularize concerns that

would otherwise cut across object-oriented program logic

Logging/Tracing

Session Management

Coordination

Why use aspects? MODULARITY

Conditional compilation made easy

Implementation of pluggable features

debugging

Aspects can implement features necessary for correctness of programs

synchronization

reactivity

Aspects can introduce space or time optimizations

caching

AspectJ Tutorial Morgan Deters



AspectJ Tutorial Morgan Deters

So, What is an Aspect?
Modular unit of crosscutting implementation

An AspectJ aspect is a crosscutting type consisting of

advice on pointcuts

lexical introduction of behavior into other types

Like classes, aspects can have internal state and

behavior, can extend other aspects and classes, and

can implement interfaces



AspectJ Tutorial Morgan Deters

Advice on Join Points
Join point : a well-defined location at a point in the execution of a

program

the execution of the method public void A.foo(int)

the static initialization of class A

Pointcut : a set of join points

all method calls to class B within class A

all mutations of fields of class A outside of A's subclasses

Advice : code designed to run automatically at all join points in a

particular pointcut

can be marked as before , after , or around (in place of) the join

points in the pointcut

Lexical introduction : adding functionality to a class in place (as

opposed to extending it)

For example, making class A implement Cloneable



AspectJ Tutorial Morgan Deters

Composition of Join Points
Use && || !

Use defined pointcuts in other pointcuts

pointcut fooCalls():

calls(int Bar.foo()) && within(MyClass);

pointcut interestingClasses():

instanceof(MyPackage..*);

pointcut interestingReceptions():

( receptions(* *(..)) || receptions(new(..)) )

&& interestingClasses();

pointcut nonstaticMethods():

executions(!static *(..));



AspectJ Tutorial Morgan Deters

Types of Join Points
Primitive:

initializations( GTN)

staticinitializations( GTN)

receptions( Signature )

executions( Signature )

calls( Signature )

callsto( PCD)

sets( Signature )[oldVal ][newVal ]

gets( Signature )[value]

handlers( throwable type name )

Lexical extents:

within( GTN)

withinall( GTN)

withincode( Signature )

Type designators:

instanceof( GTN)

hasaspect( GAN)

Control Flow:

cflow( PCD)

cflowtop( PCD)



AspectJ Tutorial Morgan Deters

Types of Advice
before() : pointcut { advice }

after() returning() : pointcut { advice }

advice runs if join point computation concludes successfully

after() throwing() : pointcut { advice }

advice runs if join point computation throws an exception

after() : pointcut { advice }

advice runs in either case, and after the others

around() returns type : pointcut { advice }

return type widening

advice must return a value

advice must explicitly act to proceed with join point computation if the

computation is to continue at all

Because the flow of control dips through the advice , it can modify method

arguments and/or the return value

Implements a middle wrapping layer that is completely modular -- neither

caller or receiver need to know about it



AspectJ Tutorial Morgan Deters

Advice Priority

If more than one advice block affects the same join

point, they operate in this order:

around advice is run most specific first

before advice is run most specific first

after advice is run least specific first

Of course, if any around advice executes that does not

continue with join point computation, no other advice

runs for the join point



AspectJ Tutorial Morgan Deters

Receptions Join Points
Related to the idea of object-oriented message-passing

Java method dispatch

There are two ways to execute public, non-static

methods in Java:
a.foo() - dispatch occurs at runtime based on runtime type of a

super.foo() - the implementation to use is known at compile time

receptions join points occur at runtime dispatch

A receptions join point never catches superclass calls

A receptions join point does not occur at a place in

the code - cannot be used with lexical constructs like

within!

receptions vs. executions join points

receptions vs. calls join points



AspectJ Tutorial Morgan Deters

Exposing Context - Part I
thisJoinPoint is statically typed as JoinPoint but is actually a

MethodExecutionJoinPoint , a HandlerJoinPoint , or whatever

JoinPoint is actually an interface hierarchy

Cast thisJoinPoint to the proper type (if necessary for the information you

need)

thisStaticJoinPoint

a lightweight join point object

similar to thisJoinPoint but only static information is available

a StaticJoinPointException is thrown if you ask for more

Package org.aspectj.lang contains:

JoinPoint

Signature

SourceLocation

Package org.aspectj.lang.reflect contains:

JoinPoint subinterfaces

Signature subinterfaces

StaticJoinPointException

These packages are not automatically imported for you



AspectJ Tutorial Morgan Deters

Exposing Context - Part II
If we have a pointcut:

pointcut fooCalls() : calls(Bar.foo(int));

... but we really want to know what that int is, we can write:

pointcut fooCalls(int i) : calls(int Bar.foo(i));

We then write advice constructs like these:

before(int i) : fooCalls(i) {

System.out.println("The int is " + i + "!");

}

after(int i) returning(int j) : calls(int Bar.foo(i)) {

System.out.println("Bar.foo(" + i + ") returned " + j);

}

around(int i) returns int : receptions(int Bar.foo(i)) {

// double the argument, halve the result

return proceed(2*i)/2;

}



AspectJ Tutorial Morgan Deters

Exposing Context - Part III
Exposing context can be very useful

pointcut guardedInts(int oldval, int val) :

sets(int Foo.*)[oldval][val];

around(int oldval, int val) returns int :

guardedInts(oldval, val) {

if(Math.abs(oldval - val) > 5)

throw new RuntimeException("Delta too big -> " +

oldval + " to " + val);

return proceed(oldval, val);

}



AspectJ Tutorial Morgan Deters

Aspect Instances
Aspects cannot be instantiated with new and may only have nullary constructors,

even if they extend classes

of clauses

of eachJVM()

This is the default, one aspect instance for the whole virtual machine

You can use FooAspect.aspectOf() to get the singleton instance of

FooAspect

of eachobject( PCD)

Associate a shadow aspect instance with every object in the PCD

Each pointcut has an implicit hasAspect()

You can use FooAspect.aspectOf(obj) to get the instance of FooAspect

associated with obj

throws an NoAspectBoundException on error

of eachclass( PCD)

Part of the AspectJ language, but not yet implemented in the compiler

of eachcflowroot( PCD)

Control flow entering each join point in the PCD get an aspect instance



AspectJ Tutorial Morgan Deters

Lexical Introduction
Making a class extend another or implement an interface

Foo +extends Bar;

Foo +implements Cloneable;

Introduction of state and behavior

protected static int Foo.i;

public Vector (Foo || Bar).aVector = new Vector();

Or, if you have a lot of classes to introduce into...

interface I { }

String I.foo() { return "some string"; }

int I.someInt = 5;

(Foo || Bar || Bat || Bam || SomePackage..*) +implements I;

Private introduction

Private to the aspect , not to the class

Guaranteed not to cause conflicts

Currently a problem with making classes Serializable since private

writeObject() and readObject() methods are required



AspectJ Tutorial Morgan Deters

Aspect Extension

Aspects can extend classes other aspects that are

explicitly labelled abstract

pointcuts are inherited

abstract pointcuts can be extended

of clause inherited



AspectJ Tutorial Morgan Deters

Aspect Privilege
Way too powerful right now, may be more controlled later

Declare an aspect privileged and it has access to all

private members of all classes

class C {

private int i;

C() { i = 3; }

}

privileged aspect A {

after(C c) : executions(c.new(..)) {

c.i = 4;

}

}



AspectJ Tutorial Morgan Deters

Composition of Aspects

Watch out!

Aspect priority and domination

Recursion -- aspects affecting themselves



AspectJ Tutorial Morgan Deters

Additional Notes

Compiler Limitations

Throwing checked exceptions within advice

of eachclass()

preprocessing -- source level only ! (for now)

introducing Serializable


