AspectJ Tutorial

* Introduction to AspectJ
2 Aspect-oriented paradigm
2 AspectdJ constructs

* Types of Join Points
> Primitive
> Lexical designators
“Type designators
2 Control flow

* Types of Advice
-~ Before
o After
2 Around

* Receptions Join Points
-Java method dispatch
“Vs. executions join points

* Exposing Context with
thisJoinPoint, thisStaticJoinPoint

Aspect) Tutorial

* Other ways to expose context
modularly

* Aspect Instantiation
“The of clause

* Lexical Introduction
~ Additional members
- Extension & implementation
> Private introduction

* Aspect Extension
> Abstract aspects

* Aspect Privilege

* Aspect Composition
> Priority & domination
“Recursion

* Additional Topics
“Throwing checked exceptions
2 Current compiler limitations

Morgan Deters

Aspect & AOP

* General-purpose aspect-oriented extension to Java
* Grew out of coordination library (COOL)

* Aspect-oriented programming allows you to modularize concerns that
would otherwise cut across object-oriented program logic

“Logging/Tracing

“Session Management

“Coordination

* Why use aspects? MODULARITY

> Conditional compilation made easy

°Implementation of pluggable features
*debugging

7 Aspects can implement features necessary for correctness of programs
°synchronization
°reactivity

2 Aspects can introduce space or time optimizations
°caching

Aspect] Tutorial Morgan Deters

So, What 1s an Aspect?

*Modular unit of crosscutting implementation

*An Aspectd aspect is a crosscutting fype consisting of
“advice on pointcuts
“lexical introduction of behavior into other types

*Like classes, aspects can have internal state and
behavior, can extend other aspects and classes, and
can implement interfaces

Aspect] Tutorial Morgan Deters

Advice on Join Points

*Join point : a well-defined location at a point in the execution of a
program
“the execution of the method public void A.foo(int)
o the static initialization of class A

* Pointcut : a set of join points
-all method calls to class B within class A
>all mutations of fields of class A outside of A's subclasses
*Advice : code designed to run automatically at all join points in a
particular pointcut

“can be marked as before, after, or around (in place of) the join
points in the pointcut

* Lexical introduction : adding functionality to a class in place (as
opposed to extending it)
"For example, making class A implement Cloneable

Aspect] Tutorial Morgan Deters

Composition of Join Points

Use && || '

*Use defined pointcuts in other pointcuts

pointcut fooCalls() :
calls (int Bar.foo()) && within (MyClass);

pointcut interestingClasses() :

instanceof (MyPackage. .¥*) ;

pointcut interestingReceptions() :
(receptions(* *(..)) || receptions(new(..)))

&& interestingClasses() ;

pointcut nonstaticMethods () :

executions (!static *(..));

Aspect] Tutorial Morgan Deters

Types of Join Points

Primitive:

initializations(GTN)

staticinitializations(GTN)

receptions (Signature)

executions (Signature)

calls (Signature)
callsto(PCD)

sets (Signature) [oldVal] [newVal]
gets (Signature) [value]

handlers (throwable type name)

Aspect) Tutorial

Lexical extents:

within(GTN)
withinall (GTN)

withincode (Signature)

Type designators:
instanceof (GTN)
hasaspect (GAN)
Control Flow:

cflow (PCD)
cflowtop (PCD)

Morgan Deters

Types of Advice

before() : pointcut { advice }
after () returning() : pointcut { advice '}

“advice runs if join point computation concludes successfully
after () throwing() : pointcut { advice }

“advice runs if join point computation throws an exception
after () : pointcut { advice }

“advice runs in either case, and after the others
around () returns ({type : pointcut { advice }

“return fype widening
“advice must return a value

“advice must explicitly act to proceed with join point computation if the

computation is to continue at all

“Because the flow of control dips through the advice , it can modify method

arguments and/or the return value

“Implements a middle wrapping layer that is completely modular -- neither

caller or receiver need to know about it

Aspect) Tutorial

Morgan Deters

Advice Priority

*If more than one advice block affects the same join
point, they operate in this order:

“around advice is run most specific first
“before advice is run most specific first
“after advice 1is run least specific first

*Of course, if any around advice executes that does not
continue with join point computation, no other advice
runs for the join point

Aspect] Tutorial Morgan Deters

Receptions Join Points

*Related to the idea of object-oriented message-passing
‘Java method dispatch
“There are two ways to execute public, non-static

methods in Java:
o a.foo() - dispatch occurs at runtime based on runtime type of a

o super.foo() -theimplementation to use is known at compile time
*receptions join points occur at runtime dispatch
“A receptions join point never catches superclass calls
"A receptions join point does not occur at a place in
the code - cannot be used with lexical constructs like
within!
‘receptions vs. executions join points
‘receptions vs. calls join points

Aspect] Tutorial Morgan Deters

Exposing Context - Part |

ethisJoinPoint Iis statically typed as JoinPoint butis actually a
MethodExecutionJoinPoint ,a HandlerJoinPoint , or whatever
eJoinPoint is actually an interface hierarchy
oCast thisJoinPoint to the proper type (if necessary for the information you

need)
ethisStaticJoinPoint

- a lightweight join point object
csimilar to thisJoinPoint but only static information is available
ca StaticJoinPointException is thrown if you ask for more
e Package org.aspectj.lang contains:
nJoinPoint
nSignature
"Sourcelocation
e Package org.aspectj.lang.reflect contains:
cJoinPoint subinterfaces
" Signature subinterfaces
nStaticJoinPointException
* These packages are not automatically imported for you

Aspect] Tutorial Morgan Deters

Exposing Context - Part ||

*If we have a pointcut:

pointcut fooCalls() : calls(Bar.foo(int)) ;

... but we really want to know what that int is, we can write:

pointcut fooCalls(int i) : calls(int Bar.foo(i))

* We then write advice constructs like these:

before(int i) : fooCalls (i) {
System.out.println("The int is " + i + "!");

}

after(int i) returning(int j) : calls(int Bar.foo(i)) {
System.out.println("Bar.foo(" + 1 + ") returned " + j);

}

around (int i) returns int : receptions(int Bar.foo(i)) {
// double the argument, halve the result

return proceed(2*i)/2;
}

Aspect] Tutorial Morgan Deters

Exposing Context - Part |11
* Exposing context can be very useful

pointcut guardedInts(int oldval, int wval)
sets(int Foo.*) [oldval][val];
around (int oldval, int wval) returns int
guardedInts (oldval, wval) {
if (Math.abs (oldval - wval) > 5)
throw new RuntimeException("Delta too big -> " +
oldval + " to " + wval);
return proceed(oldval, val);

Aspect] Tutorial Morgan Deters

Aspect Instances

* Aspects cannot be instantiated with new and may only have nullary constructors,
even if they extend classes

* of clauses
tof eachdJVM()

° This is the default, one aspect instance for the whole virtual machine
o You can use FooAspect.aspectOf () to get the singleton instance of

FooAspect
crof eachobject(PCD)

° Associate a shadow aspect instance with every object in the PCD
o Each pointcut has an implicit hasAspect()

cYou can use FooAspect.aspectOf (obj) to get the instance of FooAspect
associated with obj
= throws an NoAspectBoundException on error
tof eachclass(PCD)

> Part of the AspectJ language, but not yet implemented in the compiler
rof eachcflowroot(PCD)

° Control flow entering each join point in the = PCD get an aspect instance

Aspect] Tutorial Morgan Deters

Lexical Introduction

* Making a class extend another or implement an interface
Foo +extends Bar;

Foo +implements Cloneable;
* Introduction of state and behavior
protected static int Foo.i;
public Vector (Foo || Bar) .aVector = new Vector()

* Or, if you have a lot of classes to introduce into...
interface I { }

String I.foo() { return "some string"; }
int I.someInt = 5;
(Foo || Bar || Bat || Bam || SomePackage..*) +implements I;

* Private introduction
“Private to the aspect, not to the class
o Guaranteed not to cause conflicts
o Currently a problem with making classes @ Serializable since private

writeObject() and readObject() methods are required

Aspect] Tutorial Morgan Deters

Aspect Extension

* Aspects can extend classes other aspects that are
explicitly labelled abstract

*pointcuts are inherited
*abstract pointcuts can be extended

*of clause inherited

Aspect] Tutorial Morgan Deters

Aspect Privilege

*Way too powerful right now, may be more controlled later
"Declare an aspect privileged and it has access to all

private members of all classes

class C {
private int i;
C() { i=3;1}

privileged aspect A {
after(C c) : executions(c.new(..)) {

c.i = 4;

Aspect] Tutorial Morgan Deters

Composition of Aspects

*Watch out!
* Aspect priority and domination

‘Recursion -- aspects affecting themselves

Aspect] Tutorial Morgan Deters

Additional Notes

*Compiler Limitations

“Throwing checked exceptions within advice

-of eachclass ()

“preprocessing -- source level only ! (for now)
“introducing Serializable

Aspect] Tutorial Morgan Deters

