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Abstract
Obtaining user feedback (using votes) is essential in rank-
ing user-generated online content. However, any online
voting system is susceptible to the Sybil attack where
adversaries can out-vote real users by creating several
Sybil identities. In this paper, we presentSumUp, a Sybil-
resilient online content rating system that leverages trust
networks among users to defend against Sybil attacks with
strong security guarantees. SumUp addresses the basic
vote aggregation problemof how to aggregate votes from
different users in a trust network in the face of Sybil iden-
tities casting an arbitrarily large number of bogus votes.
By using the technique ofadaptive vote flowaggregation,
SumUp can significantly limit the number of bogus votes
cast by adversaries to no more than the number of attack
edges in the trust network (with high probability). SumUp
leverages user voting history to further restrict the voting
power of adversaries who continuously misbehave to be-
low the attack edges. Using detailed evaluation of several
existing social networks (Digg, YouTube, Flickr, Live-
Journal), we show SumUp’s ability to handle Sybil attack.
By applying SumUp on the voting trace of Digg (online
news voting site), we have detected strong evidence of at-
tack on many articles marked “popular” by Digg.

1 Introduction
The Web 2.0 revolution has fueled a massive prolifera-
tion of user-generated content. While allowing users to
publish information has led to democratization of Web
content and promoted diversity, it has also made the Web
increasingly vulnerable to content pollution from spam-
mers, advertisers and adversarial users misusing the sys-
tem. In the past few years, there have been several inci-
dents where user-content hosting sites have been contam-
inated with bogus content from adversarial users resulting
in huge monetary losses [2,4]. The survival and the popu-
larity of user-content hosting sites is largely dependent on
their ability to rate content quality and detect bogus con-
tent. The problem of mislabeled or low quality content
also exists in peer-to-peer systems due to its open nature
of allowing any node to publish content [9,18,27].

People have long realized the importance of ranking

online content. For well-linked hypertext files, algorithms
such as PageRank [3], HITS [14] exploit the underlying
link structure for ranking. However, many forms of online
content such as videos, news articles, reviews and docu-
ment scans have no well defined links to each other. For
these forms of content, the best source of ranking informa-
tion comes from the explicit votes of users themselves. In
fact, given the diversity of user content, obtaining explicit
votes from users has remained an essential component for
ranking content quality. A large fraction of existing user-
content hosting sites such as news (Digg, Reddit), videos
(YouTube), documents (Scribd), consumer reviews (Yelp,
Amazon) rely on user votes to rank content.

A fundamental problem with any user-based content
rating system is theSybil attackwhere the attacker can
out-vote real users by creating many Sybil identities. The
popularity of content-hosting sites has made such attacks
very profitable as malicious entities can promote low-
quality content to a wide audience. Successful Sybil at-
tacks have been observed in the wild. For example, the
famous Slashdot poll on the best computer science school
motivated students to deploy automatic scripts to vote for
their schools repeatedly [10]. Some companies also ad-
vertise services that help clients promote their content to
the top spot on popular sites such as YouTube by voting
from a large number of Sybil accounts [25].

In this paper, we present SumUp, a Sybil-resilient on-
line content rating system that prevents adversaries from
arbitrarily distorting voting results. Like other propos-
als [7, 16, 20, 24, 29], SumUp leverages the trust relation-
ships that already exist among users (e.g. in the form of
social relationships) by exploiting the fact that it takes
some human efforts for a user to become trusted by an-
other user. Hence, it is difficult for the attacker to obtain a
large number of trust links from honest users, but he may
create many links among Sybil identities themselves.

The concept of using trust networks to defend against
Sybil attacks is not new [5,17,20,28,29,31].For example,
SybilLimit [28] uses random routing in social networks to
reduce the number of accepted Sybil identities toO(log n)
per attack edge (edge from a honest node to an adversary
node) amongn honest identities. Ostra [20] uses user his-
tory on top of a social network to thwart unwanted com-



munication. While these prior works are related in spirit,
they do not directly address the online content rating prob-
lem in this paper.

SumUp addresses thevote aggregation problemwhich
can be stated as follows:Given thatm users in a trust net-
work vote on the quality of a specific online content, of
which an arbitrary fraction of votes may be from Sybil
identities created by an attacker, how do we aggregate
votes in a Sybil resilient manner?An ideal solution for
the vote aggregation problem should satisfy three proper-
ties. First, if allm votes are from honest users, the solution
should aggregate almost all votes. Second, if the attacker
haseA attack edges (from honest users), the maximum
number of bogus votes should be bounded byeA, inde-
pendent of the attacker’s ability to create many Sybil iden-
tities behind him. Third, if the attacker repeatedly casts
bogus votes, his ability to vote in the future is diminished.

SumUp offers strong security guarantees for addressing
the vote aggregation problem in the face of Sybil attacks.
In particular, SumUp achieves the three aforementioned
properties of an ideal solution with high probability. The
key idea in SumUp is theadaptive vote flowtechnique
that appropriately assigns and adjusts link capacities in
the trust graph to collect the net vote for an object.

SumUp collects votes from a trusted source by com-
puting a set of max-flow paths on the trust graph from
the source to all voters. Because only votes on paths with
non-zero flows are counted, the number of bogus votes
collected is limited by the number of attack edges instead
of links among Sybil identities. SumUp uses a tunable
parameter,Cmax, that dictates the maximum number of
votes that can be aggregated by the system. SumUp as-
signs link capacities appropriately based onCmax so that
if the number of honest voters is less thanCmax, then
SumUp can aggregate a large fraction of their votes (more
than80%). SumUp also probabilistically limits the num-
ber of bogus votes cast by the attacker to no more than the
number of attack edges. By leveraging user voting history,
SumUp can further restrict the power of the attacker who
continuously misbehaves to below his attack edges.

Using a detailed evaluation of several existing social
networks (Digg, YouTube, Flickr, LiveJournal), we show
that SumUp successfully limits the number of bogus votes
by the attacker to the number of attack edges and is also
able to collect> 80% of votes fromCmax honest voters.
By applying SumUp on the voting trace and social net-
work of Digg (online news voting site), we have detected
hundreds of suspicious articles that have been marked
“popular” by Digg. Based on manual sampling, we be-
lieve that at least50% of suspicious articles found by
SumUp have a strong evidence of Sybil attacks.

The paper is organized as follows. In Section 2, we dis-
cuss related work and in Section 3 we define the system
model and the vote aggregation problem. Section 4 out-
lines the overall approach of SumUp and Sections 5 and 6

present the detailed design. In Section 7, we describes our
evaluation results. Finally in Section 8, we discuss specific
issues and conclude in Section 9.

2 Related Work
Ranking content is arguable one of Web’s most important
problems. Ideally, the quality of a piece of content should
be judged based on information contained in the content.
Unfortunately, there is no general machine learning-based
method to determine the quality of such diverse content
as images, videos and news articles etc. As a result, in-
corporating users’ opinions in the form of either explicit
or implicit votes becomes essential for online content rat-
ing. This section summarizes related work in vote-based
ranking systems. Specifically, we examine how existing
systems cope with Sybil attacks [8] and compare their ap-
proaches to SumUp.

2.1 Hyperlink-based ranking
PageRank [3] and HITS [14] are two popular ranking al-
gorithms that exploit the implicit human judgment embed-
ded in the hyperlink structure of web pages. A hyperlink
from page A to page B can be viewed as an implicit en-
dorsement (or vote) of page B by the creator of page A. In
both algorithms, a page has higher ranking if it is linked
to by more pages with high rankings.

The original PageRank is vulnerable to Sybil attack.
The attacker can significantly amplify the ranking of page
A by creating many web pages that link to each other and
also to A. The recommended defense mechanism is to re-
set PageRank computation to a small set of trusted web
pages with a small probabilityǫ [22]. However, sinceǫ is
small, the attacker can still achieve a big win [30].

2.2 User Reputation-based ranking
A user reputation system computes a rating for each iden-
tity in order to distinguish well-behaved identities from
misbehaving ones. It is possible to use a user reputation
system for vote aggregation: the voting system can either
count votes only from users whose reputations are above a
threshold or weight each vote using the user’s reputation.
There are two general types of reputation systems: those
that compute reputation using user history and those that
use trust networks. We discuss their strengths and limita-
tions in the context of vote aggregation.

History based reputations In EigenTrust [13], iden-
tities rate each other based on past transactions among
them. A good transaction between two honest identities
results in a good rating while a honest entity fooled by
a misbehaving identity will give it a low rating. In Cre-
dence [27], identities rate each other based on the sim-
ilarity between their voting records on the same set of
file objects. There are two limitations with using history-
based user reputation in a voting system. First, an honest
user with little history cannot quickly bootstrap himself to
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reach the required reputation threshold. On the other hand,
an attacker can engage in good transactions to improve
his reputation in order to cause greater damage in the fu-
ture. Second, it is difficult to convert pair-wise ratings into
a global reputation for each identity in a Sybil-resilient
fashion. Both Credence and EigenTrust use PageRank-
style reputation propagation to obtain a global rating for
each user. Therefore, they have the same vulnerability as
PageRank where an attacker can boost his ranking by a
factor of 1/ǫ using Sybil identities. Credence also lim-
its Sybil attacks by having a central certification authority
rate-limit the number of identities generated in the system.

Trust network based reputations A number of pro-
posals from the semantics web and peer-to-peer literature
rely on the trust network between users to compute rep-
utations [5, 11, 17, 23, 31]. Since a trust link reflects of-
fline social relationship between a pair of users, it is more
difficult for an attacker to obtain many trust edges from
honest users. Of the existing work, Advogato [17], Apple-
seed [31] and Sybilproof [5] are resilient to Sybil attacks
in the sense that an attacker cannot boost his reputation
by creating a large number of Sybil identities “behind”
him. Unfortunately, a Sybil proof user reputation scheme
does not directly translate into a Sybil proof voting sys-
tem: Advogato only computes a non-zero reputation for a
small set of identities, causing a majority of users not be-
ing able to vote. Although an attacker cannot improve his
reputation with Sybil identities in Appleseed and Sybil-
proof, the reputation of Sybil identities is almost as good
as the attacker’s non-Sybil accounts. Together, these rep-
utable Sybil identities can cast many bogus votes.

2.3 Sybil Defense using trust networks
Many systems use trust networks to defend against Sybil
attacks for different applications: SybilGuard [29] and
SybilLimit [28] help a node to admit another node in a
decentralized system with high probability that the ad-
mitted node is an honest node instead of a Sybil iden-
tity. Ostra [20] limits the rate of unwanted communication
that adversaries can inflict on honest nodes. Sybil-resilient
DHTs [7, 16] ensure that DHT routing is correct in the
face of Sybil attacks. Kaleidoscope [24] distributes proxy
identities to honest clients while minimizing the chances
of exposing them to the censor with many Sybil identities.
SumUp builds on their insights and addresses a different
problem, namely, aggregating votes for online content rat-
ing. Like SybilLimit, SumUp bounds the power of attack-
ers according to the number of attack edges regardless of
the number of Sybil identities. In SybilLimit, each attack
edge results inO(log n) Sybil identities accepted by hon-
est nodes. SumUp limits the number of bogus votes to be
no more than the number of attack edges with high proba-
bility. Additionally, SumUp uses user feedback on bogus
votes to further reduce the attack capacity to below the
number of attack edges. The specific feedback mechanism

used by SumUp is inspired by Ostra [20].

3 The Vote Aggregation Problem
In this section, we will describe the Sybil-resilient vote
aggregation problem that SumUp addresses. To set the
appropriate context, we begin by describing the system
model of SumUp and the associated threat model.

A voting system consists of a collection of identities
that cast votes for different objects. Any user can create
an identity in the system. A vote from identityi on ob-
jecto is associated with a value to express useri’s opinion
on the quality of objecto. In the simplest case, each vote
can be viewed as a positive or a negative vote (+1 or -1).
Alternatively, to make votes more expressive, the value of
a vote can range within a set of values with higher val-
ues indicating more favorable opinions. To rank objects, a
ranking method typically requires anaggregation metric
that combines all the votes for a given object. Aggregating
votes in the face of Sybil attacks is a challenging problem
since the attacker can easily create many Sybil identities
to out-vote real users.

Leveraging trust networks is essential in defending
against Sybil attacks [5, 17, 28, 29, 31]. In SumUp, user
i creates a trust link toj if i believes thatj does not col-
lude with the attacker and will vote honestly. Even though
each trust link is directional, each link’s creation requires
the consent of both users. We assume there are multiple
adversarial identities, all of whom collude as a single at-
tacker. As in [29], we refer to a link from an honest user
to an adversarial identity as an attack edge. While creating
Sybil identities and linking them to adversarial entities is
easy, establishing trust relationships between honest users
and adversarial identities is much harder, resulting in a rel-
ative small number of attack edges,eA. We refer to votes
from adversaries and Sybil identities as bogus votes.

In addition to a smalleA, it is essential to break the
symmetry between honest nodes and Sybil nodes; in prin-
ciple, the attacker can create many Sybil identities to
make the Sybil network identical to the honest network.
A recent impossibility result by Cheng and Friedman [5]
shows that there exists no symmetric sybilproof reputation
function. To break this symmetry, we need to bootstrap the
network with one or more trusted identities which act as
vote collectors. We also refer to the vote collector as the
sourcenode in subsequent discussions.

We describe SumUp in a centralized setup where the
votes of different users and trust relationships between
different users are collected and maintained by a single
trusted central entity. This central entity is responsiblefor
aggregating the user votes for each object and ranking
objects. As such, SumUp knows the entire trust network
and individual votes for different objects. This centralized
mode of operation fits the structure of online web sites
such as Digg, YouTube, Facebook, LiveJournal etc. where
the votes of different users and trust relationships between
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Figure 1: Vote aggregation can modeled as a max-flow
problem by creating links with capacity one from voters to
the supersink. Straight lines refer to trust links while curly
lines refer to a path of multiple trust links. Adversarial
identities are shown in black while Sybil nodes are shown
in the dark cloud.

different users are collected and maintained by a single
trusted entity. We describe how SumUp can be applied in
a distributed setting in Section 8.

Under the system and attack model of SumUp, the
sybil-resilient vote aggregation problem can be described
as follows:

Vote Aggregation Problem:Let G = (V, E) be a trust
network with a trusted vote collectors ∈ V . V comprises
of an unknown set of honest usersVh ⊂ V (including
s) and the attacker controls all vertices inV − Vh, many
of which represent Sybil identities. LeteA represent the
number of attack edges fromV − Vh to honest users in
Vh. Given that nodes inG cast votes on a specific ob-
ject, a vote aggregation mechanismideallyachieves three
properties:

1. Aggregate all votes from honest users.
2. Limit the number of bogus votes from the attacker

by eA independent of the number of Sybil identities
in V − Vh.

3. Eventually ignore votes from nodes that repetitively
cast bogus votes.

The three aforementioned properties areideal proper-
ties, in that, it may not be possible to develop an algo-
rithm that perfectly satisfies these conditions. Our system,
SumUp, achieves approximate versions of these proper-
ties.

4 SumUp: Basic Approach
This section describes the basic idea ofadaptive vote flow
that SumUp uses to address the vote aggregation prob-
lem. Using this approach, SumUp can significantly limit
the number of bogus votes without affecting the number
of honest votes that can be gathered. As we show later
in Section 5.4, SumUp can probabilistically achieve the
three properties required to address the vote aggregation
problem.

The concept ofmax-flowhas been applied to several
reputation systems based on trust networks [5, 17]. The
flow concept is critical to limit the number of votes that

Sybil identities can propagate for an object. When applied
in the context of the vote aggregation problem, the ap-
proach is to compute the max-flow in the underlying trust
network from the vote collector to the set of voting nodes
(voters). As Figure 1 shows, we create an imaginary link
with capacity value 1 from each voter to the supersink and
compute the max-flow from the source (vote collector)s
to the super-sink. We refer to the maximum number of bo-
gus votes that adversaries can cast as theattack capacity.
It is clear that witheA attack edges, the max-flow based
computation bounds the attack capacity byeA. The funda-
mental problem with this max-flow based approach is that
trust networks inherently aresparse networksand the total
number of votes that can be collected using max-flow is
very small. For example, networks from social network-
ing sites like YouTube and Flickr all have a small median
node degree from 1 to 5, thereby limiting the max-flow to
the small node degree.

One possible option to increase the max-flow is to en-
hance the capacity of each link. However, increasing link
capacities to accommodate more votes also correspond-
ingly increases the capacity of the attacker to cast more
bogus votes. Hence, there is a fundamental tradeoff in a
Sybil-resilient voting system between the maximum num-
ber of honest votes it can collect and the number of poten-
tially bogus votes the source might collect. Any symmet-
ric and proportional increase in link capacities will not
address this trade-off.

The adaptive vote flowtechnique aims to address this
tradeoff that enables a trusted vote collector to collect a
large fraction of honest votes while limiting the number
of bogus votes by Sybil identities. The design of adaptive
vote flow is centered around two basic observations. First,
the number of honest users voting for an object, even if
a popular one, is significantly smaller than the total num-
ber of users. Second, honest users voting for an object are
relatively more spread out than bogus votes from Sybil
identities behind a single attack edge.

The adaptive vote flow computation uses three key
ideas. First, the algorithm restricts the maximum number
of votes collected by the system to a valueCmax. Explic-
itly constraining the maximum number of votes collected
is essential to limit the number of bogus votes from adver-
sarial nodes. Unfortunately, if the actual number of honest
voters exceedsCmax, the algorithm will ignore the ex-
tra votes. We can partly deal with this issue by adaptively
increasingCmax, provided lower values ofCmax do not
indicate any Sybil voting behavior (based on flow con-
straints). As we show in Section 5.4, when settingCmax

to O(
√

n), the expected number of bogus votes is limited
to 1 + o(1) per attack edge.

The second and important aspect of SumUp relates to
capacity assignment: how do we assign flow capacities to
each trust link to address the tradeoff between collecting
Cmax honest votes in a sparse network as well as restrict
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Figure 2: The vote envelope in capacity assignment. Be-
yond the envelope, all link capacities are assigned to be
one.

the number of bogus votes per attack edge to one. SumUp
uses the idea of the vote collector distributingCmax tick-
etsdownstream in a breadth-first search manner within the
trust network. The capacity assigned to a link is the num-
ber of tickets distributed along the link plus one. As illus-
trated in Figure 2, the ticket distribution introduces avote
envelopewhich is essentially a cut withCmax vote entry
points; beyond the envelope all the edges have capacity1.
Any adversarial node beyond the envelope can propagate
at most1 vote per attack edge independent of the num-
ber of Sybil identities behind the attack edge. SumUp re-
distribute tickets (using voting history) to deal with attack
edges within the vote envelope.

The final key idea in SumUp is to leverage user history
to penalize adversarial nodes which continuously propa-
gate bogus votes. One cannot penalize individual identi-
ties since the adversary may always propagate bogus votes
using new Sybil identities. Given the flow approach, the
attack edge is guaranteed to be present in the path from
the source to the identity [20]. SumUp uses this obser-
vation to re-adjust the ticket distribution across links to
restrict adversarial nodes from continuously propagating
bogus votes along attack edges.

5 The SumUp voting system
In this section, we describe a static capacity assignment
algorithm that aims to achieve two out of the three vote
aggregation properties discussed in Section 3: (a) Collect
all votes of honest users, as long as less thanCmax voters
vote. (b) Restrict the number of bogus votes to one per
attack edge. Later in Section 6, we show how to adapt the
capacity assignment based on user voting history to deal
with continuous misbehavior by adversarial nodes.

The capacity assignment algorithm consists of three
steps. The first is a pruning step that could reduce the
number of attack edges without seriously affecting hon-
est users (Section 5.1). The next step is to assign posi-
tive capacity values to all links in the pruned graph such
that the source is able to collect most of theCmax votes
while minimizing attack capacity (Section 5.2). The last

Symbol Meaning
eA Number of attack edges
Cmax Max number of votes to be collected

(a system parameter)
CA Attack capacity, i.e. max number of

bogus votes the source can collect
din thres Min number of incoming links to a node

that are not pruned (a system parameter)

Table 1:A glossary of symbols and their meanings in the paper.

step is max-flow computation using a fast approximation
algorithm that incrementally updates the vote count when
users cast votes over a period of time (Section 5.3). We
formally analyze the security properties of SumUp in Sec-
tion 5.4 and discuss some practical issues with setting sys-
tem parameters in Section 5.5. Table 1 summarizes vari-
ous terms used in this Section.

5.1 Pruning the trust network

The attacker capacity is directly affected by the number of
attack edges. The smaller the value ofeA, the fewer bogus
votes the source will collect. The goal of link pruning is
to bound the in-degree of each node to a constant value,
din thres. This is primarily to restrict the damage of at-
tackers with several incoming edges from honest nodes
(greater thandin thres). On the other hand, pruning is un-
likely to affect honest users since each honest node only
attempts to cast one vote via one of its incoming links.

Since it is not possible to accurately discern honest
identities from Sybil identities, we give all identities the
chance to have his vote collected. In other words, prun-
ing should not cause a node to lose its connectivity from
the source if a path from the source exists in the origi-
nal network. The minimally connected network that sat-
isfies this requirement is a tree rooted at the source. A
tree topology minimizes attack edges because each adver-
sarial identity is left with exactly one incoming link re-
gardless of how many actual honest nodes that link to him
in the original network. However, a tree topology is also
overly restrictive for honest nodes because each node only
has one path from the source: if that path reaches its full
flow capacity, the user’s vote cannot be collected. In par-
ticular, whenCmax identities vote, a tree can collect only
(1 − 1

e
)Cmax ≈ 0.63 ∗ Cmax votes because a significant

fraction of voters’ paths conflict. A better tradeoff is to
allow each node to have at mostdin thres > 1 incoming
links in the pruned network so that honest nodes have a
large set of diverse paths while limiting each adversarial
node to onlydin thres attack edges. We examine the effect
of the specific parameter choice ofdin thres in Section 7.

Pruning each node to have at mostdin thres incoming
links is done as follows. We associate each node with
a level according to its shortest path distance from the
source. The source’s level is 0 and the other nodes’ levels
can be calculated efficiently using a breadth-first-search
tree from the source. In the first step, we remove all links
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except those connecting nodes at a lower level (l) to neigh-
bors at the next level (l + 1). Next, we remove a subset of
incoming links at each node so that the remaining links
do not exceeddin thres. In the third step, we add back
links removed in step one for each node with fewer than
din thres incoming links. And finally, we add one outgo-
ing link back to nodes that have no outgoing links after
step three, with priority given to links going to the next
level. This particular way of pruning is chosen to work
well with SumUp’s capacity assignment, to be described
in the next Section. For nodes with more thandin thres

incoming links in the original network, pruning reduces
their incoming edges. We speculate that it is easier to trick
honest nodes to trust an adversary node which has many
honest neighbors than trust a singleton adversary node.
Therefore, the number of attack edges in the pruned net-
work is likely to be smaller than those in the original net-
work.

5.2 Capacity assignment

The goal of capacity assignment is twofold. On one hand,
the assignment should allow the source to collect almost
all votes if less thanCmax honest nodes vote. On the other
hand, the assignment should minimize the attack capacity,
CA, to be not much more than the number of attack edges
(eA) in the pruned network.

As Section 4 illustrates, the basic idea of capacity
assignment is to construct a vote envelope around the
source. The vote envelope represents the boundary beyond
which all edges in the network have a capacity value of 1.
If all the eA attack edges are beyond the vote envelope,
then we can guarantee that the attack capacity is bounded
by eA. Hence the goal is to minimize the chances of an
attack edge within the envelope and ensure that there is
enough capacity within the envelop for allCmax entry
points on the envelope to reach the source.

We achieve this goal using aticket distributionmecha-
nism which provides the following: the link capacity de-
creases with increasing distance from the source. The dis-
tribution mechanism is best described using a propagation
model where the source is to spreadCmax tickets across
all links in the pruned network. Each ticket corresponds to
a capacity value of 1. We group nodes into different lev-
els according to the shortest distance from the source (as
is done in Section 5.1) and distribute tickets to nodes one
level at a time. If a node at levell has gottentin tickets
from nodes at levell − 1, the node consumes one ticket
and re-distributes the remaining tickets evenly across all
its outgoing links to nodes at levell+1, i.e.tout = tin−1.
The capacity value of each link is set to be one plus the
number of tickets distributed on that link. Tickets are not
distributed to links connecting nodes at the same level or
from a higher to lower level. The closest set of links that
have a capacity of one represent the vote envelope of the
source. One can visualizeCmax such links as entry points

A Bs C
EFD3 3 1110 10 0

l e v e l 1l e v e l 0 l e v e l 2
0 00 00

0
Figure 3:Each link shows the number of tickets distributed
to that link from S (Cmax=6). Each node consumes one ticket
and distributes the remaining evenly via its outgoing linksto the
next level. Tickets are not distributed to links between nodes at
the same level (B→A) or to links from a higher to lower level
(E→B). The capacity of each link is equal to one plus the num-
ber of tickets.

collectingCmax votes among all nodes.
During ticket distribution, each node must keep at least

one ticket to itself so that the total number of tickets un-
der distribution decreases at each higher level, eventually
reaching zero after a small number of levels. Because
each ticket corresponds to one capacity value, distribut-
ing fewer tickets lowers the chances of distributing tickets
to attack edges, reducingCA. Each node should not keep
more than one ticket to itself since otherwise thetin tick-
ets distributed to a node can not be fully utilized by voters
at higher levels. As a result, each node consumes exactly
one ticket during distribution.

Figure 3 illustrates the result of the ticket distribution
mechanism on an example network. The source,s, dis-
tributesCmax=6 tickets among all links in the pruned
network. Each node collects tickets from its lower level
neighbors, keeps one ticket to itself and re-distributes the
rest evenly across all outgoing links to the next higher
level. In Figure 3,s sends 3 tickets down each of its
outgoing link. Since A has more outgoing links (3) than
its remaining tickets (2), link A→D receives no tickets.
Tickets are not distributed to links between nodes at the
same level (B→A) or to links from a higher to lower level
(E→B). The final number of tickets distributed on each
link is shown in Figure 3. Except for immediate outgoing
edges from the source, the capacity value of each link is
equal to the amount of tickets it receives plus one except
for immediate links of the source.

5.3 Incremental vote collection
Pruning and capacity assignment is done once for a given
trust network and vote collector. The task remains to col-
lect votes on each object from the resulting flow network.
Existing max-flow algorithms such as Ford-Fulkerson and
Preflow push [6] are not directly applicable for vote col-
lection. In particular, existing algorithms do not care about
which of the many competing paths they choose for max-
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flow. As a result, they are more likely to choose one of the
many vote flows from the attackers than one from an hon-
est user to traverse a congested link. Furthermore, if the
max-flow capacity is reached, existing algorithms cannot
incrementally update the results to account for subsequent
votes whose opinions might have shifted. To address these
shortcomings, we exploit the structure in capacity assign-
ments to find an approximated max-flow solution that is
both incrementally updatable and fast to compute.

The approximation algorithm used by SumUp is in-
spired by the Ford-Fulkerson method. The algorithm
works incrementally to try to collect one additional vote
from each new voter. To collect a vote, the approxima-
tion algorithm tries to find an augmenting path from the
source to the corresponding voter in the residual graph. To
find an augmenting path if one exists, the original Ford-
Fulkerson performs a breadth-first-search from the source
which costsO(E) running time. To speed up this pro-
cess, we perform an approximate search using depth-first-
search (DFS) from the voter toward the source. At each
step, the DFS prefers exploring links from neighbors at a
lower level if such links with non-zero remaining capac-
ity exist. We limit the running time of DFS by bounding
the number of the backtracking steps it can take to find a
path (e.g. 300). The choice of DFS makes a good heuristic
because of our capacity assignment strategy: the capacity
of links at higher levels is propagated from links at lower
levels so preferentially exploring links at lower levels is
more likely to find an non-zero capacity path.

When the number of votes collected so far approaches
Cmax, there will be no augmenting paths found for new
voters. Instead of ignoring these votes, we probabilisti-
cally replace some existing votes with new ones. Such
shuffling is necessary so that the final set ofCmax col-
lected votes can reflect a random sample among all votes.
To support shuffling, each link keeps track of the set of
identities whose votes it is carrying as well as the num-
ber of replacement attempts it has seen on those votes (x).
If a new voter has failed to find an augmenting path dur-
ing its bounded DFS search, it restarts the DFS and ter-
minates the search upon exploring an incoming link with
full capacity. With probability1/x, the replacement algo-
rithm chooses a random vote among those carried by the
full link and replaces it with the new vote. If the replaced
voter has a complete path to the source, the entire path is
taken over by the new voter.

Algorithm 1 shows the pseudocode for incremental
vote update via replacement. The final set of collected
votes can be obtained from the set of existing voters kept
at the immediate outgoing links from the source. Vote
replacement allows the final set of collected votes to be
a random sampleCmax votes from all voters without
restarting the vote collection from scratch each time.

Algorithm 1 Replacement algorithm, run after the
bounded DFS fails to find an augmenting path from voter
i to the sources.

E(j,k)← A full link encountered during DFS search
from i to s.
V← set of existing voters on E(j,k)
x← number of replacement attempts on E(j,k)
rand← a random number in[0, 1)
if rand< 1/x then

r← a random voter in V
replacer in V with i
for each link e inr’s path tos do

replacer with i in the set of existing voters on e
end for
number of replacement attempts on E(j,k)← x+1

end if

5.4 Security Properties
In this section, we provide a formal analysis of the secu-
rity properties of SumUp under the assumption that the
trust network can be approximated as an expander graph.
Existing studies on various types of social networks have
shown that social networks are indeed expander-like [15].
We specifically prove bounds on the expected attack ca-
pacityCA and the expected number of votes collected if
Cmax honest users vote. This analysis also assumes that
the trusted vote collector is a random node in the topol-
ogy. In practice, even if the attacker is close to the source,
we can use voting history (as shown in Section 6) to re-
adjust link capacities to deal with this problem. Alterna-
tively, one also can compute a “personalized ranking” by
using each user as the vote collecting source for aggregat-
ing votes.

Theorem 5.1 Given that the trust networkG on n nodes
is a bounded degree expander graph, the expected capac-
ity per attack edge isE(CA)

eA
= 1 + O(Cmax(log Cmax)

n
)

which is1 + o(1) if Cmax = O(nα) for α < 1. If eA is
a constant, the capacity per attack edge is bounded by1
with high probability.

Proof Sketch Let li represent the number of nodes in
level i with l0 = 1 representing the source. LetEi rep-
resent the number of edges from leveli− 1 to i. Then, the
average capacity of theEi edges is bounded byCmax/Ei.
The probability that one of the nodes in leveli is an ad-
versarial node isli/n. Given the expander graph property,
we are guaranteed thatli andEi will increase exponen-
tially with i. Hence, the distance of the vote envelope from
the source islog Cmax. Beyond the vote envelope, the at-
tack edge capacity is bounded by1. Hence for a randomly
placed adversarial node, the expected capacity can be cal-
culated as1 +

∑
i(li/n)× (Cmax/Ei). Given thatli and

Ei exponentially increase withi, we can show that the
expected capacity is1 + O(Cmax log Cmax/n). In addi-
tion, the number of nodes within the envelope

∑
i li is
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bounded byCmax. Hence, the attack capacity for a ran-
domly placed adversarial node is exactly equal to1 with
probability1 − Cmax

n
. WheneA is a constant, the prob-

ability that any attack edge has capacity greater than1
is bounded byeA×Cmax

n
. Hence forCmax = O(nα) for

α < 1, the expected attack capacity per attack edge is
1 + o(1) and the attack capacity is bounded by1 with
high probability.

While the expected attack capacity is1 + o(1) per at-
tack edge, the high probability bound on the attack ca-
pacity is for constanteA. In the general case, there is a
tradeoff betweeneA and the choice ofCmax. The prob-
ability that a randomly chosen node adversary has a ca-
pacity greater than1, is eACmax/n. Hence the choice of
Cmax is inversely related to the choice ofeA. To bound
attack capacity to be no more thaneA, it is essential to
choose a smallCmax. Since the value ofeA is not known,
we choose a value ofCmax = O(

√
n) in our system pri-

marily due to convenience. We discuss the issue of setting
Cmax in Section 5.5.

Theorem 5.2 Given that the trust networkG onn nodes
is a d-regular expander graph andCmax random honest
voters, the expected fraction of votes that can be collected
out ofCmax votes is1− o(1) if Cmax = O(

√
n).

Proof Sketch Figure 2 illustrates the intuition that
SumUp creates an envelop of withCmax entry points
around the source via which votes are collected: if a vote
flow reaches an entry point without conflicting with other
flows, it is guaranteed to be collected by the source since
paths within the envelop are assigned enough capacity.
Therefore, in order to prove that the expected fraction of
votes that can be collected is high, we need to show that
the minimum cut of the graph between the set ofCmax

entry points and the set ofCmax voters is large. Fortu-
nately, expanders are well-connected graphs. In particu-
lar, the Expander mixing lemma [21] states that for any
setS andT in a d-regular expander graph, the expected
number of edges betweenS andT is d · |S| · |T |/n. Let
S andT be the set of nodes that form a minimum cut be-
tween the entry points and the voters, i.e.|S| + |T | = n.
Additionally, |S| ≥ Cmax sinceS contains all the en-
try points. |T | ≥ Cmax since T contains all the vot-
ers. Therefore, the min-cut value is= d · |S| · |T |/n ≥
d · Cmax(n − Cmax)/n. Since max-flow calculated by
SumUp betweenS andT is at least1/d of the min-cut
value (because SumUp assigns a capacity of1 to the link
from a voter to the supersink as opposed to∞ in a typi-
cal max-flow setup), the fraction of votes that can be col-
lected isd ·Cmax(n−Cmax)/(n · d · Cmax) = 1− o(1)
if Cmax =

√
n.

5.5 Practical Issues
Finding n: In our setting, the trust network is known to
the central entity a priori and hence the value ofn can

be determined based on the size of the network. However,
the trust network can potentially be pre-populated with
a large number of Sybil identities which can significantly
alter the actual value ofn. One way to deal with this prob-
lem is to use theexpanded ring searchapproach. Given
the trusted vote collector, one can choose a diameter∆
and constrain the trust network to only the nodes within
a distance∆ from the collector. In addition, to prevent an
adversary from creating several Sybil identities as direct
neighbors, we need to impose a degree bounddmax on
each node. One can repeat the vote aggregation analysis
for increasing values of∆.
Setting Cmax: We previously setCmax to

√
n primarily

for formally proving the security properties of SumUp.
Ideally, to setCmax, we need to obtain the distribution
of the number of votes for different objects and use the
95th or 99th percentile to setCmax. By analyzing vot-
ing patterns in different social networks, we found that in
practice, the most popular objects in networks with over a
million nodes have a few thousand votes. Hence, we feel
that
√

n is a reasonable choice forCmax; in addition, this
value ofCmax results in an attack edge having a capacity
value of one for up to

√
n attack edges. In practice, to de-

termine the relatively rank of popular objects that receive
more thanCmax votes, we can use an adaptive ranking
strategy by varyingCmax. If the vote flow for an object
at Cmax =

√
n is roughly equal to

√
n (which means

there is no signal of Sybil voting behavior), then we can
recompute the vote flow for higher values ofCmax. Using
this adaptive strategy, we can relatively rank two popular
objects.

6 Leveraging user feedback
The basic design outlined in Section 5 has two limitations.
First, although the expected attack capacity is bounded by
the number of attack edges, there might be cases where
CA is high when some adversarial identities happen to be
close to the source. Second, the basic design only bounds
the number of bogus votes collected on a single object.
As a result, adversaries can still cast up toeA bogus votes
on everyobject in the system. In this section, we explore
ways to utilize user feedback to address these two limita-
tions.

We let the source node associate negative feedback with
a voter if he disagrees with the vote. For example, if the
source finds out that an object is a bogus file or a virus, he
associates negative feedback to all voters who have voted
highly on that object. Only negative feedback is used. This
is to prevent adversaries from boosting their voting power
by casting truthful votes on objects they do not care about.

When the source gives negative feedback to a vote,
SumUp increments the negative history associated with
each link along the entire path from the source to that
voter. It is necessary to increment the negative history of
all links along the path instead of just the immediate link
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to the voter because that voter might be a Sybil identity
created by some other attacker along the path. Punishing a
link to a Sybil identity is useless as adversaries can easily
create more such links. This way of incorporating negative
feedback is inspired by Ostra, where a user that has re-
ceived spam penalizes all links along the path to the email
sender [20]. Unlike Ostra, SumUp uses a customized flow
network per source and only allows the source to incorpo-
rate feedback for its associated network. Using only the
source’s feedback ensures that feedback is always trust-
worthy, thus preventing adversaries from framing honest
nodes. Since every user in SumUp can act as his own
source to compute a personalized ranking, each user will
be able to customize a flow network using his own feed-
back.

SumUp uses the negative history of each link in two
ways. First, we adjust each link’s capacity assignment so
that links that have previously carried more bogus votes
have lower capacities. This helps to reduce attack capacity
if the adversaries happen to be close to the source. Second,
we eliminate links whose negative history has exceeded a
certain threshold. Therefore, if adversaries continuously
misbehave, the attack capacity will drop beloweA over
time. We describe these approaches in detail in the rest of
the Section.

6.1 Capacity adjustment
The capacity assignment in Section 5.2 lets each node dis-
tribute incoming tickets evenly across all outgoing links.
In the absence of feedback, it is reasonable to assume that
all outgoing links are equally trustworthy and hence to
assign them the same number of tickets. When negative
feedback is available, a node should distribute fewer tick-
ets to outgoing links with more negative histories. Such
adjustment is particular useful in circumstances where ad-
versaries are close to the source and hence might receive
a large number of tickets.

Let hi,j be the negative history associated with the link
i→j. The goal of capacity adjustment is to compute a
weight,w(hi,j), as a function of the link’s negative his-
tory. The number of tickets nodei distributes to one of
its outgoing links is proportional to the link’s weight, i.e.
ti,j = tout ∗ w(hi,j)/

∑
∀i→k w(hi,k).

How should the weights be computed? Clearly, a link
with more negative history should have a smaller weight,
i.e. w(hi,j)<w(hi,k) if hi,j>hi,k. Additionally, we re-
quire that if negative histories on two links increase by the
same amount, the ratio between the links’ weights should
remain unchanged. To put it in formulas, the weight func-

tion must satisfy:∀h′, hi,j , hi,k,
w(hi,j)
w(hi,k) =

w(hi,j+h′)
w(hi,k+h′) .

This requirement matches our intuition that if two links
have accumulated an equal amount of negative feedback
over a period of time, the relative capacities between them
should remain the same. The only function that satisfies
both requirements is an exponential function of the form

Network Nodes Edges Degree Directed?
×1000 ×1000 50%(90%)

YouTube [20] 446 3,458 2 (12) No
Flickr [19] 1,530 21,399 1 (15) Yes
LiveJournal [19] 4,785 76,193 5 (40) Yes
Synthetic [26] 500 3,072 5 (12) No

Table 2:Statistics of the social network traces or model used for
evaluating SumUp. All statistics are for the strongly connected
component (SCC).

w(hi,j) = a ∗ bhi,j wherea, b are constants and 0<b<1.
We seta=1 andb=0.9 by default.

6.2 Eliminating links using feedback
Capacity adjustment cannot reduce the attack capacity to
beloweA since each link is assigned a minimum capacity
value of one. To further reduceeA, we eliminate those
links that have accumulated too many negative histories.

We use the following heuristic for link elimination: we
remove a link if its corresponding negative history ex-
ceeds five times the assigned capacity. Since we already
prune the trust network (Section 5.1) before performing
capacity assignment, we add back a previously pruned
link if one exists after eliminating an incoming link due
to excessive negative history. The reason why link elim-
ination is useful can be explained intuitively: if adver-
saries continuously cast bogus votes on different objects
over time, all attack edges will be eliminated eventually.
On the other hand, although an honest user might have
one of its incoming links eliminated because of a down-
stream attacker casting bad votes, he is unlikely to expe-
rience another elimination due to the same attacker since
the link connecting him to that attacker will also be elim-
inated. When we add back a different incoming link to
the attacker from the original trust network, the attacker
will explore a different set of paths to the source, thus
unlikely to affect the same user again. Despite the intu-
itive argument, there always exists pathological scenarios
where link elimination affects some honest users, leav-
ing them with no voting power. To address such potential
drawbacks, we can re-enact eliminated links at a slow rate
over time. We evaluate the effect of link elimination in
Section 7.

7 Evaluation
In this section, we demonstrate SumUp’s security prop-
erty using real world social network and voting traces. Our
key results are:

1. On all networks under evaluation (YouTube, Flickr,
LiveJournal), SumUp bounds the average number of
bogus votes collected to be no more thaneA while
being able to collect>80% of votes fromCmax vot-
ers.

2. By incorporating feedback from the vote collector,
SumUp dramatically cuts down the attack capacity
for adversaries that continuously cast bogus votes.
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3. We apply SumUp on the voting trace and social net-
work of Digg [1], a news aggregation site that uses
votes to rank user-submitted news articles. SumUp
has detected hundreds of suspicious articles that have
been marked as “popular” by Digg. Based on manual
sampling, we believe at least 50% of suspicious ar-
ticles found by SumUp exhibit a strong evidence of
Sybil attacks.

7.1 Experimental Setup

For the evaluation, we use a number of network datasets
from different online social networking sites [19] as well
as a synthetic social network [26] as the underlying trust
network. Online social networks are not ideal for evalu-
ating SumUp because the links created in sites such as
YouTube, Flickr and LiveJournal serve a different pur-
pose than those in SumUp. For example, a LiveJournal
user might create a link to another user if he is inter-
ested in reading that user’s blog. By contrast, a SumUp
user should create a link to another user only if he trusts
the other user to vote honestly. Despite such differences,
we expect that the basic structure of the trust network in
a deployed SumUp should resemble those in typical so-
cial networks because the origin of trust ultimately comes
from the social interactions among users. Table 2 gives the
statistics of various datasets. For undirected networks, we
treat each link as a pair of directed links. Unless explicitly
mentioned, we use the YouTube network.

In order to evaluate the ability of SumUp to bound bo-
gus votes, we randomly choose a fraction of nodes as col-
luding adversary nodes. Thus,eA is the average in-degree
of a node times the number of adversary nodes. By de-
fault, we setCmax=

√
n, din thres=3 and the DFS back-

tracking limit to be300. For experiments in Section 7.2
and Section 7.3, we choose a random set of nodes as vot-
ers and compute each data point using the average of100
experiments. We apply SumUp on the real world voting
trace of Digg in Section 7.4 to examine how SumUp can
be used to detect Sybil attacks in the wild.

7.2 Sybil-resilience of the basic design

The main goal of SumUp is to limit attack capacity while
allowing honest users to vote. Figure 4 shows the average
attack capacity per attack edge as the number of attack
edges increases. As seen in Figure 4, the attack capacity
(CA) is much less than the number of attack edges (eA)
in the original network under various network topologies.
In these topologies, we introduce some new adversarial
nodes, each of them randomly pickd honest nodes in the
graph to be neighbor with, whered is the average degree
of the topologies. We find that pruning can significantly
reduce the number of attack edges in the original graph
by at least40%. In addition, our capacity assignment al-
gorithm can guarantee that the attack capacity is1 for al-
most all attack edges. Pruning is less effective in Flickr
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Figure 5:The fraction of votes collected as a function of the
number of voters (up toCmax). SumUp collects more than80%
votes even whenCmax users vote.
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than in other networks because there are more leaf nodes
in Flickr network. When we apply step4 of the pruning
process, some pruned attack edges in the previous steps
are added back. Figure 4 shows the average attack capac-
ity for a randomly chosen source node. When using every
node as its source, there are a few source nodes that expe-
rience much a larger attack capacity because they happen
to be close to an adversary. These source nodes need to
rely on feedbacks to re-adjust capacity assignment to re-
duce attack capacity.

Figure 5 plots the fraction of votes collected by SumUp
as a function of the number of voters (up toCmax). As
Figure 5 shows, even whenCmax nodes vote, SumUp is
able to collect more than80% votes. This result confirms
that capacity assignment via ticket distribution helps col-
lect most votes whenCmax users vote.

Figure 6 and Figure 7 evaluate two system parameters,
din thres and the depth-first-search (DFS) backtracking
limit. Both parameters affect the fraction of votes that can
be collected. Figure 6 shows that settingdin thres to be
one drastically reduces the number of votes collected be-
cause of the lack of redundant paths from the source to
voters. For a smalldin thres such as 2 or 3, there is enough
path redundancy for SumUp to collect most votes. As a re-
sult, we usedin thres = 3 as the default parameter value.

Figure 7 evaluates the design choice of using bounded
DFS to find an augmenting path for incremental vote col-
lection. We vary the number of backtracking steps allowed
during DFS and examine how this threshold impacts the
fraction of votes collected. As Figure 7 shows, bounding
DFS to less than 300 steps results in many fewer votes be-
ing collected. SumUp uses 300 steps as the default back-
tracking threshold for bounded DFS. In our experiments,
bounded DFS allows SumUp to run at least an order of
magnitude faster than the Ford-Fulkerson algorithm.
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Figure 8:The change in attack capacity as adversaries continu-
ously cast bogus votes. Capacity adjustment and link elimination
dramatically reducesCA while still allowing SumUp to collect
more than80% honest votes.

7.3 Benefits of incorporating feedback

We evaluate the benefits of capacity adjustment and link
elimination using feedback from the vote collector. Fig-
ure 8 corresponds to an experiment with one randomly
chosen source in YouTube withCmax = 634. There are
8 adversarial identities (eA = 64) that cast bogus votes
on a different object at each time step. At the same time,
a random set of634 honest users are also casting votes
on the same object. At time step zero, because the chosen
source happens to link to one of the adversaries directly,
CA is high (> e

′

A), resulting in350 bogus votes collected
and only45% fraction of honest votes collected. After in-
corporating the source’s feedback after the first time step
to re-adjust the capacity adjustment,CA is drastically re-
duced to approximatelye

′

A. After another5 time steps
during which adversaries continue casting bogus votes,
most attack edges in the current network are eliminated
and previously pruned edges are added back. After an-
other10 time steps, all attack edges are eliminated, re-
ducing CA to zero. However, because of our decision
to slowly add back eliminated links, the attack capacity
never remains at zero forever. Figure 8 also shows that
link elimination has little effects on honest nodes: as links
are being eliminated, the fraction of votes collected from
honest users always remains at about82%, which is the
same as without link elimination.

7.4 Defending Digg against Sybil attacks

Is there evidence of Sybil attacks in real world voting sys-
tems? Can SumUp successfully limit bogus votes from
Sybil identities? In this Section, we apply SumUp to the
voting trace and social network crawled from Digg to
show the real world benefits of SumUp.

Digg [1] is a popular online news aggregation site
where any registered user can submit an article for others
to vote on. A positive vote on an article is called adigg. A
negative vote is called abury. Digg marks a subset of sub-
mitted articles as “popular” articles and displays them on
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Number of Nodes 3,002,907
Number of Edges 5,063,244
Number of Nodes in SCC 466,326
Number of Edges in SCC 4,908,958
Out degree avg(50%, 90%) 10(1, 9)
In degree avg(50%, 90%) 10(2, 11)
Number of submitted (popular) articles 6,494,987
2004/12/01-2008/09/21 (137,480)
Diggs on all articles
avg(50%, 90%) 24(2, 15)
Diggs on popular articles
avg(50%, 90%) 862(650, 1810)
Hours since submission before a popular
article is marked as popular.
avg (50,%,90%) 16(13, 23)
Number of submitted (popular) articles 38,033
with bury data available (5,794)
2008/08/13-2008/09/15

Table 3: Basic statistics of the crawled Digg dataset. The
strongly connected component (SCC) of Digg consists of
466,326 nodes.
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Figure 10:The distribution of the fraction of diggs collected by
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its front page. In subsequent discussions, we use the terms
popularor popularityonly to refer to the popularity status
of an article as marked by Digg. Digg’s popularity ranking
algorithm is intentionally not revealed to the public to mit-
igate gaming of the system. A Digg user can create a “fol-
low” link to another user if he wants to follow the other’s
activity and to browse articles submitted by the other user.
We have crawled the Digg site to obtain the voting trace
on all submitted articles since Digg’s launch (2004/12/01-
2008/09/21) as well as the complete “follow” network be-
tween users. Unfortunately, unlike diggs, bury data is only
available as a live stream. Furthermore, Digg does not re-
veal the user identity that cast a bury, preventing us from
evaluating SumUp’s feedback mechanism. We have been
streaming bury data since 2008/08/13. Table 3 shows the
basic statistics of the Digg “follow” network and the two
voting traces, one with bury data and one without. Al-
though the strongly connected component (SCC) consists
only 15% of total nodes,88% of votes come from nodes
in SCC.

The most profitable avenue for attack lies in getting a
submitted article to be marked as popular, therefore pro-
moting an article to the front page of Digg which has
several million page views per day. Our goal is to ap-
ply SumUp on the voting trace to reduce the number of
successful attacks on the popularity marking mechanism
of Digg. Unfortunately, unlike experiments done in Sec-
tion 7.2 and Section 7.3, there is no ground truth about
which Digg users are adversaries. Instead, we have to use
SumUp itself to find evidence of attacks and rely on man-
ual sampling and other types of data to cross check the
correctness of results.

Although the precise algorithm for deciding popularity
is not known, we speculate that the number of diggs is a
top contributor to an article’s popularity status. Figure 9
shows the distribution of the number of diggs an article
has received before it is marked as popular. Since more
than 90% of popular articles are marked as such within 24
hours after submission, we also plot the number of diggs
received within 24 hours of submission for all articles.
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The large difference between the two distributions in Fig-
ure 9 indicates that the number of diggs indeed plays an
important role in determining an article’s popularity sta-
tus.

Instead of simply adding up the actual number of diggs,
what if Digg uses SumUp to collect all votes on an arti-
cle? We use the identity of Kevin Rose, the founder of
Digg, as the source node andCmax=2000 to collect all
diggs on an article before it is marked as popular. Fig-
ure 10 shows the distribution of the fraction of votes col-
lected by SumUp over the total number of diggs that an
article has received before becoming popular. The distri-
bution is over for the entire set of 137,480 popular articles
since Digg’s launch. Our previous evaluation on various
network topologies suggests that SumUp should be able
to collect at least 80% of all votes (see Figure 5). Indeed,
Figure 10 shows that more than 90% of all popular arti-
cles have more than 80% of their votes collected. Inter-
estingly, there are a fair number of popular articles with
fewer than expected fraction of diggs collected. For ex-
ample, SumUp only manages to collect less than 50% of
votes for 0.5% of popular articles. We hypothesize that the
reason for collecting fewer than expected votes is due to
real world Sybil attacks.

Since there is no ground truth dataset available to ver-
ify if few collected diggs are indeed the result of attacks,
we resort to manual sampling. We set different fractions
of collected diggs as a threshold for determining if an ar-
ticle is suspicious. Table 4 shows the result of manually
inspecting 30 random articles from all suspicious articles.
The random samples for different thresholds are chosen
independently. There are a number of obvious bogus ar-
ticles such as advertisements, phishing articles and ob-
scure political opinions. Of the remaining, we find many
of them have an unusually large fraction (>30%) of new
voters who registered on the same day as the article’s sub-
mission time. Some articles also have very few total diggs
since becoming popular, a rare event since an article typ-
ically receive hundreds of votes after being shown on the
front page of Digg. We find no obvious attack evidence
for roughly half of sampled articles. Interviews with Digg
attackers [12] reveal that, although there is a fair amount
of attack activities on Digg, attackers do not typically pro-
mote obviously bogus material. This is likely due to Digg
being a highly monitored system as there are fewer than
a hundred articles becoming popular every day. Instead,
attackers try to get normal or even good content ranked
as popular articles as promotion for others or to boost his
profile within the Digg community.

As another evidence that a lower than expected fraction
of collected diggs signals possible attacks, we examine
Digg’s bury data for articles submitted after 2008/08/13
of which 5794 are marked as popular. Figure 11 plots the
correlation between the average number of bury votes on
an articleafter it becomes popular vs. the fraction of the

Threshold of the 20% 30% 40% 50%

fraction of collected diggs
# of suspicious articles 41 131 300 800

Advertisement 5 4 2 1
Phishing 1 0 0 0

Obscure political articles 2 2 0 0
Many newly registered voters 11 7 8 10

Fewer than 50 total diggs 1 3 6 4
No obvious attack 10 14 14 15

Table 4:Manual classification of30 randomly sampled suspi-
cious articles. We use different thresholds of the fractionof col-
lected diggs for marking suspicious articles. An article islabeled
as having many new voters if the number of voters who regis-
tered on the same day as the article’s submission exceeds 30%
of all voters.
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Figure 11:The average number of buries an article has received
after it is marked as popular as a function of the fraction of diggs
collected by SumUpbeforeit is marked as popular. The Figure
covers5, 794 popular articles with bury data available. The dis-
tribution of the fraction of diggs collected is also shown inthe
second line.

diggs SumUp has collected before it is marked as popu-
lar. As Figure 11 reveals, the higher the fraction of diggs
collected by SumUp, the fewer the bury votes an article is
going to receive after being marked as popular. Assuming
most bury votes come from honest users that genuinely
dislike the article, a large average of bury votes is a good
indicator that the article is of dubious quality.

What are the voting patterns on suspicious articles?
Since88% diggs come from nodes within the SCC, we
should expect only12% of diggs to originate from the
rest of the network which mostly consist of nodes with no
incoming follow links. For most suspicious articles, the
reason for SumUp collecting fewer than expected diggs
is due to an unusually large fraction of votes coming
from outside the SCC component. Since Digg’s popular-
ity marking algorithm is not known, it is likely that at-
tackers might not bother to connect his Sybil identities
to the SCC or to each other. Interestingly, we find 5 sus-
picious articles with sophisticated voting patterns where
one voter links to a large number of identities that also
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vote on the same article. We believe the many identities
behind that single voter are likely Sybil identities because
those identities were all created on the same day as the ar-
ticle’s submission. Additionally, those identities all have
similar usernames that differ in only one letter.

8 Discussion
Centralized vs Decentralized Setup: Even though
SumUp is presented in a centralized setup such as a
content-hosting Web site, it can be implemented in a dis-
tributed fashion to rank objects in peer-to-peer systems.
We outline one such distributed design for SumUp. In the
peer-to-peer environment, each node and its correspond-
ing user is identified by a self-generated public key. A pair
of users create a trust link relationship between them by
signing the trust statement with their private keys. Each
node gossips with each other or performs a crawl of the
network to obtain a complete trust network between any
pair of public keys. This is different from Ostra [20] and
SybilLimit [28] which addresses the harder problem of
decentralized routing where each user only knows about a
small neighborhood around himself in the trust graph. In
the peer-to-peer setup, each user naturally acts as his own
source to compute a personalized ranking of objects. To
obtain all votes on an object, a node can either perform
flooding (like Credence [27]) or retrieve votes stored in
a distributed hash table. In the latter case, it is important
that the DHT itself be resilient against Sybil attacks. Re-
cent work on Sybil-resilient DHT [7,16] and server selec-
tion [28] address this challenge.
Relationship to SybilLimit and SybilGuard: The ap-
proach taken in this paper is different in set up from the
decentralized model taken in SybilGuard and SybilLimit.
We operate in a centralized vote collector model which
is an easier problem than the decentralized setup. While
SybilLimit can reduce the number of Sybil identities to
O(log n) per attack edge, we can reduce the number of
votes to1 + o(1) per attack edge. We are able to ob-
tain this improvement primarily at the cost of limiting the
maximum number of votes toCmax. Also, theCmax in
our result is also inversely related to the number of attack
edgeseA to maintain the probabilistic security guarantee.
Specifically if we setCmax = O(n), we achieve the same
bound ofO(log n) as SybilLimit.

9 Conclusion
This paper presented SumUp, a content voting system that
leverages trust networks among users to defend against
Sybil attacks. By using the technique of adaptive vote
flow aggregation, SumUp aggregates a collection of votes
with strong security guarantees: with high probability, the
number of bogus votes collected is bounded by the num-
ber of attack edges while the number of honest votes col-
lected is high. With detailed evaluations, we also show

that the security properties of SumUp hold on practical
social networks. We demonstrate the real-world benefits
of SumUp by evaluating it on the voting trace of Digg:
SumUp has detected many suspicious articles marked as
“popular” by Digg. We have found a strong evidence of
Sybil attacks on many of these suspicious articles.
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