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Abstract

We study the problem of finding the minimum size DNF formula for a funcfio{0, 1} — {0, 1}
given its truth table. We show that unless NPDTIME(nP°Y (™)) there is no polynomial time
algorithm that approximates this problem to within factdr® wheres > 0 is an arbitrarily small
constant. Our result essentially matches the knoWah) approximation for the problem.

We also study weak learnability of small size DNF formulas. We show that assumingg R for
arbitrarily small constart > 0 and any fixed positive integer a two term DNF cannot be PAC-learnt
in polynomial time by & term DNF to within% + ¢ accuracy. Under the same complexity assumption,
we show that for arbitrarily small constanise > 0 and any fixed positive integer an AND function
(i.e. a single term DNF) cannot be PAC-learnt in polynomial time under adverganiaise by a&-CNF
to within § + ¢ accuracy.

1 Introduction

Any given functionf : {0,1}? — {0, 1} can be written in an equivalent disjunctive normal form (DNF),

i.e. an OR of somé&erms where aermis an AND of literals. Thesizeof the DNF formula is the number of

terms it contains. Given a truth table of a functipn {0, 1} — {0, 1}, the problem of finding an equivalent

DNF formula of minimum size is a well studied problem in computer science. We denote the problem by
TT-MINDNF. It was first studied by Quine [Qui52, Qui56] in the context of mathematical logic and later by
McCluskey[McC56] in relation to circuit design and both discovered a heuristic to solve the problem. Since
then, a large number of heuristics and software tools have been developed; we refer the interested reader to
[CS01] for a survey.

TT-MINDNF is a special case of the SET-COVER problem. The greedy set cover algorithm gives
anO(log N) = O(d) approximation and runs in time polynomial i where N = 2¢ is the size of the
truth table. One the hardness side, the problem was proved to be NP-complete by Masek [Mas79]. Czort
[Cz099] showed that unlessPNP, TT-MINDNF cannot be approximated efficiently to within any additive
constant. Recently, Feldman [Fel06a] showed that TIRHIWNF cannot be approximated to within factor
in polynomial time for some constamt> 0 unless P= NP. Allender, Hellerstein, McCabe, Pitassi and Saks
[AHM *06] independently obtained the same inapproximability result under a stronger assumption that NP
Z DTIME(nPey(een)), The constany in both results is unspecified; it depends on the parameters of Raz’s
parallel repetition theorem [Raz98] and is presumably very small. In this paper, we show an essentially
optimal hardness result that there is no polynomial time algorithm to approximate INDNIF to within
factord!—¢ assuming NRZ DTIME(nP°v(°gn)) ‘wheres > 0 is an arbitrarily small constant.

Learning DNFs is a central problem in learning theory. Valiant [Val84] defined a widely studied model

of learning, namely the Probably Approximately Correct (PAC) model. He showed that for every constant
k > 1, k term DNF can be PAC learnt in polynomial time byca&CNF, i.e. a CNF with at most literals



in each clause. For unrestricted DNFs (that is when the number of terms could be polynomially large
in the number of variables), the best learning algorithm runs in tin2@('/*logn) que to Klivans and
Servedio [KS04]. For learning under uniform distribution, Jackson [Jac97] showed that unrestricted DNFs
can be learnt with membership queries, i.e. the algorithm can query for the value of the function at a point.
Alekhnovich, Braverman, Feldman, Klivans and Pitassi [ABB] gave am©(vV"1og) time algorithm to
properly learn unrestricted DNFs, i.e. when the hypothesis is also a DNF.

On the hardness side, Pitt and Valiant [PV88] showed that unless RP, there is no efficient algorithm
to PAC learns-term DNF by ans-term DNF wheres is unrestricted, i.e2 < s < n¢, for any constant > 0.
In particular, Alekhnoviclet al. [ABF*08] showed that unless NP RP, there is no efficient algorithm to
learn a2 term DNF by ak term DNF for any constarit. Nock, Jappy and Sallantin [NJS98] showed that
unless NPC ZPP, given constants< o < 1 + ﬁ andg > 0, there is no efficient algorithm to PAC-learn
n¢ term DNF withn®+? term DNF. This was improved by Alekhnovieh al. [ABF+08] who showed that
unless NP= RP, for any given constant > 0, n° term DNF cannot be efficiently learnt byn&° term DNF.
Their result rules out polynomial time proper PAC learning of DNFs, unless=N®P. This was further
strengthened by Feldman [Fel06a] to the case when the algorithm even has access to membership queries.
We note that all these intractability results rule out (under appropriate complexity assumptions) a learning
algorithm that learns within errq}%, but do not rule out a learning algorithm that learns within constant
error (say within1%). In other words, for the underlying optimization problem of finding a DNF formula
consistent with the maximum number of given set of labeled examples, these are NP-hardness results and
do not give APX-hardness. Another reason to study stronger inapproximability is that given an algorithm to
PAC-learn find a(% + e)-consistent hypothesis, using boosting techniques [Sch90] it can used to efficiently
find a(1 — ¢)-consistent hypothesis A hardness result for weak learning provides evidence against such
boosting based approaches.

In this paper, we show that unless NPRP, for any constard > 0 and any fixed integet, a 2-term
DNF formula cannot be weakly learnt in polynomial time by-germ DNF formula, i.e. within accuracy
% + e. We note that this hardness result is very much hypothesis dependent since fot everyk-term
DNF canbe efficiently PAC-learnt by:-CNF as mentioned earlier [Val84]. We then investigate whether
this algorithmic result holds under noise and resolve it negatively. We show that unlessR¥Pfor any
constantg, u > 0 and constant, an AND (i.e. a single term DNF) cannot be learnt to accurac%f ofc
by even a-CNF formula, under adversarigtnoise unless NB= RP. This result generalizes the results of
[Felo6b, FGKPO06] which showed hardness of weak-learning noisy AND function by an AND function. We
note that both the results are inapproximability results for the underlying optimization problem of finding a
formula ¢ term DNF ort-CNF) maximizing the number of agreements on a given set of labeled examples.
As inapproximability results, they are essentially optimal since a trivial formula that is either cohstant
constanb agrees with half of the samplés.

2 Overview of Our Reductions

In this section we formally state our main results and give an overview of the proof techniques involved.
The result for minimizing DNF formulas is a simple reduction from a new PCP that is constructed by a
straightforward composition of known PCPs. The other two results are direct reductions from label cover.

! After applying the boosting algorithm, the hypothesis class is now a majority over a set of hypotheses used in the weak learning
algorithm.

20ur inapproximability results hold under the assumptica RP, which translates to hardness of weak PAC-learning under the
assumption NE£ RP.



2.1 Minimizing DNF formulas

Let the size of a DNF formula be the number of terms in it. We prove the following theorem.

Theorem 1 For anye > 0, there is no polynomial time algorithm that, given the truth table of a boolean
functionf : {0,1}? — {0, 1}, overd variables, computes an equivalent DNF formula foof size within
d'~¢ of the minimum size equivalent DNF formula forunless NRC DTIME(nPoly (ogn)),

Since there is @ (d) approximation algorithm for this problem, our hardness of approximation factor is
essentially optimal. Our reduction actually proves hardness of approximation factbr<ofor a related
problem, PHC-COVER of covering a subsebf the hypercubg0, 1}¢ using minimum number of terms

from a given sef” of terms. Feldman [Fel06a] showed that this implies the same hardness of approximation
factor for the problem of minimizing the size of DNF formulas.

Overview of Reduction: The reduction proceeds by first constructing a specialized version of a constraint
satisfaction problem (or PCP) and then reducing it to PHC-COVER. However, for simplicity let us assume
that we begin with a bipartite label cover problem over the labe]igetvith n vertices in each bipartition.
Consider the vertices of thé layer. It is easy to see that we require at nmogtn variables so that every
vertex inU is mapped to a unique setting of these variables. Call these variabtes variablesor the U
layer. In the set of term% of the PHC-COVER instance, we would like to havenique terms for every
vertexu in U, corresponding to thi labels foru. For this purpose we creakdabel variables one for each
label. For each vertex and labeli, there is a term which i$ exactly on the unique setting, corresponding
to u, of the vertex variables and when the label variable for labglset to0. Therefore for theJ layer
there ardog n + k variables andvk terms,k for each vertex, where each term is okt n vertex variables
and one label variable. We similarly construct distinct variables and terms fof tager. In total we have
2(log n + k) variables an@nk terms.

Now, we construct the subset of points of the hypercube to be covered as follows. Pick anedge)
and two setsS;, S C [k] such thatS; x Sy does not contain any satisfying assignmenttoSet the
coordinates such that only the terms correspondingdndv are active. Set the coordinates corresponding
to the labels inS; (in the U layer) and those corresponding to labelsSin(in the V' layer) to bel. Do
this for all edges of the label cover, and all such subss8isandS; corresponding t@'.. It is easy to see
that for a given edge = (u, v), if all points corresponding to such seis, S, are covered then the set of
terms corresponding t@ and tov, must ‘contain’ a labeling ta andv, respectively, satisfying the edge
Moreover, unless the number of terms chosen to cover the points is large enough, our analysis gives a way
to pick a ‘good’ labeling to the vertices of the label cover. Therefore, in the YES case, the number of terms
required to cover all points is small, in the NO case it is necessarily large.

While this reduction works even with the standard bipartite label cover, it does not give the desired
hardness of approximation factor. In order to achieve that, we combine it with a multi layered constraint
system based on a variant of the query efficient PCP of Samorodnitsky and Trevisan[ST00]. The PCP we
construct is similar to the one constructed by Khot[Kho01] as it uses Hadamard encodings instead of Long
Codes. We need this crucially as using Long Codes would blow up the size of the PCP in relation to the
size of the label set. In order to use Hadamard encodings, we need to start with an instance with linear
constraints. As a result, we lose perfect completeness. However, our reduction tolerates the loss of perfect
completeness as long as the completeness parameter is suitably dlose toder to achieve this we start
the construction of the PCP using the Max-3LIN instance constructed by Khot and Ponnuswami[KP06],
which has completeness very closd twhich we desire. We also need to ensure a large sized label set. For
this purpose, the Hadamard encodings are over an appropriately large field exteriizjn Bie PCP thus
constructed is transformed into a multi layered constraint system via standard reductions.



We note that the previous hardness reductions of Feldman[Fel06a] and AlitralfAHM ~06] used
a construction of certaianion free families of setsimilar to thepartition systemsised in the reductions for
the SET-COVER problem [LY94, Fei98]. Our result does not need such constructions (which we find inter-
esting, since we in particular obtaieg' —° N hardness for SET-COVER without using partition systems).
In [Fel0O6a, AHM™06], the parameters involved in constructing union free families limits the hardness factor
achievable to/d in addition to the limitation ony (in thed” hardness) imposed by the parameters in Raz’s
parallel repetition theorem. Our reduction bypasses both these limitations.

2.2 Learning 2-term DNF by ¢-term DNF
We prove the following theorem.

Theorem 2 For anye > 0 and any given positive integer given a distributioriD over point-value pairs
(examplesjz, y), wherez € {0,1}" andy € {0, 1}, with the guarantee that there is2eerm DNF formula
that is consistent with all the examples®f unless NP= RP there is no polynomial time algorithm to
compute a DNF formula of up toterms that is consistent with the examples with probablﬁlitqy € under
the distributionD.

The result is essentially optimal since a trivial formula that is either the constarthe constani satisfies
the examples with probabilitgr. The distributionD in our instance is supported over polynomially {ih
many points of the hypercube, and therefore it can be given explicitly.

Overview of Reduction: Our reduction proves an equivalent result for learringjause CNF by-clause
CNF. We give a direct reduction from the bipartite label cover problem with vertexsatedV’, and label
sets[m| and k] respectively. The examples of the distributibnsimulate the junta and consistency tests.
We create one coordinate for every vertex and its potential label. So wertiaiet k|V'| coordinates. The
1 examples have the property that there is an ddge) such that all then coordinates corresponding o
andk coordinates corresponding tcare set tol and all other coordinates are setitoThe0 examples are
constructed by choosing a vertexc U and a setv C [m] and setting all the coordinatesoforresponding
to [m] \ « to bel. Moreover for every neighbar of u, all coordinates corresponding g, (o) are set to
1, wherer,, is the projection map for the edge, v). All the other coordinates are set@o

Suppose there is a labeliago the vertices that satisfies all edges. Now consider the clagsmnsist-
ing of the variables corresponding to verteand its labeb (u) for all u € U. Let clauseCy be similarly
defined forV/. Itis easy to see that the formula; A Cy satisfies all the examples. In the NO case we show
that if there & clause CNF that is consistent with the examples with probability at %&sﬁ, then one can
construct a labeling to the vertices of label cover which satisfies a significant fraction of edges. This leads
to a contradiction if we choose the soundness parameter of the label cover to be small enough.

2.3 Learning AND by ¢t-CNF under adversarial noise

We prove the following theorem.

Theorem 3 For any constants, ;. > 0 and any positive integer, given a distributiorD over point-value
pairs (examples)z, y), wherex € {0,1}" andy € {0, 1}, with the guarantee that there is an AND formula
that is consistent with the examples with probability (unfrat leastl — 1, unless NP= RP there is no
polynomial time algorithm to computetaCNF formula, i.e. a CNF formula with at mostiterals in each
clause, that is consistent with examples with probability(urideat Ieast% +e.

Again the result is essentially optimal since it is trivial to output a formula that is consistent with half
the examples. Moreover, without any noise an AND formula can be properly learnt in polynomial time. Our
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reduction proves an equivalent result for learning ORABNF, i.e. DNF formula with at most literals

in each term. The reduction is similar to the one described in section 2.2, and the distributias a
polynomial (inn) support and can be given explicitly. It starts with an instance of bipartite label cover. In

a similar manner the examples simulate the junta and consistency tests, with the property that in the YES
instance, the labeling gives a OR formula that is consistent with the examples with probability close to

In the NO case, any DNF formula with at maditerals in each term that is consistent with the examples

with probability at Ieas% + ¢ yields a labeling to the vertices of the label cover that satisfies a significant
fraction of edges, and choosing the soundness parameter of the label cover to be small enough, this leads to
a contradiction.

Organization of the paper. In the next section we formally define the problems considered, and the
tools we require for our reductions. We present the hardness result for minimizing DNF formulas in section
4. Itis a reduction from a multi-layered CSP to PHC-COVER. Due to space constraints, the results for
learning2 term DNF, learning AND under adversarial noise and the construction of the multi-layered CSP
are presented in appendices A, B and C respectively.

3 Preliminaries

Let f : {0,1}¢ — {0,1} be a boolean function. We say that a boolean funcii@mequivalentto f if it
agrees withf at every point of the hypercube. A DNF formula is a OR&imswhere atermis an AND of
literals. Similarly, a CNF formula is a AND of clauses, where each clause is an OR of literals. We define
the problem TT-MNDNF as follows.

Definition 1 The problemT T-MINDNF is the following: given the truth table of a boolean functipion
d variables, to find an equivalent DNF formutawith the minimum number of terms.

In our reduction we prove a hardness of approximation factdt of for anys > 0, for the partial hypercube
cover (PHC-COVER) problem which is defined as follows.

Definition 2 The problemPHC-COVER:Is the following: given a subse& C {0,1}¢, and a set of terms
7T, to find a minimum subset of terds C 7 that covers all the pointsis§.

Feldman [Fel0O6a] showed that a hardness of approximation facidr fifr PHC-COVER implies same
hardness factor for TT-MiIDNF, for any constany > 0. Therefore, our result implies hardness of approx-
imation factor ofd' —¢ for TT-MINDNF.

We also define the following problems related to learning boolean functions.

Definition 3 For any positive integet, the problem ofLEARN-t-TERM-DNF is the following: given a
distribution D on point-value pairs (example§), y), wherez € {0,1}" andy € {0, 1}, the goal is to find

a DNF formula with up ta terms that is consistent with the examples with maximum probability under the
distributionD.

Definition 4 For any positive integet, the problem of EARN-¢-CNFis the following: given a distribution

D on point-value pairs (examples$),y), wherex € {0,1}" andy € {0,1}, the goal is to find a CNF
formula with up tot literals in each clause that is consistent with the examples with maximum probability
under the distributiorD.

The starting point for our inapproximability results foERRN-t-TERM-DNF and LEARN-t-CNF is the
label cover problem, which is defined below.



Definition 5 An instancel of LABELCOVER(m, k) consists of a bipartite grapl(U, V, E) and a set of
projections{myy } (u,v)c ks Wherem,, : [k] — [m] for every edgdu,v) € E, whereu € U andv € V. A
labelingoy : U — [m] andoy : V — [k] satisfies the edge:, v), iff 7wy, (ov (v)) = oy (u). The goal is to
find a labeling that satisfies maximum number of edges of

The following theorem is a consequence of the PCP Theorem [AS98,8Yland Raz’s Parallel Repeti-
tion Theorem [Raz98].

Theorem 4 For any constand > 0, there exisin andk such that, given an instanaof LABEL COVER(m, k),
it is NP-hard to distinguish between the following two cases,

YES Case. There is a labeling to the vertice£ ¢iat satisfies all the edges.

NO case. Any labeling to the vertices®gatisfies at most fraction of the edges.

The following theorem is proved in Appendix A and implies Theorem 2.

Theorem 5 For anye > 0 and any positive integet > 0, given an instance of EARN-¢t-TERM-DNF
consisting of a distributio® on the set of examplés, y), wherex € {0,1}" andy € {0, 1}, itis NP-hard
to distinguish between the following cases,

YES Case. There is a two term DIREhat is consistent with all the examples of the distributian

NO Case. There is no DNF formula of up tot terms that is consistent with the exampleslofvith
probability 2 + .

The following theorem is proved in Appendix B and implies Theorem 3.

Theorem 6 Foranyu, e > 0 and any positive integer> 0, given an instance dfEARN-t-CNF consisting

of a distributionD on the set of examplgs, y), wherex € {0,1}" andy € {0,1}, it is NP-hard to
distinguish between the following cases,

YES Case. There is a AND formula that is consistent with all the examples of the distributigiin
probability at leastl — .

NO Case. There is no CNF formutawith up tot literals in each clause that is consistent with the examples
of D with probability 1 + <.

For the reduction to TT-MNDNF we require a more specialized constraint satisfaction problem which we
define below. Let be a parameter. We define the problefmAYERED-CSP as follows.

Definition 6 An instance of-LAYERED-CSPconsists of the following,

1. At-uniform hypergraptG(V, E') which has the following properties,

a. LetV be the vertex set of the hypergraph. Théncan be partitioned into set¥},...,V; such
that each edge of the hypergraph has exactly one vertex from¥éafchi « = 1,...,¢. Moreover
Vif =[Va| =--- = [V4].

b. Every vertex i/ has the same degree.
2. A set of label$k], and constraints for each hyperedge of the graph defined as follows,

a. Lete = (vy,v2,...,v;) be a hyperedge such thate V; forall i = 1,...,t. Then the constraint’,
is a non empty subset ff]’.

b. Leto : V — [k] be a labeling of the vertices iW. Then the hyperedge= (v, vs,...,v:), where
v; € Viforalli =1,...,t,is satisfied iff o (v1),...,0(v)) € Ce.
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The goal is to find a labeling : V — [k] to the vertices ol that satisfies the maximum number of
hyperedges irF.

The following theorem is proved in Appendix C.

Theorem 7 There is an absolute constafit> 0 such that, for a given arbitrarily large integer> 0, there
is a DTIME(nP°¥(°e7)) time reduction fronBSAT to an instance of-LAYERED-CSPwith |[V| = n and
k = 6(log® n) such that,

YES CASE: If th&8SAT formula is satisfiable then there is a st C V of vertices of size at most
n/(20e™*) and a labelings* : V' \ V/ — [k] such that,

1. (Strong Completeness) satisfies all hyperedges induced by, V".

2. (Extendability) For any hyperedgec E (possibly containing vertices froiiri’), there is an labeling
ol to vertices ire NV’ such thatv* extended by’ satisfies hyperedge

NO CASE: If theBSAT formula is not satisfiable then any labeliagto the vertices o/ satisfies at most
k—tTO() fraction of the hyperedges.

The following theorem is proved in Section 4 via a reduction frelnAYERED-CSP, and it implies
Theorem 1.

Theorem 8 For anye > 0, there exists a functioh : Z* — Z* such that given an instance BHC-
COVER consisting of a subset of {0, 1}¢ and a set of term§",unless NRC DTIME(nP°Y(1o2™)) there is
no polynomial time algorithm to distinguish between the following two cases,

YES Case. There is a subget C 7 of size at mosk(d) that covers all the points i§.

NO Case. There is no subset C 7 of size at most! ~¢h(d) that covers all the points iss.

4 Reduction from ¢t-LAYERED-CSPto PHC-COVER

In this section we show a reduction from the problethAYERED-CSP to PHC-COVER. With the-
LAYERED-CSP problem as defined in Def 6, we first construct the set of variables.

Vertex Variables: For every layelV; (1 < i < t), we have a seP’ = {z;;}1<;<p of D variables where
D = [log|V;|]. We refer to them asertex variabledor layeri. Clearly we have a one to one mapping
from every vertex; € V; to a setting of the variables iR’ for every layerl < i < t. Call this settings’(u).
Thus, we have a set of variables for every layer whose settings encode all the vertices of that layer.
Label variables: For every layerV; (1 < i < t), we have a se®’ = {y;;}1<j<x of k variables each
corresponding to a label. We refer to this seladmel variablesfor the layeri.

Let M = Ui_,(P'UQ") be the set of all the variables, and det= | M| = ¢(D + k). We now describe
the set of term§’.

Terms: Let V; (1 < i < t) be a layer of vertices and let € V;. Then there is a séf’(u) of k terms
corresponding ta as follows. Lett’(u) be the unique AND of the literals corresponding to the variables in
P' = {z;;}1<j<p such that’(u) is 1 only on the setting’(u) of the variables inP’ corresponding ta.
Let,

T'(u) :={t"(u) AN7s; | 1 <5<k}
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Therefore, for every layer(l < i < t) and everyu € V;, there is a set of termsTi(u). We define,

T=J | T'w.

i=1ucV;

In all there arenk terms. Next we define the set of poidisC {0, 1} for our instance of PHC-COVER.

Points: Lete = (v1,v9,...,v;) be a hyperedge in the gragh wherev; € V; for1 <i <, and letC, C
[k]® be its constraint. Lef = (I3, I»,. .., I;), be at tuple wherel; C [k] and letw(I) := I; X Iy x -+ x I.
We consider thosé € (2[¥)! such thatu(I) N C, = §. Note that this is trivially true if any of; is empty.
In other words, the set(/) does not ‘contain’ any satisfying assignment to the hyperedgetZ. be the
set of all sucht-tuples! corresponding to hyperedge Formally,

I.={I € 2™ | w(I)nC, =0}

For every such € Z., we create the following point.(I) € {0,1}* as follows. The coordinates corre-
sponding toP? are set tos(v;) forall 1 < i < t. Forl < i < t, the coordinate correspondinggg € Q'
is settol if j € I, and0 otherwise, for every < j < k. We define,

s:=J U e}

ecFE IcT,

Now consider any subs@t* C 7. Leti (1 < i < t) be alayer, and € V; be a vertex. Define,
Li(u) = {j | #(u) ATi; € T*Y,

forall 1 <i < tandu € V;. Thus,L%. (u) is precisely the set of labels afsuch that the corresponding
terms are present i *, whereu € V. Additionally, for every hyperedge= (v1,va,...,v;) € E, let,

Lr+(e) = L. (v1) x -+ x L (vy).
The following is a simple lemma.

Lemma9 Let 7* C 7. ThenT7* covers all the points irS if and only if for every hyperedge =
(v1,v9,...,v:) € E,wherev; € V; for1 <i <t, Ly=(e) N Ce # 0.

Proof: Let us fix a hyperedge = (v1,...,v;) Wherev; € V; forall 1 < i < t. Consider any poin. (/)
for I € Z.. First we show that. (1) can be covered by terms only from the sEt¢v;) for 1 <i < t. Letu
be any vertex such that# v; for 1 < i < ¢t. Assume that, € Vj» for somel < i’ < ¢. By the construction
of v.(I), the coordinates corresponding® are set tos* (vy/), and the AND formula® (u) is 0 on this
setting sincey;r # u.

Since, for any point.(I), the variables” are setta’(v;) forall 1 < i < ¢, all the AND formulast’(v;)
are set td. Therefore;.(7) is not covered by * if and only if, for all layersi (1 < ¢ < t), the coordinates
corresponding tdy;; | j € Li.(v;)} are setto 1. Equivalentlyy (1) D Li.(v)) x -+ x Lt (v) =
Lr+(e). By the definition ofZ., w(I) N C. = 0. Therefore, if there is aih € Z. such thaty.(I) is not
covered byZ *, thenLz+(e) N C. = 0. For the reverse direction, we note thaLif«(e) N C. = (), then we
cansetl = (LY. (v1),..., Lt (v:)), andv. (1) is not covered by *. This completes the proof. .



4.1 Analysis

To prove our hardness of approximation result for PHC-COVER we reduce fromltag ERED-CSP
instance obtained from the Theorem 7 to an instance of PHC-COVER via the reduction described above.
Next we present the analysis.

4.1.1 YES Case In the YES case we have a set of vertid¢sC V of size at mos’n/QUOg”)E, and a
labelingo™* to the verticed” \ V' satisfying the properties in Theorem 7. Now we construct a set of terms
T* C T as follows. For every layer, (1 < i < t), do the following. For every vertex € V;, if u € V’
then7™* contains the: terms in the seTi(u) corresponding ta. Otherwise, ifu ¢ V', then7* contains
only the term¢*(u) A Vio=(u), I-€. the term il (u) corresponding to the label afgiven byo*.

We show thatZ* covers all the points i5. Lete = (vy,...,v;) be a hyperedge, wherg € V; for
1 < ¢ < t. We have two cases.

Case l.cis induced byV \ V’. The labelings satisfiese. ThenL%-. (v;) = {o*(v;)}, for 1 < i < t and
Lr+«(e) = {(c*(v1),...,0%(v))}. And thereforeLz«(e) N C, # .

Case 2¢ contains vertices froy’. Then,Li-. (v;) = {o*(v;)} if v; € V\ V' andLir. (v;) = {1,2,...,k}
otherwise. Now, by the Extendability property in Theorem 7, there is a labelitgvertices ine N V' such
thato* extended by satisfies. Clearly, this implies there is a labeling to the vertiegs e from the sets
L. (v;) for 1 < i < ¢ that satisfies the hyperedgeTherefore L1« (e) N C. # 0.

Therefore, for every edge L7+(e) N C. # 0. And by Lemma 9 the set of terniB* covers all the
points inS. The number of terms i * is,

VAV +EV|

1 n
<n <1 - 72(10gn)§> +k <72(10gn)§> .

Since, we havé = 6(log® n), the above expression is at mastfor large enough.. Therefore, the number
of terms in7* is at most2n.

4.1.2 NO Case Suppose that there is a set of terfiisC 7 that covers all the points i§. By Lemma 9,
for every hyperedge, L7 (e) NC. # (). Now, consider the labeling’ constructed in a randomized manner
as follows. Letu be a vertex in, say; for somel < i < t. Selects’(u) to be a random label fromh’-, (u).
Suppose: = (v, ...,v;) is a hyperedge wherg € V; for 1 < i < ¢. SinceLs(e) contains a satisfying
assignment front’, we have the following,

Pr [eis satisfied by'| > ——————.
[Ticy 1L (v3)]
Therefore, the expected fraction of edges satisfied is at least,

E, [Fraction of edges satisfied by] > E._,, ., [m] @
i=11-7T7\"

The left hand side of the above expression is less than the soundiness—+OV of the NO case.
Therefore,

1
Ee:ku _— | <.
(1) [HLl wwmr]

9



Therefore, for at Ieas} fraction of the hyperedges= (vy, ..., v;) we have,

L.

[Lizi [Lo (vi)]

t ‘ 1
= H|Ll,(vi)\22—5
i=1

. )
Zizl | L ()] > 1

26

- > : (2)
t (20)7
Now, since each vertex i has the same degree,
t .
7' = > Lip(u)
i=1 ueV;
; :
o Ll/ (o
= nEe*(Ul ..... vt) [M] (3)

And combining equations (2) and (3), we have,

Tz n G) ((22)%)

Substituting the value af, we obtain that,

7| > nk

Sincet can be made to be an arbitrarily large constant, combining the above with the analysis of the YES
case, we get a gap &f—¢ for the optimum of the instance of PHC-COVER, for any constant0. Also,

the number of variableg is at mostt(log n + k) = O(k), sincek = 6(log®n). In terms ofd, we obtain a

gap ofd!~<. Clearly the reduction runs in tin@’(@), which is20*) = O(2!°¢’) . Therefore, along with

the inapproximability of-LAYERED-CSP given in Theorem 7, this proves Theorem 8.

5 Conclusion

An open problem is to improve upon thé—¢ hardness of approximation factor for any constant 0 to a
Q(d) factor hardness for TT-MiIDNF.

Another open question is to obtain results on hardness of weak learning DNFs even when membership
queries are available. It would be interesting to extend hardness of weak learning results for polynomial size
DNFs.
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A Hardness of Learning 2-clause CNF byt-clause CNF

In this section we prove Theorem 5. For convenience we prove an equivalent result for learning 2-clause
CNF byt-clause CNF.

We start with an instancé€ of LABELCOVER(m, k) consisting of a bipartite grap&'(U, V, E), set
of labels[m] (for vertices inU), [k] (for vertices inV'), the projectionsr,, : [k] — [m] for every edge
e = (u,v) € E, where vertices iV have degreéd;, and those ir” have degredy . All the parameters are
constants independent of the siZég = |[U| and Ny = V. Let N = Ny + Ny.

A.1 Construction

Variables. First we define the set of variables. Lebe any vertex inl”. We have the set of variables
S, = {x?}F_,. Similarly, letu be any vertex ir/, and letS,, = {y*}™,. Thus, we have one variable for
every vertex and every potential label for that vertex. Let,

S = (UUGUSu) U(UUGVSU)

be the set of all variables. Let the corresponding boolean hypercub@ bg® where the coordinates are
indexed by the variables if.

Distribution . We now describe how the oracle generates a sample point. This describes the distfbution

on the samples. Let € (0, 1) be a ‘perturbation’ parameter, which we will fix later. On being queried for
a sample, the oracle does the following,

12



1. Chooses a vertexe U at random from the vertices . Let N(u) C V be the neighborhood of.
2. With probability% does the following,

2a. Picksv € N(u) atrandom.
2b. Creates the following poiffi” € {0,1} as follows,

p 1 ifv=w
Vielkl, Z#(=Y)= )
J €l (@) {0 otherwise

and,
if ' =u

/ 1
Vielm], Z@yY)= ,
j€lml ;) {0 otherwise

2.c Output the sampleZiv, 1).
3. With probability% does the following,

3.a Chooses a setC [m] by picking every: € [m] independently with probability.
3.b Creates the following poiffy ¢ {0,1}° as follows,

0 ifv & N(u)
Vielk], Zi*@¥)=<{1 ifv € N(u)andrm,.(j) € a
0 ifv € N(u)andm,,(j) € «

and,
0 ifu #u
Vi € [m], nga(y;-‘l) =<0 ifv =wandje a
1 ifu=vandj ¢«

3.c Output the sampleZ§«, 0).

We note that the distribution has a polynomial |§) support, and therefore can be given explicitly.

Lett > 0 be a given integer and > 0 be a given parameter. We will show thatdfis a YES instance
of LABELCOVER(m, k), i.e if there is a labeling that satisfies all edges then thereislause CNF which
is consistent with all the samples. On the other hand, i§ a NO instance then there is h@lause CNF
that is consistent with the samples with probabiﬁtyL ¢ under the distributio® provided the soundnesgs
of the label cover instance is chosen to be suitably small.

A.2 YES Case

Let £ be a YES instance of ABELCOVER(m, k). Then there is a labelingto the vertices ofs that satisfies
all the edges. Consider the following two clauses,

Cv =\ 750
veV
and,
Cv =\ Vs
uelU

13



Leto = Cy A Cy. We will show thatp is consistent with all the data points.

Consider any data point of the for(@#*, 1) whereZ{" € {0,1}°. Recall thatZ{* was generated by
picking a vertexu € U then a vertex» € N(u). By the construction of}", cIearIyZ}“’(x;’(U)) = 1and
Z{“’(yg(u)) = 1. Therefore, the claus&s;, andCy;, both arel on the pointZ{*, and therefore is alsol
at the pointZj*. So the formulap is consistent with all the data points of the fof@;"”, 1).

Now consider any data poiZj“, 0). Recall thatZ* was constructed by first picking a vertexc U
and then a set C [m]. We consider two cases.

Case 1 Leto(u) € a. We observe that in this cas@ga(yg(u)) = 0, and further, for allu’ € U,
Zga(yg’(u,)) = 0. And soCy evaluates t® on Zj*, and therefore evaluates t® on Zj.

Case 2 Leto(u) ¢ o. ThenVv € N(u), myp(o(v)) = o(u) ¢ a by construction of the poingj®.
Therefore, for all € N(u), Zga(xj;(y)) = 0, and moreover for all’ € V \ N(u), Zga(xg/(v,)) = 0.

Therefore 'y evaluates t® on Z;* and therefore) evaluates t® on Zj.

Thereforey is consistent with all the data points of the fo(if;*, 0).

From the above analysis we conclude that 2hddause CNF formula is consistent with all the data
points ofD.

A.3 NO Case

For the sake of contradiction we assume that there dause CNF formula* which is consistent with the
data points with probability at Iea%tJr ¢ for some given constantst > 0. We will set the perturbation
parametef, = 153

Let the givent clause CNF formula beé* = C; A --- A C;. We will first show that not all the clauses
C1,...,C; can contain a negative literal.

From the construction of the data points it is easy to see that any given coordirfdtel bf is set to
1 with probability at most% = ¢(N) = o(1). Therefore, if all the clauses " had a negative
literal, then¢* would evaluate td with probability at least — t£(N) = 1 — o(1) over the distributiorD,
which is a contradiction to the assumption théatis consistent with the data points with probability at least
% + ¢ for constant > 0, since the) and1 data points are equally likely i®. This implies that there is a
non empty subsed of clauses ofy*, such that none of the clauses(hcontains a negative literal. W.l.0.g.
we may assume th& = {C4,...,C,}, wherel < t. Moreover, the formula = C; A --- A Cp, must be
consistent with the data points of the oracle with probability at Ié&sts —t¢(N) > % + ¢/2, for large
enough size of instance. For the remainder of the argument we shall only consider thedbNFkise it to
construct a ‘good’ labeling to the vertices of the label cover.

Before proceeding we first defirfedistinguished labels frorfi] U {0} : {¢V}¢_, for eachw € V. Let
q; be any arbitrary label € [k] such that the positive literal? is present in claus€’; of ¢, and0 if there is
no such variable ii;. We call this setting of distinguished labéls

Since¢ is consistent with the data points of the oracle with probability at Iéa{sti, by an averaging
argument we have that there is a 8&tC U such thaiU’| > £|U|, such that for every vertex € U’, ¢ is
consistent with probability at Iea§t+ 7 with the data points generated by the oracle on pickimgstep1.
Call such verticess € U’ as ‘good’.
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A.3.1 Analysis for a fixed ‘good’ vertexu € U’.  We now fix one such ‘good’ vertex. The rest of the
analysis is with respect to this ‘good’ vertex. L¥tu) be its neighborhood. After picking in stepl, the
oracle outputs & example and & example with equal probability. Therefore, again by averaging, it must
be the case that is consistent with thé examples (of:) with probability (over choice ob € N (u) in step

2a) at least; and consistent with theéexamples (of) with probability (over the choice of the setin step

3a) at least.

Suppose’; is a clause inp for somel < i < ¢, such thatC; contains a positive litergJ; for some
J € [m]. Then,C; will be 0 with probability at mosy: on the0 examples of.. Therefore, by union bound,
the probability that any of the clauses@ftcontaining a positive literal evaluates@amn the0 examples is
at mosttu, which is at mosg for our setting of the parametgr Therefore, there is a subformuig of ¢
containing the clausef’;}cr,,, whereL, C [¢], such that none of the clausesdf contains a variable
of the formy for j € [m], and moreoven,, is consistent with th® examples with probability at least
e’ = £ —tpu > g, and with thel examples also with probability at least The rest of the analysis will show
that there is an appropriate clauseipnwhich gives a good labeling for a significant fraction of the vertices
in N(u).

Sinceg, is consistent with thé examples of., with probabilitys’, there must be a sét/ (u) C N (u)
such that M (u)| > €'|N(u)| and for everyv € M (u), ¢, is 1 on the pointZ}* constructed on choosing
v in step 2a. Call such vertices ‘good neighborsuofSince we have shown that, does not contain any
negative literal or any positive litergl’ for any;j € [m] in any of its clauses, from the construction of the
point Z{*, this implies that every clausg; (i € L,,) contains a positive literal from the s{et;’}é?:l, for all
‘good neighborsw of u. So the setting; given byI’, of distinguished labels for the ‘good neighbots’
corresponding to the clausé$ of ¢,, is noto0.

We also have that with probabilitf over the sets chosen in step 3a,, is 0 on the pointsZy®. This
implies that there is a clausg;, of ¢,, for somei, € L,, such thatC;, is 0 on the pointsZj* with
probability at Ieas%'. We have,

5/

Pr[C;, isOonZj%]| > 7 (4)

Now, sinceC;, is a clause ofp,, it contains positive literals corresponding to all the ‘good neighbors’

u

v € M(u), and thereforg; < [k] for allv € M(u). Define the sef;, C [m] as,
Ty = {muw(gi,) | v € M(u)}.

In other words,T,, is the subset ofm] onto which the distinguished labels of the verticess M (u)
corresponding to the claugg,, project. From the construction of the poird§“, we have the following
observation.

Observation 10 If « N T,, # () thenC;, is 1 on the pointZ}©.
We will show that the above observation implies that thelgetannot be too large. We have,

PrlanT, =0] = (1—p)Tul
«
> Pr[C;, is0onZ{?]
o
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and combining the above with equation (4), we have,

m\

(1— Tl >

RSN

>

1
T, < S 1n (i) .
1 €

-1
For convenience let = (iln (i)> . Define,

all

Therefore,

E/

Ay = {1) S M(U) ’ Wuv(q;)u) = ]}

forall j € [m)]. Essentially,A} is the subset of the ‘good’ neighborsof v whose distinguished label
corresponding to the claugg, projects ontgj. We have the following simple lemma.

Lemma 11 Jj, € T, such thafA} | > v/|M (u)|.

Proof: Note thatM (u) = J;cp, A- And since|T,| < 1, the lemma follows. =

A.3.2 Labeling. We now define the labeling. The partial labeliag : V — [k] is constructed in a
randomized manner as follows. For every vertex V', choosei, randomly from{1,...,¢}. If ¢/ € [k]
then set(v) = ¢; . Essentially, for every vertex we label it by its distinguished label (given by the setting
") corresponding to a random clausefofif the label is noD).

We construct the partial labeling; : U — [m] as follows. For every ‘good’ vertex € U’, let
o(u) = j, asinlemma11.

Now we analyze how many edges are satisfied by the partial assigaient. Let (u, v) be a random
edge chosen by picking randomly fromU and then choosing randomly fromN (u). With probability
%, u is a good vertex. With probability at least, the vertexv is selected from&’%u, and with a further
probability at Ieas% > % the vertex is labeled with the labej? which projects ontg,, via the mapr,,.

Therefore, the edge is satisfied with probability at least

« _ (&N (1
p= (4) =Y (t)
€ € 1
(3 ()
which, by the definition of> and our choice of, is a constant depending only erand¢. Since a random
edge is satisfied with probabiligy*, the expected fraction of edges satisfieg)is This implies that there

must be a labeling that satisfies at legistraction of the edges. Now, the soundness the Label Cover
instance can be chosen arbitrarily small to obtain a contradiction.

Y
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B Hardness of Learning OR by¢-DNF under adversarial noise
In this section we prove Theorem 3. For convenience, we prove an equivalent result for learning OR by a
t-DNF under adversarial noise.

We start with an instancé of LABELCOVER(m, k) consisting of the a bipartite gragh(U, V, F), set
of labels[m] (for vertices inU), [k] (for vertices inV'), the projectionsr,, : [k] — [m] for every edge
e = (u,v) € E, where vertices itV have degred;;, and those i/ have degredy . All the parameters
are constants independent of the si2gs = |U| and Ny = |V|. Let N = Ny + Ny. Let the soundness
parameter b@.

B.1 Construction

Variables. First we define the set of variables. Letbe any vertex inl/. We have a sek variables,
Sy = {a¥ le for every vertexv € V, with one variable for every (potential) label for that vertex. Let,

S=1J5s

veV

be the set of all variables. Let the corresponding boolean hypercub@ bg® where the coordinates are
indexed by the variables if.

Distribution . We now describe how the oracle generates a sample point. This describes the distBbution
on the samples. Lat € (0,1) be a given parameter. Lét> 0 be a positive integer to be fixed later. On
being queried for a sample, the oracle does the following,

1. Chooses a vertex e U at random from the vertices iii. Let N (u) C V' be the neighborhood of.
2. With probability does the following,

2a. Picksy € N(u) atrandom.
2b. Creates the following poiffi‘[v] € {0, 1} as follows,

/ 1 ifv=w
Vijelk], Zt ) =
j € K] r[ol(@;) {0 otherwise

2c. Output(Zi‘[v], 1) as a data point.
3. With probability does the following,
3a. Picks & tuple (vy,...,v,) such that each; is chosen uniformly at random fromV (u) for
1< <4
3b. Picks a setv C [m] by picking every element din| independently at random with probability
.
3c. Creates the following poitf#f{'[c, (v1, ..., ve)] as follows,
Vielkl, Zja,(v1,...,v0)](z5

v
J

= 1 ifforanyi € [¢],v = v; andm,y (j) € o
10 otherwise

3d. Outputy Z{ e, (v1,...,ve)],0) as a data point.
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Note that the support dP is polynomial in the size of the label cover instance and héhoan be given
explicitly. Lett > 0 be a given positive integer ardy. > 0 be given parameters that may be arbitrarily
small constants. We will show that if the instance of label ca¥/és a YES instance, i.e there is a labeling
that satisfies all edges then there is a OR formula which is consistent with the samples with probability
On the other hand, if the instance is a NO instance then theretiON- formula that is consistent with the
samples with probabilit;é + ¢ under the distributiorD with the soundness and the degreed; anddy
suitably chosen.

B.2 YES Case

Suppose the instance of label cover is a YES instance. In this case, there is a lalielthg vertices of the
label cover that satisfies all the edges. Consider the following OR formula,

o=\ w5 )
veV
The formula¢ contains one positive literal for every vertexc V', corresponding to the label assigned to
v by o. Clearly, ¢ is consistent with any example(Z;'[v], 1) generated by the oracle. This is because in
Zy'[v], the coordinates corresponding to all the labels afe set tal, and therefore the literal;  is 1 on
Ziv).

Now suppose the oracle selects a vertex U and then generatedeexample(Z{ o, (v1, - . ., v/)],0).
In the pointZg|a, (v1, ..., v)] all the variable&g(v) are set ta) wherev # v; forall 1 < i < /. Now
supposer(u) ¢ a. Thenx?’(vi) is set to0 for all 1 < ¢ < £. Thereforegp evaluates td in this case. Now
the probability that (u) ¢ « is exactlyl — pu, by the construction of the set Therefore, with probability
at leastl — p, ¢ is consistent with thé examples of:.

The above analysis holds for any verteas the choice in step 1. Therefore, overalils consistent with
the data points of the verifier with probability at least .

B.3 NO Case

Suppose that the label cover instance is a NO instance, i.e. no labeling to the vertices of the label cover
satisfiesn fraction of the edges, wheng is the soundness parameter which will be chosen to be small
enough later. We assume that there islaNF formulag* that is consistent with the examples of the oracle

with probability at Ieas% + ¢, under the distributio®. We have that,

M
o =\ T (6)
j=1

for somel, and each terrfl; is the AND of at most literals. Suppose there is a tefft of ¢* such that

it is an AND of only negative literals. Now such a term will bevith probability at leastl — t‘dﬁ, which
would imply thate* is 1 with probability at least — ﬁdﬁ. Since the oracle outpusand1 examples equally
often, this is a contradiction to the assumption thatis consistent with the examples of the oracle with
probability at Ieas% + ¢ for large enoughV’|. Therefore, we may assume that every termohas at least

one positive literal. We now make this simple observation.

Observation 12 If a given termI} is neverl on any of thel examples of the oracle, then\ {T;}, is also
consistent with the examples of the oracle with probabgitqy €.
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This is because removing a term can hurt us only in the casexfmples, so we can remove all the terms
that are nevet on thel examples. This leads to the following simple lemma.

Lemma 13 Let ¢ be the OR of all the termis; of ¢* such that for eaclT}; there is a vertex € V/, such
that all the positive literals in the teri; are of the formz for somel < ¢ < k, andT}; does not contain
any negative literal of the formy, for any1 < ¢’ < k. Theng is also consistent with the examples of the
oracle with probability; + .

Proof: Suppose there is a teri) of ¢ such that it contains positive literals of the forfY andx;>, where

v1 # vg andl < iy, 149, < k. Since all thd data points of the oracle have the property that all the coordinates

that are set td correspond to the variablag 1 < i < k, for exactly one such vertex ¢ V, the termT};

will be 0 on all such points as it contains positive literals corresponding to two different vertices.
Moreover, if T; contains a positive literal of the form and a negative literal of the form{ , then

againT; will always be0 on thel examples since in thedata points, for any vertex € V, either all the

coordinates corresponding {@;" 4?:1 are set tal or all of them are set t0. Therefore, removing’; does

not hurt us in thel examples and clearky* \ {7} is as good ag* on the0 examples. Therefore, we can

remove all such terms and obtain th®NF formula¢ which is also consistent with the examples of the

oracle with probability at leas} + ¢. .

In the rest of the analysis we will use the formgldo construct a good labeling for the vertices of the
label cover.

Before proceeding, we will construct the following assignment of terms to vertices. For every vertex
v eV, letT? = T; be any arbitrary term o containing at least one positive literal of the forrfy If no
such term exists fov in ¢ let T = 0. Call this assignmenit. ClearlyI" is well defined since, every term
has at least one positive literal of the forfi for exactly onev € V. For every vertew € V, let us also
define the selV (v) := {i € [k] | = is a positive literal off™’}. As mentioned, all the positive literals of
T are necessarily of the fornt for 1 < i < k. Therefore, unles§" = 0 the seti?’(v) is non empty. Rest
of the analysis will be with respect to this assignmént

Since¢ is consistent with the data points of the oracle with probability at Iéasts, by an averaging
argument we have that there is a 88tC U such thaiU’| > 5|U|, such that for every vertex € U’, ¢ is
consistent with probability at Iea§t+ 5 with the data points generated by the oracle on picking step
1. Call such vertices, € U’ as ‘good’. We fix one such ‘good’ vertaxand do the analysis for thieand1
examples output by the oracle after choosinig the initial step.

B.3.1 Analysis for a fixed ‘good’ vertexu € U’. Let N(u) be the neighborhood af. After picking

u in step1, the oracle outputs & example and d example with equal probability. Therefore, again by
averaging, it must be the case theis consistent with thé examples (of:) with probability (over choice of

v € N(u) in step 2a) at leas}; and consistent with the examples (of) with probability (over the choice
of the setn, and thef tuple (vy, . . ., v¢) in step 3a and 3b) at least For convenience, let = 5.

Since ¢ is consistent with thé examples with probability at least, this implies thatp is 1 on the
points Z;'[v] for at least=’ fraction of the neighbors € N(u). Let the set of such verticasbe M (u),
where|M (u)| > /| N(u)|, and call suchy as ‘good neighbors’ of.. We have shown that does not have
any term with all negative literals, and every termpahust contain positive literals, all of them from exactly
one vertex ofl’. Since the only coordinates &ff'[v] that are set td correspond ta:} for 1 < i < k, it
must be that for every ‘good neighbar, there is a term of containing positive literals only of the forng
for somel < i < k. This implies that for such verticas TV # 0 andW (v) # 0 in our settingl".
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Consider art-tuplev = (v, ..., vs) chosen randomly by choosing everyuniformly at random from
N(u). Let Dy := {r € [{] | v, € M(u)}. Essentially,D; is the set of indices such that, is a ‘good’
vertex. We callv as ‘dense’ if D;| > %’E. Since each coordinate ofis chosen uniformly at random from
N(u) and|M (u)| > €'|N(u)|, we expectw to be ‘dense’ with high probability. Indeed, using Chernoff
bound, we have,

1?[17 is not densé < exp(—¢'¢/8)
Consider the ordered pajr;, r2) such thatl < r; # ro < ¢. Call such a pair intersecting for &rtuplev
if 771 contains a literal of the fornﬁfr2 for somel < ¢ < k. Now, the number of literals i1 is at most
t. And sincev,, is chosen independently at random frovitu), we have,

.. . t
Pr[(ry,72) is intersecting < —
v dU
for everyl < ry # ro < £. Call v intersection-free, if it contains no intersecting pair of coordinates. Since,

there are/? such pairs,
2

, . : 174
Pr[v is not intersection-frep < —.
v dy

Now ¢ is consistent with thé examples with probability at least. Again, by averaging, we have that for
%’ of the ¢-tuplesu, ¢ is 0 on the pointsZ{[«, v] generated after choosingin step 3a, with probability at
leasts; . We call such/-tuplesv as ‘good’. More formally we have,

m\

Pr[vis ‘good’| >

v

N

where, for a given ‘good/-tuple v,
El
Pr{¢is 0 on Zj§[a, v] > 3
(e

Using union bound, we have,

Pr[v is good, dense and intersection freev (7)
where, ,
! tl

v= % —exp(—€'l/8) — a (8)

We now fix a good, dense and intersection-fteeplev = (vy,...,v;). Consider any: € Dy, v, €

M (u) and soT"" # 0. Moreover, since is intersection free, the negative literalsii~ correspond to
vertices that are not contained in any coordinate.of herefore, the negative literals Tt~ are always set
to 1 on the pointsZ§[«, v] for anya C [m|. Therefore, the terrff™~ will be 1 if all the variables (positive
literals) in7™r are set tal, which happens ifr,,, (W (v;)) C «. This leads to the following key lemma.

Lemma 14 If ¢ > <5,27) In (2) , then there must exist, 2 € Dy, r1 # ry such thatry,, (W (vr,)) N
Ty (W (vry)) # 0.

Proof: Assume that there is no such pairandrs. Therefore, the eventsr,,,, (W (v,)) C «) are indepen-
dent events for € D;. From the discussion above, we have for ary Dy,
Pr[T*is1onZ{[a,v]] = Primw, (W (v,)) C af
(03 (64
— 'ulﬂ'uvr (W(v?“)”
>t ©)
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Therefore, we have,

[1Ds|
%r[qﬁisOonZS‘[mﬁ]] < Pr /\(TW isOonZg[a,v])]

r=1

«

[1Ds|
- P /\(W(vr)Za)]

r=1
and combining the independence of the evénts, (W (v,)) C a) with equation (9), we obtain,

Prl¢is 0 on Z¥[a, 7] < (1 — pt)/Pe!
Now, since the left hand side is at legstthe above implies,
1 2
2= () (5)
2 2

sincev is dense. This proves the lemma.

In our construction we choogelarge enough depending @ne andt, and then (independently dj,
choosely; large enough (by parallel repetition), to ensure the following.

‘> < ,{)m <3) (11)
) €

(12)

and

m\

vz

> |

Note that the above analysis holds for any valid assignmenitterms to vertices. We are now ready to
define a labeling to the vertices of the label cover.

B.3.2 Construction of labeling We will define a partial labeling;, oy to the vertices inJ and V'
respectively in the following randomized manner.

1. Letu € U be any given vertex. Choose a random vertekrom N (u). If W (v') = ( then do not
assign any label to. If not, select € W (v’) randomly, and lety (u) = 7y, (7).

2. Letv € V be any vertex. I#¥(v) is empty then do not assign any labebtmtherwise, letry (v) =i
wherei is randomly chosen frorfl/ (v).

We will now analyze how many edges this labeling satisfies in expectation. Consider a randofn,edge
of the label cover, selected by first choosingandomly fromU and then selecting randomly fromN ().
Now, u is labeled by choosing a vertekat random fromV (u) and labeling: by 7, (i) wherei is chosen
randomly fromW (v'), unlessiW (v') = ). Therefore, the probability that a random edgev) is satisfied
is same as the probability that,, (ov (v)) = mu.w (oy (v')) wherev andv’ are vertices selected uniformly
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at random fromV (u).

With probability 5, u is a ‘good’ vertex. Also, choosing two neighborswofuniformly at random is
same as choosing a randdrtuple v (for £ > 2) and then selecting two distinct coordinatesvofin this
process, with probability, a good, dense and intersection-fiéeriple v is picked. From our choice df
depending onu, ¢ andt, we have the bounds given by (11), and (12) and combining with Lemma 14, we
have that with probability;, the vertices) andv’ are such that,, (W (v)) N . (W (V")) # 0. And with
further ;5 probability the labels fov andv’ are consistent, i.ety, (oy (v)) = Ty (ov (v')).

Combining everything we have that the probability that a random édge is satisfied is,

2= (5 (#) (7)

Now, sincer > %/ > ¢ and/ is chosen to depend only gn e andt, the above probability depends only
on u, ¢ andt. Also, it implies that there is a labeling that satisfizdraction of edges of the label cover,
whereA depends only o, € andt. By choosing the soundness parameter of the NO instaimbe small
enough, we obtain a contradiction.

C Proof of Theorem 7

In this section we will construct an instancetef. AYERED-CSP we require for our reduction. First we

will construct an appropriate PCP and then we will transform the PCP to a Multi Prover System with
some desired properties. The Multi Prover System thus constructed can be thought of as an instance of
t-LAYERED-CSP in a natural way.

We begin with the construction of the PCP. Our construction is very similar to the query efficient PCP
constructed in [KhoO1]. We start with an instance oA¥3LIN and construct the Raz verifier using
parallel repetition. The proofs are then encoded using Hadamard Codes. In order to obtain a PCP with a
large alphabet, we take the encoding using Hadamard Codes over a large field. The analysis is similar to
[KhoO1] and relies heavily on the techniques developed in [ST98] and [STOO0] and a similar construction
over finite abelian groups in [Eng0Q].

We start with the instance of Mk-3LIN constructed in [KP06] with completeness- (2—9(\/@))

and soundness— € (log~* n). They prove the following theorem.

Theorem 15 Given a7-regular instanced of MAX-3LIN over[F[2] onn variables such that unlessP C
DTIME (20(s” N)) there is no polynomial time algorithm to distinguish between the following two cases,

YES CASE. There is an assignment to the variable$thiat satisfied — 2-2(vIog) fraction of the equa-
tions.

NO CASE. No assignment to the variablesiafatisfies more thah— (log~3 n) fraction of the equations.

Note that the equations of M-3LIN are overF[2]. However, we may consider them to be over
F[2"] wherer is some parameter and still the above theorem still holds. This is because the additive group
(F[2"],+) is isomorphic toF[2]", 4+). Therefore, we can substitute the equatignt+ x2 + 23 = b, where
x1, T2, x3,b € F[2] with the equation oveF[2"], 2} + zi, + 2% = b, whereb, is the element of [2]" with b
in each or the coordinates. Clearly, any assignment o#€}] can be extended to an assignment dvef”
by replicating it in every coordinate. Moreover, any assignmentBj&f that satisfies a particular equation
must satisfy it in every coordinate, and so we can pick any coordinate and the corresponding assignment
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overF[2] will also satisfy all equations satisfied earlier. And siGBE&"], +) = (F[2]", +), we can write the
entire system of equations over the figl@"|.

C.1 Raz Verifier

We construct the Raz Verifier starting with an instantef MAax-3LIN obtained from Theorem 15. For
convenience we let the completeness/obe 1 — ¢(n) and soundness be— s(n). The construction in
[STOOQ] started with a GP-3SAT instance, however we require constraints to be linear to be able to use
Hadamard Codes instead of Long Codes, similar to the construction in [KhoO1]. Note that our inétance
of MAX-3LIN is over the fieldF[2"] for somer > 0 to be fixed later, and has the same completeness and
soundness as in Theorem 15.

Letm > 0 be a parameter to be fixed later. The Raz Verifier is given an instdrafeM AX-3LIN. It
expects two proofsP and@. The proofP is supposed to contain, for every $éif m variables, a length
m vector P(U) overF[2"] giving the assignment to the variablestin Similarly, for every set? of m
equations@ (W) is supposed to be a lengtm vector giving the assignment to the: variables in the set
of equationgV’.

The verifier works by picking a set éf = (z;)", of m variables and then picking a set:efequations
W = (C;)i™, where each equatiofi; is selected randomly from the constantly many equations containing
the variabler;. The verifier reads?(U) andQ (W) from the proof and accepts i) (W) satisfies all the
equationgC;)™ , and the values of the variablés;)! , in P(U) andQ (W) are the same (call this projec-
tion test).

Completenessin the YES cased has an assignment that satisfles ¢(n) fraction of the equations. Let
both proofsP and@ be consistent with that assignment. Since, the instahieregular, with probability
atleast(1 — c(n))™ all the equation$V = (C;)!, chosen in the construction above will be satisfied by the
proof Q). Therefore, the completeness is at lgast c¢(n))™ > (1 — mc(n)).

Soundness.In the NO case any assignment to the variablesicfatisfies at most — s(n) fraction of
the equations. Using Raz’s Parallel Repetition Theorem [Raz98], and the fact that each equation contains
exactly3 variables, we have the following upper bound.

Theorem 16 There is a an absolute constant> 0 such that, the soundness of the Raz Verifier on the
instance oM AXx-3LIN (overF[27]) with soundnesél — s(n)) is at most(1 — s(n)x)(m/(s1)) 3

C.2 Fourier Analysis

We will be working over the field?[2"] for » > 0, which is a field extension df[2]. Let ¢ be the iso-
morphism from the additive grouf¥[2"], +) to (F[2]",+). Define the following homomorphism from
(F[27], +) to the multiplicative groug{—1,1},.).

1 if ¢(a) contains even number a6
¢(a) = .
—1 otherwise

3Since in our case the constraints are projections, using Rao’s [Rao08] proof of parallel repetition we can eliminate the depen-
dence over.
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for anya € F[2"]. We now define the ‘characterg;, : F[2"] — {—1, 1} for a € F[2"] as follows.

Ya(b) := ¢(ab)

The characterg,, satisfy the following properties.

and,

~IF) ifb=0
Z]M’)— {0

et otherwise
We note that the ‘character’ functions form an orthonormal basis for the dgd&&2"]). We have that,

1 fa=0b
0 otherwise

<¢aawb> = {

where,
(Va, tp) = EcE]F[QT] [Ya(c)ibp(c)] -
We now consider the vector spaB¢"]"™ for some positive integem. We define the ‘characters’
Xa @ F[2"]" — {—1,1} for everya € F[2"]™ as,
Xa(f) :==¢(a-f),  feF2]"

where *’ is the inner product in the vector spaE&"]™. From the way we defined the charactéts we
have,

Xa(f) = H'@Z}ai(fi)a
=1

whereq; and f; are thei*” coordinates ofx and f respectively. The charactegs, satisfy the following
properties,

xo(f) =1 Vf e F21"
Xa(0) =1 Vo € F[27"
on-i-ﬁ(f) = Xa(f)Xﬁ(f)
Xa(f +9) = Xa(f)Xal9)
and,
1 fa=0

0 otherwise

Eferprm [Xa(f)] = {
The characterg,, form an orthonormal basis fdi?(F[2"]™). We have,

1 ifa=p
0 otherwise

(Xa>X8) = {
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where,

(Xas X8) = Egerprym [Xa(f)xs(f)]-
Let A : F[2"]"™ — F[2"] be a function. We definﬁé%a to be the Fourier coefficient of the functian, o A
corresponding to the elemegy, of the basis, fory € F[2"]" andy € F[2"]. Formally,

Aya =ty 0 A, Xa) = Eferprpm [0y (A(f))Xa (f)]

and therefore,

¢'y 0 A= Z A\'y,aXa-

a€F[2r™

The following is a useful lemma.

Lemma 17 Let A : F[2"]™ — F[2"] be a function such thah € F[2"]™ and { € F[2"] such that
A(f + 6h) = A(f) + o¢, forall § € F[27]. Then, ifA, , # 0 for somea € F[2"]" and~y € F[2"], then
a-h=~C.

Proof: We have,

N

v = <¢'y oA Xa>
Ererperym (¥4 (A(f)) Xa(f)]
= Ejerprm [Uy(A(f 4 6R))xalf + 0h)]

for anyé € F[2"]. Therefore using the property df we have,

~

A’Y,Oé = EfE]F[T m ¢’y A( )+ 5<)Xa(f)Xa(5h)]

[1hy(
= Ejepprm (4 (A(f)) 1y (00)Xa (f)xa(0h)]
= y(6¢)xa(0h )Efem [ty (A(f))xa(f)]
= %(54) a(5h) v,

and sinced., , # 0, this implies,

P5(0C) = Xa(dh)
= 9(07¢) = ¢(a - (dh))
= o(6(v()o(d (a-h)):
= 0 +a-h))=

for all 0 € F[2"]. But sincep # 1, we must have that( + o - h = 0, i.e. ¢ = « - h. This completes the
proof. "

Hadamard Codes In the construction of the PCP, the prover expects the Hadamard encodings of the vectors
P(U) andQ(W) for the setd/ andW in the construction of the Raz Verifier.

Definition 7 For any positive integet, the Hadamard Code qf € F[2"]" is given by a functio{ ad,, :
F[27]" — F[2"] where,
Hadp(a) =p-a

for all a € F[2"]".
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Note that the string: = Q(W), z € F[2"]*™ that the Raz Verifier reads is supposed to satisfy certain linear
constraints oveF[2'] , given byh; - = = ¢;, whereh; € F[2"]*™ and(; € F[27] for 1 < i < m.

3Im

Let = : F[2']*™ — F[2"]™ be aprojectionthat maps vectors ifi[2"]*" to some fixedn coordinates.
Let 7~ (a) denote the unique vectare F[2']*™ such thatr(b) = a and is0 on all other coordinates other
than those that are projected hy

Folding. Let B, be the Hadamard Code of a vectoe IF[Q”]3m that satisfies the constraints- x = (; for
1 < i < m. Let H be the subspace ﬁ‘i[QT]?’m spanned by{h;} . Leth € H be such that = ", pih;,
wherep; € F[2"] for 1 <i < m. Then, we have that for any e F[QT]3’”,

By(a+h) = By(a) + Y piGi-
=1

So, we can enforce the folding over linear constraints in the following manner. Far arE{QT]?’m, let,

m
a =g + Z pihi
=1

whereu, is the lexicographically smallest vector in the coset H. The verifier expects a functioB’ :
F[2"]*™ — F[2"] defined only on the distinguished vectasfor the coset. + H, and then computes the
value of B(a) as follows,

B(a) = B'(va) + Y _ piCi-
=1
We say thatB is ‘folded’ over the linear constraints. Therefore, we can enforce the folding of the supposed

Hadamard encodings of the assignmept$l’), over the linear constraints given by the equationglin
The following crucial lemma follows from directly from Lemma 17.

Lemma 18 For any~ € F[27], if ]_@%5 =% (0 for someg € F[2T]3m, theng - h; =~ forall 1 <i <m.

Eventually our analysis will show that the supposed Hadamard Gotie Q(W) can be decoded to
obtain the vectorg with probability proportional tcBiﬂ. Since we have ensured the folding, Lemma 18

would imply thaty~! 3 is a valid assignment to the variablesiV) that satisfies all the linear constraints.

C.3 Construction of the PCP

We now construct the PCP verifier. The verifiéy, is given an instance of Mx-3LIN overF[2"] with the
completeness and soundness parameters as before. The verifier expectdijrapfiswhich are Hadamard
encodings of the proofsP, Q) given to the Raz Verifier. For seté andW of the Raz Verifier,P’(U) and
Q' (W) are supposed to be Hadamard code® @) andQ (W) respectively. The verifieV};,, proceeds as
follows,

1. Pick a seU of m variables and sets(Wj)§:1 independently in a manner similar to the Raz Verifier.
Letm; be the projection function betweé#; andU for 1 < j < /.

2. Let A be the supposed Hadamard Code”¢t/) and B; be the supposed Hadamard cod&xiV; ).
The codes3; are assumed to be folded over the linear constraints.

3. Pickay,...,a; € F[2"]™ andby, ..., by € F[2']*™ randomly.
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4. Acceptiffforl <i,j, </
A(a;) + Bj(bj) = Bj(m; (ai) + by).

The following is the main theorem about the properties of this PCP.

Theorem 19 Given an instanced of MAX-3LIN overn variables with completeneds- ¢(n) and sound-
nessl — s(n),

1. Vi usesmlogn + O(¢mr) random bits.
2. Viin queriest? + 2/ positions from the proof.

3. If the instanced is a YES instance then there is a Setonsisting of all the positions of the supposed
encodings of) (V') for at mostmc(n) fraction of setd¥”’, and an assignment" to all the positions
of the proof except those $ such that,

a. (Strong Completeness) The verifier acceptsrorwhenever none of the positions fare
gueried.

b. (Extendability) For any constraing of the verifier which (possibly) queries positions frém
there is an assignment, to the positions ir6 queried ing, such that* extended by, satisfies
the constrainy.

4. Ifthe instanced is a NO instance then the probability that the verifier accepts is at (¢&t] |_£2 +0,
for 62 = (1 — s(n)®)(m/(=0)(|F[27]| — 1)¢, for some universal constant

Proof: Propertiesl and?2 of verifier are clear. Assume that theAM-3LIN .4 was a YES instance and
had an assignment to the variables such that— ¢(n) fraction of the equations were satisfied. Call the
equations not satisfied as ‘bad’. Therefore, at mos(n) fraction of the set3V’ of the Raz Verifier are
‘bad’ i.e. they contain a ‘bad’ equation. Let the assignmédn{s’) andQ (W) be consistent witlr and
P'(U) and@’ (W) be the respective Hadamard encodings given to vefifigr for all sets of variableg’
and all setdV that are not ‘bad’. We let the sé of positions in the proof correspond to the supposed
Hadamard encodings of the assignment to the ‘bad'1§&ts

LetU and(Wj)fz1 be such that none of tH&’; are ‘bad’, and4 and(B)é’A:1 be the Hadamard encodings

of the assignments given lay which is a satisfying assignment for the s@ftand(Wj)f.:l.

Ala;) = a; - P(U)  Bj(bj) = bj - Q(Wj)

Bj(m; Hai) +b) = (75 ' (ai) +b;) - Q(W)

= (m; Hai) - Q(W;) + bj - Q(W))
= ai - m(Q(W)) + bj - QW)
= A(a;) + Bj(bj) (13)

sincer;(Q(W;)) = P(U) aso satisfied/ andW;. This proves the Strong Completeness property. Observe

that every constraint of the verifier is a set of linear equalities of the fo(m) = B(b;) +B(7r;1 (a;)+bj).

Also, for a; # ay, 7rj-_1(ai) — w{l(ai,) ¢ HJ, where H/ is the subspace spanned by the linear con-

straints over which the supposed encodigis folded. Therefore, iti; # a; thenBj(wj‘l(al-) +b;) and
Bj(wjfl(ai/) + b;) are distinct positions in thé&;. So, within any constraint every equation has a unique
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variable. Then, if3; is an encoding corresponding to a ‘bad’ ﬁé]t the proof@Q’ can be extended to satisfy
equations involving positions if3;, in a given constraint involving3;. This implies that for any given
constraint (possibly involving positions frofj), the encoding®’, Q’given byo, can be extended to the po-
sitions inS queried by the given constraint so that the constraint is satisfied. This proves the Extendability
property, and completes the analysis for the YES case.

We now analyze the NO case. We assume that the verifier accepts with probafity " + 4. It was
shown in [Eng00] that the probability of acceptance of the verifier is,

E[Ts] (14)
|F[ SC%]:X[L’]
where,
Is = H( > Wy(Alai) + By(by) + Bj(n~ (a1)+b))) (15)
(4.5)€S \ve€F[2"\{0}

and the expectation is over the choicelbf W; )] 1 (ai)i_q, (b )J , and wherel; = 1.

If the above probability i$F[27]|~** + 4, there must be a nonempty setC [¢] x [£], such thatE[Ts]| >
0. This term was analyzed in [Eng00] and we use their analysis. In [Eng00], since Long Codes are analyzed,
the notion of projections is slightly different from ours, but the proof is exactly the same even for our case.
The analysis in [Eng00] also had a certain perturbation parameter, whicimisur case. We state the
following theorem and refer the reader to the proof in section 4.5 of [Eng00].

Theorem 20 Suppose thdE[Ts]| > ¢ > 0 for some nonempty s8tC [¢] x [¢]. Number the elements i
such that there is at least one element of the fornj) and all the elements of thatform afe 1),. .., (1, d),
whered < ¢. Then there existy, . ..,vq € F[27] \ {0} such that,

52
E Al> ——M
a8 2 R 1
where,
12 D2 H2
A = Z A’Y?O‘B17’Yl7/81 te Bd77d7ﬁd
,B1,..,04
a=m1(f1)++m4(Ba)
and,
Y=+t
A’y,a = < ~ © A, Xa>

ij'Yijj = <¢7j o Bj, Xﬁj>

We now define proof$P, Q) for the Raz Verifier as follows. For a s8t, pick 5 with probabilityﬁilﬂ
and definel)(1V) to be~; 13, whereB is the supposed encoding @f(1V). Note that since§71 3 # 0 for
any set we pick, ang; # 0 by lemma 18,y; 13 satisfies all the equations &F . For a setlU, pick sets

(W ) _, atrandom as in the Raz Verifier, and plmg _o With probabllltyHJ 9 ” ,3,» and choose
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with probabilityA?Y’a. DefineP(U) to bery; ! (o + 2?22 7j(5;)). Sincey; # 0, we have,

d

e+ D m(8) = m B

Jj=2

= i a+ Y mi8) =1 (T (Br)

Jj=2

d
= a+t) m(8)=mbh)

Jj=2

d
= a=) m(B).
j=1
Using the above observation it is easy to see that the acceptance probability of the the Raz Verifier is given
by E[A] and therefore,

(52
(F7][— DB
52
> - -0
— (P[] - 1)”

Pr[Raz Verifier accepts >

since|S| < £2. Using the bound given by Theorem 16, we obtain,

2

8% < (1= s(n)") "/ T (F(27)| - 1)

which completes the analysis of the NO case. "

C.4 Construction of Multi Prover System

We will now give a reduction from the PCP system constructed to an appropriate Multi Prover System. For
convenience we shall call the PCP system constructed in the previous subsectiom asARGPwe let

t = (2 4+ 2¢ andk = |F[2"]|. Clearly, PCR is at-query PCP where the answers are frijy with the
properties specified in Theorem 19. We construct a Multi Prover SystemMi®fllows. LetP;, ..., P,

bet provers. The verifieVy;;ps, computes the queries ofVj;,, sayqi,...,¢. It computes a random
permutatiorv : [t] — [t] and sendsg; to P,;), for all1 < i <t and expects answers from each prover from
the set[k]. The acceptance predicate¥f;;ps, is the same a8j;,. Let Q be the set of queries th&i;,,

makes, which is the set of positions in the proof expectetihy Let Q; be the set of queries sent i by
Vimips,. Clearly,Q;, = Qforall 1 < i <t. Itis easy to see that the completenesgf ps, is same as that

of V. It can be shown [TS97] that if the soundness of PBR then the soundness &,;pg, is at most

tle. Itis easy to check that the properties of Strong Completeness and Extendability hold. Analogous to the
PCP construction, for every prové}, there is a set of ‘bad’ queries; = S consisting of the positions of

the encodings of)(W") for ‘bad’ setsW’. Let u;(.S;) be the probability that théh queryq; € S;. From

the construction of PCRit can be seen that;(S;) < mec(n) for 1 < i < t. We summarize the properties

in the following theorem.

Theorem 21 Given a7-regular instance oMAx-3LIN overn variables with completeneds— ¢(n) and
soundnes$ — s(n), for parametersn, k andt, (wherek = 2" andt = (2 + 2/), there ist prover system
MIPS, with proversP,, ..., P, and verifierVy,;ps, such that,
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1. The verifier usesilogn + O(¢mr) + tlogt random bits to compute a quefy= (q1, . . ., g:) where
gi is sent toP; and an answer fronfik] = [2"] is expected, for all < i < ¢. Let Q; be the set of
queries given to proveP;. Then|Q;| = ... |Qy|.

2. If the MAX-3LIN instance is a YES instance, then there is a%et Q; such thatu;(S;) < mc(n)
wherey; (S;) is the probability thaty; € S;. Furthermore,

a. (Strong Completeness) There is a strategy: Q; \ S; — [k] (1 < i < t) of the provers such
that the verifier accepts on all querigssuch thaty; ¢ S; forall 1 < j <.

b. (Extendability) For any given query of the verifier (possibly containing query € S; to
individual proversP;), the strategy given hy; can be extended to the queries fréhtontained
in g so that the verifier accepts on the quéty

4. If the instance oM AX-3LIN is a NO instance then the probability that the verifier accepts is at most
(k=" + 6), wheres? = (1 — s(n)*)™/(=") (k — 1) for some universal constant

We also need the condition that the queries are uniformly distributed over the set of all possible queries to
prover P; for all 1 < ¢ < t. For this construct another verifi®h, pg, for a Multi Prover System MIPS

Let R; 4, be the set of all random strings¥a,;ps, that generate the quegyto proverP;. Then the verifier
Varps, computes aquery = (qi, ..., q:) of Vasrps,, and sends the queqy = ((q1,71,4,), - - -» (Gt Tt,q,))
wherer; 4, is a string uniformly chosen fronk; ,,. The verifier expects answer o from proverP;, and

the acceptance predicate remains the same. Clearly, sending uniformly chosen random;gfridges

not change the completeness, since provers can disregard them, and they do not provide any information to
provers, so the soundness remains the same. In MIESD,, be the set of all queries tB;. It can be seen
that| Q)| = --- = |Qj}| and the queries are uniformly distributed over the §8f$. Essentially, every query

of MIPS, is replicated proportional to the probability it is queried. Let the corresponding ‘bad’ et the

set of all queriegq;, r) such thay; € S, for all 1 <4 < t. We have the following,

|5
i
(3

= Pr i, T) € 5;
V]MIPSQ"(Qiyr)[(q ) ]
= Pr [qi S SZ]

Vmrips, —ai

1Q

= pi(S:)
me(n) (16)

forall 1 < i < t. Itis easy to see that the properties of Strong Completeness and Extendability are also
satisfied. The number of random bits useday; ps, is at most times that oftj;;ps, . We summarize the
properties of MIP%in the following theorem.

A

Theorem 22 Given aT7-regular instance oMAX-3LIN overn variables with completeneds— c¢(n) and
soundnes$ — s(n), for parametersn, k andt, (wherek = 2" andt = ¢ + 2/), there ist prover system
MIPS; with proversPi, ..., P, and verifierVy,;pg, such that,

1. The verifier useg(mlogn + O(¢mr) + tlogt) random bits to compute a que®y = (¢}, ..., q})
whereg/ is sent toP; and an answer fronk] = [27] is expected, for all < i < t. Let Q. be the set
of queries given to proveP;. Then|Q)| = --- = |Q;| and the queries are uniformly distributed over
eachQ;.

2. Ifthe MAx-3LIN instance is a YES instance, then there is a%et Q! such that
A

il
)
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< mce(n).
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Furthermore,

a. (Strong Completeness) There is a strategy: O\ S/ — [k] (1 < i < t) of the provers such
that the verifier accepts on all querigssuch thalg; ¢ 5”;. forall1 <j <t.

b. (Extendability) For any given query of the verifier (possibly containing query € S! to
individual proversP;), the strategy given by.” can be extended to the queries fréfrcontained
in ¢ so that the verifier accepts on the quety

4. If the instance oM AX-3LIN is a NO instance then the probability that the verifier accepts is at most
(k=% + §), wheres? = (1 — s(n)*)(m/(=1)(k — 1) for some universal constant

There is a canonical reduction from the above Multi Prover System, Mt® &¢-LAYERED-CSP instance

with the vertices ofith layer beingQ; and the hyperedges being the constraints owartices, one from
each layer, corresponding to the queries made by the verifier. The set of verticesfin- LAYERED-CSP
corresponds ta)!_, S!. We now set the parameters used in our reduction, which along with reduction to the
Max-3LIN instance in [KP06] would prove theorem 7.

We start with the instance M<-3LIN of [KP06] on n variables withe(n) = 2-V1og7) ands(n) =
Q(log™3n). We takem = 0(log>*™n) andr = #(loglogn) such thatk = #(logf*®n). Now let
N = |V] be the number of vertices in theLAYERED-CSP instance. From the properties of MPS
we havelog N = 6(log®>***n). Moreover, the size of the vertex s&t of the t-LAYERED-CSP is
Nme(n) < N/(20s MU0y for Jarge enoughv.

The size of the label sét = #(log®* ™ n) = (log? N). Sinces(n) = Q(log™>n), we haves? =
(1 — s(n)F)m/ (=0 (f — 1) = 2-0og”n)(, _ 1) Therefore, the soundneigk—* + §) = k~1+O0(V),

The above analysis completes the construction oftheyERED-CSP instance with the desired properties
in Theorem 7.
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