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ABSTRACT
While the cellular revolution has made voice connectivity
ubiquitous in the developing world, data services are largely
absent or are prohibitively expensive. In this paper, we
present Hermes 1, a point-to-point data connectivity solu-
tion that works by modulating data onto acoustic signals
that are sent over a cellular voice call. The main challenge
is that most voice codecs greatly distort signals that are not
voice-like; furthermore, the backhaul can be highly heteroge-
neous and of low quality, thereby introducing unpredictable
distortions. Hermes modulates data over the extremely
narrow-band (approximately 3kHz bandwidth) acoustic car-
rier, while being severely constrained by the requirement
that the resulting sound signals are voice-like, as far as the
voice codecs are concerned. Hermes uses a robust data
transcoding and modulation scheme to detect and correct
errors in the face of bit flips, insertions and deletions; it
also adapts the modulation parameters to the observed bit
error rate on the actual voice channel. Through real-world
experiments, we show that Hermes achieves approximately
1.2 kbps goodput which when compared to SMS, improves
throughput by a factor of 5× and reduces the cost-per-byte
by over a factor of 50×.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Network
communications

General Terms
Design, Experimentation, Measurement, Performance

1. INTRODUCTION
The penetration of data connectivity services in the de-

veloping world has largely remained an urban phenomenon

1Named after the great messenger of the gods, the guide to
the underworld and the god of thieves, in Greek mythology.
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with extremely poor connectivity in several rural and under-
developed regions [15]. The fundamental roadblock is one
of economics: due to low purchasing power and low active
user densities (real user-density and not population density)
coupled with the lack of reliable power and the high capital
and operational costs for the provider, providing connectiv-
ity still remains a loss-making venture. Due to these factors,
traditional wired network connectivity solutions have made
very little in-roads in rural areas.

In recent years, many developing countries have under-
gone a cellular revolution with a significant proliferation of
digital cellular networks in rural areas [7, 3]. In addition
to voice calls, these networks provide SMS text messaging
services that can serve as a rudimentary data layer. While
it is technically easy to provide enhanced data services on
top of a digital cellular network, economic factors prevent
the cellular carriers from providing it; the cost of upgrad-
ing the cellular infrastructure with data-capable hardware
and software is very high, given the low user densities and
low purchasing power. As a result, very few carriers pro-
vide data connectivity through GSM Circuit Switched Data
(also known as GSM Fax) and General Packet Radio Ser-
vice (GPRS); even fewer carriers provide Enhanced Data
rates for GSM Evolution (EDGE) and 3G services.

There are a large number of important services and ap-
plications that can be enabled by having just a low band-
width point-to-point data connectivity solution; these ser-
vices and applications broadly lie in the domains of micro-
finance, supply-chain management, agriculture and health-
care provisioning. Unfortunately due to the small market
for data services among end-users, there exists little incen-
tive for cellular providers to provide enhanced data services
of any kind.

Under these extreme conditions, we ask the question:
Given the ubiquity of cellular coverage, can we provide any
form of data connectivity services over the cellular network?
While SMS is available as a possible data channel, it is ex-
tremely low-bandwidth, where every SMS message is limited
to 140 bytes and furthermore, the cost per bit is quite high [1,
4]. In most areas, a single SMS costs between $0.05 to $0.25
which is comparable to per-minute voice call rates [4]. Hence,
if there exists an efficient data connectivity service over the
cellular voice channel, one can enable a new class of mobile
data services and also significantly reduce the cost per bit
for data connectivity.

Unlike the traditional modem setting, providing data con-
nectivity over the cellular voice channel is a challenging prob-
lem due to several constraints. First, the acoustic channel is



extremely narrow-band, which inherently limits the achiev-
able data rates. Second, the voice codes used in cellular
networks introduce several unpredictable distortions due to
the use of memoryful codecs; in contrast, commonly used
modulation techniques operate only over memoryless chan-
nels. In addition, the cellular network uses several optimiza-
tions like voice activity detection and automatic gain con-
trol which further distort the underlying channel. Third,
the underlying voice codecs are hard to model or predict
since they are themselves adaptive and continuously change
parameters. Finally, a typical end-to-end voice call path
may traverse a heterogeneous set of network links, thereby
making the underlying channel effectively unknown. This is
especially true in rural areas where the mobile backhaul net-
works are point-to-point wireless links built using WiMax,
micro-wave, satellite or other proprietary technologies.

This problem has received relatively little attention. The
few prior efforts [9, 13, 5, 14, 17, 18] in this space have pri-
marily concentrated on the case where the underlying voice
codec is known. One of our explicit design goals is that our
modulation algorithm should adapt itself to the unknown
acoustic channel and not depend on any specific voice codec.

In this paper, we describe the design, implementation and
evaluation of Hermes, a data transmission mechanism that
uses the voice channel as an acoustic modem that achieves
1.2 kbps with very low bit error rates, while operating over
unknown voice channels. To motivate the design of Hermes,
we show that most of the known modulation techniques com-
pletely fall apart over cellular voice channels. Hermes mod-
ulates data over the extremely narrowband (approximately
3kHz bandwidth) acoustic carrier, while being severely con-
strained by the requirement that the resulting sound signals
need to be voice-like. Hermes uses a robust transcoding and
frame recovery scheme to detect and correct errors in the
face of bit flips, insertions and deletions. Hermes can also
adapt the modulation parameters according to the observed
bit error rate on the actual voice channel.

We demonstrate the effectiveness of Hermes through ex-
tensive evaluation of our techniques over different real-world
cellular networks. Achieving 1.2 kbps with very-low error
rates (bit error rates in the order of 10−5, with frame error
rates < 1%) over these unknown voice channel conditions is
fairly significant, especially when standard modulation tech-
niques give extremely low throughputs and high bit error
rates. Hermes can enable a wide-range of network services
in rural settings which have not been possible before includ-
ing rural information services, mobile health-care and new
forms of mobile banking. We had previously built many of
these applications purely using SMS as a data layer; when
compared to SMS, Hermes can provide improved throughput
by a factor of 5×, while lowering the corresponding cost-per-
byte by over a factor of 50×.

The rest of this paper is organized as follows. In § 2, we
examine the cellular voice channel characteristics and ex-
plain why the acoustic characteristics (and hence, the data
carrying capabilities) of a voice call are so unpredictable. In
§ 3, we describe traditionally used modulation techniques for
transmitting data over an analog carrier, and examine why
they under-perform over the cellular voice channel. In § 4,
we describe the framing, transcoding and modulation tech-
niques in Hermes. We evaluate the performance of Hermes
in § 5, discuss related work in § 6 and present our conclusions
in § 7.

Figure 1: Simplified network topology, showing the rout-

ing path between cell phone A and B.

2. UNPREDICTABLE VOICE CHANNELS
In this section, we study the challenges involved with

transmitting data over a cellular voice channel. We first
present an overview of the cellular infrastructure and then
discuss the sources of various unpredictable transformations
that the audio signal can undergo along its end-to-end path.

2.1 Basic Setting
Fig. 1 shows a simplified routing path between two cellu-

lar phones. Let us consider only the unidirectional flow from
phone A to phone B. The voice stream from the user (the
analog sound waveform) is digitized by A, using a particular
voice codec (§ 2.2.2). This digital representation of voice
is transmitted to the base station P , which reconstructs an
approximation of the analog sound waveforms. Since the
digital channel between the mobile phone and the base sta-
tion carries real-time voice, there are no retransmissions; this
channel is lossy. The voice codec is designed to tolerate a
certain amount of loss, without a significant reduction in the
sound quality as perceived by the ear.

At base station P , these analog waveforms are re-
converted to a digital representation, for transmission over
link LPX . This digital format is determined by the capa-
bilities of P and X, as well as the type of communication
link LPX . This process (digital → analog → digital conver-
sion) is repeated across potentially very hop until it reaches
the destination base station Q (§ 2.2.4). At Q, the voice is
encoded using the appropriate codec and transmitted to B.
Note that this codec could be different from that used in the
communication between A and P . Finally at B, the analog
waveform is reconstructed and is played to the user.

2.2 Challenges
Next, we study the properties of the cellular voice channel

(such as the one between A and B in Figure 1). In particular,
we examine the various sources of distortion in the audio
signal in order to understand why it is difficult to modulate
digital information over such channels.

2.2.1 Narrowband Channels
Cellular voice channels are designed to carry human

speech, specifically within the frequency range of [300Hz,
3400Hz]. The audio signal is band-pass filtered at the source
phone (and potentially, at intermediate hops) where compo-
nents outside of this frequency range are removed; this filter-
ing introduces distortions into the transmitted audio stream.



Furthermore, a 3kHz channel is very narrowband; in accor-
dance with Shannon’s capacity formula, this severely limits
the achievable data rate.

2.2.2 Voice Codec Distortions
Signal distortions introduced by voice codecs pose one of

the biggest challenges to data modulation. Voice codecs
digitize the speech at the sender and re-convert to analog
at the receiver. Modern codecs, as employed by cellular
networks including GSM and CDMA, aggressively exploit
certain speech signal properties to achieve great compression
while still maintaining good speech quality as experienced by
human users. As a result, audio signals that are not voice-
like are greatly distorted because they violate speech signal
properties assumed by the underlying codecs. Below, we
describe how voice codecs leverage human speech properties.

Memoryful Codecs: These codecs are based on psycho-
acoustic audio processing techniques that model the speech
input, such that only those characteristics relevant to the
human speech and auditory system are transmitted. It is
known that speech waveforms show only small variations
over short time scales; in fact, speech can be modeled as a
periodic waveform with a single fundamental frequency, with
occasional bursts of hissing (sibilants) and popping (plosive)
sounds. A large class of voice codecs are based on this
model of speech, and have their foundations in linear pre-
dictive coding (LPC). LPC-based codecs estimate various
speech parameters and represent them digitally. Based on
this model of speech described above, LPC approximates
the current output sample as a linear function of a few pre-
vious input samples. This memoryful nature leads to the
output waveforms being different from the input waveforms,
even though they might be perceived to be similar by the
human ear. Audio signals with large variations over short
time scales do not fit the speech model assumed by LPC and
therefore are distorted even more.

Automatic Gain Control (AGC): In order to maintain the
sound volume in a phone conversation, AGC uses the average
output signal level in a feedback loop to control the amount
of amplification for subsequent input samples. This implies
that the amplitude of the received signal might be quite
different from that of the input.

Voice Activity Detection (VAD): Human conversations are
typically half-duplex, i.e. only one person tends to speak at
a time. VAD detects the presence of speech activity in an
audio stream, so that data transmission can be deactivated
during the silence periods to save bandwidth and battery
power. VAD distinguishes human voice from background
noise by exploiting the fact that human voice pulses over
time intervals on the order of a second, while background
noise does not exhibit such pulsing. As a result, if the input
audio signal does not show pulsing in amplitude, it may be
filtered out by VAD as background noise.

2.2.3 Adaptive Behavior of Codecs
Since voice codecs are based on known algorithms, it is

tempting to explicitly model and compensate for the dis-
tortions introduced by these codecs in the data modulation
process. In other words: Given an input audio signal, can
we model and predict the distortions that the codec intro-
duces? Unfortunately, such an approach is not practical be-
cause many codecs change their operational parameters and
modes on the fly. Consider the GSM AMR codec: it has 14

modes of operation and chooses the best mode according to
the current wireless link quality and capacity requirements.
For instance, if the underlying wireless conditions are bad, it
reduces source coding and increases channel coding to send
a lower-quality speech signal more robustly over the wire-
less link. Cellular network providers can also increase the
number of calls that can be handled by a base station by
forcing phones to switch to a low bitrate codec mode. Since
the codec mode can change on the fly and each mode has its
own characteristics, it is infeasible to accurately predict the
distortions that the codec introduces in a given audio signal.

2.2.4 Heterogeneous network links
As explained in § 2.1, voice travels across multiple hops

from the source to the destination base station. Each inter-
mediate link may further transform the encoded voice signal
according to its capabilities and bandwidth constraints, thus
introducing additional distortions. For example in Figure 1,
intermediate hop Y may transform the received signal into
a lower bitrate to send over the expensive satellite link LY S.
These transformations are performed across potentially ev-
ery hop, and this is another reason why distortions in re-
ceived audio stream are so unpredictable.

3. TRADITIONAL MODULATION
In this section, we examine the fundamental question:

How do we modulate binary data over an analog acoustic
carrier? This process is a digital to analog conversion, where
the input bit-stream is converted to sounds, which are trans-
mitted over the voice call.

The obvious first question is: Can we simply interface a
traditional modem (or an acoustic coupler) to use the audio
channel provided by the cellular voice call? The answer un-
fortunately, is no. Traditional telephone lines operate on a
memoryless channel, where the concept of signal and noise
are intuitively clear. The signal is transmitted from one end
to another; along the way, it gets attenuated, and a certain
amount of noise gets added to it. Unfortunately, cellular net-
works do not operate under the additive noise model. The
very concept of noise is unclear in this context, as most of
the distortion is introduced by the voice codec, even before
it is transmitted from the source cellular phone (§ 2.2.2).
As a result, the observed SNR is a direct function of the
currently and previously transmitted data bits. Traditional
modems fail because their modulation techniques operate on
channels that exhibit only additive noise properties.

In this section, we explore two sets of broad techniques
used to perform modulation: keying and multiplexing. As
we shall see, the codec introduces so much noise, that the
resulting bit error rates are too high to be useful.

3.1 Keying
There are three fundamental properties of the acoustic

carrier signal that can be modified (or keyed) in accordance
with the input bits: amplitude, frequency and phase. While
more complex modulation schemes can be constructed by
combining two or more of these techniques, we consider them
independently.

3.1.1 Amplitude Shift Keying (ASK)
This is a modulation technique, where the amplitude of

the carrier signal (of frequency fc) is varied in accordance
with the data bits. The simplest method is binary ASK,
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Figure 2: Codec induced distortions: ASK at 1 bit

per symbol (a0 = 0.2, a1 = 0.8, fc = 1400Hz). Since the

input waveform shows large variations in amplitude over

short time scales, the output waveform is significantly

distorted by the codec.

where one sinusoid is transmitted per bit; a 0 and 1 are
transmitted as sinusoids of amplitude a0 and a1 respectively.
While this approach can be generalized to transmit n bits per
sinusoid using 2n unique sinusoids of different amplitudes,
we consider only binary ASK.

Fig. 2 shows a simulation of performing binary ASK us-
ing a software implementation of the GSM Adaptive Multi
Rate (AMR) codec. Intuitively, we would like a0 and a1 to
be far-apart (amplitudes a0 and a1 being quite different),
since channel noise will have have a smaller probability of
modifying the waveforms sufficiently to cause bit-flipping.
However, we observe that the amplitude of an output wave
can be quite different from that of the corresponding input
wave; this is due to the “memoryful” nature of the codec
(see § 2.2.2). In other words, simply having far-apart sym-
bols does not necessarily lead to better performance, since
the codec itself distorts the waveforms.

Suppose we choose parameters such that a0 and a1 are
nearer to each other. While the amount of noise introduced
by the codec is smaller, the waveforms are less resilient to
channel noise (this figure is not shown). This illustrates the
tension between the need to keep symbols close together (to
please the codec) and the need to keep the symbols far apart
(to maintain resilience against channel noise).

To quantitatively study the performance of ASK, we con-
sider different values of a0 and a1. Demodulation is per-
formed using the standard closest neighbor search algorithm:
if the received sinusoid has amplitude a ≤ a0+a1

2
, the out-

put is 0; else, the output is 1. The results are tabulated in
Table. 1, and show that the bit error rates are very high.

The problem is further compounded with larger values of
n, since the distance between certain pairs of symbols can
be too small to be resilient against channel noise, while the
distance between certain other pairs of symbols might be too
large, thereby causing the codec itself to distort the waves.

3.1.2 Frequency Shift Keying (FSK)
This is a modulation technique where data is transmitted

through discrete frequency changes of a carrier wave (of am-
plitude fixed at ac). The simplest method of performing FSK

a0 a1 fc BER a0 a1 fc BER
(Hz) (Hz)

0.2 0.4 1700 2.7 × 10−1 0.4 0.6 2000 3.4 × 10−1

0.2 0.6 1700 4.5 × 10−2 0.4 0.8 2000 2.2 × 10−1

0.2 0.8 1700 1.6 × 10−2 0.6 0.8 2000 3.8 × 10−1

0.4 0.6 1700 1.9 × 10−1 0.2 0.4 2300 1.9 × 10−1

0.4 0.8 1700 2.4 × 10−1 0.2 0.6 2300 6.2 × 10−2

0.6 0.8 1700 3.0 × 10−1 0.2 0.8 2300 9.9 × 10−2

0.2 0.4 2000 2.6 × 10−1 0.4 0.6 2300 3.6 × 10−1

0.2 0.6 2000 5.4 × 10−2 0.4 0.8 2300 1.4 × 10−1

0.2 0.8 2000 4.0 × 10−2 0.6 0.8 2300 3.6 × 10−1

Table 1: Performance of ASK (at 1 bit per symbol) for

different a0 and a1 values. Distortions introduced by the

voice codec lead to very high bit error rates.
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Figure 3: Codec induced distortions: FSK at 1 bit per

symbol (f0 = 500Hz, f1 = 1500Hz, ac = 0.7). Since the

input waveform shows large variations in frequency over

short time scales, the output waveform is significantly

distorted by the codec.

is binary FSK (BSFK), where we transmit one sine wave per
bit. A 0 or 1 is transmitted as a sinusoid of frequency f0 or
f1 respectively. While this approach can also be generalized
to transmit n bits per sinusoid using 2n unique sinusoids of
different frequencies, we consider only BFSK.

Fig. 3 shows a simulation of performing BFSK, using the
GSM AMR codec. Intuitively, we want f0 and f1 to be
far-apart, in order to be able to distinguish the symbols.
However, this leads to abrupt and large changes in frequency
over short time scales, rendering the audio stream to become
non voice-like; the voice codec therefore significantly distorts
to the audio stream. Therefore, we also need to keep the
symbols close enough (in the frequency domain) to please
the voice codec.

To quantitatively study the performance of FSK, we sim-
ulate the modulation using different values of f0 and f1. De-
modulation is performed using the standard closest neigh-
bor search algorithm: if the received symbol has frequency
f ≤ f0+f1

2
, the output is 0; else, the output is 1. The re-

sults are tabulated in Table. 2, and show that the bit error
rates are approximately an order of magnitude lower than in
ASK. The intuition behind this difference lies in the funda-
mental principles of memoryful codecs (§ 2.2.2). Since LPC
approximates the current sample (samples are in the ampli-



f0 f1 BER f0 f1 BER
(Hz) (Hz) (Hz) (Hz)

1600 1700 1.0 × 10−2 1700 1900 4.7 × 10−2

1600 1800 1.0 × 10−2 1700 2000 5.0 × 10−3

1600 1900 4.4 × 10−3 1800 1900 4.0 × 10−1

1600 2000 1.9 × 10−2 1800 2000 1.4 × 10−1

1700 1800 4.7 × 10−2 1900 2000 3.0 × 10−1

Table 2: Performance of FSK (at 1 bit per symbol) for

different f0 and f1 values. While distortions introduced

by the voice codec still lead to high bit error rates, they

are an order of magnitude lower than in ASK.
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Figure 4: Frequency distribution of received symbols

for FSK at 1 bit per symbol (f0 = 1700Hz, f1 = 1800Hz).

Observe that the two inverted bell curves significantly

overlap, and are not centered correctly.

tude domain) as a linear function of previous samples, it
remembers amplitude components better, leading to greater
inter-symbol interference in ASK. Due to the better perfor-
mance of FSK, it is a building block in the modulation layer
of Hermes (§ 4.1).

In order to better understand the behavior of the under-
lying voice channel, we examined the frequency distribution
of received sinusoids (f0 = 1700Hz and f1 = 1800Hz). As
shown in Fig. 4, the inverted bell curves for the 1700Hz
and 1800Hz sinusoids significantly overlap, which obviously
makes decoding harder. Furthermore, while the bell curve
for 1700Hz is centered correctly, the curve for the 1800Hz
sinusoid is centered around 1760Hz; this is the reason that
the closest neighbor matching demodulator at the receiver
makes so many errors. Finally, we observed that the point at
which the bell curves are centered varies for different codecs;
thus if different codecs (or codec modes) are used at the two
end points, it is very likely that the demodulation process
will yield a high number of bit errors. The important im-
plication of this behavior is that our choice of symbols and
demodulator parameters should not be based on any partic-
ular codec.

3.1.3 Phase Shift Keying (PSK)
This is a modulation technique in which digital informa-

tion is transmitted through discrete phase changes of a car-
rier wave (of amplitude and frequency fixed at ac and fc
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Figure 5: Codec induced distortions: PSK at 1 bit

per symbol (p0 = 0, p1 = π, ac = 0.7). Since the input

waveform shows abrupt transitions at the symbol bound-

aries, the output waveform is significantly distorted by

the codec.

respectively). Similar to ASK and FSK, the number of dis-
crete phases used across the symbol space determines the
number of unique symbols. Since the phase of the wave-
form changes for every single sinusoid that is transmitted,
this creates a large number of discontinuities (abrupt jumps
in amplitude) in the time domain signal. Even very small
changes in phase are sufficient to cause discontinuities in the
input signal. Since such audio signals are not voice-like, they
get severely distorted by the codec, as illustrated in Fig. 5.

Performing PSK demodulation requires that all symbols
are of the same length; in particular, we need to be able to
accurately determine symbol boundaries. Once each symbol
has been isolated, it is multiplied by a known sinusoid, and
the resulting signal is low-pass filtered to give the original
data. From Fig. 5, we observe that the sinusoids show highly
varying time-periods, thereby making it virtually impossible
to perform time synchronization and isolate the individual
symbols. In effect, this renders PSK impossible to realize
over memoryful codecs.

3.2 Multiplexing
The principle behind Orthogonal Frequency Division Mul-

tiplexing is to divide a channel into several non-interfering
narrowband sub-channels and encode data at a low rate on
each sub-channel. The aggregate capacity of the channel is
therefore the sum of the capacities of all the sub-channels.
Any modulation technique can be used on the sub-channels.
In the context of using OFDM on the 3kHz cellular voice
channel, we ask: How many sub-channels can we create, and
what data rate can each sub-channel achieve?

Assume that the frame size is m bits and we transmit
one frame in every epoch of time. Further assume that we
can divide the 3kHz channel into k orthogonal sub-channels,
each carrying an independent data stream of b = m

k
bits per

epoch. Unfortunately, performing OFDM demodulation at
the receiver on such a stream is very hard. The compu-
tational resources required to perform fine-grained analog
filtering on the received audio signal (in order to recover the
data on each sub-channel) far exceeds the computational
power of cellular phones, even for small values of k.



The only way around the problem is to ensure that b = 1;
in other words, each sub-channel carries 1 bit per epoch.
The modulation technique on each sub-channel is in effect
On-Off Keying, which is a special case of ASK, where a0 and
a1 are 0 and 1 respectively. The receiver determines that the
nth bit of the frame (n ≤ k) is 1 if it can detect the presence
of the nth sub-channel carrier; else, this bit is determined
to be 0. This technique is computationally feasible, since
the receiver can perform a simple Fast Fourier Transform
(FFT) on the received signal over the epoch; the frequency
components of the FFT output give us the bits of the frame.
This would not have been possible with b > 1, since it would
have necessitated fine-grained and computationally intensive
filtering to recover the individual sub-channels.

Unfortunately, the achievable data rates using multiplex-
ing techniques is very low. For example, we experimentally
determined that for an epoch size of 100ms, we can trans-
mit about 20 bits of data (20 sub-channels; 1 bit per epoch
per sub-channel). If we increase (decrease) the epoch length,
then we can use a larger (smaller) number of sub-channels
as well.

Furthermore due to the memoryful nature of the codecs,
we want to prevent frequency components (sub-channels) of
one symbol from interfering with those in the next symbol.
In order to achieve this, we need to leave a guard time of ap-
proximately 40ms to let the codec forget components from
the previous symbol. Adding a guard interval of 40ms be-
tween epochs and using the previous example, this works
out to about 150 bits per second, which is very low.

This problem is compounded due to the fact that the
cellular voice channel has a frequency response behavior,
such that it carries through only a certain fraction of the
3kHz bandwidth reliably (as shown in Fig. 6 and explained
in § 4.3.1). This further reduces the practically achievable
value of k, thereby reducing the throughput even more. We
therefore conclude that the data rates are too low to be use-
ful.

4. DESIGN
In this section, we explain the design of Hermes. User

data is first fed into a module that performs framing and
transcoding. In traditional networks, these two components
are separated, but in Hermes, they are combined in order to
improve error recovery (§ 4.2). This module breaks the data
into fixed size chunks and creates a stream of frames from
it. The resulting stream of frames is sent to the modulator
(§ 4.1), which converts these bits into sounds that are sent
over the actual phone call. On the receiver side, the reverse
process is carried out. We now examine each of these stages
in detail.

4.1 Modulation
For memoryless codecs, the generated audio signal does

not need to have any special voice-like characteristics. Mem-
oryful codecs on the other hand require the input audio sig-
nals to be voice like (§ 2). The design of symbols in Hermes
must therefore satisfy the following requirements:

• The generated waveforms should pass the bandpass
filter of [300Hz, 3400Hz], which is the relevant band
within which the human ear can understand the speech
signals.

• Human speech has a fundamental frequency over long
durations of time. When arbitrary symbols (sinusoids)
are concatenated and sent over the air, the resulting
sound stream should also have a fixed fundamental fre-
quency.

• Any pair of symbols must not be too far-apart; oth-
erwise, the codec will introduce distortions. Similarly,
any pair of symbols must not be too close together; oth-
erwise, the symbols will not be resilient against channel
noise. Formally, the distance between the constellation
points of any pair of symbols in the trellis diagram
must be upper and lower bounded.

• Due to AGC (§ 2.2.2), different frequency compo-
nents might be amplified (or attenuated) by differ-
ent amounts by intermediate hops in the network;
we should therefore not rely on the amplitude of the
output waveforms to be similar to that of the input.
Furthermore, the generated waveforms should exhibit
voice-like pulsing, or it may be filtered out by VAD
(§ 2.2.2).

• The acoustic symbols generated by the modulator
should not depend on any particular codec or codec
mode. An explicit design principle is that we should
not train the modulation process offline to optimize for
any specific codec/mode; it should be generic enough
to work over any codec/mode.

• Algorithms used for coding and modulation should be
simple enough to be run on even the most basic cellular
phones.

We have designed a simple algorithm (called IncDec) to
perform modulation in Hermes. It is explained in Algorithm
1; it can be thought of as being a constant-differential fre-
quency shift keying technique.

Algorithm 1 Convert binary data to sound signals to be
sent over a voice call.

Given: base frequency fbase, delta frequency δ.
f = fbase

for each bit b in the input string do
if b = 0 then

f = f − δ
else

f = f + δ
end if
Generate a sinusoid of frequency f

end for

The basic idea of the algorithm is that we have a frequency
f that is initialized to the base frequency fbase. If we read
a 0 (or a 1) from the input stream, we decrement (or incre-
ment) f by a fixed δ, and transmit a sinusoid of frequency
f . This modulation has the advantage that all transitions
are bounded by δ, and hence large jumps can be prevented.

Unfortunately, long strings of 0s or 1s can push the cur-
rent frequency f over the permissible limit. Furthermore,
since the frequency of transmitted sinusoids can vary quite
a lot, it is hard to guarantee a fixed fundamental frequency
of the resulting acoustic signal. Also, if there is a long string
of 0s, then the modulator begins to operate in the low fre-
quency range, thereby reducing the number of sinusoids that



can be sent per unit time (and hence the throughput). Fi-
nally, the frequency response of the channel is quite different
in different frequency ranges (§ 5); the input string to the
modulator could force it to operate in a frequency range that
the channel does not carry very well. To work around these
weaknesses, we need to transcode the input stream before
feeding it to the modulation layer (explained in § 4.2).

On the receiver side, the modulator needs to convert the
sound signals back into bits. This demodulation algorithm
is also quite simple and is explained in Algorithm 2.

Algorithm 2 Convert received sound signals back into bi-
nary data.

Given: Input sound signal.
for each sinusoid in the input sound signal do

Let fcurr = frequency of current sinusoid
Let fprev = frequency of previous sinusoid
if fcurr ≤ fprev then

Output 0
else

Output 1
end if

end for

At first glance, the intuition behind the demodulation al-
gorithm might seem vague and unclear. To analyze it, we
show that it can cope with both memoryless codecs that
are used in traditional wireline phone networks as well as
memoryful codecs that are used in cellular networks.

4.1.1 Memoryless Codec
In this case, the codec does not assume the sound signal to

be voice-like, and therefore does not significantly modify the
frequency components of the signal; in other words, the noise
is additive. Hence with a very high probability, the received
waveforms will also have frequencies approximately equal
to those of the transmitted waveforms. Clearly, a transition
from f−δ → f or a transition from f → f+δ will be decoded
as a 1 by Algorithm 2. Similarly, a transition from f +δ → f
or a transition from f → f−δ will be decoded as a 0. Unless
the additive noise introduced by the network is extremely
high, bit errors do not take place and the demodulation is
correct.

4.1.2 Memoryful Codecs
As explained in § 2.2.2, memoryful codecs produce their

output as a linear function of the previous input samples.
There is a greater weightage given to more recent samples
as opposed to older samples.

Let us assume that the last symbol transmitted over the
air had an input frequency fi, and the corresponding output
sinusoid had frequency fo. This sinusoid fo was created by
the codec by taking into consideration the input sinusoid
fi as well as the previous few sinusoids that preceded fi.
Assume that the next input sinusoid has frequency fi + α,
where α = ±δ. We ask the question: What can we expect
the output frequency of the next sinusoid to be, relative to
the frequency fo of the current output symbol?

The answer is that if α = +δ, we expect the output fre-
quency to be greater than fo. Similarly, if α = −δ, then
we expect the output frequency to be lesser than fo. Any
generic memoryful codec gives a greater weightage to the
current input sample, and a linearly decreasing weightage
to the preceding samples. Therefore, we expect that when

compared to the previous output symbol, we expect the new
output symbol to be biased in the direction of the new input
symbol. This argument is formalized below.

Let us say that t0, t1, t2, · · · , tk are the samples belonging
to the k previous input symbols. Let the corresponding out-
put samples be s0, s1, s2, · · · , sk. Without loss of generality,
let us say that the memoryful codec uses a weighted aver-
age of the current symbol, along with the previous n sym-
bols. Therefore when input symbol tk was being transmitted
as output symbol sk, the codec used a weighted average of
tk, tk−1, tk−2, · · · , tk−n, in decreasing order of weights. Now
when the codec receives symbol tk+1, it uses a weighted av-
erage of tk+1, tk, tk−1, tk−2, · · · , tk−n+1, again in decreasing
order of weights; this can be approximated as a weighted
average of tk+1, sk. This is why the new output symbol is
biased in the direction of the new input symbol, relative to
the previous symbol output.

We note that none of the properties of the modulation
layer are dependent on any particular codec or implementa-
tion. The explanation given above can be generalized to any
memoryful codec or codec mode. Irrespective of the length
of history considered or the biasing constants, the general
principles still hold.

4.2 Framing Transcoding
Now that we have examined how the underlying modula-

tion and demodulation layer works, we explain the higher
layer in the stack: framing and transcoding.

This module takes in a stream of bits from the user and
breaks them into fixed size chunks. For each chunk, it cal-
culates and appends a 32-bit CRC to it, thereby creating a
frame. It also inserts a fixed preamble between every pair
of frames. The user data can be easily coded using escape
sequences to ensure that the preamble pattern does not ap-
pear in it. This stream of frames and preambles is then
transcoded.

Transcoding is defined as a digital to digital conversion of
one encoding to another. In Hermes, we transcode the input
stream into another representation before passing it to the
modulation layer to be converted into sounds. The goals of
the transcoding layer are summarized as follows:

• The stream fed by the transcoder to the modulator
should be such that the modulator is able to guarantee
a fixed fundamental frequency.

• The modulation layer should use a minimum number
of unique frequencies over the air; this minimizes the
distortions. Also, the modulator should keep the value
of f within acceptable limits.

• The receiver should be able to recover the original
bit stream with a very high probability, even in the
face of bit insertions, deletions and flips in the post-
transcoded stream of data that is modulated and sent
over the air.

Transcoding of the data is performed using a very simple
algorithm. It is a 1/2 code, meaning that it takes in one
input bit and produces two output bits, as shown below:

0 → 01
1 → 10

We make a few observations about the interaction of the
transcoding layer with the modulation layer. Whatever the



original input string, the transcoded stream will have an
equal number of 0s and 1s. In particular, any substring con-
taining an even number (≥ 4) of bits in the post-transcoded
stream will have an equal number of 0s and 1s. Furthermore
it is easy to see that the maximum number of consecutive 0s
or 1s in the transcoded string is 2. As a result, the output
sound of the modulator has a fundamental frequency fixed
at fbase, making it more voice-like. In fact, there are only 3
frequencies that are ever used: fbase − δ, fbase and fbase + δ.

At the receiver side, the task of the transcoder is to receive
2n bits from the demodulator and estimate the n original
bits that were sent at the transmitter. In the simplest case
where there are no alignment issues, we can simply use the
following rules:

01 → 0
10 → 1

However, in the presence of alignment errors (the received
bits could have bits inserted and deleted), we can run into
trouble. Suppose the original pre-transcoded input stream
was all 0s; the corresponding post-transcoding stream was
therefore, 0101 · · · . Now suppose that due to noise, the first
sinusoid is lost at the receiver. As a result, the demodulator
will output 1010 · · · , which the reverse transcoder will in-
correctly decode as a string of all 1s. Now, there is no way
of detecting the error. The best we can do is to ensure that
the pre-transcoded input stream does not have long strings
of all 0s or all 1s, by using special escape sequences. Bit-
stuffing techniques like these are very commonly used, and
hence have been omitted from this discussion. For now, as-
sume that the maximum of consecutive 0s or 1s permissible
is kmax rep.

Let us now consider a stream of bits that the demodulator
outputs. We still need to determine where the correct bound-
aries lie; a wrong decision at this point will lead the rest
of the stream being incorrectly decoded. Consider the pre
transcoded input stream 01, which leads to the transcoded
stream 0110; notice that a 0 → 1 transition in the pre
transcoded input stream leads to a pair of consecutive 1s
in the post transcoded stream. Similarly, a 1 → 0 transi-
tion in the pre-transcoded input stream leads to a pair of
consecutive 0s in the post-transcoded stream. Therefore, all
the reverse transcoder needs to do is identify a 00 or 11 and
place the alignment boundary between the two.

This problem becomes trickier in the face of bit insertions
and deletions. Even if the reverse transcoder has achieved
alignment at some point of time, a bit insertion or dele-
tion can throw it completely off, leading it to incorrectly
decoding the rest of the stream. The problem is further
complicated by the fact that bits can also get flipped; For
example, a pre-transcoded 0 (post transcoded 01) might get
flipped to 00 at the demodulator output; this in turn might
force the reverse transcoder into incorrectly believing that
it has lost alignment. The intuition behind differentiating
an insertion/deletion error from a flip error is that former
actually leads to a loss of alignment, whereas the latter does
not. A bit flip leads to only one block of 2 bits being de-
coded incorrectly, whereas an insertion/deletion error leads
to subsequent blocks (of 2 bits each) also being decoded
incorrectly. The algorithm to detect (post-transcoded) bit
flips, insertions and deletions is based on this intuition, and
is shown in Algorithm 3.

Algorithm 3 Reverse transcode the data at the demodula-
tor output.

Given: Demodulated string s, consisting of post-transcoded
bits.
Given: kmax rep, the maximum permissible number of consec-
utive 0s or 1s in the input.
for i = 1; i ≤ length(s); i = i + 2 do

b1 = s[i]
b2 = s[i + 1]
if b1b2 = 01 or b1b2 = 10 then

Output 0 or 1, respectively.
else

There is either a bit flip or an insertion/deletion error.
mi = ErrorMetric(i)
mi+1 = ErrorMetric(i + 1);
if mi ≤ mi+1 then

The alignment is correct, but there is a bit flip.
Output X

else
We have lost alignment by one bit
i = i + 1
Output X on up to kmax rep previously decoded output
bits.

end if
end if

end for

For simplicity, assume that the input to the reverse
transcoder is initially aligned; we will drop this assumption
later. Let us now examine why this algorithm works. In
the simplest case where there are no bit flips, insertions or
deletions, it is easy to see that the reverse decoder gives us
the correct output.

Now, let us consider what happens in the case of single bit
flips. We first need to define the function ErrorMetric(i).
It is a look-ahead function that determines if the alignment
boundary is at point i. It reads the input in blocks of 2 bits
from i to i + m, where m is the maximum allowable look-
ahead. It simply outputs the number of blocks of 2 bits
it was unable to decode. For example, consider the input:
011010100110. In this case, m0 is equal to 0, since the 2-bit
blocks 01, 10, 10, 10, 01 and 10 are all valid. On the other
hand, m1 is equal to 3, since there are 3 decoding errors
in the 2-bit blocks 11, 01, 01, 00 and 11. Since m0 ≤ m1,
it is more likely that the alignment boundary lies at 0, as
opposed to the boundary lying at 1.

In the case of single bit flips, the reverse transcoder will
receive either 00 or 11, so it knows that something has gone
wrong. It checks to see whether it has lost alignment; if not,
then the only explanation for the 00 or 11 is bit flipping. In
this case, the reverse transcoder outputs an X, signifying
that it does not know how to decode that bit; a higher layer
handles these Xs. If both bits are flipped, then 01 gets
converted 10 and vice versa; these errors are undetectable
at this layer; such cases are handled by a higher layer CRC.

In the case of a bit insertion or deletion, the decoder
might not determine that an error has taken place imme-
diately; in fact, the reverse transcoder could potentially
continue outputting up to kmax rep bits. Take for exam-
ple the input stream 001111110 · · · , which is transcoded
to 010110101010101001 · · · ; assume that kmax rep = 6 pre-
transcoded bits. Suppose this bit stream is demodulated
at the receiver with a 0 bit insertion after the first 4 bits:
0101010101010101001 · · · . The reverse transcoder will read
0101010101010101 to output 00000000. At this point, it en-



counters a 00 and determines by looking ahead that it has
in fact, lost alignment. At this point, it loses confidence in
the previous kmax rep bits that it output, and replaces them
all with X. In reality, we need not X-out all kmax rep out-
put bits; it can be proved that we only need to X-out only
the previous p output bits, where p is the number of output
bits ago, where a 0 → 1 or 1 → 0 transition took place in
the output of the reverse transcoder. If there were no such
transitions in the last kmax rep output bits, then we need to
X-out all of the previous kmax rep output bits.

We now examine the rationale behind why Hermes merges
the functionality of the framer and the transcoder. Con-
sider the final output of the reverse transcoder, a string
s ∈ {0, 1, X}∗. It breaks the stream into individual frames
using the predefined preamble as a delimiter. Unfortunately,
if the delimiter itself has an X, then the frames on either
side of it will be lost.

Consider a frame (data + CRC) in {0, 1, X}∗. The next
step is to attempt to recover the frame by filling up the Xs
with the correct bits. An X could be 0 or 1 (bit flipping),
00, 01, 10 or 11 (bit deletion) or the NULL character (bit in-
sertion). It brute-force searches through all possible values
that all the Xs could take; with a very high probability, only
one of them will satisfy the checksum; this is the frame that
is passed up to the higher layer. We could also attempt to re-
cover frames that are on either side of a corrupted delimiter;
currently, this is beyond the scope of our solution.

4.3 Parameter Choice
We ask the question: What are the optimal values of fbase

and δ? Hermes uses a very simple search and estimation
algorithm to find initial values of fbase and δ. During the
progress of the actual call, these parameters can be fine-
tuned on the fly.

4.3.1 Initial Parameter Set
The first step is to estimate the frequency response of

the underlying voice channel. We choose a small num-
ber (say, 50) of uniformly spaced frequencies in the range
[300Hz,3400Hz]. Sinusoids of these frequencies are multi-
plexed over an epoch length of 200ms and are sent over a
phone call. Fig. 6 shows the FFTs of the input and output
waveworms, from which we observe a very interesting pat-
tern in the frequency response of a particular voice channel
that we tested. In particular, in the band of approximately
[500Hz, 1500Hz], the data is almost completely lost. On
the other hand, the range of [2000Hz, 2500Hz] is carried
through quite reliably. Above 2500Hz, we can observe a
few false peaks as well. The power of this observation is
that with a simple test of 200ms, we can probe the frequency
response of the channel to understand what frequency com-
ponents are carried through cleanly. We further observed
that the frequency response depends on the cellular service
providers (see § 5.2.1).

Let us say that fmax is the frequency that had the high-
est peak in the FFT output; this is (albeit, approximately),
the frequency that the channel carries through the best. In
Hermes, we set the initial value of fbase to fmax. To find a
good initial value of δ, we use the following intuition. If δ is
too large, then the memoryful codec will severely distort the
waves; if we use very small values of δ, then channel noise
might cause decoding errors. We find that setting δ to be
approximately within 10− 25% of fbase works well. As long
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Figure 6: FFT of the input and output audio signals.

Peaks are expected at 300, 360, 420, 480, · · ·Hz. There are

a few false peaks, and many missing peaks. This experi-

ment probes the frequency response of the channel.

as we find reasonable initial values, Hermes can fine tune
the parameter set on the fly.

4.3.2 Fine Tuning
In order to understand the rationale behind our fine tun-

ing algorithm, we need to examine how the error rate varies
as a function of fbase and δ. We conduct an experiment over
an actual phone call, where the data has been modulated us-
ing different values of fbase and δ. Fig. 7 plots the resulting
bit error rates, as a function of fbase and δ. Assume that the
optimal parameter values are ˆfbase and δ̂. If we keep fbase

fixed at ˆfbase and vary δ, we observe that as δ moves away
from δ̂, the error rate increases. Similarly, as fbase moves
away from ˆfbase, the error rate increases. It illustrates the
fact that once we have chosen an initial parameter set, we
can vary fbase and δ and observe how the error rate changes.
We can then use any standard hill climbing algorithm to find
the optimal parameter set.

The advantage with this approach is that as the sender
varies its parameter set, the receiver can continue to run its
demodulation algorithm unchanged. The demodulator does
not depend on any constants or parameters; its output only
depends on the relative difference between the frequency of
the current sinusoid and that of the previous sinusoid.

4.4 Overcoming VAD and AGC
To overcome VAD, we need our audio stream to pulsing

in amplitude over long time scales. In Hermes, we employ a
simple trick to fool VAD into believing that there is human
voice on the channel. Each second of the audio stream is
broken up into 2 pieces of 0.5s each. The first piece is left
untouched; the amplitude in second piece is scaled down to
0.7 of the original. To overcome AGC, we need to make sure
that the amplitude in the audio stream is not very low. The
amplification factors mentioned above (1.0 and 0.7) are high
enough that we do not expect AGC to kick in. However we
note that in our algorithm, we do not modulate data based
on the amplitude of the carrier. Therefore, even if AGC
kicks in and clips some samples, the correctness of Hermes
is not compromised. As far as VAD and AGC are concerned,
the audio stream transmitted by Hermes is normal speech.
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5. EVALUATION

5.1 Methodology and Implementation
The algorithms used for transcoding, modulation, demod-

ulation and decoding are all quite simple, since we would
like them to run directly on cellular phones, which are not
necessarily high-end. However, since we are still prototyping
and testing the protocols, these algorithms are currently im-
plemented on regular desktop computers that interface with
and use the cellular phones as the underlying physical com-
munication channel. We are in the process of implementing
the algorithms on the Android [6] platform.

5.2 Raw Channel Throughput and Error
Rate

We first would like to understand what the raw bit er-
ror rates are for the post-transcoded stream, which is trans-
mitted over the actual voice call. In this experiment, we
operate both end points of the voice call over the cellular
service provider AT&T (data from experiments conducted
across heterogeneous cellular service providers is presented
in § 5.2.1). Fig. 7 plots these error rates, as a function of
fbase in [340, 420Hz] and δ in [40, 80Hz]. We repeat this
experiment for fbase in [2200Hz, 2400Hz] and δ in [300-
800Hz], and observe a very similar error landscape with a
large number of data points showing error rates in the order
of 10−4 to 10−5. Due to its similarity to Fig. 7, it has been
omitted.

Since a 1 : 2 transcoding is performed before modulation
and transmission over the voice call, the approximate good-
put (data rate of the original pre-transcoded stream) is fbase

2

bits per second. This shows that we can achieve a goodput
of up to 1200 bits per second quite reliably over the voice
call. Furthermore, the end-to-end frame success rate is al-
most 100% (see § 5.3 for a deeper analysis on frame success
rates, as a function of the underlying bit error model and
rate).

fbase(Hz) δ(Hz) BER

AT&T → AT&T 2200 480 1 × 10−5

T-Mobile → T-Mobile 2400 640 1 × 10−5

AT&T → T-Mobile 2170 470 1 × 10−5

T-Mobile → AT&T 2130 640 1 × 10−5

Table 3: Performance impact of heterogeneous cellular

service providers. In all cases, Hermes finds operational

parameters that provide high throughput and extremely

low error rates over actual voice calls.

5.2.1 Heterogeneous Cellular Service Providers
We repeat these experiments across sender - receiver pairs

on different cellular service providers. For each pair, we
present the experimentally observed optimal fbase and δ val-
ues, along with the bit error rate. From Table. 3, we observe
that Hermes is able to find parameter configurations that
yield very low error rates, while providing high throughput.
Furthermore in all cases, we observe a very similar error
landscape to that illustrated in Fig. 7; due to its similarity,
it has been omitted.

5.2.2 Error Patterns
In order to further understand the bit error patterns, we

consider the experiment over an actual voice call, repeated
over different ranges of fbase and δ. We consider those con-
figurations (< fbase, δ > pairs) that result in bit error rates
of 10−3 to 10−4 bits per second, and analyze when exactly
those bit errors took place in time. We observed that bit
errors occur uniformly and independently of each other; in
other words, they do not show bursty behavior. We con-
firmed that this behavior held true across heterogeneous
service providers as well. Furthermore, we observed that
although bit insertions and deletions do take place, a signif-
icant majority of errors are simple bit flips.

5.3 Effect of the Transcoding and Framing
Layers

Next, we examine how much of the pre-transcoded data
can be recovered, in the face of bit insertions, deletions and
flips into the post-transcoded stream. Since it is difficult to
control the error rates from the underlying voice channel, we
conduct a simulation as follows. Break the input stream into
chunks of 26 bytes, which when concatenated with the 32-bit
CRC, give us packets of 30 bytes. There is a 1-byte preamble
between packets, consisting of all 0s. This stream of packets
(with the accompanying preambles) constitute the stream s.
There are totally 103 packets in this experiment. Perform
the 1:2 transcoding on s, to get a bit stream t. Artificially
introduce errors (insertions, deletions and flips) into t to
get t̂. Pass t̂ through the reverse transcoder to get the bit-
stream ŝ. The next step is to use the delimiter (preamble) to
recover to frames from this stream; note that these frames
may contain Xs. Finally, use the frame recovery method to
fill up the Xs and pass the frame up to the higher layer if the
CRC check is successful. Note that we attempt to recover
only those packets that have between 1 and 4 Xs in them;
if the number of Xs is large, the computational complexity
to attempt recovery is prohibitively high.

To study the effect of bit flips, insertions and deletions,
we consider them separately. In § 5.2.2. we have observed
that the underlying bit errors are independent of each other



Insertion Deletion Flips
No Yes No Yes No Yes

1 × 10−2 0.8 4.1 1.2 3.2 1.2 34.3
7 × 10−3 3.5 10.4 3.0 10.5 3.0 58.9
4 × 10−3 14.4 33.6 13.6 32.3 13.6 84.9
1 × 10−3 60.7 81.7 60.0 78.5 60.0 96.1
7 × 10−4 70.1 86.3 70.4 85.6 70.4 97.9
4 × 10−4 81.3 91.6 81.4 91.6 81.4 99.1
1 × 10−4 95.1 98.6 94.8 97.9 94.8 99.8

Table 4: Frame success rate (expressed as a percentage)

for different underlying bit error rates. The transcoding

layer is able to guess the X values to successfully recon-

struct many damaged frames. We compare against the

case where no recovery of Xs is attempted (labeled“No”).

(in other words, they are not bursty); we therefore model
the bit errors as a uniform error distribution. We repeat
each experiment for a set of different error rates (fraction of
bits that are flipped, inserted or deleted), and the results are
presented in Table. 4, from which we observe that even under
high underlying bit error rates, Hermes is able to correctly
recover a large fraction of damaged frames. The table also
shows what the frame error rate would be, if there were no
attempts to reconstruct damaged frames (labeled as “No” in
the table).

The performance of the frame recovery layer in Hermes
is better under bit flip errors, as opposed to insertion and
deletion errors. This is due to the fact that each bit flip
creates exactly one X, while each insertion or deletion er-
ror can create up to a maximum of kmax rep Xs in the
reverse transcoded stream (in our implementation, we set
kmax rep = 8). Since we aim to recover frames that have
≤ 4 Xs, we do not even attempt to recover a large number
of frames under the insertion and deletion error models. If
Hermes is run on devices with higher processing capabilities,
we could attempt to recover frames with a larger number of
Xs. We have also observed that the frame recovery layer
in Hermes is able to successfully recover almost all packets
with ≤ 4 Xs in them.

As observed in § 5.2.2, a majority of errors are simple bit
flips. From Table. 4, we can see that the transcoding and
framing layer in Hermes significantly improves the frame
success rates under the bit flip model, even when the under-
lying bit error rate is in the order of 10−3. For example, for
error rates of 1 × 10−2, 7 × 10−3, 4 × 10−3 and 1 × 10−3,
Hermes achieve an improvement in frame success rate by a
factor of 28×, 19×, 6× and 1.5× respectively.

5.3.1 CRC Collisions
We ask the question: What is the probability of a recon-

structed frame passing the CRC check, while being different
from the original frame? We know that CRC32 has a Ham-
ming distance of 4; this means that if we take a correct code-
word (frame payload + corresponding CRC) and choose any
n ≤ 4 bits to replace with random values, we will always
be able to detect the error. For n > 4 flips, this probability
reduces with increasing n. During recovery in Hermes, each
X can be expanded as 0, 1, 00, 01, 10, 11 or NULL. The
simplest work-around is to upper bound the number of Xs
in a frame to 2, should we attempt to recover it; the Ham-

fbase(Hz) δ(Hz) BER

AMR → AMR 2340 420 1.6 × 10−4

AMR → EFR 2280 645 1.8 × 10−3

EFR → AMR 2280 630 1.9 × 10−3

EFR → EFR 2265 585 2.6 × 10−3

Table 5: Performance impact of heterogeneous codecs

on operational parameters and performance of Hermes.

Irrespective of the codecs used, Hermes is able to achieve

low error rates, with high throughput.

ming distance between any two valid codewords will be at
most 4, and therefore all errors will be detected. However,
by attempting to recover frames with up to 4 Xs in them,
we significantly improve the frame success rate. In this case,
the Hamming distance between any two valid code-words is
at most 8. While we expect the CRC to catch a very high
fraction of these errors, it is not guaranteed. We can imple-
ment any block coding mechanism (such as Reed-Solomon)
at a higher layer to detect and correct such errors.

5.4 Effect of Heterogeneous Codecs
We observed that AT&T and T-Mobile force the phones to

operate over the AMR codec. We suspect that since we are
in a highly dense urban environment, the carriers can force
the AMR codec to operate on lower bitrate (and hence, lower
quality) modes, in order to optimize base station capacity.
Our attempts to test Hermes over the EFR codec failed,
since AT&T and T-Mobile have disabled the phone codes
to change the codec. We therefore conduct a simulation
using a software implementation of the EFR codec and the
default mode of the AMR codec. For different pairs of codecs
used at the senders and receivers, we present the optimal
performance numbers in Table. 5. We first observe that
irrespective of the codecs used, Hermes is able to achieve
low error rates, with high throughput. Next, we observe
that depending on the codecs used, the optimal parameters
are different.

We also observe that the optimal parameters for one
codec might significantly under-perform on another. For
example, for EFR → EFR, the optimal parameter set is
(fbase = 2265Hz, δ = 585Hz). If we use the same param-
eters for AMR → AMR, we get a high bit error rate, of
approximately 5.6 × 10−2. The implication is that we can-
not train or determine the symbols beforehand, since we do
not know what codecs/modes are going to be used.

It is important to observe that the real world performance
numbers across heterogeneous cellular service providers (Ta-
ble. 3) are different from the simulation results for heteroge-
neous codecs presented in Table. 5; in fact, we are able to
achieve significantly lower bit error rates in the real world.
For example, the AT&T → T-Mobile call was probably in
fact an AMR → AMR call. This disparity can be explained
due to the fact that we simulate over just one mode of AMR,
whereas in the real world, the AMR codec might keep ad-
justing its parameters on the fly for optimal performance.

5.5 Economic Analysis
The average time taken to send an SMS message is about

5 seconds; since the payload of an SMS is 140 bytes, this
works out to a data rate of 224 bits per second. When com-
pared to SMS, Hermes therefore provides a 5× improvement



in throughput. In most regions in the developing world, the
per-minute cost of a voice call is approximately equal to
the cost of sending an SMS message. Considering framing
overheads and retransmissions, Hermes still provides an im-
provement of more than 50× in terms of cost per byte.

6. RELATED WORK
There have been a few prior efforts on transmitting data

over a GSM voice channel. Each of these approaches suf-
fer from one or more of the following drawbacks: i) The
symbols are trained over a particular codec and therefore
will not work over unknown voice channels, ii) the details
of the modulation process are not published in the public
domain or iii) the throughput achieved is too low, iv) the
resulting bit error rate is simply too high to be useful, or v)
there are only simulation-based results without a real-world
implementation.

Katugampala et. al., [11, 10, 9, 8] construct a modem for
low bit rate speech channels that transforms data to speech
like waveforms to pass through the GSM EFR voice channel
while avoiding VAD. However, the details of their algorithms
and modulation techniques are not published in the public
domain. LaDue et. al., [13] design a data modem for the
GSM voice channel by training over the EFR codec, where
they use evolutionary optimization to construct a symbol
space that is successfully sent over the air. The symbol dic-
tionary is constructed by generating an initial symbol set;
the data is fed into the vocoder and the symbols that can be
decoded on the receiver side are considered as the fittest sym-
bols. New symbols are produced to update the symbol set
and the process is repeated until a robust set of symbols are
constructed. Due to the training of symbols over EFR, their
approach might not work over any generic and unknown
voice channel. Chmayssani et. al., [5] use QAM to modu-
late the data and pass it through an EFR channel to achieve
low error rates. However, their results are purely simulation-
based. Kotnik et al [12, 14] modulate data based on the
autoregressive speech model and pass it through HR, FR
and EFR codecs. However, they achieve very low through-
puts and high error rates; for example at 533bps, the BER
is over 25%. Recently, Sayadiyan et. al., [16, 17] use speech
parameters to design a symbol table and send the result-
ing data through the EFR channel. While they are able
to achieve low bit error rates, the data rates are low; fur-
thermore, theirs is a simulation-only result. Tyrberg [18]
provides a detailed survey of the field of data transmission
over speech coded voice channels. AqLink [2] (from Arbiq-
uity) is the closest to Hermes in terms of operating over a
wide variety of heterogeneous cellular channels. However, it
is a closed and proprietary system; the algorithms and mod-
ulation techniques are not published in the public domain.

7. CONCLUSION
The problem of data transmission over unknown voice

channels has several important implications on enabling new
mobile services in rural developing regions where no data
connectivity solution exists today. In this paper we have
presented Hermes, a point-to-point data transmission pro-
tocol that provides 1.2 kbps with very low error rates (bit
error rates in the order of 10−5 and frame error rates of
< 1%), over unknown voice channels. Hermes works well
across a wide variety of voice channels and is robust in the

face of bit flips, bit insertions and bit deletions caused by
voice codec distortions. The frame recovery mechanism in
Hermes also significantly improves frame success rate by up
to a factor of 28×. Finally, Hermes provides a new data
connectivity solution that when compared to SMS, improves
throughput by a factor of 5×, while lowering the correspond-
ing cost-per-bit by a factor of 50×. To the best of our knowl-
edge, this is among the first research efforts to transmit data
over memoryful, narrow-band and essentially unknown PHY
layer channels. Determining the optimal way to achieve high
thoughputs and low error rates remains an open challenge.
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transmission over gsm voice channel using digital modulation
technique based on autoregressive modeling of speech
production. Digit. Signal Process. 19, 4 (2009), 612–627.

[13] LaDue, C., Sapozhnykov, V., and Fienberg, K. A data modem
for gsm voice channel. Vehicular Technology, IEEE
Transactions on 57, 4 (july 2008), 2205 –2218.

[14] Mezgec, Z., Chowdhury, A., Kotnik, B., and Svečko, R.
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