
Appearing in Proceedings of the 2005 ACM Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES 2005)

Static Determination of Allocation Rates
to Support Real-Time Garbage Collection ∗

Tobias Mann Morgan Deters Rob LeGrand Ron K. Cytron
Department of Computer Science and Engineering

Washington University in St. Louis
{tmann, mdeters, legrand, cytron}@cs.wustl.edu

Abstract
While it is generally accepted that garbage-collected languages of-
fer advantages over languages in which objects must be explicitly
deallocated, real-time developers are leery of the adverse effects
a garbage collector might have on real-time performance. Semi-
automatic approaches based on regions have been proposed, but
incorrect usage could cause unbounded storage leaks or program
failure. Moreover, correct usage cannot be guaranteed at compile
time. Recently, real-time garbage collectors have been developed
that provide a guaranteed fraction of the CPU to the application,
and the correct operation of those collectors has been proven, sub-
ject only to the specification of certain statistics related to the type
and rate of objects allocated by the application. However, unless
those statistics are provided or estimated appropriately, the collec-
tor may fail to collect dead storage at a rate sufficient to pace the
application’s need for storage. Overspecification of those statistics
is safe but leaves the application with less than its possible share
of the CPU, which may prevent the application from meeting its
deadlines.

In this paper we present a static analysis to bound conservatively
an application’s allocation rate. The analysis is based on a data flow
framework that requires interprocedural evaluation. We present
the framework and results from analyzing some Java benchmarks.
Because static analysis is necessarily conservative, we also present
measurements of our benchmarks’ actual allocation rates.

Our work is a necessary step toward making real-time garbage
collectors attractive to the hard-real-time community. By guaran-
teeing a bound on statistics provided to a real-time collector, we
can guarantee the operation of the collector for a given application.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Memory management (garbage collection)

General Terms Algorithms, Languages, Measurement

Keywords Real-time Garbage Collection, Static Analysis, Allo-
cation Rate

∗ This work was sponsored by DARPA under contract F33615–00–C–1697
and by the AFRL under contract PC Z40779.

1. Introduction
There is considerable interest in Java as a software development
vehicle for real-time and embedded applications. Standards such as
the Real-Time Specification for Java (RTSJ) [3] have emerged
that offer facilities for the specification, scheduling, and man-
agement of real-time structures, such as periodic threads, asyn-
chronous events, and high resolution timers. There is general agree-
ment that the efficient and predictable execution of such structures
is necessary for the acceptance of the RTSJ or any other Java im-
plementation that claims real-time performance.

However, when it comes to storage management, there is not
(yet) universal agreement as to how to make object allocation and
(in particular) deallocation and garbage collection reasonably pre-
dictable. Included as a core requirement in the NIST specification
for a real-time Java is the following [5]:

Any garbage collector that is provided shall have a bounded
preemption latency. The preemption latency is the time
required to preempt garbage collection activities when a
higher priority thread becomes ready to run.

Essentially, a garbage collector suitable for real-time applications
must be able to collect sufficient storage so that the application
does not run out, and must do so without denying the application
reasonable use of the CPU(s). Currently, there are two approaches
to satisfying that requirement:

Avoid traditional garbage collection. Specialized storage-alloc-
ation structures can be introduced to obviate the need for traditional
garbage collection. For example, the RTSJ introduces scopes in
which objects can be allocated. Hard real-time threads are allowed
to access only these objects allocated in scopes.1 The rules for
scope creation are established so that a reference count on the entire
scope suffices to determine liveness of all objects in the scope.
The reference count is affected by threads entering and exiting the
scope.

While the task of deallocation becomes simple and predictably
bounded, the burden of correct usage of scopes falls on the pro-
grammer, with the following disadvantages:

• The application is constrained as to how objects in scopes can
reference each other, as depicted in Figure 1: objects in one
scope may not refer to objects in another scope that might be
shorter-lived.2

• Scopes are a specialized form of regions [14], and programs
can leak an unbounded amount of dead storage in a region.

1 Access is also permitted to immortal memory, from which objects are
never collected.
2 This constraint on object referencing behavior is intended to avoid the
manufacture of dangling pointers.

A

B

C

D E
A B C

D

E

(a) (b)

Figure 1. Use of scoped storage. (a) shows the references
between objects at one point in time; (b) shows a legal scope
assignment. If E tried to reference D, the program would fail
given this scope assignment.

For example, consider a doubly-linked list in an RTSJ scope.
Because they reference each other, all container cells must
be allocated in the same scope. Thus, repeated deletion and
insertion will leak uncollectible objects in the scope while not
increasing the live-storage requirement of the program.

Traditional garbage collection can also be avoided by using tech-
niques such as reference counting [16] and contaminated garbage
collection [4], but those collectors are inexact and could thus suffer
from the same leakage problems as scopes.

Use a real-time garbage collector. A real-time garbage collector,
such as Metronome [2] or Perc [10], is assigned the responsibil-
ity of detecting and collecting dead storage. The application, of-
ten called the mutator in the literature, need not change, but the
application’s behavior strongly influences how the collector must
operate so as to guarantee sufficient availability of storage.

Because of the burden placed on a programmer when faced with
specialized storage-allocation structures, real-time garbage collec-
tion is the method of preference. The RTSJ with its scoped memo-
ries was arguably formulated in a context that doubted the veracity
of a real-time collector. More recently, research has proven [2, 1]
that collectors such as Metronome operate correctly if the mutator’s
behavior is properly described. Fortunately, a mutator’s relevant be-
havior can be distilled into a few statistics.

At issue is whether a programmer can reliably provide such
statistics. Even if a programmer knows the application well, use of
libraries or other code greatly complicates manual computation or
estimation of the statistics. If the provided statistics do not bound
the actual behavior of the mutator, then the collector may fail to
collect dead storage at a rate sufficient to pace the application’s
need for storage. One could try to overspecify the statistics, but
this is still an educated guess on the part of the developer. Also,
overspecification of the statistics is safe but leaves the application
with less than its possible share of the CPU, which may prevent the
application from meeting its deadlines.

In this paper, we present a static method (data flow framework)
for determining a program’s maximum allocation rate. This kind of
analysis is done at compile time and it is crucial to the correct oper-
ation of a real-time collector. Once properly bounded, a program’s
allocation rate determines the necessary fraction of execution time
that must be devoted to real-time garbage collection.

Our paper is organized as follows. In Section 2 we summarize the
statistics required by collectors such as Metronome to guarantee
correct operation. For real-time programs, correctness here implies
never running out of storage and never starving the mutator of
access to the CPU for an unreasonable or unbounded amount of
time. Section 3 presents our data flow framework, and experiments
determining allocation rates are presented in Section 4. Because
static approaches are necessarily conservative, we also report on

our benchmarks’ allocation rates from actual executions. Finally,
Section 5 concludes.

2. Mutator Statistics for Real-Time Collection
While in this paper we focus primarily on the Metronome real-time
collector [2], all tracing, real-time collectors function similarly, in
the sense that the following statistics are necessary:

Maximum live storage: We denote as maxlive the maximum stor-
age live at any point during the application’s execution. In other
words, the program cannot run in fewer than maxlive bytes,
given a perfect, continuously-operating garbage collector. De-
termining maxlive statically is undecidable. Even a dynamic ap-
proach to determining maxlive [12, 4] is computationally inten-
sive, as the garbage collector must be run when any stack or
heap cell is modified.

In spite of the above considerations, it is generally assumed
that developers and those who execute Java applications know
maxlive for a given application. This follows from the fact that
all programs (including those written in languages with explicit
deallocation) execute with a specified or nominal heap size.

Pointer density: The mark phase of a precise garbage-collection
algorithm involves touching all live objects. Liveness is deter-
mined by tracing references from a program’s live roots, such
as its stack and static variables. Each object visited by the mark
phase offers pointers that, if not null, point to objects now as-
sumed to be live. The cost of the marking phase is thus depen-
dent on the number of non-null references that can be discov-
ered while marking live objects.

Fortunately, in languages like Java, reference fields are ex-
plicitly declared. The pointer density of each object type can
thus be determined, if all object types are known a priori. Dy-
namic, worst-case pointer density can thus be bounded by as-
suming the object with worst-case pointer density dominates.
While a better bound on pointer density can limit the work of a
tracing collector, no real harm comes from overestimating this
statistic, even to the point of assuming that every field of every
object is a non-null reference.

Allocation rate: A real-time collector cannot suspend a mutator
indefinitely. Thus, the work of a traditional collection cycle is
interleaved with the mutator’s execution. In rate-based collec-
tors such as Metronome, a predetermined fraction of the CPU
is devoted to collection, so that context may switch between the
mutator and the collector many times before a collection cycle
is truly complete. In the span of a collection cycle, the muta-
tor runs periodically and can thus continue to allocate objects.
Some of those objects may become dead during the cycle. Once
dead, such objects do not count toward maxlive, but the real-
time collectors cannot collect them in the current cycle. Such
objects are called “floating garbage” in the literature.

The extent of floating garbage must be known, so that a real-
time collector can specify sufficient storage beyond maxlive so
as not to run out of storage during a collection cycle. A bound
on floating garbage is computed as the product of the mutator’s
execution time during an entire collection cycle and the maxi-
mum rate at which the mutator can allocate storage. That prod-
uct is influenced by the mutator in terms of its allocation rate,
but the fraction of time given to the mutator is the key parameter
used by the collector to guarantee pacing with the mutator.

Underestimating a program’s allocation rate could cause
the program to fail because of insufficient storage budgeted
for the collection cycle—a situation unacceptable for real-time
applications. Overestimating the rate will cause the program’s
required heap size to increase, which may be tolerable, but the

fraction of time given to the mutator will decrease, which may
make the real-time program unschedulable.3

Thus, allocation rate is the most influential statistic but also the one
most difficult for a developer to estimate. In this paper we present
static analysis that accurately bounds a program’s allocation rate.
This analysis assumes that the whole program is available. While
it’s true that Java dynamically loads classes, real-time allocators
need a whole-program conservative estimate of the program’s allo-
cation rate. Short of a guess, the whole program must be available
to a human or to our analysis to make the estimate possible. We
further assume that only classes that are known to our system can
be instantiated using reflection.

3. Static Determination of Allocation Rates
A common technique for analyzing a static property of a program
is to formulate the problem as a data flow framework [9]. To this
end a control flow graph representing the program is constructed.
Below we show an example C program, and in Figure 2 we show
the control flow graphs for the two methods.

int fact(int x){
if (x < 2)

return 1;
x = x * fact(x-1);
return x;

}
int main(int argc, char** argv){

int x = argc, y = 0;
if (x == y)

return 1;
y = fact(x);
x = x+y;
return x;

}

Formally, a data flow framework is expressed as a triple DF =
(Gp, L, F) where Gp is the data flow graph for procedure (or
method) p, L is the meet lattice, and F is the set of transfer
functions.

• Gp = (Np, Ep, sp, ep)
• L = (A,>,⊥,�,∧)
• F ⊆ {f : L → L}

Np is the set of nodes in the graph and Ep is the set of control-
flow edges. For our purposes, each node n ∈ Np represents one
instruction and each edge (n1, n2) ∈ Ep represents a possible
execution path of the procedure. In addition, Gp is augmented with
start and exit nodes, sp and ep, and an edge (sp, ep).

The meet lattice, L, is a quintuple consisting of the following:
the set of elements, A, forming the domain of the problem; top, >,
and bottom, ⊥, representing the best and worst possible solutions
to the problem; a reflexive partial order operator, �, which is used
to compare different solutions to each other; and the meet operator,
∧, which combines solutions.

The last element of the DF triple is the set of transfer functions,
F . A transfer function f maps the combined input to a node, n.in,
to its output n.out.

3.1 Solutions using Data Flow Frameworks
As described above, we aim to compute the maximum rate at which
a mutator consumes memory. Our framework uses a window that

3 in the sense that rate-monotonic analysis cannot guarantee that all dead-
lines are met.

return 1

return x

x = x * fact (x−1)

if (x<2)

START

EXIT

EXIT

START

int x = argc

int y = 0

if (x == y)

return 1 y = fact (x)

x = x + y

return x

Figure 2. Intraprocedural dataflow framework generated from
our example program.

essentially slides over a program’s instructions, and we compute the
maximum allocation rate seen in that window. The window could
be expressed using units of time, but for our purposes it was more
convenient to size the window with respect to a program’s Java
bytecode instructions. While it is true that those instructions take
varying time, conversion to time is still possible on average. For
now we will make the conservative estimate that each byte code
instruction executes in one clock cycle. This assumption is safe
because we are assuming that instructions execute faster then they
actually do.

For the purposes of this framework, a program’s instructions
fall into two categories: those that allocate storage and those that
do not. This binary categorization suggests an abstraction in which
each instruction is represented by a bit: 1 for allocation and 0 for
non-allocation. The relationship is slightly more complicated since
we must account for the size of each allocation. At this point in our
paper, we assume that all allocations are of unit size. We take into
account actual object size in Section 3.3.

Based on the above assumptions, a window of instructions is
represented by a bit-vector, where each bit represents one instruc-
tion; we adopt the convention that the most significant bit repre-
sents the most recent instruction.

3.1.1 Naı̈ve Framework
We begin with a simple framework that explains our approach,
but which provides unnecessarily conservative results on Java pro-
grams because of the try...catch idiom, as we explain below. In
this naı̈ve framework, the meet lattice L is defined as follows:

• A = {0, 1}
• > = 〈0, 0, 0, . . . , 0〉
• ⊥ = 〈1, 1, 1, . . . , 1〉
• ∧ is logical bitwise or of the input bit-vectors
• a � b holds if and only if a ∧ b = a

Thus, > is a window in which none of the instructions allocates
memory; ⊥ is a window in which all instructions allocate memory.
The meet operator ∧ summarizes the allocation windows of its
inputs, and bitwise or is a valid meet operator for a monotone
framework.

For example, the bit-vectors 〈0, 0, 1, 0〉 and 〈0, 1, 0, 0〉 inform
us that on their respective paths through Gp an allocation has
occurred three and two instructions ago, respectively. Using the
above meet, 〈0, 0, 1, 0〉 ∧ 〈0, 1, 0, 0〉 = 〈0, 1, 1, 0〉. Clearly all
information has been retained and thus the result can never be better

new

<0,0,0,0>

<1,0,0,0><1,0,0,0>

<0,1,0,0>

<0,1,0,0>
<0,0,1,0>

<0,0,1,0>

<0,0,0,1>

dup

astore_1

aload_2

invokespecial

<1,0,0,0>

<0,1,1,1>

Figure 3. The control flow of a try...catch block fills a
window unnecessarily with allocations in the näıve framework.

than the input vectors. However, as we shall see in the next section,
this meet function is overly conservative.

Each transfer function f ∈ F must update the solution at a
given node, n, so that the output of the node encompasses the
instruction represented by the node. This is accomplished by a
simple right shift of the solution bit-vector. If n represents an
allocation then a 1 is shifted in; if n is a non-allocation then a 0
is shifted in. The least recent bit (rightmost in the bit-vector) is
shifted out.

The naı̈ve framework works well on simple Java programs,
yielding allocation rates of some 2–3 allocations per 16-instruction
window. However, when we turned to real benchmarks (such as
jess), we found overly conservative solutions from using logical
bitwise or as the meet operator. Our framework computed some
15 allocations per 16-instruction window. We discovered that this
high allocation rate was caused by blocks of code similar to the one
shown in Figure 3.

The fact that our meet operator retains all information from its
input vectors gives us an artificially high allocation rate in certain
cases. The example in Figure 3 may seem contrived, but it is exactly
what happens within a Java try-catch block, or within a monitor.
We need a meet function the result of which is no better than any
of its input vectors, without being overly conservative. By looking
at the example in Figure 3, it is apparent that one of the problems
is that the meet function, at the last node, increases the number of
allocations in the solution. It seems reasonable to restrict the meet
function so that its result cannot contain more allocations than any
of its input vectors.

When all incoming vectors only contain one allocation this is
simple enough. The meet will just return the incoming solution
that has seen an allocation most recently. But how should the meet
function react when one or more of its input vectors have more than
one allocation? Clearly, the result will contain the same number
of allocations as the vector with the most allocations, but where
will they be placed? For example, say we need 〈0, 1, 0, 0, 1〉 ∧
〈0, 0, 1, 1, 0〉. One idea is to set the most significant bits in the
result: 〈0, 1, 0, 0, 1〉 ∧ 〈0, 0, 1, 1, 0〉 = 〈1, 1, 0, 0, 0〉. This is better

than logical bitwise or because it does not increase the number of
allocations.

Nonetheless, this meet produces a solution that reflects that the
last instruction it encountered was an allocation when none of its
input vectors reflected that fact. A better idea is to let the meet
place allocations in the positions of the most significant set bits in
its input vectors: 〈0, 1, 0, 0, 1〉∧〈0, 0, 1, 1, 0〉 = 〈0, 1, 1, 0, 0〉. This
meet will never increase the number of allocations and it will never
place an allocation at a position that all of its input vectors regard
as a non-allocation.

3.1.2 Better Framework
A better way to compute meet in light of the example shown in
Figure 3 is as follows. We scan the bit-vectors a and b from left to
right (most recent to least recent). At each position i, we compute
the corresponding bit of c by taking the bitwise or of ai and bi. If
the result ci = 1, then we reset the leftmost non-zero bit of a and of
b. The intuition is that the resulting 1 in c covers the next allocation
in a and in b, whether it comes at position i or later.

For example,

〈0, 1, 0, 0, 1〉 ∧ 〈0, 0, 1, 1, 0〉 = 〈0, 1, 0, 1, 0〉

The result reflects the fact that the most recent allocation was en-
countered two instructions ago, and that the second most recent
was encountered four instructions ago. Our experiments were con-
ducted using this framework, but accounting properly for object
size as described in Section 3.3.

3.2 Framework Evaluation
Recall that in the introduction to this section we presented the in-
traprocedural data flow graph for an example C program (Figure 2).
Forming an interprocedural solution from this graph is conceptu-
ally trivial. As show in Figure 4 the only changes that are made to
the intraprocedural graph is to connect method calls to the actual
flow graph for the called method. If procedure A calls procedure
B, then creating the interprocedural graph from the intraprocedural
graph involves connecting the call node in A with the start node
in B, and the exit node in B with the successors of the call node
in A. However, it would be prohibitively costly for any program of
size to reevaluate procedure B every time a node, anywhere in the
program, that calls B is encountered. Furthermore, reevaluating B
implies that all procedures called by B would also have to be reeval-
uated, and so forth. In our detailed description of the algorithm we
use to evaluate our interprocedural framework we show how we get
around this problem.

We use the following notation, based on the work by Reps
et al. [11], to specify our interprocedural dataflow framework for-
mally:

• G∗ = (N∗, E∗)
• P ∗ = the set of all procedures p represented in G∗

• N∗ =
⋃

p∈P∗

Np

• E∗ = E0
⋃

E1

• E0 =
⋃

p∈P∗

E0

p is the set of intraprocedural control-flow edges

• E1 =
⋃

p∈P∗

E1

p is the set of procedure call and procedure return

edges.

We also define the functions:

• calledBy(p, G∗) = N ′ where N ′ ⊂ N∗ is the set of call nodes
that call procedure p

• calcIntra(p) calculates the intraprocedural solution for proce-
dure p as given by the framework of Section 3.1.2.

return 1

return x

x = x * fact (x−1)

if (x<2)

START

EXIT

EXIT

START

int x = argc

int y = 0

if (x == y)

return 1 y = fact (x)

x = x + y

return x

Figure 4. Interprocedural dataflow framework generated from
our example program from Figure 2.

The basic algorithm for calculating the interprocedural maxi-
mum allocation rate is as follows:

Interprocedural Data Flow
Initialize

1 for each p ∈ P ∗ do
2 calcIntra(p)

Update
3 while there are changes in G∗ do
4 for each p ∈ P ∗ do
5 N ′ ← calledBy(p, G∗)
6 sp.in←

∧

n∈N′

n.in

7 calcIntra(p)

8 for all n ∈ N ′ do
9 n.out← ep

In the above algorithm n.in refers to the combined input to node
n, n.out refers to the output of node n, and sp and ep refer to the
start and exit nodes of procedure p, as mentioned in Section 3. The
most important steps of the algorithm are lines 6 and 9. At line
6 all the calls made to procedure p are combined into one using
the meet operator. The reason for doing this is twofold. First, it
reduces the computational complexity because several procedure
calls are merged, reducing the number of times calcIntra(p) needs
to be called. Also, if p makes any procedure calls, then for each data
flow solution created by calcIntra(p), each procedure called by p
would have to be evaluated. Second, it reduces space complexity.
To see this, consider that fact that each data flow solution resulting
from a call to calcIntra(p) is contained in Gp, and thus Gp must be
stored from iteration to iteration. By combining all procedure calls
to p we never have to keep more that one copy of Gp at any given
time.

The price we pay for the decrease in computational and space
complexity is that our interprocedural analysis will be more conser-
vative than it otherwise would. However, our results in Section 4
confirm that we obtain reasonable solutions with this approxima-
tion.

3.3 Accounting for Allocation Size
We now revisit the issue of allocation size, focusing first on scalar
objects and then on arrays. While most programs allocate objects of
varying size, we have observed that most allocations are small—on
the order of 12 bytes. Because object size depends on object type in

Java, most programs exhibit a locality of size, meaning that object
sizes that have been frequently allocated in the past are likely to be
allocated in the future [2]. However, we are obligated to compute
maximum allocation rate, and this cannot be based on average or
expected behavior.

In most cases, determining the size of an allocated object stati-
cally is relatively straightforward. An object’s storage can be com-
puted as the sum of the sizes of all the fields in the object plus the
object’s header. Our results were obtained using Sun’s JDK Java ex-
ecution environment, in which objects have a header of 8 bytes and
in which almost all fields are 4 bytes. The only exceptions are fields
of type double or long which occupy 8 bytes. At an allocation, we
compute each object’s size using the Java reflection package.

3.3.1 Statically-Bounded Array Allocations
The size of some arrays can be statically bounded by a constant in
Java, but such an analysis is slightly complicated, as demonstrated
by the following example, where ϕ is some boolean condition that
is not known statically:

Array Allocation
1 MyObj[] a;
2 int size = 100;
3 if ϕ then
4 size = 10;
5 a = new MyObj[size];

Static determination of the size of statically-allocated arrays is
in itself a data flow problem. While similar to constant propaga-
tion [15], the difference here is that we do not propagate whether
or not a variable is a constant; instead, we propagate bounds on the
possible value of a variable. When the number of elements of the
array is known, determining its size is simply a matter of multiply-
ing the number of elements with the size of the array type. In Java,
arrays of objects are in fact arrays of reference type, so for object
arrays we do not have to worry about the size of the constituent
objects when computing the memory footprint of an array—each
array element is of pointer size.

We have implemented such an analysis for bounding the size
of array allocations when possible, and we have incorporated this
analysis into our static analysis for maximum allocation rate. In
Section 3.3.2, we discuss array allocations that we cannot statically
bound. For now, we assume we have a static bound on each alloca-
tion, whether of object or array type.

As we are accounting for the size of what is being allocated, our
meet lattice L and set of transfer functions F must be modified.
Modification of the transfer function is straightforward: instead of
shifting in a 1 for an allocation, we shift in the actual size of the
object being allocated. The modification of L is shown below, and
an example is given in Figure 5:

• A = {0, 1, 2, . . . , M} where M is the maximum number of
bytes that the allocator can allocate at one time
• > = 〈0, 0, 0, . . . , 0〉
• ⊥ = 〈M, M, M, . . . , M〉
• � is defined in terms of the ∧ operator such that

a � b ⇐⇒ a ∧ b = a

• ∧ is shown in Figure 5 and described below.

In Section 3.1.2, we defined the meet function in terms of a left-to-
right scan of the input vectors. When all allocations were equal we
could simply align the most recent allocations in each vector, then
the second most recent, and so on. Figure 5 shows how the meet
function works when all allocations are not equal. Step 1 shows the

<...>

1

2

3

4

< 0, 8, 16, 0, 4, 0 >
< 0, 0, 16, 4, 8, 4 >

< 0, 8, 16, 0, 4, 0 >
< 0, 8, ...>

< 0, 8, 8, 4, 8, 4 >

< 0, 8, 16, 0, 4, 4 >
< 0, 8, 16, 0, 4, 0 >
< 0, 8, 16, ...>

< 0, 8, 16, 0, 4, 4 >
< 0, 8, 16, 0, 4, 0 >

<0, 8, 16, 0, 4, 4>
<0, 8, 16, 0, 4, 0>
<0, 8, 16, 0, 4, 4>

< 0, 8, 16, 0, 4,... >

5

Figure 5. Computing meet when accounting for object alloca-
tion size.

original input vectors. These are never modified—steps 2–5 work
with copies of the original vectors.

At step 2, in Figure 5, 8 bytes are moved from the most recent
allocation of the top vector to compensate for the fact that the
bottom vector has an allocation of 8 bytes occurring earlier. The
resulting vector of the meet can now be filled up to this point. At
step 3 both vectors have an allocation at the same position, but now
the allocation of the top vector is 8 bytes smaller. Consequently,
we move bytes from earlier (further to the right) allocations to
compensate, and we can update the resulting vector. At step 4,
both allocations occur at the same position and they are equal
in magnitude, the result vector is updated accordingly. Finally, at
step 5, the top vector has an allocation but the bottom vector has
no more allocations. From here on, had the top vector had more
allocations left, the bottom vector can be ignored and the result
vector is simply filled with the allocations in the top vector.

3.3.2 Arraylets
Bacon et al. [2] suggest the use of arraylets to solve the problem
that large objects cause for real-time garbage collectors. The idea
is to represent large arrays as a sequence of arraylets where each
arraylet, except for the last, is of a constant size, C. Siebert [13]
uses a similar idea and represents large arrays as a tree structure of
fixed-size blocks.

As mentioned in Section 3.1, thus far we have assumed that each
virtual machine instruction is executed in one clock cycle. This is
not the case for many instructions. In fact, instructions that allocate
memory take time proportional to the size of the allocation. When
any object in Java is allocated, first the amount of memory needed
is reserved from the heap. Then all fields are initialized to zeroes
(typically 4 bytes at a time on a 32-bit processor). This means that

...

anewarray

dummy

< ?, ?. . . , ? >

< C, ?. . . , ? >

< 0, (r1 * 4), 0,, 0 >

< 0, 0, (r2 * 4), 0,, 0 >

< 0, 0,, (rN * 4) >

Figure 6. An array allocation, as represented in the control flow
graph. (‘?’ represents any instruction.)

each allocation instruction is followed by x number of assignments,
where x is the number of bytes being allocated divided by 4.
However, the clock cycle assumption is valid because assuming
that all instructions take one clock cycle to execute cannot lower
the upper bound we are computing—in fact, it might raise it.

To maintain the generality of this implementation we will not
include the initialization instructions for objects other than arrays
in our analysis. We will include the initialization instructions for
array allocations in order for us to be able to compute an upper
bound on the allocation rate resulting from these allocations. Using
the idea of arraylets, we assume that the size of all array allocations
of (statically) unknown size is some multiple of the arraylet size,
C, reported by Bacon et al. [2] as C = 2KB. If we assume that
our window size, W, is smaller than 2KB

4B
then we can bound the

allocation rate behavior of all array allocations of unknown size.
Figure 6 shows how allocations of dynamic arrays can be rep-

resented. Directly following the allocation of the array, we assume
that one arraylet has been allocated. We can do this since we are
assuming that each unknown-size array allocation is allocated as
arraylets and that each arraylet is allocated and initialized before
the next arraylet is allocated. As aforementioned, W < 2KB

4B
. This

means that when the next arraylet is allocated, the allocation for the
first one will have fallen out of the window. The key point here is
that the number of arraylets that are allocated will have no effect on
the overall allocation rate.

Following the array allocation instruction we insert a dummy
node. This node accounts for the fact that the last arraylet to be
allocated may not be large enough for its initialization instructions
to push that allocation out of the window. The range of r, the
number of elements in the last arraylet, that we must account for
is 0 < r ≤ N , where N = W − 1. Because we do not know the
size of r, only its range, we must account for all values of r, with
its subsequent initialization instructions. This is the output from the
dummy node in Figure 6. Taking the meet of all the output vectors
from the dummy node gives us the vector 〈0, 4, . . . , 4〉.

We have placed an upper bound on the allocation rate that can
result from the allocation of a statically-unbounded array alloca-
tion. This bound is based on the assumption that the allocator will
allocate arrays as a sequence of fixed-size arraylets. Similarly, if
the allocator allocates large objects as a sequence of smaller allo-

cations, this technique can be used to estimate allocation rate for
those allocations, assuming that we are including the initialization
instructions. In this case, and in the case of statically-allocated ar-
rays, r will be known and thus the output from the dummy node
will be one of the output vectors in Figure 6 rather than the meet of
all of them.

If the allocator does not handle statically-unbounded array al-
locations as arraylets, there is little we can do to compute a good
upper bound on the allocation rate. We would be forced to assume
that C = M in Figure 6. Since the array actually allocated may be
small, we would still need to use the dummy node and meet all of
its output vectors.

3.4 Analysis of the Framework
To guarantee that our data flow framework converges we must show
our framework is monotone:

(∀f ∈ F)(∀x, y) x � y −→ f(x) � f(y)

A node’s transfer function shifts in the amount of memory allocated
at each instruction (0 for a non-allocating instruction). The shifts
occur at the right hand side of a bit-vector, while the comparison
(�) is based on the leftmost bits scanning to the right. Thus, no
f ∈ F can output a better solution given a worse input.

We must show our meet operator satisfies the rules of a mono-
tone data flow framework for all a, b ∈ A:

1. a ∧ a = a

2. a ∧ b � a

3. a ∧ b � b

4. a ∧ > = a

5. a ∧ ⊥ = ⊥

Clearly our meet satisfies 1, 4 and 5. Properties 2 and 3 hold
because our definition of � is based on meet.

As a result of the above, a data flow solution will converge such
that the maximum allocation rate we compute at any point in a
procedure is no lower than what could be seen on any path arriving
at that point.

Thus far, we have a solution that is valid and that is guaranteed
to converge, but at issue still is the quality of our solution relative to
what could ideally be computed on each path separately through a
procedure. If we have a distributive framework, then the (intrapro-
cedural) solution we compute is the best possible static solution to
our problem. In a distributive framework,

(∀f ∈ F)(∀x, y) f(x ∧ y) = f(x) ∧ f(y)

Consider two generic vectors a and b, containing n elements.
The effect of f on a and b is that all values in the vectors are shifted
one step to the right: a2 takes on the value of a1 and so on. an and
bn are shifted out of the window and a1 and b1 take on the value
that is shifted in.

Let f(a) = a′, f(b) = b′, a′ ∧ b′ = c′ and a ∧ b = c. We want
to show that f(c) = c′ to prove distributivity. For a given node,
the semantics of f guarantee that a′

1 = b′1 and since a ∧ a = a,
it follows that a′

1 = b′1 = c′1. Thus c′1 is the value shifted in by
f , which by definition is (f(c))1. Given any vector y, the values
at y1 − yn−1 prior to applying f(y) will still be in the vector after
applying f(y). All f(y) does is a simple right shift, thus c′i = ci−1

for 1 < i ≤ n. f(c) moves ci−1 to ci for all 1 < i ≤ n, and we
already know that c′1 = (f(c))1. Thus f(c) = c′, so our framework
is distributive and our solution is no worse than the meet-over-all-
paths (MOP) solution.

A framework is rapid iff

(∀a ∈ A)(∀f ∈ F) a ∧ f(>) � f(a)

 10

 100

 16 32 64 128 256 512

M
ax

im
um

 a
llo

ca
tio

n
ra

te
 (b

yt
es

 p
er

 c
lo

ck
 c

yc
le

)

Window size

mpegaudio
javac
jess

db
compress

jack
raytrace

Figure 7. Maximum allocation rate vs window size (statically-
determined bound).

It would be ideal if our framework were rapid, because we would
be able to converge upon a solution more quickly. However, our
framework is not rapid, since each trip around a loop can shift in
another 1-bit.

4. Experiments
In this section we report on the application of our analysis on some
Java benchmarks. While those benchmarks are not real-time bench-
marks, portions of what they do (audio decoding, expert shell prob-
lem resolution, image rendering, etc.) could arguably be included
in a real-time application. When the real-time community accepts
real-time garbage collection—we hope this work takes steps in that
direction—then real-time Java programs and benchmarks should be
more plentiful.

We have implemented our static analysis for maximum alloca-
tion rate and array allocation bounds on top of Clazzer [7], a byte-
code manipulation framework in which data flow problems can be
explicitly defined and solved. Figure 7 displays our static determi-
nation of maximum allocation rates of benchmarks in the jvm98
SPEC benchmark suite.4 We used window sizes of 16, 32, 64, 128,
256, and 512 clock cycles. Figure 7 illustrates the problem asso-
ciated with relatively small window sizes: When the window size
is small each allocation has a dramatic effect on the overall maxi-
mum allocation rate. The plot also shows that as the window size
increases, the maximum allocation rate decreases, asymptotically
approaching a bound of the average allocation rate of the entire
program. This is expected; in previous work [8] we presented a
dynamic analysis of a subset of the jvm98 SPEC benchmark suite
demonstrating that the maximum allocation rate approaches the av-
erage rate as the window size increases.

We know that doubling the window size can never increase
the allocation rate. Intuitively, we can show this by considering
a window of size n with a maximum allocation rate of x

n
where

x is the maximum number of bytes allocated in any window of
size n in the program. If doubling the window size increases the
maximum allocation rate of the program then there exists an x′

such that x

n
< x′

2n
. This implies that x′ > 2x. It must also be

the case that x′ ≤ 2x because x is the maximum number of bytes
allocated in any window of size n—doubling n cannot more than

4 The ‘mtrt’ benchmark is currently excluded because our approach has not
yet been extended to support multithreaded target programs.

 1

 10

 100

-2 0 2 4 6 8 10 12 14 16

N
um

be
r o

f P
ro

ce
du

re
s

Allocation Rate (bytes per clock cycle)

jess

Figure 8. Number of procedures with a given upper bound for
jess with a window size of 256, running interprocedural analysis
using arraylets.

double x. We have a contradiction, so doubling the window size
cannot increase the maximum allocation rate.

As a consequence, the static upper bound of the maximum allo-
cation rate for a sufficiently large window can be used to approxi-
mate an upper bound for an arbitrarily large window. For example,
the results in Figure 7 suggest that using a window size of 256 as
an approximation is not overly conservative.

Using a window size of 256 clock cycles, we find bounds for
most of our tested benchmarks close to 15–20 bytes allocated per
clock cycle. These bounds are artificially high, because all array
allocations not bounded statically are assumed to be large, as de-
scribed in Section 3.3.2. This means that even a very small array
allocation could have a large effect on the upper bound. Figure 8
shows that the maximum allocation rate computed for the SPEC
benchmark jess, is not representative of most procedures executed
by the benchmark; most procedures in jess allocate between 5 and
7 bytes per clock cycle, and many allocate 0 bytes. Array alloca-
tions without a static bound force us to make a highly conservative
assumption about their size—we might expect that procedures allo-
cating such arrays actually allocate between 5 and 7 bytes per clock
cycle, but we cannot determine that statically. Figure 9 shows that
indeed array allocations are the problem here; when we don’t make
pessimistic assumptions about array size, the allocation rates of all
procedures in jess are bounded by 7.1 bytes per clock cycle.

Figure 8 and Figure 9 give the appearance that many procedures
exhibit fairly high allocation rates. This is misleading because it
does not mean that all procedures with a high maximum allocation
rate actually are heavy allocators. The analysis we are performing
is interprocedural and thus allocations that occur in procedure p1

might affect the overall allocation rate of a procedure p2, called by
p1. This “spill-over” effect is what creates the appearance that many
procedures are heavy allocators. The contrast between Figures 8
and 10 and Figures 9 and 11 makes it clear that the large numbers
of interprocedurally-analyzed procedures with a high maximum al-
location rate is caused by heavy allocation in relatively few proce-
dures.

As expected, the intraprocedural plots (Figures 10 and 11) also
show that the maximum allocation rates of the heavily allocating
procedures are caused by allocations of arraylets. Figure 10 has a
spike at 8 bytes per clock cycle, which does not appear in Figure 11.
8 × 256 = 2048 = 2KB = Arraylet size.

 1

 10

 100

-1 0 1 2 3 4 5 6 7 8

N
um

be
r o

f P
ro

ce
du

re
s

Allocation Rate (bytes per clock cycle)

jess

Figure 9. Number of procedures with a given upper bound for
jess with a window size of 256, running interprocedural analysis
assuming each array allocation is 16 bytes.

 1

 10

 100

 1000

-2 0 2 4 6 8 10 12

N
um

be
r o

f P
ro

ce
du

re
s

Allocation Rate (bytes per clock cycle)

jess

Figure 10. Number of procedures with a given upper bound for
jess with a window size of 256, running intraprocedural analysis
using arraylets.

We also implemented a dynamic data-collection mechanism in
a Java Virtual Machine (JVM) to capture the actual maximum
allocation rate of our benchmarks in various window sizes. For
this, too, we limited array allocations to a two-kilobyte arraylet
size and inserted enough zero-allocation entries in the window to
account for initialization of the array memory. Figure 12 shows the
maximum allocation rate observed during a run of size 100 of each
of these benchmarks.

We offer comparisons of our static bounds and dynamically-
collected results in Figures 13 and 14—Figure 13 compares the
static bound to the observed allocation rate in the jess benchmark,
and Figure 14 makes the comparison over all benchmarks in the
suite. As the figures demonstrate, we found that our static bounds
did indeed bound the maximum allocation rates, and that they were
reasonable bounds for these benchmark runs.

In particular, with the exception of the ‘mpegaudio’ benchmark,
our static bounds on allocation rate is within a factor of 2.5 of the
actual, observed allocation rate over all tested window sizes. For

 1

 10

 100

 1000

-1 0 1 2 3 4 5 6

N
um

be
r o

f P
ro

ce
du

re
s

Allocation Rate (bytes per clock cycle)

jess

Figure 11. Number of procedures with a given upper bound for
jess with a window size of 256, running intraprocedural analysis
assuming each array allocation is 16 bytes.

 10

 100

 16 32 64 128 256 512

M
ax

im
um

 a
llo

ca
tio

n
ra

te
 (b

yt
es

 p
er

 c
lo

ck
 c

yc
le

)

Window size

jack
jess

compress
javac

db
raytrace

mpegaudio

Figure 12. Maximum allocation rate vs window size (actual
observation).

mpegaudio, our static bound is 5.8 times the observed rate for a
window size of 512. (The static bound on mpegaudio at smaller
window sizes is considerably closer to the observed rate.)

The static bound for mpegaudio deviates more from the ob-
served rate than does the other benchmarks because mpegaudio
allocates one large array up-front and allocates very few objects
during the rest of the run. Thus, the program experiences a “spike”
of allocation, which we correctly bound, though by a factor of 5.8
off of its observed rate for that particular run. Static analysis must
account for any path that could be taken in the code. In this case,
such analysis thinks the allocation could happen in a loop (though
it happens just once) and the steady-state worst-case allocation rate
is 5.8 times higher than what was seen.

Figure 15 shows this comparison over all benchmarks and win-
dow sizes.

5. Conclusion
We have provided a framework for determining maximum al-
location rates and have applied this framework to some Java

 10

 100

 16 32 64 128 256 512

M
ax

im
um

 a
llo

ca
tio

n
ra

te
 (b

yt
es

 p
er

 c
lo

ck
 c

yc
le

)

Window size

jess bound
jess

Figure 13. Comparison of bounded and actual maximum allo-
cation rates for jess.

 10

 100

 16 32 64 128 256 512

M
ax

im
um

 a
llo

ca
tio

n
ra

te
 (b

yt
es

 p
er

 c
lo

ck
 c

yc
le

)

Window size

mpegaudio bound
javac bound
jess bound

db bound
compress bound

jack bound
raytrace bound

jack
jess

compress
javac

db
raytrace

mpegaudio

Figure 14. Comparison of bounded and actual maximum allo-
cation rates for all benchmarks (both plotted together).

benchmarks. We have demonstrated that for our benchmarks, our
statically-determined allocation rate is within a constant factor of
the observed allocation rate. Whether or not this constant factor
constitutes a reasonable upper bound is a subjective issue. The size
of this factor will have an effect on the memory footprint and the
Minimum Mutator Utilization (MMU) [6] of the application. If a
closer upper bound is needed a more careful interprocedural analy-
sis could potentially decrease the magnitude of this factor. In either
case, our statically-computed upper bound offers an improvement
over the current technique where, in the worst case, the user can
do little but guess a upper bound on the allocation rate. However,
before using our system to deploy a garbage collector in a real-time
environment, further study on the effect of converting from bytes
per instruction to bytes per unit time is needed.

Admittedly, our set of benchmarks are not real-time bench-
marks, but one reason for a lack of real-time Java code is the effort
required to use the RTSJ. To date, the only substantial RTSJ code
is under development at NASA and they are not releasing that code
yet.

 1

 2

 3

 4

 5

 6

 16 32 64 128 256 512

S
ta

tic
 b

ou
nd

 o
n

al
lo

ca
tio

n
ra

te
 /

ob
se

rv
ed

 ra
te

Window size

mpegaudio
javac
jess

db
raytrace

compress
jack

Figure 15. Comparison of bounded and actual maximum allo-
cation rates for all benchmarks (static bound on rate / observed
rate).

Our implementation can be improved in a number of ways. One
idea is to investigate path-sensitive approaches, including a meet-
over-all-valid-paths approach [11]. We would like to investigate
static approaches to bounding pointer density for real-time pro-
grams. As many realistic programs do not maintain a constant rate
of allocation at runtime [8], we plan to adapt our approach to handle
variable allocation rates. This is especially important for programs
in which not all methods are called by real-time threads. The max-
imum allocation rate within execution of real-time threads is the
relevant statistic for the real-time collector.

We have not addressed threads in this paper. If threads can
be interrupted at any point, then the windows we compute could
overlap in any manner, which would make the allocation rate look
unnecessarily high. We plan to make use of safe points (as in Jikes
RVM) so that threads are interrupted only at predetermined points.

Acknowledgements
We thank Richard Souvenir for his careful reading of this paper. We
thank Joe Cross for his suggestion concerning the usefulness of per-
method allocation rates, as a guide to help developers rewrite code
to improve CPU utilization. We also thank the LCTES reviewers
for their insightful suggestions.

References
[1] David F. Bacon, Perry Cheng, and V. T. Rajan. Controlling

fragmentation and space consumption in the metronome, a real-
time garbage collector fo java. In Proceedings of the Conference
on Languages, Compilers, and Tools for Embedded Systems. ACM
Press, 2003.

[2] David F. Bacon, Perry Cheng, and V. T. Rajan. A real-time garbage
collector with low overhead and consistent utilization. In Proceedings
of the 30th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 285–298. ACM Press, 2003.

[3] Greg Bollella, James Gosling, Ben Brosgol, Peter Dibble, Steve Furr,
David Hardin, and Mark Turnbull. The Real-Time Specification for
Java. Addison-Wesley, 2000.

[4] Dante J. Cannarozzi, Michael P. Plezbert, and Ron K. Cytron.
Contaminated garbage collection. Programming Language Design
and Implementation, pages 264–273, 2000.

[5] Lisa Carnahan and Marcus Ruark. Requirements for real-time
extensions for the java platform (final draft). Technical report, NIST,
1999.

[6] Perry Cheng and Guy Belloch. A parallel, real-time garbage collector.
In ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 125–136, 2001.

[7] Martin R. Linenweber. A study in Java bytecode engineering with
PCESjava. Master’s thesis, Washington University in St. Louis, 2003.

[8] Tobias Mann and Ron K. Cytron. Automatic Determination of
Factors for Real-Time Garbage Collection. In Washington University
technical report #WUCS-04-45, St. Louis, Missouri, 2004.

[9] Steven S. Muchnick. Advanced compiler design and implementation.
Morgan Kaufmann Publishers Inc., 1997.

[10] Kelvin Nilsen. Issues in the design and implementation of real-time
Java. Java Developer’s Journal, 1(1):44, 1996.

[11] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interproce-
dural dataflow analysis via graph reachability. In Conference Record
of POPL ’95: 22nd ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, pages 49–61, 1995.

[12] Ran Shaham, Elliot Kolodner, and Mooly Sagiv. Heap profiling for
space-efficient Java. ACM SIGPLAN Notices, 36(5):104–113, May
2001.

[13] Fridtjof Siebert. Eliminating external fragmentation in a non-moving
garbage collector for java. In International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems, pages 9–17, 2000.

[14] Mads Tofte and Jean-Pierre Talpin. Region-based memory man-
agement. Information and Computation, 132(2):109–176, February
1997.

[15] Mark N. Wegman and F. Kenneth Zadeck. Constant propagation with
conditional branches. ACM Trans. Program. Lang. Syst., 13(2):181–
210, 1991.

[16] Paul R. Wilson. Uniprocessor garbage collection techniques (Long
Version). Submitted to ACM Computing Surveys, 1994.

