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Abstract. Multimedia applications have timing requirements that can-
not be satisfied using time-sharing scheduling algorithms of general op-
erating systems. Our approach is to provide for a resource reservation
mechanism to cater to the real-time resource requirement[5] of multime-
dia applications. We propose the design of a Resource Manager which
allocates and manages the end-host resources among the processes[7].
We identify three important resources at the end-host namely, the pro-
cessor, memory and system bus cycles. A process reserves these resources
by negotiating with the Resource manager.
The goals that we seek to achieve are: (a) real-time resource manage-
ment using kernel supported reservation mechanisms, (b) optimal uti-
lization of the various resources of the end-system and (c) kernel opti-
mizations for reducing end-host communication overheads in distributed
multimedia applications. We use a two-pronged approach to accomplish
our goals. First, we adopt a reservation strategy coupled with prior-
ity process scheduling[13,14] to achieve real-time resource management.
The reservation mechanism includes a processor and memory reserve ab-
straction which controls the allocation of processor cycles and memory
space to the processes. The reservation scheme can allow applications
to dynamically adapt in real-time based on system load and application
requirements. Device requirements of a certain multimedia application
is abstracted out as a kernel process for system bus reservation and
device activation. Secondly, we adopt kernel optimizations to minimize
end-host communication overhead in real-time multimedia applications.
To improve the end-host performance in distributed multimedia appli-
cations, we unveil a new connectionless protocol, Reliable-UDP, in the
kernel. We also present aggressive caching mechanism as a scheme for im-
proving end-host performance. The performance of the Resource Manger
was tested out with the generation of processes at random times and the
results match the expected theoretical results. The connectionless proto-
col was tested out in a local distributed system and the results are also
presented.
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1 Introduction

Multimedia systems are computing systems that employ several types of me-
dia ranging from static ones, such as text and graphics, to dynamic ones such
as audio and video. A multimedia system is often a distributed system in the
sense that its components are located in different processing nodes of a local or
wide area network. One of the important aspects of multimedia applications is
real-time resource management. Many of the new multimedia applications like
Video-conferences or Distributed Video on Demand share the resources of the
distributed system. In order to provide efficient services to these applications,
one must utilize these resources properly. Resource management policies dictate
how resources are allocated, monitored optimized and released.

The resources of the distributed system are of two types: one being the re-
sources at the end-host and the other being the network resources. The resources
at the end-host include the processor, memory, the system bus and the peripher-
als and the network resources include the channels used for communication and
the routers present in the network. In this paper we propose an efficient end-host
resource management strategy. The resources that are in contention for such a
system include CPU time, memory capacity and bus cycles. In many multimedia
applications audio and video streams are transmitted and these streams have to
be collected by the end-host and processed. A multimedia application, unlike
normal applications has timing requirements that cannot be satisfied by normal
operating systems. The schedulers in existing operating systems do no take care
of the timing requirements of these applications into account. Due to this reason,
the performance of the multimedia applications is often suboptimal.

In this paper we present a process scheduling strategy that takes into consid-
eration the timing requirements of the multimedia application. We extend the
idea of processor capacity reserves[4]—an abstraction of the Real Time Mach
micro-kernel to our model to suit processor, memory and system bus require-
ments. The processor capacity reserves[3] allows application threads to specify
their CPU requirements in terms of timing requirements. We extend the above
concept to a model in which an application thread can request for a certain mem-
ory capacity to suit its applications. The capacity of memory allocated can be
dynamically varied to suit the needs of the application. A multimedia application
involving audio or video streams has to transfer data to the peripheral devices
at periodic intervals of time. To support this mechanism, we provide bus reser-
vation strategies as part of the Resource manager which controls the resource
reservations of the various applications. The Resource manager is designed to
allocate the minimum resource requirements to the multimedia application to
achieve optimal performance.

In this paper, we have discussed the design of a connectionless and reliable
protocol in the kernel called Reliable UDP. This is a high performance protocol
over a local area network and the timeout algorithm of TCP has been modified
to suit a LAN. We also discuss an aggressive caching mechanism where extra
memory capacity reserve is allocated for bulk transfer in a distributed system.
The performance of Reliable-UDP for small packets is substantially high when
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compared to that of TCP. The variation of timeouts has also been studied in
this paper.

In section 2, we present our Working model followed by a discussion of the
Resource Manager in section 3. In section 4, a description of Reliable UDP is
given and the results of our simulations are presented in section 5. In section 6,
we conclude giving directions for future work.

1.1 Related Work

In [3],[4] there is a discussion of operating systems support for Multimedia Ap-
plications. The approach towards solving this problem has been fundamentally
different from the normal solutions for problems in Real Time systems. But the
work has manly concentrated on processor capacity reserves[3] and not on other
resources of an end-host system.

2 Working Model

A Distributed system is one in which various nodes are interconnected by the
underlying network. The resources at the end-host can be abstracted using
three parameters namely processing speed, memory capacity and peripherals.
Let Pi, Mi, Ri represent the processing capability, memory capacity and device
availability of the ith node in the multimedia system. A channel in the network
offers a certain bandwidth Bj with a certain delay Dj where j is an index for the
channel. Any distributed process running over the entire system uses both the
network resources and the end-host resources. Any distributed process Qk can
be represented by its time varying resource requirements. Let xij(t), yij(t), zij(t)
represent the time-varying processor, memory and resource requirement of pro-
cess i at node j. Let bij(t) represent the bandwidth requirement of process i in
the channel j at time t. Let K represent the total number of distributed pro-
cesses. We have the following requirements from the system.

Node Requirements

k∑

i=1

xij(t) ≤ Pj

k∑

i=1

yij(t) ≤ Mj

k∑

i=1

zij(t) ≤ Rj

Channel Requirements

k∑

i=1

bij(t) ≤ Bj
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Designing a distributed scheduling algorithm to service all the processes effi-
ciently is the goal of the system. Many multimedia applications may have dead-
lines associated with it. The scheduling algorithm must include deadlines as an
important parameter while scheduling the processes. A distributed multimedia
application may involve various QoS requirements from the network[8]. In this
paper, we concentrate on scheduling processes at the end-host based on their
resource requirements. We assume that the network offers the required QoS for
the various processes[9]. We obtain the resource abstraction of a distributed pro-
cess at a single node and consider this abstraction to be the requirements of a
local process at the node.

3 Resource Manager

Every multimedia application has certain minimum resource requirements to be
satisfied for optimum performance. These requirements can be specified by the
processor time, memory buffer and I/O bandwidth required in a given time in-
terval. For example, an MPEG video player which reads a file from disk and
plays 30 frames of video per second, with say 10 ms processing time per frame,
will need to be scheduled for 10 ms out of every 33 ms (1/30 s), buffer space in
physical memory to hold one frame of video and enough bus cycles to read an
MPEG frame from disk and write the decoded frame to the video framebuffer
in the 33 ms. The OS must provide a way for the application to specify these re-
quirements. In this case, the parameters specified are the processor time required
in a given time interval, the size of the memory buffer, and the amount of data
to be transferred through the bus in a given interval. In the rest of this section,
we describe methods to specify and implement resource reservations for these
three resources—processor time, I/O bandwidth and memory buffer resources.

3.1 Processor Time

To guarantee a certain amount of processor time to a process, the scheduler must
take its reservations into account while scheduling it. The scheduling algorithm
is typically priority based—using either fixed or dynamic priorities.

Fixed Priority Scheduling In a fixed priority scheduling scheme one must
be able to assign priorities to processes such that each one is processed at its
required rate. This can be done using the rate monotonic (RM) algorithm of Liu
and Layland[13]. Here, the highest priority is assigned to the highest frequency
task and the lowest priority is assigned to the lowest frequency task.

Let n be the number of tasks and let Ci and Ti be the computation time
and period of task i. Liu and Layland[13] showed that all tasks will successfully
meet their deadlines if

n∑

i=1

Ci

Ti
≤ n(21/n − 1)
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When n is large, n(21/n − 1) = ln2 = 0.69. This means that as long as the
total processor reservation is less than 69%, all tasks will meet their deadlines.
This is a pessimistic bound. Here, a lot of computation time (31%), cannot be
reserved. Lehoczky et.al[14] gave an average case analysis showing that tasks
can be scheduled with upto 88% utilization.

Dynamic Priority Scheduling In contrast with fixed priority scheduling, the
earliest deadline(ED) scheduling policy uses a dynamic priority scheme. The
deadline of a task is defined as the end of the period during which the compu-
tation is to be finished. The task with the earliest deadline is scheduled to run.
It can be shown that all tasks will successfully meet their deadlines under ED
scheduling if

n∑

i=1

Ci

Ti
≤ 1

In ED scheduling the priority of a particular process is inversely proportional
to the difference between the deadline and the present time. This however, does
not require continuous updation of priority, but the scheduler needs to make
updates at the end of every task.

We see that with ED scheduling, it is possible to reserve upto 100% of the
CPU time and still meet all deadlines whereas with the rate monitoring method,
deadlines are guaranteed only if the reservation is less than 69%.

3.2 Bus Resources

In section 3.1, we studied how the processing time of a CPU can be efficiently
shared between processes. But processor time is not the only resource for which
applications compete. Multimedia applications often need to transfer large amounts
of data to a peripheral device in a given amount of time. In order to achieve this,
applications must have guaranteed access to the bus.

The OS will provide system calls for bulk transfer of data between the mem-
ory and the device. Whenever a particular application requires the transfer of
data from a resource to memory or vice versa before a particular deadline, then
we adopt a policy of bus reservation. Note that direct control of bus resources
is not an efficient methodology since it reduces the throughput considerably. to
overcome this, we follow a policy of preemption, where the resource involved in
the transfer requests for bus access in advance. With a small predictable delay,
the application effectively gets access to the bus. Here again, priorities can be
allocated to resources. Effectively the data transfer is accomplished within the
required deadline with high probability.

3.3 Memory Buffer Resources

Multimedia applications typically use large memory buffers. For performance
reasons, it is advantageous if the memory buffer is present in physical memory
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before it is accessed. If a buffer is not in memory when it is required, a page fault
occurs, and the process sleeps until the page is fetched. This can cause a delay of
the order of several ms—too large for a multimedia application. Memory buffers
that are meant for holding data that is read from or to be written to a device
should also be contiguous in physical memory so that they can be directly used
for DMA transfers without a copy into kernel space. Support for reservation
of memory buffers implies that the OS should provide a service by which the
application can specify the size of the memory buffer (memory capacity of the
application), the interval during which it should be present in physical memory
and whether it needs to be contiguous.

In our method, the memory is logically split into 3 parts- A,B,C. A is used
as a memory capacity reserve for multimedia applications. B is used as a com-
mon memory for all applications and C is used as a temporary memory for
Distributed multimedia applications. The number of local and distributed mul-
timedia applications dictate the logical split of memory between A, B and C.
Whenever a process P requests a memory capacity M , then it is assigned a high
proportion of M say pM in A and the rest of the capacity is adjusted in the com-
mon memory slot B. Memory capacity reservation is implemented by scheduling
a transfer to bring the required pages into physical memory at a time before
the time when the process wants to use the buffer. Processes that involve data
transfer to a reserved memory buffer of an application are given high priority
by the scheduler. The logical split is made dynamic with the help of memory
location transfers between A, B and C. A change occurs in the logical split when
memory of a particular finished task is allocated to another task.

3.4 Implementation of Resource Reservation in a Kernel

In this section, we propose a unified approach for managing all three resources—
processor time, bus resources and memory buffer resources. The OS runs a Re-
source Manager process which keeps track of all existing reservations and per-
forms admission control. All processes register their reservations with the Re-
source Manager. A particular registration of a process is a three tuple (a, b, c)
denoting the reserves of the three resources. The Resource Manager verifies
whether this reservation can be guaranteed at the current load (for example,
if RM scheduling is used, the total reservation of processor time cannot exceed
69%) before admitting it. The Scheduler and the Resource Manager together
implement the resource reservation service.

Reservations for processor time are handled directly. A reservation for a bus
transfer of x bytes is handled with the help of preemption. An OS call is made
to inform the device that data transfer of x bytes is accomplished within a
particular deadline. A memory buffer reservation is always tied to a processor or
a bus transfer reservation. It is required that the buffer be in physical memory
before the task or the transfer is scheduled. The Resource Manager ensures that
the buffer is in memory when it is required by the following method. It checks
if the required space is present in the allocated space in A and if present , the
transfer is immediately accomplished. If the buffer is not present, the memory is
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allocated in B. This task is guaranteed enough time to evict an existing page and
bring in the new page. Whenever the processor finds that the memory allocation
in A for a particular processor is much below the expected value, a change in
the logical split between A, B, C occurs.

The Resource Manager thus provides a unified interface to handle reserva-
tions for three classes of resources—CPU time, bus resources and memory buffer
resources.

4 Kernel Optimizations for Distributed Multimedia
Applications

Any Multimedia Application that runs over a distributed system communicates
with the other systems present in the distributed domain. All these communica-
tions involve the use of the operating system at the end-hosts. Many multimedia
applications like Videoconferencing or Video on Demand have real-time issues
associated with them[11]. In order to effectively address these real time issues,
one needs to minimize the overhead due to the data transfers between the end-
host systems. In this section, we address issues relating to kernel optimizations at
the end-hosts as part of providing efficient end-host support for communication.

4.1 A Connectionless and Reliable Transport Protocol — RUDP

We have implemented a transport protocol called Reliable UDP (RUDP) which
is connectionless, reliable and provides timely delivery of packets in the kernel of
our system to suit multimedia applications. This protocol supports efficient inter-
process communication between two nodes in the distributed system without the
overheads of connection oriented protocols like TCP.

Drawbacks of TCP TCP is poorly suited to frequent, short, request-response
style traffic. Frequent connection setup and tear down costs burden servers with
many connections in TIME WAIT state. TCP’s slow start algorithm for conges-
tion avoidance interacts with short connections in a rather poor manner. The
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overhead involved in connection management severely limits the scalability and
performance of our system. These mismatches between the needs of multimedia
applications and the services of TCP have caused increased latency in real-time
applications.

Implementation We have developed RUDP using the unreliable and connec-
tionless UDP as a base protocol and have provided reliable and in-sequence
delivery over it. We use sequence numbers and acknowledgments in order to
achieve this.

Every packet sent from a node is assigned a sequence number which depends
on the IP address of the receiving node and the destination port. A packet
is uniquely identified by its sequence number, destination IP address and port
number. A sequence number list is associated with every port in the node.

Acknowledgments are handled by allocating a standard port in each node as
an acknowledgment port. A node sends acknowledgments to the acknowledgment
port of the sender. When a node receives an acknowledgment, it updates the
sequence number list of the corresponding port.

We have modified the TCP’s congestion control mechanism to provide a time-
out adjustment suitable to our application. Our timeout mechanism is well suited
over a LAN set-up. Whenever a packet loss occurs the timeout is multiplied by
a constant factor γ typically around 2. We have based our time-out algorithm
to explicitly suit the sudden variations in RTT. Our time-out algorithm aims
at keeping the time-out to within a constant factor of the RTT. Our algorithm
ensures that following a congestion the timeout drops back to its initial value
rapidly when compared to TCP.

4.2 Aggressive Caching Mechanism

Memory capacities are allocated to all multimedia applications. We propose
the use of aggressive caching in multimedia applications which need to obtain
streaming multimedia data from a remote source. This mechanism is especially
very useful to the Distributed Video on Demand applications where one can
perform bulk transfer between the two end nodes. Through this mechanism,
a process that needs to obtain data from a remote node can fill its memory
capacity alloted in partition C, by performing bulk transport of the data from
the remote node. The presence of a large cache at the end-host improves the
performance of the above operation. The message is broken into various packets
and the RPC transport at the other end reassembles the fragments. A single
acknowledgment is used for all the fragments. On the other hand a collective set
of all selectively rejected packets and sequence numbers of unreceived packets
is sent as a collective negative acknowledgment to the packets. The sending
RPC transport retransmits these fragments alone. This process is used to ensure
reliable data delivery.



54 S. Lakshminarayanan, K. Mahesh

Pkt 1

Pkt 2

Pkt 3

Pkt 4

Pkt 5

Pkt 6

Collective
ACK

Pkt1

Pkt 2

Pkt 3

Pkt 4

Pkt 5

Pkt 6

Negative
ACK5

Pkt 5

ACK

Case 1: No packet loss Case 2: Packet loss occurrence

Sender Receiver Sender Receiver

Fig. 2. Transfer mechanism used in Aggressive caching

5 Simulation Experiments

Experiments were performed to study the utility of operating system optimiza-
tion on applications. Simulations were performed to analyze the effect of proces-
sor reservation support and communication optimizations on applications.

In the first experiment, we studied the impact of processor reservation strate-
gies. We simulated a set of processes with different reservations and examined the
long term behavior of the system. In our experimental setup, we assumed three
processes A,B,C with reservations of 40%, 30% and 20%, with the rest of the
processor time given to processes without reservations. The processor utilization
of each process vs time is shown in Figure 3.

From the above graph, we see that the processor time available to each pro-
cess stabilizes around its reservation. This means that each process is guaranteed
its reserved processor time.

The performance of RUDP was tested over a distributed cluster comprising
of 3 nodes connected by a 10Mbps Ethernet link. The protocol was implemented
on the Linux OS. Message passing of varying sizes were accomplished and the
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performance of our protocol in comparison to TCP was studied. The timeout
variation of our protocol have also been measured.
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Fig. 4. Comparison of the Transmission time of our protocol with TCP

The results have clearly indicated that our protocol has a tremendous gain in
performance for small and medium sized packets. The connection management
overhead in our protocol is very less. The timeout mechanism of our protocol
tries to model the fluctuation of the RTT of the system. When the network is
relatively free the timeout is reduced to within a small factor of RTT to support
multiple transmissions. Our algorithm supports fast recovery from congestion by
ensuring that the timeout drops much rapidly to the steady value in comparison
to TCP. This protocol is thereby well suited for real time applications running
over a distributed system.
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6 Conclusion and Future Work

In this paper, we have motivated the design of a reservation strategy of the re-
sources of a system to support continuous media applications. The scheduling
framework discussed, based on time -varying resource availability provides an
effective way to specify real-time resource requirements. The Resource manager
maintains the resources of the system. This reservation scheme can be directly
extended to the distributed multimedia systems. In this reservation mechanism
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each reserve contain reservations for various resources in the distributed systems.
In such a model, one needs to even address network resource reservation issues.
We have also proposed kernel optimizations to reduce the communication over-
head between systems. The use of the aggressive caching mechanism reduces the
number of data transfers between the two end-systems. We plan to use these
optimizations effectively in the development of a Distributed Video on Demand
application.

We are also working towards the development of a full-fledged operating
system sensitive to multimedia applications. This operating system will include
the scheduling features and the optimizations provided over here.
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