Late Papers

Implementation of MPI over HTTP

S.Lakshminarayanan S.S.Ghosh N.Balakrishnan
lakme@mecena.iitm.crnet.in ghosh@serc.iisc.crnet.in - balki@serc.iisc.ernet.in
Dept. of Computer Science Supercomputer Education and Research Center
Indian Institute of Technology Indian Institute of Science
Madras, India Bangalore, India.

Abstract

Message Passing Interface[2] is the de facto standard for multi-
computer and cluster message passing. In this paper we explore a
new paradigm of high performance distributed computing by imple-
menting a message passing interface over HTTP[1]. This provides a
platform independent implementation of MPI and also develops a base
for web based computation to achieve global parallel processing. The
conventional approach to message passing is through the use of Par-
allel Virtual Machine(PVM) or MPI software packages that optimize
the communication and the synchronization functions for the message
passing paradigm needed in high performance distributed computing
environments. However the recent trend in Internet communication
has been to use the HI'TP for inter-linking information and files across
the World Wide Web. The HTTP (1], over the years has matured to
be a very efficient tool for communication and is fit enough to warrant
consideration as a vehicle for inter-processor communication. The per-
formance of our implementation was compared with the standard MPI
implementation over a cluster of workstations connected by a Shared
Ethernet network and the results are very encouraging.

1 Introduction

Nowadays, massively parallel architectures are built by interconnecting a
cluster of workstations and accomplishing massive parallel processing using
the workstations as the nodes of processing.There is also a growing number
of web-enabled machines and the development of web-windows giving the
productivity tools for a true distributed high performance computing envi-
ronment. Message passing is a paradigm used widely on certain classes of
parallel machines, especially those with distributed memory. The interface
that provides for message passing should establish a practical, portable, effi-
cient and flexible standard for message passing. MPI is the de facto standard
for multi-computer and cluster message passing[2].

1300

The Hypertext Trausfer Protocol is an application level request-response
protocol for distributed, collaborative, hypermedia information systems [1].
HTTP as a protocol has matured over the years and many communication
optimization ideas and synchronization routines have been entwined with
it. The primitives of HTTP can be used to implement a client-server model
over the Web. The recent spurt of enhancements of HTTP like persistent
connections[1] and pipelining make HTTP a wonderful protocol for message
passing over the World Wide Web.

Present day implementations of MPI arc platforin specific and optimiza-
tions of MPI are performed over a specific platform [3]. By implementing
MPI over HTTP one gets a platform independent implementation of MPI.
This allows for the development of portable parallel software on different
parallel architectures and also provides a wonderful paradigm for web-based
computation.

We have implemented the basic MPI calls and other commonly used
MPI calls using HTTP primitives and have tested the performance of our
implementation with the standard MPI implementation. We have also tested
the performance of our MPI_Send and MPI_Recv calls separately. Results
indicate that the saturating bandwidth obtained in both implementations
are comparabie.

In section 2 we present our design and implementation details. In section
3 a detailed performance analysis of our implementation is given. In section
4 we summarize our results and also give a sketch of our future work.

2 Design and Implementation

The processors that exccute a parallel program are treated as HT'TP clients
which submit their requests to HT'TP servers to accomplish message passing.
The Message passing interface developed over HTTP is present as a library
at every client executing the MPI programs. Any MPI function that needs
to send or receive messages, generates a particular request which is sent to
the server for servicing. The server in turn sends a response to the client
which is subsequently parsed by the client to get the status of the request.
The status indicates a success or a failure in the completion of the request.
In order to reduce the connection setup overhead, we follow a connection
management policy and maintain long live connections to the servers.

All the basic operations of MPI and other commonly used MPI opera-
tions are implemented as part of the client’s library. MPI operations like
MPI_Send and MPI_Recv which actually perform message passing are im-

1301

plemented with the help of HTTP primitives GET,HEAD and POST. The
MPI-operations implemented include the six basic MPI operations namely
MPI_Init, MPI_Finalize, MPI_.Comm_rank, MPI.Comm size, MPI_Send and
MPI_Recv. All MPI programs can be written using these six basic MPI
functions. Other commonly used MPI operations MPI_Wait, MPI Bcast,
MPI_Gather and MPI_Reduce are also implemented.

A list of all the processor nodes is created in the MPI Init call and the
MPI_Comm_rank and MPI_Comm size calls make use of this list to report
the rank and the size for an MPI program. The important communicating
MPI calls, MPI_Send and MPI_Recv, implemented efficiently using HT'TP
primitives. In our framework both the communicating clients agree on a
HTTP server with which communication is carried out in the least amount
of time, in order that the above objective be satisfied. The message is posted
to this server as part of the entity body of the request by a POST request
to a cgi-bin cxecutable at the server which stores the message at the server
end. As part of the MPI_Recv call, the receiver keeps polling the server for
the message, and it through a GET request once it has arrived at the server.

All the collective MPI-operations like MPI_Bcast, MPI_Gather and MPI
-Reduce involve one to many or many to one transmissions. In-order to
implement them efficiently all the nodes are divided in the beginning into
various groups and every group is associated with a group leader. The
collective operation is performed in two stages; one between the central
node and the group leader and the other among all nodes in a group.

3 Performance Results

The above implementation was tested over a 10 Mbps Ethernet link con-
necting a cluster of machines through a hub. The HTTP daemon is made to
run on one of the machines. Message passing is accomplished between two
other nodes in the cluster acting as HT'TP clients. Various kinds of mes-
sage passing experiments on this kind of set-up and the results obtained are
more than encouraging. From the results of the experiments done below, we
can note that the saturating bandwidth obtained using our implementation
is comparable to that of conventional MPI implementation. The effective
bandwidth obtained for packets of small size increases with the maintenance
of long-live connections. The performance of MPI_Recv is poor because of
high disk access time at the server end for large packets.

1302

Effective

Effective 3 Bandwidth 3
Bandwidih (in Mbps)
(in Mbps) 2

L B B B ———rt + b + 1
£ 200 300 4060 Siny 6Ny 100 210 300 400 300 G}

Uacket Siza ln K13 Packot Skze In KB

n) Bandwidth Charecteristics of MPI_Send ©) Performance of MPI over HTTP

$iftective
Handwidih
0.7 3
Effecrive
Banawldih
(tn Mbps) 03 1
0.2
: ' 4 4 N 4 . +)
— + + { + —4- ———t— ' 1
100 200 300 400 500 GO0 100 200 300 400 S0 GO0
Packet Size in KB Packet Size in KB
h) Bandwidth Churecteristics of MPI_Recv d) Performance of Conventional MPI

Figure 1: Results of the Experiments

4 Conclusion

In this paper we have opened up a new paradigm for Web based compu-
tation. MPI over HTTP also provides a pervasive base for global parallel
processing and many problems that require huge computation power can be
solved using our approach.We have also obtained a platform independent
implementation of MPI and HTTP enhancements like pipelining are bound
to improve the performance of our implementation tremendously.

References

(1] R.Ficlding,J.Gettys,J.Mogul, H.Frystyk and T.Berncrs-Lee, Hypertext
transfer protocol- HTTP/1.1, RFC 2068, Internet Request for com-
ments, Jan 1997.

(2] J.J.Dongarra,S.W.Otto,M.Snir and D.W.Walker, An Introduction to
the MPI Standard, Communications of the ACM ,Jan 1995.

(3] H.Franke, P.Hochschild,P.Pattnaik and M.Snir, An Efficient Implemen-
tation of MPI on IBM-SP1, Proc. Of the 1994 Int. Conf. on Parallel
Processing, Aug. 1994

