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ABSTRACT
We show that unless NP = RP, it is hard to (even) weakly
PAC-learn intersection of two halfspaces in Rn using a hy-
pothesis which is a function of up to ` linear threshold func-
tions for any integer `. Specifically, we show that for every
integer ` and an arbitrarily small constant ε > 0, unless NP
= RP, no polynomial time algorithm can distinguish whether
there is an intersection of two halfspaces that correctly clas-
sifies a given set of labeled points in Rn, or whether any
function of ` linear threshold functions can correctly classify
at most 1

2
+ ε fraction of the points.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Geometrical
problems and computations

General Terms
Theory, Algorithms

Keywords
Learning, hardness, approximation, halfspaces

1. INTRODUCTION
A halfspace in Rn is given be the set {x | r·x ≤ c} for some

non-zero vector r and a number c. The problem of learning a
halfspace or an intersection of a small number of halfspaces
is an extremely well-studied problem in machine learning,
with several applications to computer vision [20], artificial
intelligence [21] and data mining[23]. It is well-known that
a single halfspace can be PAC-learnt efficiently by sampling
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a polynomial number of data points and finding a separat-
ing hyperplane via linear programming [9]. Blum, Frieze,
Kannan, and Vempala [6] showed how to learn a single halfs-
pace even in presence of random classification noise, whereas
Kalai, Klivans, Mansour and Servedio [14] gave polynomial
time algorithm for learning a single halfspace in presence of
adversarial noise under certain distributional assumptions.

For learning intersection of halfspaces, algorithms are known
for various special cases. When the data points are drawn
from the uniform distribution over the unit ball, Blum and
Kannan [7] and Vempala [26] gave algorithms to PAC-learn
intersection of a constant number of halfspaces. For the
uniform distribution over the boolean hypercube, Klivans,
O’Donnell and Servedio [17] obtained an algorithm for learn-
ing intersection of constant number of halfspaces. Arriaga
and Vempala [4] and Klivans and Servedio [18] gave algo-
rithms for learning intersection of halfspaces when no data
point is too close to any separating hyperplane (i.e. the
problem instance has a good margin). However the gen-
eral problem of learning intersection of halfspaces remains
an open problem.

In this paper we study the hardness of learning intersec-
tion of two halfspaces with a hypothesis that is a function
of a constant (but arbitrarily large) number linear thresh-
olds. We prove that this problem is hard to even weakly
PAC-learn unless NP = RP. In particular our result holds
for hypothesis class of an intersection of a constant number
of halfspaces. We state our result formally after reviewing
previous work on the hardness side.

1.1 Previous Work
For the problem of proper learning a single halfspace with

adversarial noise, Feldman, Gopalan, Khot and Ponnuswami
[10] and Guruswami and Raghavendra [12] independently
proved that the problem is hard to even weakly PAC-learn1.
More specifically, they proved:

Theorem 1. Let δ, ε > 0 be arbitrarily small constants.
Then, given a set of labeled points in Rn with a guarantee
that there is a halfspace that classifies 1−δ fraction of points
correctly, there is no polynomial time algorithm to find a
halfspace that classifies 1

2
+ ε fraction of points correctly,

unless P = NP.

The above theorem is really a hardness of approximation
result for an optimization problem, where the goal is to find

1The result of Guruswami and Raghavendra [12] holds even
when the points are from a boolean hypercube.



a halfspace that maximizes the number of correctly classi-
fied points. By considering a distribution that is uniform on
all the data points, the theorem implies hardness of weakly
PAC-learning a halfspace when the hypothesis is also re-
quired to be a halfspace (known as proper learning). Note
that the imperfect completeness is necessary in the above
theorem, since via linear programming, one can always effi-
ciently find a halfspace that correctly classifies all the points,
if one exists. The theorem is optimal, since one can easily
classify 1

2
fraction of the data points correctly, by taking an

arbitrary halfspace or its complement as a hypothesis. From
the learning theory perspective, such an optimal hardness
result is especially satisfying, since if one could efficiently
find ( 1

2
+ ε)-consistent hypothesis (i.e. weakly PAC-learn),

then one can use boosting techniques [24] to efficiently find
a (1− ε)-consistent hypothesis (i.e. PAC-learn)2.

However, an optimal result such as Theorem 1 was not
known for learning intersection of (two) halfspaces. Blum
and Rivest [8] showed that it is NP-hard to learn the inter-
section of two halfspaces with intersection of two halfspaces,
and Alekhnovich, Braverman, Feldman, Klivans and Pitassi
[1] proved a similar result even when the hypothesis is an
intersection of ` halfspaces for any constant `. Both the
results are only NP-hardness results and do not prove APX-
hardness for the underlying optimization problem.

In a different line of work, under cryptographic assump-
tions, Klivans and Sherstov [19] showed that there is no
polynomial time algorithm to PAC-learn intersection of nε

halfspaces, and the result holds without any restriction on
the hypothesis class.

1.2 Our Results
The following theorem is the main result in this paper.

Theorem 2. Let ` be any fixed integer and ε > 0 be an
arbitrarily small constant. Then, given a set of labeled points
in Rn with a guarantee that there is an intersection of two
halfspaces that classifies all the points correctly, there is no
polynomial time algorithm to find a function f of up to `
linear threshold functions that classifies 1

2
+ ε fraction of

points correctly, unless NP = RP.

We state the above result in terms of functions of ` linear
threshold functions. This encompasses hypotheses such as
intersection of ` halfspaces since a linear threshold function
sgn(c − r · x) is same as the halfspace {x | r · x ≤ c} for
any (unit) vector r in Rn and real number c. Note that the
result holds with perfect completeness, i.e. the problem is
hard even when an intersection of two halfspaces is guaran-
teed to classify every point correctly. The result is optimal
since an arbitrary halfspace or its complement has a success
rate of 1

2
on any given data set. It provides evidence that

the approach of weak learning intersection of two halfspaces
with a function of a constant number of halfspaces followed
by boosting may not work.

Overview of the reduction. Our reduction starts with an
instance of the Label Cover problem on n vertices and label
set [k]. The reduction produces an instance in nk dimen-
sional space with a block of k dimensions for each vertex. In

2After applying the boosting algorithm, the hypothesis is a
majority over a set of hypotheses used for the weak PAC-
learning.

the first step we create a set of points for each vertex which
are {−1, 1} combinations in the k dimensions corresponding
to the vertex and 0 everywhere else. These points simulate
a junta test in the following manner. Suppose that a hyper-
plane r ·x = c passes close to many points corresponding to
a particular vertex v, then r has the property that whatever
mass it has in the k coordinates corresponding to v is con-
centrated in a few coordinates. However, for this to work,
one has to ensure that r has some non-negligible mass in
those k coordinates to begin with.

To ensure this, in the second step we replace each point
created in the first step with two small spheres of random
points, where points in one of the spheres are labeled ‘+’
and those in the other are labeled ‘−’. If these spheres are
sufficiently ‘dense’, one can show that any hyperplane that
separates a pair of such spheres must have non negligible
mass in the coordinates corresponding to the vertex v. We
use the fact that the class of halfspaces has polynomially
bounded VC dimension and therefore with high probability
a polynomially large set of random points on a sphere is an
ε-sample for all halfspaces.

In order to enforce consistency between the labels of differ-
ent vertices of Label Cover instance, the third step involves a
folding procedure over a subspace defined by the constraints
of the Label Cover instance. A similar folding technique was
used in [11]. The construction is such that the existence of a
‘good’ function of ` halfspaces gives us one single halfspace
which can be used to extract a good labeling to the Label
Cover instance.

Remark. The gap instance that we construct is such that
in the YES case, the set of points is classified correctly by the
intersection of two parallel halfspaces of the form r ·x ≥ −c
and r · x ≤ c, for some c > 0. This imples that the points
are correctly classified by the degree 2 polynomial given by
(r · x)2 ≤ c2. So, using linear programming a degree 2
polynomial can be efficiently found that classifies the points
in our instance. However, the polynomial obtained may not
be factorizable into two parallel hyperplanes.

2. PRELIMINARIES
We start by formally defining the problem.

Definition 1. An instance of
INTERSECTION-HALFSPACE` is a set of points in Rn

each labeled either ‘+’ or ‘−’ and the goal is to find a func-
tion of at most ` linear threshold functions (halfspaces) which
correctly classifies the maximum number of points, where a
‘+’ point is classified correctly if it lies inside the intersec-
tion and a ‘−’ point is classified correctly if it lies outside of
it.

We show that the problem INTERSECTION-HALF-

SPACE` is hard by giving a gap-preserving reduction from
the Label Cover problem, a canonical problem used to prove
many hardness of approximation results. For the purposes of
our reduction we require the Label Cover instance to satisfy
a certain ‘smoothness’ property. Similar ‘smooth’ versions
of Label Cover have been used in earlier hardness reduc-
tions [15, 13, 16]. In addition to smoothness we also require
that sufficiently large induced subgraphs of the label cover
instance have a large number of edges. We define the follow-
ing version of the Label Cover problem that captures both
these additional properties.



Definition 2. An instance L of
SmoothLabelCover(t, µ, ν, k,m) consists of a (multi)graph
G(V,E) and mappings {πu,e}e∈E,u∈e where πu,e : [k] 7→ [m].
A labeling σ : V 7→ [k] is said to satisfy an edge e between u
and v if πu,e(σ(u)) = πv,e(σ(v)). The instance satisfies:

• (Smoothness:) For any vertex u ∈ V and any set S ⊆
[k] of size at most t,

Pr
e:u∈e

[∃i, j ∈ S, i 6= j, s.t. πu,e(i) = πu,e(j)] ≤ µ,

where the probability is taken over a random edge in-
cident on u.

• For any V ′ ⊆ V such that |V ′| = ξ|V |, the induced
subgraph on V ′ has at least (ξ2/2)|E| edges, for any
ξ ≥ ν.

The following theorem is proved using the PCP Theorem [3,
2] combined with Raz’s Parallel Repetition Theorem [22].
We give a proof of the theorem in Appendix B based on the
smooth version of label cover constructed in [16].

Theorem 3. For any constant t and arbitrarily small con-
stants µ, ν, η > 0, there exist constants k and m such that
given an instance L of SmoothLabelCover(t, µ, ν, k,m) it
is NP-hard to distinguish between the following two cases:

• YES Case/Completeness: There is a labeling to the
vertices of L which satisfies all the edges.

• NO Case/Soundness: No labeling to the vertices of L
satisfies more than η fraction of the edges.

We give a gap-preserving reduction from Label Cover to
INTERSECTION-HALFSPACE` stated in the following
theorem, which along with Theorem 3 implies Theorem 2.

Theorem 4. For any constant ε > 0 and integer ` > 0,
there is a randomized polynomial time reduction from an
instance L of SmoothLabelCover(t, µ, ν, k,m) to an in-
stance I of INTERSECTION-HALFSPACE` for appro-
priately chosen parameters t, µ, ν and soundness η, such that,

• YES Case/Completeness: If L is a YES instance, then
there is an intersection of two halfspaces which cor-
rectly classifies all the points in instance I.

• NO Case/Soundness: If L is a NO instance, then with
probability at least 9

10
, there is no function of up to `

linear threshold functions that correctly classifies more
than 1

2
+ ε fraction of points in instance I.

3. REDUCTION
The reduction proceeds in three steps. In the first step we

construct an initial set of unlabeled points, from the instance
of Label Cover. In the second step we replace each initial
point with two small spheres of points, with points in one
sphere labeled ‘+’ and points in the other labeled ‘−’. The
third steps consists of reducing the problem into a lower
dimensional space via a folding over the subspace induced
by the consistency constraints of the Label Cover instance.
In the end we obtain a set of points each labeled either ‘+’
or ‘−’ as an instance of INTERSECTION-HALFSPACE`

for a given constant `.

3.1 Step 1
We start with an instance L of

SmoothLabelCover(t, µ, ν, k,m), where we will fix t, µ and
ν later. Let |V | = n. First we define the space in which the
points lie. For every vertex v ∈ V , we have a set of k coor-
dinates labeled by M(v) := {v(i)}ki=1. The complete set of
coordinates is the union of these sets over all vertices, say
M :=

⋃
v∈V M(v). Therefore, the points we construct lie

in nk dimensional real space RM. The construction of the
points is as follows.

1. For every vertex v, define,

s(v) := {x ∈ RM | ∀i ∈ [k], x(v(i)) ∈ {−1, 1} and

x(u(i)) = 0,∀u 6= v}.

Thus, s(v) is the set of all vectors that are {−1, 1}
combinations on the coordinates M(v) and 0 on all
other coordinates. Note that |s(v)| = 2k for all v ∈ V .

2. Let S =
⋃
v∈V s(v). Clearly |S| = n · 2k, since the sets

s(v) are disjoint for all v ∈ V .

We output S, as the initial set of points at the end of Step
1. One would like to say that if any hyperplane say r ·x = a,
passes through a significant fraction of the points in S, then
r should be close to a ‘junta’ i.e. most of the mass of the
vector r should be concentrated in a few coordinates of M(v)
for a significant fraction of vertices v ∈ V . However, it is
possible that r has zero mass in the coordinates M(v) for
almost all v ∈ V and yet the hyperplane r · x = 0 passes
through most of the points in S. To overcome this problem,
we replace each point in S with two spheres of points as
described in Step 2.

3.2 Step 2
We start with the set of points S =

⋃
v∈V s(v) constructed

in Step 1. For every point in S, we create two ‘spheres’ of
points separated by a small distance. This step is random-
ized as it requires sampling a suitable number of points from
a unit sphere. The following lemma is proved in Appendix
A.

Lemma 5. Let ε′ > 0 be any constant and n be a suffi-
ciently large integer. Let R be a set of (nk)2 unit vectors cho-
sen uniformly at random in nk-dimensional real space. Then
with probability at least 1 − 1/n, the set R satisfies the fol-
lowing property: for any subset T ⊆ R such that |T | = ε′|R|
and for any unit vector r, there exist z′, z′′ ∈ T , such that
|r · z′ − r · z′′| ≥ ε′/(100

√
nk).

Now we describe our construction in Step 2.

1. Set parameters 3 δ = 2−(nk)100
and γ = 1/(100

√
n).

2. Let R be the set of (nk)2 unit vectors in RM as in
Lemma 5 (ε′ will be chosen later and is related to the
soundness parameter of the reduction).

3. Let x be a point in S. Construct two sets α(x) and
β(x) as follows,

α(x) := {(1− δ)x + δγz | z ∈ R}
3The parameter δ here is essentially the margin in the YES
case(upto a polynomial factor). We set δ to be exponentially
small in n and k . However, our reduction goes through even
if δ is taken to be O( 1

n2 ).



and,

β(x) := {(1 + δ)x + δγz | z ∈ R}.

4. For every vertex v ∈ V , let A(v) :=
⋃

x∈s(v) α(x) and

B(v) :=
⋃

x∈s(v) β(x).

5. Output the sets A :=
⋃
v∈V A(v) andB :=

⋃
v∈V B(v).

The points created have the property that any hyper-
plane that separates the sets α(x) from β(x) for a signif-
icant fraction of points x ∈ S, must essentially be a ‘junta’
in the coordinates M(v) for a significant fraction of vertices
v ∈ V . This property will be formally stated and used in the
soundness analysis to decode a labeling for the Label Cover
instance. In conjunction with this property, one needs to
enforce the consistency constraints of the Label Cover in-
stance. We achieve this in the third step of the reduction,
by folding over a subspace defined by these constraints.

3.3 Step 3
For the sake of convenience, let < be any arbitrary total

order on V . Let e be an edge between u and v in G, with
u < v. Let hje ∈ RM, for j ∈ [m], be defined in the following
manner: set hje(u(i)) = 1 for all i ∈ π−1

u,e(j), set hje(v(i)) =
−1 for all i ∈ π−1

v,e(j) and set all the other coordinates to 0.

Note that for any vector r ∈ RM,

∀u, v ∈ e, e ∈ E,∀j ∈ [m],

r · hje = 0⇐⇒∑
i∈π−1

u,e(j)

r(u(i)) =
∑

i∈π−1
v,e(j)

r(v(i)). (1)

The folding is done as follows.

1. Let T =
⋃
e∈E,j∈[m]{h

j
e}. Let H ⊂ RM, where H =

span(T ), and F be the subspace of RM orthogonal to
H such that RM = F ⊕H and F ⊥ H.

2. Let {λi}nki=1 be an orthonormal basis for RM such that
F = span({λi}gi=1) for some g ≤ nk.

3. Write down all the points in the sets A and B in the
basis {λi}nki=1 and only consider the coordinates cor-
responding to the basis {λi}gi=1 of the g-dimensional
space F . Ignoring the rest of the coordinates, obtain
sets A′ and B′, which are essentially projections (with
multiplicities) of sets A and B respectively onto the
subspace F .

We label all the points in A′ as ‘+’, and all the points in B′

as ‘−’ and output these points as an instance of INTERSE-

CTION-HALFSPACE`.

4. ANALYSIS

4.1 YES Case
If the instance L of SmoothLabelCover(t, µ, ν, k,m) is

a YES instance, then there is a labeling, say σ to the vertices
in V that satisfies all the edges in E. We need to exhibit two
halfspaces such that the points in A′ lie inside their inter-
section while the points in B′ lie outside their intersection,
where A′ and B′ are the sets obtained through the reduction
given above.

Let us consider the vector r∗ ∈ RM, where r∗(v(σ(v))) =
1/
√
n for all v ∈ V , and all other coordinates are set to 0.

So, r∗ has exactly n non-zero coordinates, each set to 1/
√
n.

Clearly ‖r∗‖ = 1. We prove the following two lemmas.

Lemma 6. For every point y ∈ A, |r∗ · y| < 1/
√
n, and

for every point w ∈ B, |r∗ ·w| > 1/
√
n.

Proof. Since r∗ is a unit vector, for any unit vector z,
we have,

|r∗ · γδz| ≤ γδ = δ

(
1

100
√
n

)
. (2)

Consider a point y ∈ A, such that y = (1 − δ)x + γδz,
where x is a {−1, 1} vector in the coordinates M(v) for
some v ∈ V , and 0 on all other coordinates, and z is a unit
vector. Now since r∗ has a single non-zero coordinate set to
1/
√
n in each set M(v), clearly |r∗ ·x| = 1/

√
n and therefore

|r∗ · (1− δ)x| = (1− δ)(1/
√
n). Combining with (2), we get

|r∗ · ((1 − δ)x + γδz)| = |r∗ · y| < 1/
√
n. Similarly, for any

w ∈ B, we obtain |r∗ ·w| > 1/
√
n.

Consider any edge e ∈ E between two vertices u and v
in V . Since r∗ is 1/

√
n in exactly one coordinate u(σ(u))

in M(u) and 0 on all others, for any j ∈ [m], we have that
the quantity

∑
i∈π−1

u,e(j)
r∗(u(i)) is 1/

√
n iff σ(u) ∈ π−1

u,e(j)

and 0 otherwise. And similarly,
∑
i∈π−1

v,e(j)
r∗(v(i)) is 1/

√
n

iff σ(v) ∈ π−1
v,e(j) and 0 otherwise. Since σ is a satisfying

assignment, ∃j′ ∈ [m] such that σ(u) ∈ π−1
u,e(j

′) and σ(v) ∈
π−1
v,e(j

′). Therefore we have,∑
i∈π−1

u,e(j)

r∗(u(i)) =
∑

i∈π−1
v,e(j)

r∗(v(i)),

∀u, v ∈ e, e ∈ E, ∀j ∈ [m]. (3)

Combining the above with (1) we obtain,

r∗ · hje = 0, ∀e ∈ E, ∀j ∈ [m]. (4)

SinceH was defined to be the span of {hje}e∈E,j∈[m], equa-
tion (4) implies that r∗ ⊥ H. Let r̄∗ be the projection of r∗

onto F , where F ⊥ H and RM = F ⊕H. For any y ∈ RM,
let ȳ be the projection of y onto F . Then, since r∗ lies en-
tirely in F we have r∗ ·y = r̄∗ · ȳ. Combined with Lemma 6
this implies that for every point ȳ ∈ A′, |̄r∗ · ȳ| < 1/

√
n and

for every point w ∈ B′, |̄r∗ ·w| > 1/
√
n. Therefore the inter-

section of the two halfspaces in F , namely {y | r̄∗·y ≤ 1/
√
n}

and {y | r̄∗ ·y ≥ −1/
√
n}, classifies all the points in A′ and

B′ correctly. Note that the intersection of halfspaces that
we obtain is the region between two parallel hyperplanes.

4.2 NO Case
In this case, we assume that the instance
L of SmoothLabelCover(t, µ, ν, k,m) has soundness η. For
a contradiction, we assume that we have a function f of `
linear threshold functions in F that classifies 1

2
+ ε fraction

of the points in A′ and B′ correctly, where A′ is the set of
‘+’ points and B′ is the set of ‘−’ points. We will henceforth
refer to linear threshold functions as halfspaces, since they
are exactly the same. Let the halfspaces on which f depends
be given by the equations,

r̄i · ȳ ≤ ci for i = 1, . . . , `,

where r̄i ∈ F and ‖r̄i‖ = 1 for all i = 1, . . . , `. Let ri be the
vector in RM obtained from r̄i ∈ F , by adding zeros on the



coordinates corresponding to the basis of H, and rewriting
it in the coordinates M =

⋃
v∈V M(v). Clearly ‖ri‖ = 1

for i = 1, . . . , `. Let f ′ be the function in RM given by
the predicate of f applied on the halfspaces {ri ·y ≤ ci} for
i = 1, . . . , `, where the halfspace {r̄i ·ȳ ≤ ci} in F is replaced
by the halfspace {ri · y ≤ ci} in RM in the predicate of f .
Note that f ′ is exactly the function f applied on points in
RM after projection onto F . We have the following simple
lemma.

Lemma 7. The the function f ′ of the halfspaces {ri · y ≤
ci} for i = 1, . . . , ` classifies 1

2
+ ε fraction of the points in

A ∪ B correctly, where a point in A is classified correctly if
it lies inside the intersection and a point in B is classified
correctly if it lies outside.

Proof. We observe that since r̄i ∈ F , if y ∈ RM has
a projection ȳ ∈ F , then ri · y = r̄i · ȳ. Now, since A′

and B′ are (multi)sets of points in F and are projections of
the sets A and B respectively of points in RM, the lemma
follows.

For the rest of the analysis, we will consider only the sets
of points A and B and the halfspaces {ri · y ≤ ci} for i =
1, . . . , ` in RM. For every vertex v, and every x ∈ s(v),
there are |R| pairs of points given by the sets {(1 − δ)x +
δγz, (1 + δ)x + δγz}. In total there are |V |2k|R| such pairs,
which partition the set A∪B, where each pair has one point
from A and one point from B. We say that a pair {y1,y2}
where y1 ∈ A and y2 ∈ B is correctly classified by f ′ if
both y1 and y2 are correctly classified by f ′. Since the
function f ′ of halfspaces {ri·y ≤ ci} for i = 1, . . . , ` correctly
classifies 1

2
+ε fraction of the points in A∪B, it follows that it

correctly classifies ε/2 fraction of pairs {(1− δ)x + δγz, (1 +
δ)x + δγz}. For a pair to be classified correctly by f ′, it
must be separated by at least one of the ` halfspaces on
which f ′ depends. Thus, there must be at least one out of
the ` halfspaces that separates ε/(2`) fraction of the pairs.
Without loss of generality, we can assume that the halfspace
{r1 ·y ≤ c1} separates ε/(2`) fraction of the pairs. The rest
of the analysis uses r1 to deduce a labeling to the vertices
of Label Cover instance that satisfies a significant fraction
of the edges.

Let ε′ = ε/(32`). By an averaging argument we have that
for ε′ fraction of the vertices v ∈ V , for ε′ fraction of vectors
x ∈ s(v), for 2ε′ fraction of z ∈ R, the pair {(1 − δ)x +
δγz, (1+δ)x+δγz} is separated by the halfspace {r1·y ≤ c1}.
Call such vertices ‘good’. Let u be one such vertex. We
will show that the vector r1 must have a significant mass
in the coordinates M(u), and moreover that the mass is
concentrated in a few of the coordinates in M(u).

We know from above that for u, there is a vector x′ ∈ s(u)
such that for 2ε′ fraction of z ∈ R the pair {(1 − δ)x′ +
δγz, (1 + δ)x′ + δγz} is separated by {r1 · y ≤ c1}. Let us
this fix this particular x′ ∈ s(u). Let us say that a pair is
separated ‘correctly’ by the halfspace {r1 · y ≤ c1} if the
‘+’ point is inside the halfspace and the ‘−’ point is outside,
and otherwise we say that the pair is separated ‘incorrectly’.
Based on the above, for our choice of x′ ∈ s(u) we have the
following two cases.

Case 1. The halfspace {r1 ·y ≤ c1} separates ‘correctly’ the
pair {(1−δ)x′+δγz, (1+δ)x′+δγz} for ε′ fraction of z ∈ R.
Let T be this set of ‘good’ vectors z ∈ R, for which the

corresponding pairs are separated correctly. and so |T | =
ε′|R|. Since R satisfies the property stated in Lemma 5,
there exist z′, z′′ ∈ T such that,

|r1 · z′ − r1 · z′′| ≥ ε′/(100
√
nk). (5)

Moreover, since the pairs are separated ‘correctly’ we have
that,

r1 · ((1− δ)x′ + γδz′)− c1 ≤ 0 (6)

r1 · ((1 + δ)x′ + γδz′)− c1 ≥ 0, (7)

r1 · ((1− δ)x′ + γδz′′)− c1 ≤ 0 (8)

r1 · ((1 + δ)x′ + γδz′′)− c1 ≥ 0. (9)

Subtracting equation (6) from (9), and (8) from (7), we ob-
tain,

2δr1 · x′ − δγr1 · (z′ − z′′) ≥ 0

2δr1 · x′ + δγr1 · (z′ − z′′) ≥ 0.

Combining the above with equation (5) we get that |2δr1 ·
x′| ≥ γδε′/(100

√
nk). Substituting the value of γ and sim-

plifying we have |r1 · x′| ≥ ε′/(2 · 104n
√
k). Since x′ takes

values 1 or −1 on coordinates in M(u) and is 0 on all other
coordinates, this implies,∑

i∈k

|r1(u(i))| ≥ ε′

2 · 104n
√
k

(10)

Case 2. In this case we have that the halfspace {r1 ·y ≤ c1}
separates ‘incorrectly’ the pair {(1− δ)x′ + δγz, (1 + δ)x′ +
δγz} for ε′ fraction of z ∈ R. The analysis continues along
the same line as Case 1, taking the set T to be the set
of ‘good’ vectors z ∈ R, for which the corresponding pairs
are separated ‘incorrectly’. Since the pairs are now sepa-
rated ‘incorrectly’, the inequalities (6), (7), (8) and (9) are
reversed. We omit the rest of the argument which remains
essentially the same as Case 1 and we obtain the same bound
given by equation (10).

The above analysis shows that the vector r1 has significant
mass in the coordinates M(u). To show it is concentrated in
a small number of coordinates, we need the following lemma.

Lemma 8. There is a set Q ⊆ s(u), s.t. |Q| ≥ ε′|s(u)|
and for every x ∈ Q, r1 · x ∈ [c1 − 2δ

√
k, c1 + 2δ

√
k].

Proof. We consider the set Q of points x ∈ s(u), such
that a pair {(1− δ)x + δγz, (1 + δ)x + δγz} for some z ∈ R
is separated by r1 · y ≤ c1. Clearly, |Q| ≥ ε′|s(u)| = ε′2k.
Now, for any given x ∈ s(u), all the points of the form
(1 − δ)x + δγz and (1 + δ)x + δγz for any z ∈ R lie in a

ball of radius 2δ
√
k around x. Therefore, for all x ∈ Q, the

hyperplane r1 · y = c1 passes at a perpendicular distance of
at most 2δ

√
k from x. The lemma follows.

The following is a well known lemma (see lemma 7.3 of
[12]). We state a version based on lemma 3.5 proved in [5].

Lemma 9. Let X1,. . . , Xp be i.i.d {−1, 1} valued Bernoulli
random variables, with Pr[1] = 1

2
, and let ω1, . . . , ωp be pos-

itive real numbers. Then there is a universal constant b such
that, for any c ∈ R and ζ > 0, if,

Pr

[
p∑
i=1

ωiXi ∈ [c− ζ, c+ ζ]

]
≥ b

p
1
2

then, ∃i ∈ [p] such that ωi ≤ ζ.



Let X1, . . . , Xk be i.i.d {−1, 1} valued Bernoulli random

variables with Pr[1] = 1
2
. For convenience, we let δ′ = δ

√
k.

Observe that Lemma 8 implies,

Pr

[
k∑
i=1

|r1(u(i))|Xi ∈ [c1 − 2δ′, c1 + 2δ′]

]
≥ ε′. (11)

Suppose we apply Lemma 9 to the above. Then it gives
us a coordinate in M(u) such that on that coordinate r1 has
very small mass. Removing that coordinate, we can again
apply the lemma to the remaining coordinates and do this
until a small number of coordinates remain. If we ensure
that at each step we remove a coordinate from M(u) on
which r1 has small mass, then the total mass of the coor-
dinates removed is small. Combining this with the lower
bound given by equation (10), this would imply that most
of the mass of r1 in M(u) is concentrated in a small number
of coordinates. This would enable us to select a labeling for
the vertex u from among those ‘large’ coordinates.

Therefore, we apply Lemma 9 iteratively, until the set of
coordinates is of size at most b2/ε′

2
, in the following manner.

Initialize I0 = [k].

1. At step j, we have a set of indices Ij of size k− j, with
the following inequality satisfied,

Pr

∑
i∈Ij

|r1(u(i))|Xi ∈ [c1 − 2j+1δ′, c1 + 2j+1δ′]


≥ ε′ .(12)

2. If k−j < b2/ε′2, then we stop and obtain a set Iu = Ij
of indices, such that |Iu| < b4/ε′4.

3. If k − j ≥ b2/ε′2, then we apply Lemma 9 to obtain
i′ ∈ Ij such that |r1(u(i′))| ≤ 2j+1δ′. Now for any
setting xi ∈ {−1, 1} of variables Xi for i ∈ Ij ,∑

i∈Ij

|r1(u(i))|xi ∈ [c1 − 2j+1δ′, c1 + 2j+1δ′] =⇒

∑
i∈Ij\{i′}

|r1(u(i))|xi ∈ [c1 − 2j+2δ′, c1 + 2j+2δ′].

Therefore we have,

Pr
[∑

i∈Ij\{i′} |r1(u(i))|Xi ∈ [c1 − 2j+2δ′,

c1 + 2j+2δ′]
]
≥ ε′.

So, we set Ij+1 = Ij \ {i′} and proceed to step j + 1.

At the jth step, an index corresponding to a coordinate
of mass at most 2j+1δ′ is removed. There are at most k
steps for j = 0, . . . , k − 1. Therefore, the total mass of
the coordinates removed is at most 2k+1δ′. Combining this
with (10) and with a small enough choice of δ, we have a set
Iu ⊆ [k] such that |Iu| ≤ b2/(ε′)2 and∑
i∈Iu
|r1(u(i))| ≥ ε′

2 · 104n
√
k
− 2k+1δ′ ≥ ε′

4 · 104n
√
k

(13)

and, ∑
i∈[k]\Iu

|r1(u(i))| ≤ 2k+1δ′ ≤ ε′

16 · 104n
√
k

(14)

Since u was one of the ε′ fraction of the vertices of V that
are ‘good’, we can obtain such sets of indices Iv satisfying
the above properties for all ‘good’ vertices v. Construct the
labeling σ∗ to these vertices by choosing a label for every
‘good’ vertex v ∈ V randomly from Iv. From the properties
of the instance L of LabelCover(t, µ, ν, k,m), if we choose
ν � ε′, then the set of ‘good’ vertices induces (ε′)2/2 frac-
tion of edges in E. Let e be a random edge in E, and say
e is between vertices v1 and v2 in V . Then with probability
(ε′)2/2, both v1 and v2 are ‘good’. Now, suppose that we
have chosen t � b2/(ε′)2, then except with probability 2µ,
πe,v1 maps the elements of Iv1 to distinct elements Jv1 ⊆ [m]
and πe,v2 maps the elements of Iv2 to distinct elements in
Jv2 ⊆ [m].
Suppose for a contradiction that Jv1 and Jv2 are disjoint.
This implies that π−1

e,v2(Jv1) and Iv2 are disjoint. Since r1

is orthogonal to the subspace H, from (1) we have that for
every j ∈ Jv1 ,∑

i∈π−1
e,v1 (j)

r1(v1(i)) =
∑

i∈π−1
e,v2 (j)

r1(v2(i))

and taking the absolute values and summing over all j ∈ Jv1 ,
we have,

∑
j∈Jv1

∣∣∣∣∣∣∣
∑

i∈π−1
e,v1 (j)

r1(v1(i))

∣∣∣∣∣∣∣
=
∑
j∈Jv1

∣∣∣∣∣∣∣
∑

i∈π−1
e,v2 (j)

r1(v2(i))

∣∣∣∣∣∣∣ (15)

Now, since πe,v1 maps elements of Iv1 to distinct elements
Jv1 ⊆ [m],

∑
j∈Jv1

∣∣∣∣∣∣∣
∑

i∈π−1
e,v1 (j)

r1(v1(i))

∣∣∣∣∣∣∣
≥
∑
i∈Iv1

|r1(v1(i))| −
∑

i∈[k]\Iv1

|r1(v1(i))| . (16)

From equation (15) and the above we have,

∑
j∈Jv1

∣∣∣∣∣∣∣
∑

i∈π−1
e,v2 (j)

r1(v2(i))

∣∣∣∣∣∣∣
≥
∑
i∈Iv1

|r1(v1(i))| −
∑

i∈[k]\Iv1

|r1(v1(i))|

≥ ε′

4 · 104n
√
k
− ε′

16 · 104n
√
k

=
3ε′

16 · 104n
√
k

(17)

where we used (13) and (14) applied to v1. But since,
π−1
e,v2(Jv1) ⊆ [k] \ Iv2 , equation (17) is a contradiction to

equation (14) applied to v2. Therefore, Jv1 and Jv2 are
not disjoint. So, with probability 1/(|Iv1 ||Iv2 |) = (ε′)4/b4,
the labeling σ∗ satisfies the edge e. Combining everything,
we obtain that there is a labeling to the vertices of V that
satisfies ((ε′)2/2 − 2µ)((ε′)4/b4) fraction of the edges in E.
By choosing the smoothness parameter µ and the soundness
parameter η of the Label Cover instance to be arbitrarily



small, we obtain a contradiction. Thus, if the instance L of
SmoothLabelCover(t, µ, ν, k,m) is a NO instance, then
with high probability, there is no function of up to ` half-
spaces that correctly classifies 1

2
+ ε fraction of the points

in A′ ∪ B′. This, along with the analysis of the YES case
proves Theorem 4, and hence Theorem 2.

5. CONCLUSION
We proved a tight hardness result for learning intersection

of two halfspaces using functions of up to ` linear threshold
functions (halfspaces) for any constant `. An interesting
open question is whether a similar hardness result holds for
learning intersection of halfspaces by more general classes of
hypotheses such as (functions of) low degree polynomials.
As noted in the remark in section 1.2 our reduction does
not extend even to degree 2 polynomials.
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APPENDIX

A. PROOF OF LEMMA 5
First we need some definitions.

Definition 3. A range space is a pair (X,F), where X
is a set and F is a family of subsets of X, i.e. F ⊆ 2X .

Definition 4. For any set A ⊆ X, define PF (A) the pro-
jection of F onto A, as PF (A) := {F ∩A : F ∈ F}.

Definition 5. We say that a set A ⊆ X is shattered by
(X,F) if PF (A) = 2A.



The VC dimension of a range space is defined as follows.

Definition 6. The VC dimension of (X,F) is the car-
dinality of the maximum set it shatters, i.e. VC dim =
sup{|A| : A is shattered }. It may be infinite.

We use the following theorem regarding sampling from range
spaces of bounded VC dimension [25].

Theorem 10. Let (X,F) a range space of VC dimension
d, and let φ be a uniform measure on X. There is a universal
constant CV C such that with probability at least 1 − δ, a
random set S ⊆ X of size,

CV C

(
d

τ2
log

(
d

τ

)
+

1

τ2
log

(
1

δ

))
satisfies, ∣∣∣∣ |S ∩ F ||S| − φ(F )

∣∣∣∣ ≤ τ,
for all F ∈ F .

Let N = nk, let SN−1 be the unit sphere in N dimen-
sions, and let φ be a uniform measure over SN−1. Define
P (r, [a, b]) := {z ∈ SN−1|r · z ∈ [a, b]}. The set P (r, [a, b])
is exactly the set of unit vectors whose dot product with r
lies in the interval [a, b]. Let P := {P (r, [a, b]) | ‖r‖ =

1, b − a = ε′/(100
√
N)}. By Stirling’s approximation, we

have that for large enough N , the surface area of the SN−1

is at least 1/
√
N times the surface area of SN−2. As a result

the following fact is easy to derive.

Fact 11. For large enough N , for any P ∈ F , φ(P ) ≤
ε′/10.

Moreover, we observe that every element P ∈ P is a set
of points in SN−1 that lie in an intersection of two halfs-
paces. Since, in RN , the VC dimension of the class of all
N dimensional halfspaces is N + 1, the VC dimension of
the class of N dimensional halfspaces for the set SN−1 is at
most N + 1. Using this we have the following bound which
we state without proof.

Lemma 12. The VC dimension of the range space (SN−1,P)
is at most 4(N + 1) log(2(N + 1)).

Now if R is a set of N2, random unit vectors from SN−1,
then for large enough N , Theorem 10 along with the above
lemma implies that with probability at least 1− 1/n,∣∣∣∣ |R ∩ P ||R| − φ(P )

∣∣∣∣ ≤ ε′/10,

for any P ∈ P. The above, coupled with Fact 11 implies
that with probability 1− 1/n over the choice of R,

|R ∩ P |
|R| ≤ ε′/5,

for all P ∈ P. In other words, with probability 1− 1/n over
the choice of R, for any unit vector r, at most ε′/5 fraction
of points in R are contained in the set {z | r · z ∈ [a, b]}
for any a, b s.t. b − a = ε′/(100

√
N). This implies that

with probability 1 − 1/n over the choice of R, for any set
T ⊆ R, such that |T | = ε′|R|, for any unit vector r, there

exist z′, z′′ ∈ T , such that |r ·z′−r ·z′′| ≥ ε′/(100
√
N). This

proves Lemma 5.

B. PROOF OF THEOREM 3
Let us first define the ‘smooth’ version of the bipartite

label cover problem.

Definition 7. An instance of
SmoothLabelCoverBipartite(k,m, T ) consists of a bi-
partite graph G(U, V,E), where the vertices in U have the
same degree, and a set of projections πvu : [k] 7→ [m] for
all {u, v} ∈ E such that u ∈ U, v ∈ V . A labeling σ to the
vertices in G satisfies and edge e = {u, v} s.t. u ∈ U, v ∈ V
iff πvu(σ(v)) = σ(u). Moreover, for any vertex v ∈ V for
any i, j ∈ [k], i 6= j,

Pr
e={u,v}∈E

[πvu(i) = πvu(j)] ≤ 1

T
, (18)

where the probability is taken over a random edge incident
on v.

The following theorem was proved in [16], using the PCP
Theorem [2, 3] and Raz’s Parallel Repetition Theorem [22].

Theorem 13. For any constant δ > 0, for any constant
T > 0, there exist k and m such that given an instance L′ of
SmoothLabelCoverBipartite(k,m, T ) it is NP-hard to
distinguish between the following two cases,
YES Case: There is a labeling to the vertices of L′ that
satisfies all the edges.
NO Case: No labeling to the vertices of L′ satisfies more
than δ fraction of the edges.

The construction of an instance L of
SmoothLabelCover(t, µ, ν, k,m) is as follows. We start
with an instance L′ of
SmoothLabelCoverBipartite(k,m, T ) where we will fix
T later. The vertex set of L is the V side of L′. An edge
of L is constructed as follows: select a vertex u from U and
for every two neighbors v1 and v2 of u in L′, add an edge e
between them in L. Set πe,v1 = πv1u and πe,v2 = πv2u in E.
Let E(u) be the set of such edges added in L corresponding
to a vertex u ∈ U . Note that we are constructing a multi-
graph, since two vertices v1 and v2 in V might share two
different neighbors in U , in which case there will be mul-
tiple edges between v1 and v2 in L. Clearly the sets E(u)
for u ∈ U are a partition of edges in L, and since U side
is regular, the sets E(u) are of equal size. Essentially, we
are adding a clique of edges E(u) corresponding to u on its
neighborhood N(u) ⊆ V for every u ∈ U . Let v be a vertex
in V and let S ⊆ [k] be a set of size t, then applying equation
(18) to all pairs in S and taking union bound, we have,

Pr
e:v∈e

[∃x, y ∈ S, x 6= y : πe,v(x) = πe,v(y)] ≤ t2

T

where the probability is over the edges incident on v in L.
Note that we have used the fact the vertices in U have the
same degree. Now, taking T to be large enough, we can
reduce this probability to at most µ. To verify the second
property, let V ′ be a subset of V such that |V ′| = ξ|V |,
for some ξ > 0. Now, consider a vertex u in U , and let
pu be the probability that a random neighbor of u falls in
V ′. From the proof of Theorem 13 one can see that ver-
tices on U side have the same degree, say d which can be
increased to any arbitrary constant by parallel repetition.
Therefore, Eu[pu] = ξ. Moreover, the fraction of edges in L
that lies inside V ′ is the probability for a random u ∈ U ,



a random pair of its neighbors lies in V ′. For a particular
u this is p2

u − 1/d, where 1/d is the probability of select-
ing the same vertex twice out of d neighbors of u. Hence,
we have that the fraction of edges induced by V ′ in L is
Eu[p2

u − 1/d] ≥ (Eu[pu])2 − 1/d = ξ2 − 1/d. This fraction

is at least ξ2/2 if ξ ≥
√

2
d
, and so we are done by taking

ν =
√

2
d

which can be made arbitrarily small by taking d to

be large enough.

Now, if L′ was a YES instance, then there is a labeling
σ to vertices U ∪ V that satisfies all the edges of L′. This
implies,

πv1u(σ(v1)) = σ(u) = πv2u(σ(u)),

for all edges e1 = {u, v1}, e2 = {u, v2} of L′, u ∈ U, v1, v2 ∈
N(u) ⊆ V , where N(u) is the neighborhood of u ∈ U in
L′. Consider the edge e ∈ E(u) between v1 and v2 in L.
Clearly, πe,v1(σ(v1)) = πe,v2(σ(v2)). Therefore, the labeling
σ restricted to V satisfies all the edges of L.

Now consider a labeling σ′ to V that satisfies ε fraction
of the edges in L. Consider any vertex u ∈ U . For j ∈
[m], let Sju ⊆ N(u) the set of vertices v ∈ N(u) such that
πvu(σ′(v)) = j. It can be seen that the sets Sju (j ∈ [m])
form a partition of N(u) and the disjoint union of edges
(corresponding to u) induced by each Sju in E(u) is exactly
the subset of edges of E(u) that are satisfied by σ′. Let
lu = argmaxj |Sju| for each u ∈ U . Observe that seen that
any subset S of N(u) containing c (c < 1) fraction of vertices
of N(u) induces in E(u) at most c2 fraction of the total edges
of E(u). Suppose σ′ satisfies εu fraction of the edges of E(u),
then a simple argument shows that Sluu must contain at least
εu fraction of vertices in N(u). Now σ′ satisfies ε fraction
of all the edges of L, and since the U side is regular in L′,
we have that Eu[|Sluu |/|N(u)|] ≥ Eu[εu] ≥ ε. Therefore, by
extending the labeling σ′ to U by setting σ′(u) = lu for
u ∈ U , we can satisfy the edges of L′ between vertices of
Sluu and u for all u ∈ U . This would satisfy ε fraction of the
edges in L′. So, if the instance of L′ is a NO instance with
soundness η then there is no labeling to the vertices of L
which satisfies more than η fraction of the edges of L. This
completes the proof of Theorem 3.


