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Abstract—We study the inapproximability of Vertex
Cover and Independent Set on degreed graphs. We prove
that:

• Vertex Cover is Unique Games-hard to approximate
to within a factor 2− (2+od(1)) log log d

log d
. This exactly

matches the algorithmic result of Halperin [1] up to
the od(1) term.

• Independent Set is Unique Games-hard to approxi-
mate to within a factor O( d

log2 d
). This improves the

d

logO(1)(d)
Unique Games hardness result of Samorod-

nitsky and Trevisan [2]. Additionally, our result does
not rely on the construction of a query efficient PCP
as in [2].

I. INTRODUCTION

Vertex Cover and Independent Set are two of the
most well-studied NP-complete problems. On general
graphs (i.e. with unbounded degree), it is a notoriously
difficult problem even to approximate the solutions to
these problems, and there is a strong evidence that
indeed no goodapproximation is feasible. However for
graphs whose degree is bounded by a constant, sig-
nificantly better approximation guarantees are known.
In this paper, we investigate whether one can obtain a
tight inapproximability result for graphs with bounded
degree d as a function of d. We present a randomized
reduction from the Unique Games problem to each of
these two problems, giving UG-hardness results close to
the approximation ratio of the best algorithms known1.

Our Results

For the Vertex Cover problem, we prove:

Theorem I.1. For every sufficiently large integerd, it is
UG-hard (under randomized reductions) to approximate
vertex cover in a degreed graph to within factor2 −
(2 + od(1)) log log d

log d .

We note that Halperin [1] presents an efficient al-
gorithm that approximates vertex cover in a degree d
graph to within essentially the same factor, up to the
od(1) term. This improves on the general well-known 2-
approximation ratio for graphs of unbounded degree. On

1See Section II-A for definitions of Unique Games problem and
UG-hardness of a problem.

the inapproximability side, Khot and Regev [3] showed
2 − ε UG-hardness result for any constant ε > 0,
whereas Dinur and Safra [4] showed 1.36 NP-hardness
result.

For the Independent Set problem, we prove:

Theorem I.2. For every sufficiently large integerd, it is
UG-hard (under randomized reductions) to approximate
independent set in a degreed graph to within factor
O( d

log2 d
).

This result is close to the best known algorithm for
this problem that achieves O(d log log d

log d ) approximation
(see Halperin [1], or Halldórsson [5]). It is an intriguing
question whether one can improve the approximation
algorithm, or improve on this inapproximability result
(or both). Previously, Samorodnitsky and Trevisan [2]
showed d

logO(1) d
UG-hardness for the problem (doing

optimistic estimates, it seems the best possible result
their proof could yield is d

log3 d
). The same authors, in

an earlier work [6], gave d
2O(

√
log d) NP-hardness result.

For graphs with unbounded degree, the best algorithm
known, due to Feige [7], achieves an approximation
ratio of O

(
n(log logn)2

(logn)3

)
, whereas the problem was

shown to be hard to approximate within n1−ε for any
constant ε > 0 by Håstad [8]. Håstad’s result has been
further improved and the current best inapproximability
result is n

2(log n)3/4+ε by Khot and Ponnuswami [9].

Techniques

Showing an inapproximabilty result for Vertex Cover
essentially amounts to showing the Independent Set
problem is hard to approximate even when the size
of the Independent Set is very large. For an inap-
proximability ratio close to 2, this calls for showing
that it is hard to distinguish between a graph with an
independent set of roughly half of the vertices, and a
graph in which every independent set has negligible
size. Consequently, both our results follow from the
same randomized reduction from the Unique Games
problem, albeit with different choices of parameters.

The reduction produces an n-vertex degree d graph,
which, in case the Unique-Game instance was al-



most completely satisfiable — the completeness case
— has a large independent set. Here large refers to(

1
2 − Θ( log log d

log d )
)
·n for Theorem I.1, and Θ( 1

log d ) ·n
for Theorem I.2. In contrast, if one can satisfy only a
small fraction of the constraints of the Unique-Game in-
stance — the soundness case — there is no independent
set of size even βn for an appropriately small constant
β, where β = 1

log d for Theorem I.1 and β = Θ
(

log d
d

)
for Theorem I.2.

The reduction proceeds in two steps: (1) the first step
produces a graph G with unbounded degree and (2) in
the second step, we sparsify the graph so as to have
all degrees bounded by d, yielding the final graph G′.
The sparsification step simply picks d · n edges from
G at random so that the average degree (and hence
the maximum degree after removing a small fraction
of edges) is bounded by d.

The second step clearly can only increase the size
of the independent-set, hence the completeness proof
is fine. For the soundness proof, we must show that
the size of the independent set can only be slightly
increased. We prove that if G had no independent set of
size βn, G′ does not have independent set of size βn
either. In order to prove this, we actually need the graph
G to have a stronger property. In the soundness case,
we show not only that G has no independent set of size
βn, we have a much stronger densityproperty: every
set of βn vertices contains a Γ(β) fraction of the edges
for an appropriate function Γ(·). This stronger property
allows us to prove the correctness of the sparsification
step by a simple union bound over all sets of size βn.

Now, let us elaborate on the first step of the reduction.
This step is almost the same as in Khot and Regev’s
paper [3]. Their reduction produces an n-vertex graph
that has no independent set of size βn. We show that one
can in fact define an appropriate probability distribution
on the edges of their graph and prove the density
property that every set of βn vertices contains Γ(β)
fraction of the edges. The analysis of this step departs
from that of Khot and Regev, and is instead inspired by
that of Dinur et al. [10] for showing UG-hardness for
coloring problems. The density property follows from
a quite straightforward application of a Thresholds are
Stablesttype theorem [11], giving precise bounds on
the function Γ(·). Note that we also obtain an alternate
proof of the 2 − ε inapproximability result for vertex
cover that is arguably simpler than the Khot-Regev
proof.

It is interesting that we obtain a 2−(2+od(1)) log log d
log d

inapproximability result for vertex cover where even the
constant in front of the log log d

log d term is optimal. Finally,
we remark that the earlier result of Samorodnitsky and
Trevisan [2] that gave d

logO(1) d
inapproximability for

independent set problem, requires the construction of a
sophisticated query-efficient PCP. We instead prove an
improved result without relying on such a PCP.

II. PRELIMINARIES

We will consider graphs that are both vertex weighted
and edge weighted. We will assume that the sum of the
vertex weights equals 1 and so does the sum of the
edge weights so that the weights can be thought of as
probability distributions. For a weighted graph G and
a subset of its vertices S, let w(S) denote the weight
of vertex set S and G(S) denote the induced subgraph
on S. For vertex sets S and T , let w(S, T ) denote the
weight of edges between vertex sets S and T . As a
convention, an unweighted graph would refer to a graph
with uniform probability distributions over its vertices
and edges.

Definition II.1. A graph G is (δ, ε)-dense if for every
S ⊆ V (G) with w(S) ≥ δ, the total weight w(S, S) of
edges inside S is at least ε.

A. Unique Games

In this section, we state the formulation of the Unique
Games Conjecture that we will use.

Definition II.2. An instance Λ = (U, V,E, Π, [L])
of Unique Gamesconsists of an unweighted bipartite
multigraph G = (U ∪ V,E), a set Π of constraints,
and a set [L] of labels. For each edge e ∈ E there is
a constraint πe ∈ Π, which is a permutation on [L].
The goal is to find a labelling � : U ∪ V → [L] of
the vertices such that as many edges as possible are
satisfied, where an edge e = (u, v) is said to be satisfied
by � if �(v) = πe(�(u)).

Definition II.3. Given a Unique Game instance Λ =
(U, V,E, Π, [L]), let Opt(Λ) denote the maximum frac-
tion of simultaneously satisfied edges of Λ by any
labelling, i.e.

Opt(Λ) :=
1
|E| max

�:U∪V →[L]

|{ e : � satifies e }|.

Let IndOpt(Λ) denote the maximum value α such that
there is a subset V ′ ⊆ V , |V ′| ≥ α|V | and a labeling
� : U ∪ V ′ �→ [L] such that every edge in the induced
subgraph G(U ∪ V ′, E) is satisfied by the labeling �.

The Unique Games Conjecture of Khot [12] states
that:

Conjecture II.4. For every constantγ > 0, there is
a sufficiently large constantL such that, for Unique
Games instancesΛ with label set[L] it is NP-hard to
distinguish between

• Opt(Λ) ≥ 1 − γ
• Opt(Λ) ≤ γ.



Khot and Regev [3] proved that the following stronger
version of UGC is in fact equivalent to UGC (the
stronger version is necessary for proving the inapprox-
imability of Vertex Cover and Independent Set):

Conjecture II.5. For every constantγ > 0, there is
a sufficiently large constantL such that, for Unique
Games instancesΛ with label set[L] it is NP-hard to
distinguish between

• IndOpt(Λ) ≥ 1 − γ
• Opt(Λ) ≤ γ.

Moreover Λ is regular, i.e. all the left (resp. right)
vertices have the same degree.

Now we define what we mean by a problem being
UG-hard. We present a definition for a maximization
problem; a similar definition can be made for a mini-
mization problem.

Definition II.6. For a maximization problem P , let
GapPc,s denote its promise version where a given
instance I is guaranteed to satisfy either Opt(I) ≥ c or
Opt(I) ≤ s. We say that GapPc,s is UG-hard if there
is a polynomial time reduction from a Unique Games
instance Λ to a GapPc,s instance I, such that for some
γ > 0,

• Opt(Λ) ≥ 1 − γ =⇒ Opt(I) ≥ c.
• Opt(Λ) ≤ γ =⇒ Opt(I) ≤ s.

In this case, we also say that P is UG-hard to approx-
imate to within ratio better than c/s.

B. Influence, Noise, and Stability

For p ∈ [0, 1], we use {0, 1}n(p) to denote the n-
dimensional boolean hypercube with the p-biased prod-
uct distribution, i.e., if x is a sample from {0, 1}n(p)
then the probability that the i’th coordinate xi = 1 is
p, independently for each i ∈ [n]. Whenever we have a
function f : {0, 1}n(p) → R we think of it as a random
variable and hence expressions like E[f ], Var[f ], etc,
are interpreted as being with respect to the p-biased
distribution.

Definition II.7. The influenceof the i’th variable on
f : {0, 1}n(p) → R is given by

Infi(f) = E
(xj)j �=i

[
Var
xi

[f(x) | (xj)j �=i]
]

Definition II.8. Let p ∈ (0, 1/2] and ρ ∈ [−p/(1 −
p), 1]. The Beckner operatorTρ acts on functions f :
{0, 1}n(p) → R by

Tρf(x) = E
y
[f(y)],

where each bit yi of y has the following distribution,
independently of the other bits: If xi = 1, then yi = 1

with probability p + ρ(1 − p). If xi = 0, then yi = 1
with probability p − ρp.

We will use the following basic fact about the number
of influential variables of Tρf .

Fact II.9. Let f : {0, 1}n(p) → R and ρ ∈ [−p/(1 −
p), 1]. Then, the number of i ∈ [n] such that

Infi(Tρf) ≥ τ

is at most Var[f ]
τe ln(1/|ρ|) .

Finally, we have the notion of noise stability.

Definition II.10. Let f : {0, 1}n(p) → R for p ≤ 1/2,
and ρ ∈ [−p/(1 − p), 1]. The noise stabilityof f at ρ
is given by

Sρ(f) = E[f · Tρf ].

Alternatively, one can write Sρ(f) = E[f(x)f(y)],
where the distribution of the pair of bits (xi, yi) is given
by Pr[xi = 1] = Pr[yi = 1] = p, and Pr[xi = yi =
1] = p · (p + ρ(1 − p)) ∈ [0, p], independently for each
i ∈ [n].

C. Gaussian Stability Bounds

Definition II.11. Let ρ ∈ [−1, 1]. We define Γρ :
[0, 1] → [0, 1] by

Γρ(µ) = Pr
[
X ≤ Φ−1(µ) ∧ Y ≤ Φ−1(µ)

]
where X and Y are jointly normal random variables

with mean 0 and covariance matrix

(
1 ρ
ρ 1

)
.

We will use the following “Thresholds are Stablest”
type of corollary of the MOO Theorem [11]. The
formulation that we use here is equivalent to e.g. the
formulation that is used in [13].

Theorem II.12. For everyp ∈ (0, 1/2), ρ ∈ [−p/(1 −
p), 1) and ε > 0 there existτ > 0 and δ > 0 such that
the following holds for everyn: let f : {0, 1}n(p) → [0, 1]
be a function with

Infi(T1−δf) ≤ τ

for eachi ∈ [n]. Then

Sρ(f) ≥ Γρ(E[f ]) − ε.

We will need asymptotic estimates of Γρ(µ) for
small µ, in particular good lower bounds. Several such
estimates can be found in the literature (see e.g. [14],
[15]), but we need bounds for the case where ρ tends to
−1 as µ tends to 0, whereas the bounds we are aware
of are stated only for fixed ρ ∈ (−1, 1) or ρ tending to
1 with µ. Thus, for the sake of completeness, we give
a proof of the following Lemma in Appendix A.



Lemma II.13. Let ρ := ρ(µ) be such that−1 < ρ < 0.
Then, there is aµ0 > 0 such that for allµ < µ0

Γρ(µ) ≥ 1
2
µ2/(1+ρ)(1 + ρ)3/2.

III. MAIN THEOREM

In this section, we give the main theorem upon which
our results are based.

Theorem III.1. Fix p ∈ (0, 1/2), β ∈ (0, 1), and ε >
0. Then for all sufficiently smallγ > 0, there is an
algorithm which, on input a Unique Games instance
Λ = (U, V,E, Π, L) outputs a weighted graphG with
the following properties:

• Completeness: IfIndOpt(Λ) ≥ 1 − γ, G has an
independent set of weightp − γ.

• Soundness: IfOpt(Λ) ≤ γ and Λ is regular, then
G is (β, Γρ(β) − ε)-dense whereρ = −p/(1− p).

The running time of the algorithm is polynomial in|U |,
|V |, |E| and exponential inL.

Proof: Let ν : {0, 1}2 → R be the probability
distribution on {0, 1}2 such that Pr[x1 = 1] = Pr[x2 =
1] = p, and Pr[x1 = x2 = 1] = 0. Let D be the degree
of every vertex in U in the Unique Games instance Λ.

The reduction is as follows: the vertex set of G is
V × {0, 1}L. For every pair of edges e1 = (u, v1),
e2 = (u, v2) with the same endpoint u in U , and every
x, y ∈ {0, 1}L, there is an edge in G between (v1, x)
and (v2, y) with weight

1
|U | · D2

·
L∏
i=1

ν(xπe1 (i), yπe2(i)),

whenever this quantity is non-zero. Note that the sum
of all edge weights equals 1. Let the weight of a vertex
(v, x) be 1

|V | times the probability mass of x ∈ {0, 1}L(p)
under the p-biased distribution. Thus the sum of all
vertex weights equals 1. Note also that the marginal of
the the distribution ν(, ) (used to define the weights on
edges) on either co-ordinate is the p-biased distribution
on {0, 1} (used to define the weights on vertices).
Therefore, the weight of every vertex is exactly 1

2 times
the sum of the weights of the edges incident on it. It is
clear that the running time of the reduction is as stated,
so it remains to see that the the reduction has the desired
completeness and soundness properties.

Completeness:Suppose there is a subset V ′ ⊆ V
with relative size 1 − γ and a labeling � : U ∪ V ′ →
[L] that satisfies every edge between U and V ′ in the
Unique Games instance Λ.

Consider the set of vertices S = { (v, x) : v ∈
V ′, x�(v) = 1 } ⊆ V (G). Its weight is w(S) ≥
(1 − γ) · p ≥ p− γ. We claim that S is an independent
set. To see this, assume for contradiction that G has an

edge between (v1, x) ∈ S and (v2, y) ∈ S. Then there
is a u ∈ U and edges e1 = (u, v1), e2 = (u, v2) such
that �(v1) = πe1(�(u)) and �(v2) = πe2(�(u)). But then
ν(xπe1 (�(u)), yπe2 (�(u))) = ν(x�(v1), x�(v2)) = ν(1, 1) =
0, contradicting the assumption that (v1, x) and (v2, y)
are connected by an edge in G.

Soundness:Let S ⊆ V (G) have w(S) = β. We
will prove that if w(S, S) is even slightly smaller than
Γρ(β), then Opt(Λ) must be significantly large.

For v ∈ V , let Sv : {0, 1}L(p) → {0, 1} be the
indicator function of S restricted to v, i.e., Sv(x) = 1
if (v, x) ∈ S, and Sv(x) = 0 otherwise. For u ∈ U ,
define Su : {0, 1}L(p) → [0, 1] by

Su(x) = E
e=(u,v)∈E(u)

[Sv(x ◦ πe)],

where E(u) are the set of edges incident upon u in Λ.
Now, the weight w(S, S) can be written as

w(S, S)

= E
u∈U

e1,e2∈E(u)

[
E

(x,y)∼ν⊗L
[Sv1(x ◦ πe1 )Sv2(y ◦ πe2)]

]

= E
u∈U

[
E
x,y

[Su(x)Su(y)]
]

= E
u∈U

[Sρ(Su)], (1)

where ρ := ρ(p) = −p/(1 − p) (since this is the
correlation coefficient between the bits xi and yi under
the distribution ν).

Let µu = Ex[Su(x)]. The regularity of Λ implies that

E
u∈U

[µu] = β.

Suppose that for a fraction ≥ 1− ε/2 of all u ∈ U it is
the case that Sρ(Su) ≥ Γρ(µu)− ε/2. If this holds, we
have that

w(S, S) ≥ E
u∈U

[Γρ(µu)]−ε ≥ Γρ(E
u

[µu])−ε = Γρ(β)−ε,

where the second inequality follows from the fact that
Γρ is convex2.

Hence, if wG(S, S) ≤ Γρ(β)− ε, there must be a set
U∗ ⊆ U of size at least |U∗| ≥ ε|U |/2, such that for
every u ∈ U∗ it holds that Sρ(Su) < Γρ(µu)− ε/2. By
Theorem II.12 (with parameters p, ρ(p) and ε/2, applied
to the function Su) we conclude that for each u ∈ U∗

there exists an i ∈ [L] such that Infi(T1−δSu) ≥ τ
for some τ > 0, δ > 0 depending only on p and ε.
Since Su is the average of functions {Sv | e = (u, v) ∈
E(u)} (via appropriate πe), for at least τ/2 fraction of
neighbors v of u, there must be j = j(u, v) ∈ [L] such
that πe(i) = j and Infj(T1−δSv) ≥ τ/2.

2See e.g. the full version of [13] — the definition of Γρ there differs
slightly from the one used here, but only by an affine transformation
of the input argument, and this does not affect convexity.



Now, define for every v ∈ V , a candidate set of labels
to be the set of all b ∈ [L] such that Infb(T1−δSv) ≥
τ/2. By Fact II.9, this set has size at most 1

τ
2 e ln(1/(1−δ)) .

Finally, pick one label at random from this set to be
the label of v ∈ V , and for every u ∈ U , let its
label be the projection of one of its randomly selected
neighbor. From the preceding discussion, it follows that
this randomized labeling satisfies, in expectation, at
least Ω

(
ετ4 ln2(1/(1 − δ))

)
fraction of the edges of the

Unique Games instance. This is a contradiction if the
soundness γ of the Unique Games instance was chosen
to be sufficiently small to begin with.

IV. POSTPROCESSING

Note that in the soundness case of Theorem III.1, we
obtain a graph that is (β, Γρ(β)−ε)-dense. In particular,
there is no independent set of weight β as long as
Γρ(β) > ε. The graph is both vertex-weighted as well
as edge-weighted. In this section, we show that we can
make the graph unweighted (in other words, weights
are uniform) and then sparsify it so that the degree
is bounded by d, preserving the maximum size of the
independent set during the process. In particular, we
have:

Theorem IV.1. Let p ∈ (0, 1/2). Then, for every suffi-
ciently smallβ > 0 it is UG-hard (under randomized
reductions) to distinguish graphs with an independent
set of sizep−β from graphs with no independent set of
size2β, even on graphs of maximum degree32β log(1/β)

Γρ(β) ,
whereρ = −p/(1 − p).

The proof of this theorem follows by the three steps
outlined in the following three sections.

A. Removing Vertex and Edge Weights

First, we apply Theorem III.1 with parameter ε =
Γρ(β)/2 giving a weighted graph G0. We assume
w.l.o.g. that γ < β. In the completeness case, G0 has an
independent set of size p−γ ≥ p−β. In the soundness
case,

1) G0 is (β, Γρ(β)/2)-dense.
2) The sum of weights of edges incident upon any

vertex is proportional to the weight of that vertex.

We now remove the vertex weights. We replicate
every vertex so that the number of its copies is propor-
tional to its weight. If {ui}ri=1 and {vj}sj=1 are copies
of vertices u and v respectively, and (u, v) is an edge of
the original graph, then we introduce an edge between
every pair (ui, vj) and distribute the weight of the edge
(u, v) evenly among the new r ·s edges. It can easily be
verified that if the original graph is (β, Γρ(β)/2)-dense,
then so is the new graph. Property (2) above implies
that in the new graph, the weight of edges incident on

every vertex is exactly the same. We then remove edge-
weights, by simply replacing each edge by a number of
parallel edges proportional to its weight. This yields an
un-weighted graph G1 with the same density properties
as G0 except that it is un-weighted and regular (though
its degree is unbounded).

B. Sparsification

Let n be the number of vertices of the graph G1

constructed in the previous section. We now construct
a new graph G2 by picking dn edges of G1 at random
(with repetition). If G1 is (β, α)-dense (in our applica-
tion, α = Γρ(β)/2), then the probability that G2 has an
independent set of size βn is bounded by(

n

βn

)
(1 − α)dn ≤ en(2β ln(1/β)−dα),

so that if d > 2β ln(1/β)
α (say, d = 4β log(1/β)/α),

w.h.p. G2 does not have any independent set of size
βn.

C. Small Average Degree To Bounded Degree

In the sparsification step, we pick dn edges of G1

at random. This yields a graph G2 with average degree
2d. Call a vertex bad if it has degree more than 4d.
It can be easily shown, using the regularity of G1 and
Chernoff bounds, that the probability of a vertex being
bad is 2−Ω(d), and hence with constant probability the
fraction of bad vertices is at most 2−Ω(d). In our choice
of parameters, it holds that 2−Ω(d) � β. We remove
all edges of G2 that are incident upon a bad vertex,
giving a graph G3. It is clear that the maximum degree
of G3 is bounded by 4d, that the independence number
of G3 is at least that of G2, and that, with constant
probability the independence number of G3 is at most
2−Ω(d) larger than that of G2. In particular, if G0 was
(β, Γρ(β)/2)-dense, then with constant probability it
holds that G3 does not contain any independent set of
size 2β, whereas if G0 had an independent set of weight
p − β, then so does G3.

V. CHOICE OF PARAMETERS

In this section, we show how to choose the parameters
appropriately, so as to achieve Theorems I.1 and I.2.

A. Vertex Cover

We will use Theorem IV.1 with parameters chosen
as follows. Let p = 1/2 − δ, where δ is chosen so
that (2δ)−1 = log d

log log d − c for a sufficiently large
constant c (e.g. c = 10 suffices) and β = 1/ log d. The



inapproximability we get for Vertex Cover is then

1 − 2β

1 − (p − β)
=

2 − 4β

1 + 2δ + 2β

≤ 2 − 4δ + O(β + δ2)

= 2 − (2 + od(1))
log log d

log d
,

in graphs with maximum degree 32β log(1/β)/Γρ(β).
It remains to see that this maximum degree is at most
d. Using Lemma II.13 to approximate Γρ(β), we have
that

Γρ(β) ≥ 1
2
β2/(1+ρ)(1 + ρ)3/2

= 4β
1
2δ +1(δ/(1 + 2δ))3/2

≥ β
1
2δ +1δ3/2,

The maximum degree is then bounded by

32 log(1/β)
β1/(2δ)δ3/2

= d · (log d)−c · poly log d,

which is at most d if c is a sufficiently large constant.

B. Independent Set

For Independent Set, we use Theorem IV.1 with the
following choices of parameters: p = Θ(1/ log d) and
β = Θ(log d/d). We then get a hardness of approxi-
mating Independent set within

p − β

2β
= Θ

(
d

log2 d

)
,

in graphs of maximum degree 32β log(1/β)/Γρ(β).
Again using Lemma II.13 to estimate this quantity, we
have

Γρ(β) ≥ 1
2
β2/(1+ρ)(1 + ρ)3/2

= β2+Θ(1/ log(d)) · Θ(1)
= Θ(β2).

Hence, the maximum degree is at most

32β log(1/β)
Γρ(β)

≤ Θ
(

log(1/β)
β

)
.

Making sure that β is a sufficiently large multiple of
log(d)/d, we see that the maximum degree becomes
bounded by d.
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APPENDIX

In this section, we use A(x)
x→y∼ B(x) to denote that

the ratio between A(x) and B(x) tends to 1 as x tends
to y.

Proof of Lemma II.13: Using the standard bound
Φ(x) x→−∞∼ −φ(x)/x, Lemma A.1 below implies that

Γρ(µ)
µ→0∼

(1 + ρ) · φ(t) · φ
(
t
√

1−ρ
1+ρ

)
(−t)2

√
1−ρ
1+ρ

=

√
(1 + ρ)3

1 − ρ

(
φ(t)
−t

) 2
1+ρ (

−
√

2πt
)− 2ρ

1+ρ

≥
√

(1 + ρ)3

1 − ρ
µ2/(1+ρ)

≥ 1√
2
µ2/(1+ρ)(1 + ρ)3/2

where the first inequality used the bound −φ(t)/t >
Φ(t) = µ and simply discarded the last factor as it is
larger than 1, and the second inequality used that 1

1−ρ ≥
1/2. It follows that for sufficiently small µ, Γρ(µ) ≥
1
2µ2/(1+ρ)(1 + ρ)3/2.

We will use the following Lemma to prove
Lemma II.13, which is well-known in the case of fixed
ρ ∈ (−1, 1), but as we mentioned earlier, we are not
aware of any reference for the case when ρ is not
bounded away from −1, and hence we also give a
(straightforward but slightly tedious) proof.

Lemma A.1. For any −1 < ρ := ρ(µ) ≤ 0, it holds
that

Γρ(µ)
µ→0∼ (1 + ρ)

φ(t)
−t

Φ
(

t

√
1 − ρ

1 + ρ

)
,

wheret := t(µ) = Φ−1(µ).

Proof: We can write

Γρ(µ) =
∫ t

x=−∞
φ(x)Φ

(
t − ρx√
1 − ρ2

)
dx.

Since t−ρx√
1−ρ2 tends to −∞ as µ tends to 0, we have

Γρ(µ)
µ→0∼

∫ t

x=−∞
φ(x)

φ

(
t−ρx√
1−ρ2

)
(ρx − t)/

√
1 − ρ2

dx.

But φ(x)φ
(

t−ρx√
1−ρ2

)
= φ(t)φ

(
x−ρt√
1−ρ2

)
and hence

Γρ(µ)
µ→0∼ φ(t)

√
1 − ρ2

∫ t

x=−∞

φ

(
x−ρt√
1−ρ2

)
ρx − t

dx (2)

Let us denote the integral in (2) by f(µ). Performing
the change of variables y = x−ρt√

1−ρ2 , we can simplify

and obtain

f(µ) =
∫ t

q
1−ρ
1+ρ

y=−∞

φ(y)
ρy − t

√
1 − ρ2

dy

=
∫ t′

y=−∞

φ(y)
ρy − t′(1 + ρ)

dy,

where we defined t′ = t
√

1−ρ
1+ρ . We will show that

f(µ)
µ→0∼ Φ(t′)

−t′ . It is easy to see that this is an upper
bound on f(µ) (by using the simple lower bound on
the denumerator of the integrand given by y = t′), so
let us focus on the lower bound.

Pick ε > 0. We then have

f(µ) ≥
∫ y=t′

y=t′(1+ε)

φ(y)
ρy − (1 + ρ)t′

dy

≥ Φ(t′) − Φ(t′(1 + ε))
−t′(1 − ρε)

Using the fact that for α > 1 and sufficiently small x,
Φ(αx) ≤ Φ(x)α, we see that

f(µ) ≥ 1 − Φ(t′)ε

1 − ρε
· Φ(t′)
−t′

.

As ε > 0 was arbitrary it follows that f(µ)
µ→0∼

−Φ(t′)/t′ (using that since t′ ≤ t, t′ → −∞ as µ → 0).
Plugging this into (2), we obtain

Γρ(µ)
µ→0∼ φ(t)

√
1 − ρ2

Φ(t′

−t′

= (1 + ρ)
φ(t)
−t

Φ
(

t

√
1 − ρ

1 + ρ

)
,

which concludes the proof.


