
Hardness of Max 3SAT with No Mixed Clauses

Venkatesan Guruswami∗

Dept. of Computer Science and Engineering
University of Washington

Seattle, WA
venkat@cs.washington.edu

Subhash Khot
College of Computing

Georgia Institute of Technology
Atlanta, GA

khot@cc.gatech.edu

Abstract

We study the complexity of approximating Max NM-
E3SAT, a variant of Max 3SAT when the instances are
guaranteed to not have any mixed clauses, i.e., every clause
has either all its literals unnegated or all of them negated.
This is a natural special case of Max 3SAT introduced in
[7], where the question of whether this variant can be ap-
proximated within a factor better than 7/8 was also posed.
We prove that it is NP-hard to approximate Max NM-
E3SAT within a factor of 7/8 + ε for arbitrary ε > 0, and
thus this variant is no easier to approximate than general
Max 3SAT. The proof uses the technique of multilayered
PCPs, introduced in [3], to avoid the technical requirement
of folding of the proof tables. Circumventing this require-
ment means that the PCP verifier can use the bits it accesses
without additional negations, and this leads to a hardness
for Max 3SAT without any mixed clauses.

1 Introduction
We study the approximability of a natural variant of the

satisfiability problem where all clauses are restricted to have
either all literals unnegated or all of them negated. We re-
fer to the version of Max SAT where all clauses have at
most k literals and none of the clauses have both negated
and unnegated literals as Max NM-kSAT (here NM-SAT
stands for non-mixed satisfiability). The version where all
the clauses have exactly k literals will be referred to as Max
NM-EkSAT.

This problem appears to be a fairly natural variant of
Max SAT, but was studied only recently in [7], where the
question of resolving its approximability was posed. Our
main result in this paper is a tight inapproximability result
for Max NM-E3SAT: we show that it is NP-hard to approx-
imate within any factor better than 7/8, and the hardness
holds even when the input instance is satisfiable.1

∗Supported in part by NSF Career Award CCF-0343672.
1Throughout this paper we deal only with maximization problems and

Such a tight inapproximability result for Max NM-
EkSAT for k ≥ 4 was already known, as we now explain.
Define Max Ek-Set Splitting to be the following prob-
lem: given a k-uniform hypergraph, 2-coloring it so that
a maximum number of hyperedges are not monochromatic.
Consider the following reduction from Max Ek-Set Split-
ting to Max NM-EkSAT: replace a constraint requiring that
x1, x2, . . . , xk be split by the two clauses (x1∨x2∨· · ·∨xk)
and (x̄1 ∨ x̄2 ∨ · · · ∨ x̄k). For k ≥ 4 and arbitrary ε > 0,
together with the tight factor (1 − 2−k+1 + ε) hardness re-
sult for approximating Max Ek-Set Splitting [8, 7], this
yields a factor 1−2−k+ε inapproximability bound for Max
NM-EkSAT. This bound is tight since a random assignment
satisfies a fraction (1 − 2−k) of the clauses in expectation.
For k = 3, a tight hardness result for Max E3-Set Split-
ting is not known, and in fact Max E3-Set Splitting can be
approximated better than the factor 3/4 achieved by simply
picking a random 2-coloring. Therefore, one cannot obtain
a tight result for Max NM-E3SAT in this way.

A factor (7/8 + ε) inapproximability result for Max
3SAT was shown in the celebrated work of Håstad [8], but
this bound does not apply for Max NM-E3SAT. However,
by modifying the underlying PCP for Max 3SAT from [8]
and using a further simple reduction, it was shown in [7]
that Max NM-3SAT and Max NM-E3SAT are hard to ap-
proximate within factors better than 11/12 and 15/16 re-
spectively.

There is a basic reason why the PCP techniques of [8]
cannot produce a non-mixed instance of 3SAT. The proof
in the PCP for 3SAT is divided into two disjoint parts say
A and B, corresponding to answers of the two provers in
an “outer” 2-prover 1-round proof system. Each 3SAT con-
straint checked by the verifier queries one variable from part
A, and two from the other part B. Therefore, if none of the
3SAT clauses checked by the verifier has both negated and
unnegated literals, an assignment which sets all variables in

by an α factor approximation we mean a solution whose value is at least
α times that of an optimum solution. Consequently, all factors of approxi-
mation we discuss will be less than 1.

part A to False and all variables in part B to True will sat-
isfy all the 3SAT constraints. This “bipartite” structure of
the queries prevents one from getting a tight hardness result
for Max NM-E3SAT in this way.

We get over this predicament using multilayered PCPs,
which were first introduced in [3] for proving hardness
results for hypergraph vertex cover. Here the PCP veri-
fier expects proofs which are split not into two parts but
rather L parts (or layers) for rather large L. There are con-
straints between every pair of layers which resemble the
constraints for the two layered PCP. This gets around the
above-mentioned bipartiteness problem — for example, for
assignments which are constant on layers, there must be
at least half the layers which get assigned the same value
and then a good fraction (in fact 1/2) of the constraints just
amongst those variables will be violated. In the limit of
large L, we are able to prove that the resulting PCP has
soundness as close to 7/8 as we desire, giving a tight hard-
ness result for approximating Max NM-E3SAT. Another
way to view the role of multilayered PCPs in our construc-
tion is that it enables working with proof tables (purported
long codes) that are not folded. Folding is a technical re-
quirement in certain PCP constructions, and it corresponds
to negations of variables in the corresponding constraint
satisfaction problem for which inapproximability is being
shown. Further discussion of folding appears in Section 2.3.

The technique of multilayered PCPs has also been used
for showing hardness results for coloring 3-uniform hyper-
graphs [4, 9]. These results also need a “weak expansion
property” of the underlying constraint graph which is not
important for our application here. In this respect, our result
is similar to the tight factor (1−1/k2) inapproximability re-
sult in [9], when k ≥ 3, for the Max k-colorable 3-uniform
hypergraph problem. In this paper, we demonstrate the util-
ity of multilayered PCPs in a particularly simple setting: the
complexity of Boolean Satisfiability. Thus, our result might
serve as a good introduction to multilayered PCPs and per-
haps spur its use for studying other constraint satisfaction
problems like Max E3-Set Splitting whose exact approx-
imability remains unknown.

We also use the smooth projections idea from [9] to
present a simpler soundness analysis than in [8]. Our PCP
has perfect completeness, which implies that it is NP-hard
to satisfy more than fraction 7/8 of clauses in a satisfi-
able Max NM-E3SAT instance. If we do not insist on per-
fect completeness, then a simpler proof that does not need
smooth projections (but still relies on multilayered PCPs)
can be given.2

We conclude the introduction with the following com-
ment. In general, it seems to be an intriguing question

2This is similar to the simpler proof in Håstad’s paper [8] for Max
3SAT without perfect completeness.

when a certain inapproximability result also holds for the
version of the constraint satisfaction problem with the re-
striction that the constraints are non-mixed (i.e., do not have
both negated and unnegated literals). For example, the non-
mixed version of Max NAE-3SAT is precisely the problem
Max E3-Set Splitting, and the best known inapproximabil-
ity factor for the latter is 19/20 + ε which is weaker than
the factor 15/16 + ε known for Max NAE-3SAT [7]. A
similar situation holds for Max E2-LIN2 (maximizing the
number of satisfied linear equations in two variables mod
2), whose (only interesting) non-mixed variant is the Max
CUT problem. Max E2-LIN2 is known to be hard to ap-
proximate within 11/12 + ε while the bound for Max CUT
is 16/17 + ε [8, 12]. On the algorithmic side, however, the
existing approximation algorithms do not take advantage of
any restrictions on negations (like non-mixed constraints),
at least for Boolean constraint satisfaction problems. This is
the case since they are typically semidefinite programming
(SDP) based, and negations “come for free” in SDP relax-
ations (if vector vi represents a variable xi, then −vi repre-
sents its negation xi). For instance, in the above-mentioned
examples, the best known approximation factor achievable
in polynomial time for Max E2-LIN2 and Max CUT is the
same (achieved by the Goemans-Willamson algorithm [6]),
and this is the case for Max NAE-3SAT and Max E3-Set
Splitting as well [13, 14]. The recent work [10] on hardness
results for Max CUT and other two variable constraint sat-
isfaction problems based on the Unique Games conjecture,
indicates that the restriction on negations does not help in
terms of the approximability factor for these problems. Our
work can then be viewed as one instance of this general phe-
nomenon where we are in fact able to use some recent ad-
vances in PCPs to unconditionally establish that non-mixed
constraints do not help.

2 Background on PCPs

In this section, we introduce the basic components used
to construct PCPs. These include the PCP Theorem, 2-
Prover-1-Round protocols, the Parallel Repetition Theorem,
Long Codes and Fourier analysis. We also present a con-
struction of so-called ”multi-layered smooth Outer PCP”
from [9] that builds on work in [3].

2.1 The Basic PCP Outer Verifier

The celebrated PCP theorem [2, 1] is equivalent to say-
ing that for some absolute constant ρ < 1, it is NP-hard to
distinguish between instances of Max 3SAT that are satis-
fiable and those where at most a fraction ρ of the clauses
can be satisfied by any assignment. With a suitable trans-
formation, one can show that the hardness holds for 3SAT
formulae with a regular structure, i.e. every clause contains

exactly 3 variables and every variable appears in exactly 5
clauses (see [5]). We call such formulae to be instances of
3-SAT-5. Thus we have the theorem :

Theorem 2.1 For some absolute constant c < 1 , it is NP-
hard to distinguish whether a 3-SAT-5 instance is satisfiable
(called the YES instance) or there is no assignment satisfy-
ing a fraction c of the clauses (called the NO instance).

Using the above, we can get powerful constant prover
1-round proof systems (also called outer verifiers) as fol-
lows. Let u be a parameter, thought of as a large con-
stant. The verifier picks a set of u clauses at random, say
W = {Ci | i = 1, 2, . . . , u}, and asks the first prover to
give a satisfying assignment to these clauses. For every i,
the verifier picks a variable xi at random from the clause Ci.
Let U = {xi|i = 1, 2, . . . , u} be the set of these variables.
The verifier asks the second prover to give an assignment
to the set U . The verifier accepts iff the answers of the two
provers agree on the set of variables U . If we denote π U,W

to be the projection that maps an assignment to W to its
sub-assignment to U , the verifier accepts iff the answer of
the first prover is σ and the answer of the second prover is
π U,W (σ).

Clearly, if the 3-SAT-5 formula is satisfiable, the provers
have a strategy to make the verifier accept with probability 1
(completeness property). The Parallel Repetition Theorem
of Raz [11] gives the soundness property:

Theorem 2.2 There is an absolute constant c0 < 1 for
which the following holds. If the 3-SAT-5 instance is a NO
instance, then the provers in the above 2-prover 1-round
protocol have no strategy that makes the verifier accept with
probability more than cu

0 .

2.2 The Multilayered Smooth PCP

The PCP verifier we use is constructed by extending the
above 2-prover system. The construction is identical to the
one in [9, Sec. 3] and we present it here for the sake of
completeness. It uses two ideas: the multilayered PCP due
to [3] and the use of smooth projections which behave like
bijections on average (these are used as the tests between
pairs of provers).

Let L and T be integer parameters (think of them as large
constants). In what follows, we will have (L + 1) layers,
with the i’th layer corresponding to choices of (L − i)u
variables and (T + i)u clauses, with edges between lay-
ers imposing consistency checks between the common vari-
ables. (The additional Tu clauses in each block are the ones
which will ensure that the projections imposing consistency
are smooth, i.e., almost bijections on average.)

Definition 2.3 For 0 ≤ i ≤ L, a type-i block is defined
to be the union of a set of (L − i)u variables and a set of

(T + i)u clauses. The family of all type-i blocks is denoted
by Vi.

Remarks : (a) A block is union of a set of variables and
a set of clauses. The fact that the components are sets and
not tuples is important. By definition, there is no order as-
sociated with elements of a set. (b) The parameter L above
refers to the number of layers. The parameter T is much
bigger than L, u, and will enable ensuring that the projec-
tions are bijections on average, as formalized in Lemma 2.8.

Definition 2.4 For 0 ≤ i < j ≤ L, we say that a block
U ∈ Vi is a sub-block of a block W ∈ Vj if one can obtain
block U by replacing (j− i)u clauses {Cl | l = 1, 2, .., (j−
i)u} in W by (j − i)u variables {xl | l = 1, 2, ..., (j − i)u}
such that the variable xl is contained in the clause Cl for
1 ≤ l ≤ (j − i)u.

For W ∈ Vj , a random sub-block of W of type-i is ob-
tained by choosing (j − i)u clauses at random from the
(T + j)u clauses in W and replacing each clause by one of
the variables appearing in that clause picked at random.

A block U ∈ Vi contains (L−i)u variables and (T +i)u
clauses, and thus a total of (L− i)u + 3(T + i)u variables.
A satisfying assignment to the block U is an assignment to
these (L−i)u+3(T +i)u variables such that the assignment
satisfies all the clauses in U . Let MU denote the set of all
satisfying assignments to the block U .

If U is a sub-block of W , then every satisfying assign-
ment to W can be restricted to a satisfying assignment to U .
Let the map πU,W : MW 7→ MU denote this operation of
taking a sub-assignment/restriction.

Definition 2.5 We construct a multi-layered graph G =
G(L, T, u) as follows :

1. The graph has (L + 1) layers numbered 0 through L
and Vi is the set of vertices in the ith layer. Thus the
vertices in the ith layer are the blocks of type-i.

2. There are no edges between the vertices of the same
layer.

3. For 0 ≤ i < j ≤ L, the edges between layers i and
j are defined as follows : For a pair of blocks U ∈ Vi

and W ∈ Vj such that U is a sub-block of W , let
(U,W) be an edge of the graph.

Since the 3-SAT-5 instance is regular, the bipartite graph
between every pair of layers is regular.

Definition 2.6 An assignment Φ to the graph G(L, T, u)
assigns a satisfying assignment Φ(U) ∈ MU to every block
U . If U is a sub-block of W , then we say that Φ satisfies an

edge (U,W) of the graph if Φ(U) is a restriction of Φ(W).
In other words

Φ satisfies the edge (U,W) if πU,W (Φ(W)) = Φ(U)

Let OPT (G, i, j) denote the maximum fraction of the edges
satisfied between layers i, j by any assignment Φ to these
layers.

The lemma below formalizes the “near-bijection” prop-
erty of the above projection maps. For completeness, we
reproduce its short proof from [9].

Lemma 2.7 ([9]) Let 0 ≤ i < j ≤ L and W be a block
of type-j. Let σ, σ′ ∈ MW be two distinct satisfying as-
signments to W . If U is a random sub-block of W of type-i,
then

Pr U

[
πU,W (σ) = πU,W (σ′)

]
≤ L

T
.

Proof: σ, σ′ differ in at least one bit. The projection πU,W

preserves the variables in W , but replaces some clauses by
variables. If σ, σ′ differ on a variable in W , their projections
under πU,W are still distinct. Otherwise they differ on some
clause, say clause C0. For a choice of a random sub-block
U , one replaces at random (j − i)u clauses out of the (T +
j)u clauses in W . With probability 1 − j−i

T+j ≥ 1 − L
T , the

clause C0 is not replaced and hence projections of σ, σ′ are
distinct.

We will state a simple corollary to the above which will
be the form we will use this property in our analysis.

Lemma 2.8 Let 0 ≤ i < j ≤ L and W be a block of type-
j. Let β ⊆ MW be non-empty and let σ ∈ β. If U is a
random sub-block of W of type-i, then with probability at
least 1 − |β|L

T (over the choice of U), we have

∀ σ′ ∈ β, σ′ 6= σ, πU,W (σ) 6= πU,W (σ′) . (1)

Furthermore, if πU,W (β) ⊆ MU is the projected set, then

EU

[1

|πU,W (β)|
]
≤ 1

|β| +
L

T
. (2)

Proof: Equation (1) clearly follows immediately from
Lemma 2.7. It remains to show (2). Using the shorthand
π = πU,W , we have

EU

[1

|π(β)|
]

≤ EU

[
Prx,y∈β [π(x) = π(y)]

]

= EU

[1

|β| + Pr x,y∈β,

x6=y

[π(x) = π(y)]
]

=
1

|β| + E x,y∈β,

x6=y

[
Pr U [π(x) = π(y)]

]

≤ 1

|β| +
L

T

where in the last step we used Lemma 2.7.

Theorem 2.2 can be used to prove the following result,
which will be the outer verifier that will be used in our con-
struction.

Theorem 2.9 For any choice of parameters L, T, u, the
multilayered graph G(L, T, u) has the following properties:

• (Completeness:) If the 3-SAT-5 instance is a YES in-
stance, there exists an assignment Φ that satisfies every
edge in the graph G.

• (Soundness:) If the 3-SAT-5 instance is a NO instance,
OPT (G, i, j) ≤ 2−Ω(u) for every pair of layers i < j.

• The smoothness property given by Lemma 2.8 is satis-
fied.

The size of the graph G(L, T, u) and time to construct it are
bounded by nO((L+T)u) where n is the size of the 3-SAT-5
instance.

2.3 Long Codes and Fourier Analysis

The Long Code over a domain M is indexed by all
Boolean functions f : M 7→ {1,−1} where we use 1 to rep-
resent False and −1 to represent True. Let F := {f | f :
M 7→ {1,−1}}. The long code A of an element a ∈ M is
defined as

A(f) = f(a) ∀ f ∈ F
Consider the space of all real-valued “tables” A : F 7→ R

that are indexed by functions in F . In particular, a long
code is one such table. Consider the characters χα where
α ⊆ M . There is one such character for every α ⊆ M , and
it is defined as :

χα(f) :=
∏

x∈α

f(x)

The characters {χα}α⊆M form an orthonormal basis of the
space of real-valued functions on F under the following
definition of inner product of tables. For tables A1, A2, de-
fine

〈A1, A2〉 :=
1

2|M |

∑

f∈F

A1(f)A2(f) = Ef

[
A1(f)A2(f)

]

It follows that any table can be expanded as

A =
∑

α

Âαχα (3)

where the Âα are the Fourier coefficients with
∑

α |Âα|2 =
〈A,A〉 . When A : F 7→ {1,−1}, we have Parseval’s iden-
tity

∑
α Â2

α = 1, which in turn implies that all Fourier co-
efficients are in the range [−1, 1]. The Fourier coefficients
of a table are given by

Âα = 〈A,χα〉 = Ef

[
A(f)χα(f)

]
.

In particular when α = ∅, the value of the coefficient Â∅ is
just Ef [A(f)].

Folding of proof tables. A table A is said to be folded if
A(f) = −A(−f) for every f ∈ F . If A is folded, then
Âα = 0 whenever |α| is even, and in particular Â∅ = 0.
If A is a legal codeword of the long code, then clearly A is
folded. Therefore, one often assumes that the proof tables in
a PCP are folded (this holds for several PCPs in [8], includ-
ing the one for Max 3SAT). A PCP based on folded tables
leads to a hardness result (for the associated constraint sat-
isfaction problem) with negations that cannot be controlled
easily. Hence, for our result for Max NM-E3SAT, we can-
not assume that the tables are folded, and in fact removing
the requirement of folding can be viewed as the main tech-
nical aspect of our work.

3 Hardness of Max NM-E3SAT

In this section, we prove our main result stated below.

Theorem 3.1 For every constant γ > 0, it is NP-hard
to distinguish between satisfiable instances of Max NM-
E3SAT and instances where at most a fraction (7/8+γ) of
the clauses can be satisfied.

To prove the above, we will construct a PCP verifier for
3-SAT-5 that, based on its random coin tosses, reads ex-
actly 3 bits from the proof and its acceptance predicate is
always of the form (a ∨ b ∨ c) or (ā ∨ b̄ ∨ c̄) where a, b, c
are the 3 bits queried. If the 3-SAT-5 instance is satisfiable,
there exists a proof that the verifier accepts with probabil-
ity 1. If the 3-SAT-5 instance is not satisfiable, the veri-
fier does not accept any proof with probability greater than
7/8+γ. By creating a Max NM-E3SAT instance consisting
of all those clauses checked by the verifier over all its coin
tosses, weighted by the probability that each such clause is
checked, immediately yields Theorem 3.1. (This will yield
a weighted instance of Max NM-E3SAT but we can get the
same hardness bound for the unweighted variant using stan-
dard gadgets.) So, in the rest of the section we will describe
and analyze the PCP verifier with the stated behavior.

3.1 The PCP verifier

Given a 3-SAT-5 instance φ, let G(L, T, u) be the multi-
layered graph constructed from φ, as in Definition 2.5. The
parameters L, T, u are large constants (depending on γ) that
will be fixed later. We expect the proof to contain, for every
block U of the multilayered graph G(L, T, u), the long code
AU of a supposed satisfying assignment to U . Accordingly,
the table AU will be indexed by all functions in FU , the set
of Boolean functions on MU . We will use the following

notation for operations on Boolean functions h1, h2 on the
same domain. The product h1 ·h2 of two functions over the
same domain is defined pointwise, namely (h1 · h2)(y) =
h1(y)h2(y). Note that the product is simply the XOR of
the two functions. The AND of two functions h1 and h2,
denoted h1 ∧ h2, is defined pointwise as (h1 ∧ h2)(y) =
(1 + h1(y) + h2(y)− h1(y)h2(y))/2 — this represents the
Boolean AND operation as we are using the ±1 notation to
denote truth values.

Given access to a collection of tables as described above
as proof, our verifier V NM−SAT(ε) operates as follows (it
uses a parameter ε > 0 depending on γ; it will be chosen
later):

1. Pick a random block WL of type-L.
For i = L,L − 1, . . . , 1, let Wi−1 be a random sub-
block of type-(i − 1) of the (already chosen) type-i
block Wi.

2. Let MWi
be the set of satisfying assignments to the

block Wi.
Let Ai = AWi

be the supposed long code of a satisfy-
ing assignment to the block Wi.
Recall that these long codes are indexed by Boolean
functions mapping MWi

to {1,−1}.
For 0 ≤ i < j ≤ L, let πi,j = πWi,Wj : MWj

7→
MWi

be the projection function between Wi and Wj .

3. Pick i, j where 0 ≤ i < j ≤ L at random.

4. Pick uniformly at random functions f : MWi
→

{1,−1} and g : MWj
→ {1,−1}.

5. Pick a function h : MWj
→ {1,−1} by defining for

every y ∈ MWj

h(y) =

{
−1 with probability 1 − ε
1 with probability ε

6. Perform one of the following two tests, picked at ran-
dom with probability 1/2 each:

(i) Let g1 denote the function
(
−g · (f ◦ πi,j ∧ h)

)
.

Check whether Ai(f) ∨ Aj(g) ∨ Aj(g1) is true,
and accept if so.

(ii) Let g2 denote the function
(
−g·((−f◦πi,j)∧h)

)
.

Check whether Ai(f) ∨ Aj(g) ∨ Aj(g2) is true,
and accept if so.

Note that a verifier like the one above cannot have good
soundness when there are only two layers (i.e., the case L =
1). This is because a proof that sets all the A0-tables to
1’s and all the A1 tables to −1’s will satisfy every 3SAT
constraint that is tested. This shows that the multilayering
that we employ is critical for our result stated below.

Theorem 3.2 The above PCP verifier V NM−SAT(ε) has
perfect completeness for all ε ∈ [0, 1]. Moreover, for every
γ > 0, there is a choice of ε > 0 and parameters L, T, u
for which the V NM−SAT(ε) has soundness at most 7

8 + γ.

The rest of this section is devoted to proving the above the-
orem. We first argue completeness, followed by the sound-
ness analysis in Section 3.3.

3.2 Completeness

When the 3-SAT-5 instance φ is satisfiable, consider the
proof where for each block W , AW is the correct long code
of a ∈ MW obtained by restricting a fixed satisfying as-
signment s of φ. Then for the tests involving AWi

= Ai and
AWj

= Aj , Ai will be the long code of some a ∈ MWi

and Aj will be the long code of some b ∈ MWj
with

πi,j(b) = a. In such a case, we have

Ai(f) = f(a), Aj(g) = g(b),

Aj(g1) = −g(b)(f(a) ∧ h(b)), and

Aj(g2) = −g(b)(−f(a) ∧ h(b)) .

Consider the disjunction Ai(f) ∨ Aj(g) ∨ Aj(g1). If
Ai(f) = −1, this clearly evaluates to true. If Ai(f) = 1,
then f(a) = 1 and so Aj(g1) = −g(b)(1 ∧ h(b)) =
−g(b) = −Aj(g), and hence one of Aj(g1) and Aj(g)
must be true, and once again the disjunction being veri-
fied is true. Similarly it can be checked that the disjunction
(Ai(f)∨Aj(g)∨Aj(g2)) is also true. Therefore this proof
is accepted by the verifier with probability 1.

3.3 Soundness

Let ~W = 〈WL,WL−1, . . . ,W0〉 denote the blocks cho-
sen by the verifier in the first step. Arithmetizing the ac-
ceptance behavior of the verifier, we see that the probability
that the verifier rejects is given exactly by the expectation

E ~W,i,j,f,g,h

[
(1 + Ai(f))(1 + Aj(g))(1 + Aj(g1))

16

+
(1 − Ai(f))(1 − Aj(g))(1 − Aj(g2))

16

]

where Ai denotes the table AWi
, and Aj the table AWj

.
We can simplify the above expression by collecting together
terms which are based on identical distributions – for exam-
ple, the distribution of (f, g) is identical to that of (f, g1)
as well as (f, g2); the distribution of (g, g1) is identical to
that of (g, g2), etc. This yields that the rejection probability
above equals

1

8
+

1

4
E

[
Ai(f)Aj(g)

]
+

1

8
E

[
Aj(g)Aj(g1)

]
+ (4)

+
1

16

(
E

[
Ai(f)Aj(g)Aj(g1) − Ai(f)Aj(g)Aj(g2)

])
,

where the expectations are over ~W, i, j, f, g, h and this is
hidden for notational convenience. We wish to show that
when the 3-SAT-5 instance is not satisfiable, the above is at
least 1/8 − γ.

Now we analyze and bound each of the above terms in
turn. We bound the first term using the multi-layered struc-
ture. This term corresponds to a cheating strategy where
all bits in a layer are set to the same value (1 or −1). The
multi-layered structure ensures that such cheating strategies
do not succeed.

We bound the third term using the standard approach.
This term can be used to extract an assignment to the mul-
tilayered graph. If the graph is chosen to have sufficiently
small soundness, then this term is negligible in magnitude.
The smoothness property of the multilayered construction
makes the analysis of both second and third terms easier
than corresponding analysis of Håstad [8].

3.3.1 The first term

We begin with the expectation E[Ai(f)Aj(g)]. Fix a choice
of ~W and we will bound the expectation taken over only
i, j, f, g.

Lemma 3.3 For each choice of ~W =
〈WL,WL−1, . . . ,W0〉, the following holds:

Ei,j,f,g

[
Ai(f)Aj(g)

]
≥ − 1

L
. (5)

Proof: For 0 ≤ l ≤ L, let us define al = Eh[Al(h)]
where the expectation is taken over a random function
h : MWl

→ {1,−1}. Note that −1 ≤ al ≤ 1 for ev-
ery l. For each choice of i, j, 0 ≤ i < j ≤ L, we have
E[Ai(f)Aj(g)] = Ef [Ai(f)]Eg[Aj(g)] = aiaj . There-
fore

Ei,j,f,g

[
Ai(f)Aj(g)

]
=

1(
L+1

2

)
∑

0≤i<j≤L

aiaj . (6)

Since each ai is in the range [−1, 1],

2
∑

i<j

aiaj =
(∑

i

ai

)2 −
∑

i

a2
i ≥ −

∑

i

a2
i ≥ −(L + 1) .

(7)
Combining (6) and (7) gives the inequality (5).

Therefore the expectation E
[
Ai(f)Aj(g)

]
in (4) is at

least −1/L.

3.3.2 The second term

We now analyze the second expectation E
[
Aj(g)Aj(g1)

]
.

Fix a choice of i, j (0 ≤ i < j ≤ L) and a type-j block Wj .
We will prove that for each such choice, the expectation
over Wi, f, g, h is small where Wi is a random sub-block

of Wj of type-i. For notational convenience, let W = Wj ,
U = Wi, B = Aj , and π = πU,W . We now proceed with
analyzing EU,f,g,h

[
B(g)B(g1)

]
. This can be expanded as

in [8, Equation 36] as

EU

[∑

β⊆MW

B̂2
β

∏

x∈π(β)

(
1

2
((−1)sx + (1 − 2ε)sx))

]

where for x ∈ π(β), sx denotes the number of elements of
β that project to x. We thus have

EU,f,g,h

[
B(g)B(g1)

]
= B̂2

∅ + (8)

EU

[∑
β⊆MW

β 6=∅

B̂2
β

∏
x∈π(β)(

1
2 ((−1)sx + (1 − 2ε)sx))

]
.

We will bound the absolute value of the second term in the
right hand side of (8) above by O(ε). Fix T = L log(1/ε)

ε3 for
the rest of the argument.

Fix a non-empty β and consider the expression

EU

[∣∣∣
∏

x∈π(β)

(
1

2
((−1)sx + (1 − 2ε)sx))

∣∣∣
]

(9)

We will argue that this is small for every β by considering

the cases of small |β| and large |β| separately. Let S
def
=

log(1/ε)
ε2 .

Case (i) : |β| ≤ S. Using Lemma 2.8, except with prob-
ability |β|L

T ≤ ε over the choice of the sub-block U , there
exists x ∈ π(β) with sx = 1. Whenever this happens, the
expression (9) is bounded by | 12 (−1 + (1 − 2ε))| = ε.

Case (ii) : |β| ≥ S. Using Lemma 2.8,

EU

[1

|π(β)|
]
≤ 1

|β| +
L

T
≤ 2ε2

log(1/ε)
.

Hence, with probability except 2ε, we have |π(β)| ≥
log(1/ε)

ε . Note that the term corresponding to every x ∈
π(β) in expression (9) is at most (1−ε) in magnitude and so
the expression is at most (1 − ε)|π(β)| in magnitude. When
|π(β)| ≥ log(1/ε)

ε , the expression is bounded by ε.
By (8), this proves that

∣∣∣E[B(g)B(g1)] − B̂2
∅

∣∣∣ ≤ O(ε) .

It follows that E[B(g)B(g1)] ≥ −O(ε).

3.3.3 The third term

It remains to analyze the expectation
E

[
Ai(f)Aj(g)Aj(g1) − Ai(f)Aj(g)Aj(g2)

]
. By the

definition of g1, g2, it is easily seen that

E
[
Ai(f)Aj(g)Aj(g2)

]
= E

[
Ai(−f)Aj(g)Aj(g1)

]
.

(10)

Fix a choice of i < j, and let us take expectations over
blocks W = Wj and a random type-i sub-block U = Wi.
For ease of notation, again denote π = πU,W , A = Ai and
B = Aj . Rewriting the expectations using Fourier expan-
sions exactly as in [8], we get

EU,W,f,g,h[Ai(f)Aj(g)Aj(g1)]

= EU,W

[∑

β⊆MW
α⊆π(β)

ÂαB̂2
βp(α, β)

]

EU,W,f,g,h[Ai(−f)Aj(g)Aj(g1)]

= EU,W

[∑

β⊆MW
α⊆π(β)

(−1)|α|ÂαB̂2
βp(α, β)

]
,

where

p(α, β) =
∏

x∈α

(
1

2
((−1)sx − (1 − 2ε)sx)) ·

·
∏

x∈π(β)\α

(
1

2
((−1)sx + (1 − 2ε)sx)) .

Together with (10), this gives

∣∣∣ EU,W,f,g,h

[
A(f)B(g)B(g1) − A(f)B(g)B(g2)

] ∣∣∣

=

∣∣∣∣EU,W

[∑

β⊆MW
α⊆π(β)

(
1 − (−1)|α|

)
ÂαB̂2

βp(α, β)

]∣∣∣∣

≤ 2EU,W

[∑

β,α⊆π(β)
|α| odd

|Âα| B̂2
β |p(α, β)|

]
(11)

As shown by Håstad [8], for any β,

∑

α⊆π(β)

p(α, β)2 ≤ (1 − ε)|π(β)| . (12)

We will use the above to show that the contribution to (11)

from terms with large |β|, specifically when |β| ≥ S
def
=

log(1/ε)
ε2 , is small. In fact, this will be the case even when

terms with even |α| are allowed. Indeed, as in Case (ii)
above, for such β, we have |π(β)| ≥ log(1/ε)

ε except with

probability 2ε. For terms with |β| ≥ S, we have

EU,W

 ∑

α⊆π(β),|β|≥S

|Âα| B̂2
β |p(α, β)|

≤ EU,W

√√√√
∑

|β|≥S

α⊆π(β)

Â2
αB̂2

β

√ ∑

|β|≥S

B̂2
β

∑

α⊆π(β)

p(α, β)2

≤ EU,W

√ ∑

|β|≥S

B̂2
β(1 − ε)|π(β)|

≤

√√√√√EU,W

 ∑

|β|≥S

B̂2
β(1 − ε)|π(β)|

 ,

where in the first step we used Cauchy-Schwartz, and in the
second step we used Parseval’s identity to bound the first
product term, and (12) to bound the second product term.
Now, except with probability 2ε, we have |π(β)| ≥ log(1/ε)

ε .
Hence we get a bound of O(

√
ε).

Now consider the terms with |β| ≤ S.

EU,W

∑

α⊆π(β),|β|≤S

|α| odd

|Âα| B̂2
β |p(α, β)|

 (13)

≤ EU,W

√√√√
∑

α⊆π(β),|β|≤S

|α| odd

Â2
αB̂2

β

√√√√
∑

|β|≤S,

α⊆π(β)

B̂2
βp(α, β)2

≤ EU,W

√√√√S ·
∑

α⊆π(β)
|α| odd

Â2
αB̂2

β

1

|β|

≤
√

S ·

√√√√√√EU,W

∑

α⊆π(β)
|α| odd

Â2
αB̂2

β

1

|β|

 (14)

To bound the last expectation (for each fixed i < j), we use
the fact that the 3-SAT-5 instance φ is not satisfiable, and
hence OPT (G, i, j) ≤ 2−Ω(u). Consider the following as-
signment to the type-i and type-j blocks. If U (resp. W) is
a type-i (resp. type-j) block with proof table A = AU (resp.
B = AW), assign Φ(U) ∈ MU to U (resp. Φ(W) ∈ MW

to W) as follows: Pick α ⊆ MU (resp. β ⊆ MW) with
probability Â2

α (resp. B̂2
β), and set Φ(U) (resp. Φ(W)) to be

a random element in α (resp. β) if these sets are non-empty,
and to an arbitrary element otherwise. Note that whenever
α ⊆ πU,W (β) and α 6= ∅, once α, β are picked, there is at
least a 1/|β| chance that πU,W (Φ(W)) = Φ(U). It follows

that this randomized procedure satisfies, in expectation, at
least a fraction

EU,W

[∑

α⊆π(β), α6=∅

Â2
αB̂2

β

1

|β|
]

of the edges between the i’th and j’th layers. By the sound-
ness condition of Theorem 2.9 and the upper bound (14),
it follows that the contribution to (11) from terms with

|β| ≤ S is at most
√

log(1/ε)

ε 2−Ω(u) which can be assumed
to be at most ε by picking u large enough.

Thus, the third expectation in (4) is at most O(
√

ε) in
absolute value.

3.3.4 Summing up

Using the analysis of the individual terms of (4) from Sec-
tions 3.3.1, 3.3.2 and 3.3.3, we conclude that the verifier
rejects a NO instance with probability at least

1

8
− 1

4L
− O(ε) − O(

√
ε) .

Pick L ≥ 1/ε. Pick ε > 0 small enough so that the verifier
has soundness at most 7/8 + γ, for any desired γ > 0. This
completes the proof of Theorem 3.2.

Acknowledgments

We thank the anonymous referees for their very useful
comments on the paper.

References

[1] S. Arora, C. Lund, R. Motwani, M. Sudan, and
M. Szegedy. Proof verification and the hardness
of approximation problems. Journal of the ACM,
45(3):501–555, 1998.

[2] S. Arora and S. Safra. Probabilistic checking of
proofs: A new characterization of NP. Journal of the
ACM, 45(1):70–122, 1998.

[3] I. Dinur, V. Guruswami, S. Khot, and O. Regev. A new
multilayered PCP and the hardness of hypergraph ver-
tex cover. In Proceedings of 35th Annual ACM Sympo-
sium on Theory of Computing, pages 595-601, 2003.
To appear in SIAM Journal on Computing.

[4] I. Dinur, O. Regev, and C. Smyth. The Hardness of
3-uniform Hypergraph Coloring. In Proceedings of
the 43rd Symposium on Foundations of Computer Sci-
ence, pages 33-42, 2002.

[5] U. Feige. A threshold of ln n for approximating set
cover. Journal of the ACM, 45(4), 634–652, July 1998.

[6] M. Goemans and D. Williamson. Improved Approxi-
mation Algorithms for Maximum Cut and Satisfiabil-
ity Problems Using Semidefinite Programming. Jour-
nal of the ACM, 42(6): 1115-1145, 1995.

[7] V. Guruswami. Inapproximability results for set split-
ting and satisfiability problems with no mixed clauses.
Algorithmica, 38: 451–469, 2004.

[8] J. Håstad. Some optimal inapproximability results.
Journal of the ACM, 48(4):798-859, 2001.

[9] S. Khot. Hardness results for coloring 3-colorable 3-
uniform hypergraphs. In Proceedings of the 43rd Sym-
posium on Foundations of Computer Science, pages
23-32.

[10] S. Khot, G. Kindler, E. Mossel, and R. O’Donnell.
Optimal inapproximability results for Max Cut and
other 2-variable CSPs. In Proceedings of the 45th
IEEE Symposium on Foundations of Computer Sci-
ence, 2004.

[11] R. Raz. A parallel repetition theorem. SIAM J. of
Computing, 27(3):763–803, 1998.

[12] L. Trevisan, G. Sorkin, M. Sudan, and D. Williamson.
Gadgets, Approximation, and Linear Programming.
SIAM J. Comput., 29(6): 2074-2097 (2000).

[13] U. Zwick. Approximation algorithms for constraint
satisfaction problems involving at most three variables
per constraint. In Proc. of 9th SODA, pages 201-210,
1998.

[14] U. Zwick. Outward Rotations: A Tool for Rounding
Solutions of Semidefinite Programming Relaxations,
with Applications to MAX CUT and Other Problems.
In Proceedings of the 31st Annual ACM Symposium
on Theory of Computing, pages 679-687, 1999.

