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Abstract

We construct integrality gap instances for SDP relaxation of the MAXIMUM CUT and the SPARSEST

CUT problems. If the triangle inequality constraints are added to the SDP, then the SDP vectors naturally
define ann-point negative type metric wheren is the number of vertices in the problem instance. Our
gap-instances satisfy a stronger constraint that every sub-metric ont = O((log log log n)

1
6 ) points is

isometrically embeddable intò1. The local`1-embeddability constraints are implied when the basic
SDP relaxation is augmented witht rounds of the Sherali-Adams LP-relaxation.

For the MAXIMUM CUT problem, we obtain an optimal gap ofα−1
GW − ε, whereαGW is the

Goemans-Williamson constant [GW95] andε > 0 is an arbitrarily small constant. For the SPARS-
EST CUT problem, we obtain a gap ofΩ((log log log n)

1
13 ). The latter result can be rephrased as a

construction of ann-point negative type metric such that everyt-point sub-metric is isometricallỳ1-
embeddable, but embedding the whole metric into`1 incurs distortionΩ((log log log n)

1
13 ).
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1 Introduction

For several well-studied problems such as MAXIMUM CUT and SPARSESTCUT, the best known approx-
imation algorithms are based on a Semi-definite Programming relaxation. For MAXIMUM CUT, the basic
SDP relaxation suffices to achieve the best-known approximation guarantee whereas for the SPARSEST

CUT problem, adding additional constraints called thetriangle-inequality constraintsprovably improves
the approximation guarantee. Once these constraints are added, the SDP vectors naturally define a so-called
negative type (or squared-`2) metric, and such metrics can be embeddedwell into the class of̀ 1 metrics.
After the `1-embedding is carried out, it is straightforward to output a good cut sincen-point `1 metrics
are precisely the convex combinations ofcut-metrics. In general, it is a worthwhile (and of great current
interest) goal to investigate whether stronger LP/SDP relaxations help, by adding (say polynomially many)
natural constraints that an integral solution must satisfy. One natural family of constraints is to require that
the negative type metric defined by the SDP vectors has an additional property that every sub-metric ont
points embeds isometrically intò1. This certainly makes sense for the SPARSESTCUT problem since we
would like the metric to be as close to`1 as possible. The local`1-embeddability condition can be enforced
by addingnO(t) LP-constraints and requiring that the LP solution isconsistentwith the SDP vectors. Con-
cretely, it suffices to add all LP constraints generated byt rounds of the Sherali-Adams LP hierarchy. In
this paper, we give evidence that this approach is unlikely to yieldgoodapproximations. Specifically, we
construct integrality gap instances for the SDP relaxation augmented witht rounds of the Sherali-Adams LP
hierarchy. Let us first describe such a relaxation.

SDP Augmented with Sherali-Adams LP

For a cut-problem such as MAXIMUM CUT, t-rounds of the Sherali-Adams LP hierarchy (orO(t)-rounds
if a somewhat different formulation is used, see [dlVKM07]) amount to the following: on a graphG(V,E),
for every subsetS of up tot vertices, there is a distributionD(S) on {−1, 1}S , thought of as a distribution
over cuts onS. The distributions{D(S)}S⊆V,|S|≤t are mutually consistent in the sense that ifT ⊆ S ⊆
V, |S| ≤ t, thenD(S)|T = D(T ), i.e. the marginal ofD(S) on the subsetT is exactly equal toD(T ).
The value of such a solution is average over all edges(u, v) ∈ E, of the probabilitypu,v that u andv
are separated by a random cut on the setS = {u, v} sampled according to the distributionD(S). On the
other hand, a basic SDP relaxation (one used by Goemans and Williamson [GW95]) amounts to assigning
a unit vectorwu for every vertexu ∈ V and the value of the solution is average over edges(u, v) ∈ E,
of the quantity1−〈wu,wv〉

2 . We say that the SDP solution is consistent with the Sherali-Adams solution if

∀u, v ∈ V, pu,v = 1−〈wu,wv〉
2 . Finally, a(c, s)-integrality gap (orc/s-gap if concerned only with the ratio)

for a LP/SDP relaxation is a graph along with a LP/SDP solution such that the relaxation has value at leastc
whereas the true (integral) optimum, i.e. the relative size of the maximum cut, is at mosts. As is standard,
existence of an integrality gap instance is taken as evidence that an algorithm based on such relaxation
cannot yield an approximation guarantee better thanc/s.

MAXIMUM CUT

For the MAXIMUM CUT problem, a break-through result of Goemans and Williamson [GW95] showed that
the integrality gap of the basic SDP relaxation is at mostα−1

GW whereαGW ≈ 0.878 is the optimum of a
certain trigonometric function. Feige and Schechtman [FS02] gave a matching integrality gap instance with
gapα−1

GW − ε. Khot and Vishnoi [KV05] showed that even after adding the triangle inequality constraints,
the integrality gap is still lower bounded byα−1

GW − ε. This result is quite involved and especially, the
proof that the triangle inequality constraints hold, is by brute-force with little intuitive explanation. In an
incomparable result, Charikar, Makarychev, and Makarychev [CMM09] gave(1− ε, 1

2 + ε)-integrality gap
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for the Sherali-Adams hierarchy even withnc(ε) rounds. However, Goemans and Williamson showed that
for the basic SDP relaxation, the gap cannot be stronger than(1−ε, 1−Ω(

√
ε)) and thus the Sherali-Adams

relaxation is qualitatively different from the SDP relaxation. This suggests a natural question: what is the
integrality gap if we combine the SDP witht rounds of the Sherali-Adams LP hierarchy, as in the previous
section, for some large constant or super-constantt? We resolve this question in this paper:

Theorem (Informal). Let ε > 0 be an arbitrarily small constant. For theMAXIMUM CUT problem on a
graph ofn vertices, the SDP relaxation augmented withO((log log log n)

1
6 ) rounds of Sherali-Adams LP

hierarchy has an integrality gap at leastα−1
GW − ε.

Consider the distanced(u, v) := ‖wu −wv‖2 defined on the set of vertices by the SDP vector solution
{wu}u∈V . An easy and well-known observation is that (see the last paragraph in Section 3.1) if the vector
solution is consistent witht rounds of Sherali-Adams solution, then for any setS ⊆ V, |S| ≤ t, the space
(S, d(·, ·)) embeds isometrically intò1. In particular, the distanced(·, ·) satisfies triangle inequality. As we
mentioned, in [KV05], the proof that the triangle inequalities hold is very technical. On the other hand, our
construction, though not necessarily simpler, is quite intuitive and there is a reasonable explanation why it
works. Our construction does use techniques from [KV05].

SPARSESTCUT

For the (uniform) SPARSESTCUT problem onn-vertex graphs, the basic SDP relaxation is very poor and
has an integrality gap ofΩ(n). In a recent break-through, Arora, Rao, and Vazirani [ARV04] showed that
the gap improves toO(

√
log n) after adding the triangle inequality constraints (i.e. the distanced(·, ·) is

required to be a metric). Arora, Lee, and Naor [ALN08] proved essentially the same upper bound even for
the more general non-uniform SPARSESTCUT problem. In fact, it had been conjectured earlier by Goemans
and Linial that the integrality gap for non-uniform SPARSESTCUT problem is at most a universal constant.
This is equivalent to a conjecture thatn-point negative type metrics embed into`1 with constant distor-
tion. Khot and Vishnoi [KV05] disproved the conjecture by constructing ann-point negative type metric
with `1-distortion at least(log log n)Ω(1). The lower bound was subsequently improved toΩ(log log n) by
Krauthgamer and Rabani [KR06], andΩ(log log n) for the uniform version by Devanuret al. [DKSV06].
Lee and Naor [LN06] proposed a different counter-example to the Goemans-Linial conjecture, and the works
of Cheeger, Kleiner, and Naor [CK06a, CK06b, CKN09] showed that this counter-example gives a further
improved lower bound of(log n)Ω(1) (the upper bound is̃O(

√
log n) as mentioned before).

In light of the extensive research on the SPARSEST CUT integrality gap, it is natural to investigate
whether the integrality gap becomes a constant if we require the negative type metricd(·, ·) to have the
property that every sub-metric ont points embeds isometrically intò1. We provide a negative answer:

Theorem (Informal). For theSPARSESTCUT problem on a graph ofn vertices, the SDP relaxation aug-
mented withO((log log log n)

1
6 ) rounds of Sherali-Adams has an integrality gap at leastΩ((log log log n)

1
13 ).

Also, there is ann-point negative type metric such that every sub-metric onO((log log log n)
1
6 ) points is

isometrically`1-embeddable, but embedding the whole metric into`1 incurs distortionΩ((log log log n)
1
13 ).

We note that in an incomparable result, Charikar, Makarychev, and Makarychev [CMM09] gave inte-

grality gap ofΩ
(√

logn
log t+log logn

)
for t rounds of the Sherali-Adams heirarchy (without the SDP). This

amounts to aǹ1 lower bound for (general, not negative-type) metrics such that any sub-metric ont points
is isometricallỳ 1-embeddable.
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Inapproximability Results via the Unique Games Conjecture

All the results mentioned so far are intimately connected with the Unique Games Conjecture of [Kho02].
The conjecture states that approximating the UNIQUE GAMES problem (see Definition 3) is NP-hard and
is proposed as an avenue towards proving strong inapproximability results for many NP-hard problems.
Indeed, assuming the conjecture, Khotet al. [KKMO07] proved that it is NP-hard to approximate the MAX -
IMUM CUT problem within any factor strictly less thanα−1

GW . This means that, assuming the UGC and that
P 6= NP, any LP/SDP relaxation for MAXIMUM CUT with polynomially many constraints, must have inte-
grality gap arbitrarily close toαGW . Thus integrality gap instances for potentially more and more powerful
LP/SDP relaxations give more and more evidence towards the truth of the UGC.

[KV05] used this connection in the reverse direction to actually construct integrality gap instances for
cut-problems. They (and independently Chawlaet al. [CKK+06]) gave areduction from the UNIQUE

GAMES problem to SPARSEST CUT and showed that if the UGC is true, then SPARSEST CUT has no
constant approximation and hence Goemans-Linial conjecture must be false. This observation led [KV05]
to a construction of an integrality gap instance for the UNIQUE GAMES problem (see the SDP in Figure 1)
and then theytranslatedthis instance into an integrality gap instance for SPARSESTCUT via the reduction
alluded to before. A nice feature of the reduction is that it allows a translation of the SDP solution as well,
i.e. starting with a vector solution for the UNIQUE GAMES SDP, one can construct a vector solution for
SPARSESTCUT SDP in a natural way. However an unsatisfying feature of [KV05] is that there is no intu-
itive reason why the SPARSESTCUT vector solution obeys triangle inequalities. As we said, we are able to
(at least partially) fix this, though following the same high-level methodology.

We now explain how our result fits with Raghavendra’s recent result [Rag08]. Raghavendra shows that
for everyconstraint satisfaction problem, there is a certain generic relaxation such that, any integrality gap
instance for this relaxation with gapα, can be translated into a UGC based hardness result with the hardness
factor same asα. The relaxation he uses is exactly the combination of a basic SDP and a constant number
of rounds of the Sherali-Adams LP (the number of rounds is at mostO(k + q) for a k-ary CSP overq-ary
alphabet)! An implication of his result is that (assuming UGC and that P6= NP) adding more constraints
to the generic relaxation does not help. We believe that the results in our paper can be generalized to
arbitrary CSPs though we haven’t attempted this so as to keep the presentation readable. If so, it would
partially confirm Raghavendra’s implication, namely that adding more Sherali-Adams rounds to the generic
relaxation does not help.

Other LP and SDP Hierarchies

Finally, a few words about other LP and SDP hierarchies are in order. Recent works have obtained integrality
gap results for many different problems (cut problems, vertex cover, independent set, 3SAT etc.) for LP
and/or SDP relaxations in different hierarchies, i.e. Lovász-Schrijver, Sherali-Adams, and Lasserre. A full
overview of these results is beyond the scope of this paper and we do not attempt it here. We would like
to mention however that the Lasserre hierarchy is the most powerful one and it remains a challenging open
problem to prove Lasserre integrality gaps. At-round Lasserre includes, for example, the basic SDP as well
ast rounds of Sherali-Adams LP. It is conceivable that the techniques in our paper could be applied towards
obtaining strong Lasserre integrality gaps.

2 Overview of Our Construction

The constructions for the MAXIMUM CUT and the SPARSESTCUT integrality gaps are very similar (one
only needs to change a certainperturbation parameter) and therefore, for the sake of exposition we shall
focus only the MAXIMUM CUT integrality gap.
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High level strategy

Our construction relies in large part on the work of Khot and Vishnoi [KV05] who gave SDP integrality
gap examples for UNIQUE GAMES and cut-problems including MAXIMUM CUT. Their overall approach
was to follow the reduction from UNIQUE GAMES to the target problem (say) MAXIMUM CUT. They first
construct an integrality gap example for the UNIQUE GAMES SDP, i.e. an instance with low optimum (i.e.
no good labeling) and a vector solution with high objective value. Using the reduction from [KKMO07],
they convert the instance of UNIQUE GAMES with low optimum to an instance of MAXIMUM CUT, also
with low optimum. The same reduction also transforms the vector solution for the UNIQUE GAMES SDP
into a vector solution for the MAXIMUM CUT SDP. The transformation ensures that the MAXIMUM CUT

SDP solution has a high objective value, thereby providing an integrality gap. In this work, we observe
that there is also a natural way to construct agood solution to the Sherali-Adams LP relaxation for the
UNIQUE GAMES instance constructed in [KV05]. This solution can then be transformed into one for the
Sherali-Adams LP relaxation for the MAXIMUM CUT instance, via the same reduction as before. Again, the
transformation ensures that the objective value of the Sherali-Adams solution remains high. Moreover, for
any set of two vertices, the Sherali-Adams solution isalmostconsistent with the SDP vector solution. We
thenmassagethese solutions so that they are exactly consistent, yielding the integrality gap for MAXIMUM

CUT SDP augmented with super-constant rounds of Sherali-Adams LP. The next few paragraphs give an
informal description of the construction.

Sherali-Adams solution (labeling) to Unique Games instance

We start with the UNIQUE GAMES instanceU constructed by Khot and Vishnoi [KV05]. LetG(V,E) be
its constraint graph and[N ] be the label set. The first step is to construct Sherali-Adams solution forU .
Specifically, we construct for every setU ⊆ V, |U | ≤ t, a distributionD(U) over labelingsσ : U 7→ [N ]
such that:

• The distributions are mutually consistent, i.e. for anyW ⊆ U ⊆ V, |U | ≤ t,D(U)|W = D(W ).

• The objective value of the solution is high, i.e. if(u, v) ∈ E is a UNIQUE GAMES constraint, then a
random labelingσ : {u, v} 7→ [N ] fromD({u, v}) satisfies the constraint with probability close to1.

Towards this end, we look at the [KV05] example closely, and observe that one can define a metricρ(·, ·)
on the vertex setV such that any two vertices with an edge/constraint between them are very close w.r.t.ρ.
Moreover for any setU ⊆ V, |U | ≤ t that has low diameter w.r.t.ρ, it is possible to assign a randomized
labelingσ : U 7→ [N ] that satisfies all the constraints insideU . The labeling has a very strong consistency
property that we do not describe here. This property ensures that for any subsetW ⊆ U (it also has a
low diameter), the randomized labelingτ : W 7→ [N ] is same as(σ : U 7→ [N ])|W in distribution. In
other words, we construct mutually consistent Sherali-Adams distributionsD(U) for all setsU having low
ρ-diameter.

However, the Sherali-Adams relaxation requires us to define a randomized labelingD(U) for everyset
of size at mostt. Here is a natural idea: for an arbitrary setU , partition it (possibly in a randomized way)
into sets oflow ρ-diameter (call these clusters), and then label each cluster as earlier. Such partitioning
schemes are well-known in the literature on metric embeddings. For us, the issue however is the consistency
between sets. ForW ⊆ U , we desire that the partition ofW on its own is same as partition ofW induced
by a partition ofU (in distribution if the partitioning scheme is randomized). At this point, we observe
that the metricρ can be chosen to be an`2 metric on points of a unit sphere. The sphere has unrestricted
dimension, but if look only at a setU ⊆ V, |U | ≤ t, thenU can be thought of as embedded onto(t − 1)-
dimensional unit sphereSt−1 via a random orthogonal transformation. Now we partitionSt−1 into clusters
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with low diameter using a well-known partitioning scheme and that automatically gives a partition ofU into
low diameter clusters. Since the partition ofU depends only on its̀2 geometry, it follows that ifW ⊆ U ,
then partition ofW is consistent in distribution with that induced from a partition ofU !

A somewhat magical part is coming up with the`2 metricρ. It turns out that the metric can be constructed
from the SDP solution to the Unique Games instance. The solution consists (up to a normalization) of
an orthonormal tuple{Tu,j}j∈[N ] for every vertexu ∈ V . Roughly speaking, desired metricρ should
capture the closeness between these tuples. Defining a single unit vectorTu from the tuple byTu :=

1√
N

∑
j∈[N ] T

⊗4
u,j , the`2 metric‖Tu −Tv‖ captures the closeness between tuples. This is the metricρ that

we desire.

Sherali-Adams solution toMAXIMUM CUT

It is quite straightforward to translate thet-round Sherali-Adams solution for the UNIQUE GAMES instance
U into a t-round Sherali-Adams solution for the MAXIMUM CUT instanceI. In the reduction of [KV05,
KKMO07], a UNIQUE GAMES vertex is replaced by aN -dimensional boolean hypercube where theN
labels correspond to theN dimensions of the hypercube. Roughly speaking, the Sherali-Adams solution
to UNIQUE GAMES instance defines a labeling to its vertices. Each label corresponds to a dimension of a
hypercube and the hypercube can be cut along that dimension. This yields Sherali-Adams solution for the
MAXIMUM CUT instance.

Approximately consistent SDP solution toMAXIMUM CUT

In a similar way to [KV05], the vector solution forU can be transformed into one forI via a certain tensoring
operation. We need to ensure that for the instanceI, the Sherali-Adams solution at the second level and
the SDP vector solution are consistent, at least approximately. Unfortunately, we do not know whether this
is true. We get around this problem in the following manner (which is possibly another place where some
magic happens):

The Sherali-Adams solution for the UNIQUE GAMES instance (and therefore the MAXIMUM CUT in-
stance) is parameterized byr, that specifies howlow the diameter of the clusters is. On the other hand,
the SDP solution for MAXIMUM CUT instance is parameterized by an integers, that specifies howlarge a
tensor power is used. We appropriately choose a large number of pairs{(ri, si)}∆i=1. For every choice of
index i, we have a Sherali-Adams solution and the SDP solution parameterized by the diameter parameter
ri and the tensor-power parametersi. Finally, we define overall Sherali-Adams and SDP solutions to be the
combinationsof ith solutions fori ∈ {1, . . . ,∆}. The crux of our argument is to show that for all but two
values ofi ∈ [∆], the ith Sherali-Adams and SDP solutions are almost consistent. Choosing∆ large, we
see that the overall Sherali-Adams and SDP solutions are almost (i.e. approximately) consistent.

Correction step

Finally we massage the Sherali-Adams and the SDP solutions for MAXIMUM CUT and ensure that the two
are perfectly consistent with each other. The change in the LP/SDP objective value is negligible.

Organization of the paper

In Section 3, we formally define the problems UNIQUE GAMES, MAXIMUM CUT and SPARSESTCUT,
describe the relaxations we consider, and state our results. In Section A, we describe the construction of
local labelings to sets of UNIQUE GAMES vertices with low diameter under the appropriate metricρ. In
Section B, the MAXIMUM CUT instance is derived from UNIQUE GAMES instance via the same reduction
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as in [KV05]. Section C contains the construction of Sherali-Adams and SDP solutions to the MAXIMUM

CUT instance that are approximately consistent. In Section D the approximate solution is transformed to a
feasible one and the value of the integrality gap is computed. The construction for SPARSESTCUT is very
similar to the one for MAXIMUM CUT and we only sketch it in Section E.

3 Preliminaries

We first formally define the MAXIMUM CUT, SPARSESTCUT, and UNIQUE GAMES problems.

Definition 1. (MAXIMUM CUT) For a weighted graphG = (V,E) with non-negative weightswt(e) for
each edgee ∈ E, the goal is to find a cut that maximizes the weight of crossing edges, i.e. to maximize the
following objective function,

max
∅6=S⊆V

∑
e∈E(S,S)

wt(e).

Definition 2. (non-uniform SPARSESTCUT) Given a graphG = (V,E) with non-negative weightswt(e)
and demandsdem(e) for each edge, the goal is to find a cut to minimize the following,

min
∅6=S⊆V

∑
e∈E(S,S) wt(e)∑
e∈E(S,S) dem(e)

.

Definition 3. An instance ofUNIQUE GAMES U(G(V,E), [N ], {πe}e∈E) is a constraint satisfaction prob-
lem. For every edgee = (u, v) in the graph, there is a bijectionπe : [N ] 7→ [N ] on the label set[N ]. A
labelingσ : V 7→ [N ] satisfies an edgee = (u, v) ∈ E iff πe(σ(u)) = σ(v). The goal is to find a labeling
that satisfies maximum fraction of edges.

The Unique Games Conjecture of Khot [Kho02] states the following:

Conjecture 1. For arbitrarily small constantsε, δ > 0, there is a positive integerN = N(ε, δ) such
that, given an instanceU of UNIQUE GAMES with label set[N ], it is NP-hard to distinguish between the
following two cases:

YES Case: There is a labeling to the vertices ofU that satisfies at least1− ε fraction of the edges.

NO Case: There is no labeling that satisfies evenδ fraction of the edges ofU .

LetU be the instance as described in Definition 3. Figure 1 gives a natural SDP relaxationSDP-UG. The
relaxation is over the vector variablesxu,i for every vertexu of the graphG and labeli ∈ [N ]. Regarding
the integrality gap of this relaxation, Khot and Vishnoi [KV05] proved the following Theorem. We will
make use of their gap example.

Theorem 2. There is aUNIQUE GAMES instanceUη(G(V,E), [N ], {πe}e∈E) whereη > 0 is a parameter,
such that any labeling toUη satisfies at most1Nη fraction of the edges, whereas there exists a solution to the
relaxationSDP-UGwith an objective value of at least1− 4η.

3.1 Relaxations forMAXIMUM CUT and SPARSESTCUT

The relaxation we consider for the MAXIMUM CUT and the SPARSESTCUT problems is a combination of
a basic SDP andt rounds of the Sherali-Adams LP hierarchy. LetG = (V,E,wt) be a weighted graph.

The relaxation for the MAXIMUM CUT problem, which we denote bySDP-MC(t), is given in Figure
2. The SDP component consists of a unit vectorwu for every vertexu ∈ V . The LP component consists
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max
∑

e=(u,v)∈E

∑
i∈[N ]

〈
xu,i,xv,πe(i)

〉
Subject to,

∀u ∈ V
∑

i∈[N ] ‖xu,i‖2 = 1 (1)

∀u ∈ V , i, j ∈ [N ], i 6= j 〈xu,i,xu,j〉 = 0 (2)

∀u, v ∈ V , i, j ∈ [N ] 〈xu,i,xv,j〉 ≥ 0 (3)

Figure 1: RelaxationSDP-UGfor UNIQUE GAMES.

of, for every setS ⊆ V, |S| ≤ t, a distributionD(S) over{−1, 1}-assignments toS. The distribution is
specified by the probabilities{xS,σ | σ ∈ {−1, 1}S} and it can be thought of as a distribution on cuts of
S. We ensure the consistency between any setsT ⊆ S, |S| ≤ t, i.e. the distribution of cuts onT is same
as the one induced by a distribution of cuts onS. Finally, we ensure that the SDP solution is consistent
with the LP solution for every setS = {u, v} of size two. Specifically, letyu andyv be the marginals
of the distributionD(S) on {−1, 1}S onto the co-ordinatesu andv respectively. Constraint (4) states the
consistency requirement:

〈wu,wv〉 = ED(S)[yuyv].

For the SPARSESTCUT problem we have an additional parameterdem(e) for each edgee in the graph.
In this case the objective function is the following.

min

∑
e={u,v}∈E wt(e)

(
1−〈wu,wv〉

2

)
∑

e={u,v}∈E dem(e)
(

1−〈wu,wv〉
2

)
We normalize the denominator to1 and add this as a constraint. Figure 3 gives the relaxationSDP-

SC(t) for the SPARSESTCUT problem.

Local `1-Embeddability: We observe that Constraints (1)-(4) imply that the distance functiond(u, v) :=
‖wu−wv‖2 defines a metric such that any sub-metric on at mostt points is isometrically embeddable into`1.
Indeed, fix any setS ⊆ V, |S| ≤ t. Constraint (4) implies for any pairu, v ∈ S, 〈wu,wv〉 = ED(S)[yuyv],
whereyu is the marginal of the distributionD(S) ontou. Thus the mappingu 7→ yu gives the isometric
`1-embedding of the sub-metric(S, d(·, ·)).

3.2 Our Results

We prove the following two theorems about the integrality gaps of the relaxationsSDP-MC(t) andSDP-
SC(t). The first theorem is proved in Sections A through D, whereas for the proof of the second theorem,
we give a brief sketch in Section E.
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max
∑

e={u,v}∈E

wt(e)
1− 〈wu,wv〉

2

Subject to,

∀u ∈ V ‖u‖2 = 1 (1)

∀S ⊆ V, σ ∈ {−1, 1}S s.t. |S| ≤ t 0 ≤ xS,σ ≤ 1,
∑

σ∈{−1,1}S xS,σ = 1 (2)

∀T ⊆ S ⊆ V, |S| ≤ t, τ ∈ {−1, 1}T
∑

σ ∈ {−1, 1}S
σ|T = τ

xS,σ = xT,τ (3)

∀u, v ∈ V
∑

σ∈{−1,1}{u,v}
σ(u)σ(v) · x{u,v},σ = 〈wu,wv〉 (4)

Figure 2: RelaxationSDP-MC(t) for MAXIMUM CUT

Theorem 3. For all ε > 0, there is an instanceI of MAXIMUM CUT on (sufficiently large)n vertices, such
that for t = O((log log log n)

1
6 ),

FRAC(I)
OPT(I)

≥ α−1
GW − ε,

whereOPT(I) is the optimum value ofMAXIMUM CUT on I, FRAC(I) is the optimal objective value of

SDP-MC(t) onI, andαGW is the Goemans-Williamson constant, i.e.αGW = minρ∈[−1,1]
arccos(ρ)/π

(1−ρ)/2 .

Theorem 4. There is an instanceI of SPARSEST CUT on (sufficiently large)n vertices, such that for
t = O((log log log n)

1
6 ),

OPT(I)
FRAC(I)

≥ Ω((log log log n)
1
13 ),

whereOPT(I) is the optimum value ofSPARSESTCUT on the instanceI, FRAC(I) is the optimal objective
value ofSDP-SC(t) onI.
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min
∑

e={u,v}∈E

wt(e)
1− 〈wu,wv〉

2

Subject to,

∀u ∈ V ‖u‖2 = 1 (1)

∀S ⊆ V, σ ∈ {−1, 1}S s.t. |S| ≤ t 0 ≤ xS,σ ≤ 1,
∑

σ∈{−1,1}S xS,σ = 1 (2)

∀T ⊆ S ⊆ V, |S| ≤ t, τ ∈ {−1, 1}T
∑

σ ∈ {−1, 1}S
σ|T = τ

xS,σ = xT,τ (3)

∀u, v ∈ V
∑

σ∈{−1,1}{u,v}
σ(u)σ(v) · x{u,v},σ = 〈wu,wv〉 (4)

∑
e={u,v}∈E

dem(e)
(

1− 〈wu,wv〉
2

)
= 1 (5)

Figure 3: RelaxationSDP-SC(t) for SPARSESTCUT
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A UNIQUE GAMES Instance

In this section we state the relevant properties of the Unique Games instance and the corresponding SDP
solution constructed by Khot and Vishnoi [KV05]. For parametersη > 0 andN = 2m for somem ∈ Z+,
Khot and Vishnoi [KV05] construct the UNIQUE GAMES instanceUη(G(V,E), [N ], {πe}e∈E) where the
number of vertices|V | = 2N/N . 1 The instance has no good labeling, i.e. has low optimum.

Lemma 5. Any labeling to the vertices of theUNIQUE GAMES instanceUη(G(V,E), [N ], {πe}e∈E) satis-
fies at most 1

Nη fraction of the edges.

In construction of [KV05] the elements of[N ] are identified with the additive group(F[2]m,⊕). The
authors construct a vector solution that consists of unit vectorsTu,i for every vertexu ∈ V and labeli ∈ [N ].
These vectors (up to a normalization) form the solution to the UNIQUE GAMES SDP relxationSDP-UG. We
highlight the important properties of the SDP solution below:

Properties of the Unique Games SDP Solution

• (Orthonormality) ∀ u ∈ V, ∀ i 6= j ∈ [N ],

‖Tu,i‖ = 1, 〈Tu,i,Tu,j〉 = 0. (1)

• (Non-negativity) ∀ u, v ∈ V, ∀ i, j ∈ [N ],

〈Tu,i,Tv,j〉 ≥ 0. (2)

• (Symmetry) ∀ u, v ∈ V, ∀ i, j, k ∈ [N ],

〈Tu,i,Tv,j〉 = 〈Tu,k⊕i,Tv,k⊕j〉 (3)

where ‘⊕’ is the group operation on[N ] as described above.

• (High SDP Value)For every edgee = (v, w) ∈ E,

∀ i ∈ [N ],
〈
Tv,i,Tw,πe(i)

〉
≥ 1− 4η. (4)

In fact, there iske ∈ [N ] such that∀ i ∈ [N ], πe(i) = ke ⊕ i.

We now define for every vertexu ∈ V a unit vectorTu as follows (it is a unit vector due to orthonormality
condition (1)),

∀u ∈ V Tu :=
1√
N

∑
i∈[N ]

T⊗4
u,i . (5)

Our main idea is that the Euclidean distances between the vectors{Tu}u∈V are a measure of the ‘close-
ness’ between the orthonormal tuples{Tu,i | i ∈ [N ]}. Specifically:

Lemma 6. For everyu, v ∈ V ,

min
i,j∈[N ]

‖Tu,i −Tv,j‖ ≤ ‖Tu −Tv‖ ≤ 2 · min
i,j∈[N ]

‖Tu,i −Tv,j‖. (6)

1For the sake of simplicity, we have slightly altered the presentation from [KV05].
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Proof: Note that

1− 1
2
‖Tu −Tv‖2 = 〈Tu,Tv〉 =

〈
1√
N

∑
i∈[N ]

T⊗4
u,i ,

1√
N

∑
j∈[N ]

T⊗4
v,j

〉
=

1
N

∑
i∈[N ]

∑
j∈[N ]

〈Tu,i,Tv,j〉4
 .

Due to symmetry (i.e. condition (3)), the inner sum above is the same for every indexi ∈ [N ]. Therefore
fixing somei0 ∈ [N ],

1− 1
2
‖Tu −Tv‖2 =

∑
j∈[N ]

〈Tu,i0 ,Tv,j〉4 . (7)

Since{Tv,j}j∈[N ] is an orthonormal set (and using non-negativity condition (2)), we have∑
j∈[N ]

〈Tu,i0 ,Tv,j〉4 ≤ max
j∈[N ]

〈Tu,i0 ,Tv,j〉 = 1− 1
2

min
j∈[N ]

‖Tu,i0 −Tv,j‖2. (8)

Combining (7) and (8), we get the left inequality in (6). On the other hand,∑
j∈[N ]

〈Tu,i0 ,Tv,j〉4 ≥ max
j∈[N ]

〈Tu,i0 ,Tv,j〉4 =
(

1− 1
2

min
j∈[N ]

‖Tu,i0 −Tv,j‖2
)4

≥ 1− 2 min
j∈[N ]

‖Tu,i0 −Tv,j‖2. (9)

Combining (7) and (9), and using symmetry, we get the right inequality in (6).

A.1 Local Consistency

Lemma 7. Supposeu, v ∈ V are such that‖Tu −Tv‖ ≤ α ≤ 0.1. Then there is a uniqueku,v ∈ [N ] such
that

∀i ∈ [N ], ‖Tu,i −Tv,ku,v⊕i‖ ≤ α. (10)

Proof: Since‖Tu − Tv‖ ≤ α, by Lemma 6, there existi0, j0 ∈ [N ] such that‖Tu,i0 − Tv,j0‖ ≤ α.
Definingku,v = i0 ⊕ j0 and using symmetry, we satisfy the hypothesis of the lemma. For the uniqueness,
suppose thatku,v, k′u,v both satisfy the hypothesis of the lemma. Then for anyi,

‖Tv,ku,v⊕i −Tv,k′u,v⊕i‖ ≤ ‖Tv,ku,v⊕i −Tu,i‖+ ‖Tu,i −Tv,k′u,v⊕i‖ ≤ α+ α = 2α

Since{Tv,j | j ∈ [N ]} is an orthonormal set, the distance between any two distinct vectors in this set is
exactly

√
2. So one must haveku,v ⊕ i = k′u,v ⊕ i and henceku,v = k′u,v.

Definition 4. A set of verticesV ′ ⊆ V is called 0.1-local if ∀ u, v ∈ V ′, ‖Tu −Tu‖ ≤ 0.1.

Lemma 7 states that whenever two verticesu andv are close (in terms of the distance‖Tu−Tv‖), there
is a unique matchingi 7→ ku,v ⊕ i such that the orthonormal tuples{Tu,i | i ∈ [N ]} and{Tv,j | j ∈ [N ]}
are close via this matching. The next lemma shows that for a setV ′ that is0.1 local, the matchings induced
between every pair of vertices inV ′ are consistent with each other.

Lemma 8 (Local Consistency).Suppose a setV ′ is 0.1-local andu, v, w ∈ V ′. Letku,v, ku,w, kv,w ∈ [N ]
be the elements given by Lemma 7, i.e.∀i ∈ [N ],

‖Tu,i −Tv,ku,v⊕i‖ ≤ 0.1, ‖Tu,i −Tw,ku,w⊕i‖ ≤ 0.1, ‖Tv,i −Tw,kv,w⊕i‖ ≤ 0.1.

Thenkv,w = ku,v ⊕ ku,w.
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Proof: By triangle inequality,

‖Tv,i −Tw,ku,v⊕ku,w⊕i‖ ≤ ‖Tv,i −Tu,ku,v⊕i‖+ ‖Tu,ku,v⊕i −Tw,ku,v⊕ku,w⊕i‖ ≤ 0.1 + 0.1 = 0.2.

Since‖Tv,i −Tw,kv,w⊕i‖ ≤ 0.1, it follows that

‖Tw,kv,w⊕i −Tw,ku,v⊕ku,w⊕i‖ ≤ 0.3.

Now note that the set{Tw,j}j∈[N ] is orthonormal, so the distance between any two distinct vectors in this
set is exactly

√
2. Therefore one must havekv,w⊕ i = ku,v ⊕ ku,w⊕ i, and hencekv,w = ku,v ⊕ ku,w.

A.2 Construction of local labelings

Now we construct a (randomized) labelingLV ′ for any0.1-local setV ′ = {u1, . . . , u`} ⊆ V . Chooseu1 as
thepivotvertex. We pick the label ofu1 to be a randomi ∈ [N ] and let the label of every other vertex to be
themateof i via the induced matching betweenu1 and that vertex. Thanks to Lemma 8, the labelingLV ′

does not depend on the choice of the pivot vertex. Formally, the labelingLV ′ is obtained as:

• Pick one vertex fromV ′, sayu1.

• Choose the label ofu1 to be a random elementi ∈ [N ].

• For 2 ≤ p ≤ `, set the label ofup to bei⊕ ku1,up .

A.3 Construction of labelings to arbitrary size-t sets

Let t be the universal parameter denoting the number of levels of Sherali-Adams relaxation our solution
satisfies. We will now describe a procedure UG-LABEL which, given a parameterr ≤ 0.1 and a subset
U ⊆ V , |U | ≤ t, outputs a (randomized) labeling to the vertices ofU . Note thatU need not be0.1-local and
is completely arbitrary. The idea is to first partitionU into clusters such that each cluster is0.1-local, and
then each cluster is labeled according to (local) labeling procedure described in Section A.2. The algorithm
UG-LABEL outputs the partition ofU as well, along with a labeling toU .

The following Theorem can be inferred from [GKL03, Theorem 3.2] applied to the Euclidean unit
sphere.

Theorem 9 ([GKL03]). Let St−1 denote the(t − 1) dimensional unit sphere. For everyr > 0 there is a
randomized partitioñP (r) of St−1 into disjoint clusters such that,

1. For every clusterC̃ ∈ P̃ (r), C̃ ⊆ St−1, diam(C̃) ≤ r.

2. For any pair of pointsx, y ∈ St−1 such that‖x− y‖ = β ≤ r
4 ,

Pr
P̃ (r)

[
x andy fall into different clusters

]
≤ 100βt

r
.

Here is our randomized algorithm that outputs a labeling to an arbitrary setU ⊆ V of size at mostt,
along with its partition into0.1-local clusters.

Algorithm UG-LABEL (U, r), r ≤ 0.1.
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1. Embed the set of at mostt unit vectors{Tv | v ∈ U} isometrically into the(t− 1)-dimensional unit
sphereSt−1 via a random orthogonal transformation.

2. Let P̃ (r) be the partition ofSt−1 given by Theorem 9. This naturally induces a partitionP (r) of the
setU via the above embedding.

3. Since every cluster̃C ∈ P̃ (r) has diameter at most0.1, the corresponding clusterC ∈ P (r) in the
induced partition ofU is 0.1-local (C is possibly empty).

4. To every non-empty clusterC ∈ P,C ⊆ U , assign the labelingLC as in Section A.2.

Consistency between sets:For a parameterr ≤ 0.1, the algorithm UG-LABEL defines a distribution
DUG,r(U) over labelings to the vertices ofU , for every subsetU ⊆ V such that|U | ≤ t. From the algorithm
it is clear that the labeling toU depends only on the (geometric configuration of the) corresponding vectors
{Tu}u∈U . It follows that for any two setsW ⊆ U ⊆ V such that|U | ≤ t, DUG,r(U)|W = DUG,r(W ).
Therefore these distributions define a solution tot rounds of Sherali-Adams relaxation for UNIQUE GAMES.

B Construction of MAXIMUM CUT Instance

The MAXIMUM CUT instance is essentially the same as constructed in [KV05]. We describe it in brief. Let
ρ ∈ (−1, 0) be a parameter2 and denote the instance constructed asIρ(V ∗, E∗). We start with the UNIQUE

GAMES instanceUη(G(V,E), [N ], {πe}e∈E) and replace each vertexv ∈ V by a block of vertices(v,x)
wherex ∈ {−1, 1}N . Thus each block is anN -dimensional boolean hypercube. Letx ∈p {−1, 1}N denote
a random string chosen from thep-biased distribution, i.e. every co-ordinate ofx is chosen independently
to be−1 with probabilityp and1 with probability1− p.

For every pair of edgese = (v, w), e′ = (v, w′) ∈ E, there are (all possible) weighted edges between the
blocks(w, ·) and(w′, ·) in the instanceIρ(V ∗, E∗). The weight of an edgee∗ between(w,x) and(w′,y)
is defined as:

wt(e∗) := Pr
z∈1/2{−1,1}N

µ∈ 1−ρ
2
{−1,1}N

[
(x = z ◦ π−1

e ) ∧ (y = zµ ◦ π−1
e′ )
]
,

wherez ◦ π := (zπ(1), . . . , zπ(N)). The following theorem is proved in [KKMO07, KV05].

Theorem 10. For any constantsρ ∈ (−1, 0) andλ > 0, there is a constantc(ρ, λ) such that the following
holds: LetUη(G(V,E), [N ], {πe}e∈E) be an instance ofUNIQUE GAMES withOPT (Uη) ≤ c(ρ, λ), then
the corresponding instanceIρ as defined above satisfies the property that

OPT(Iρ) ≤
1
π

arccos ρ+ λ

whereOPT(Iρ) is the normalized value of the maximum cut.

C Construction of Approximate Solution A to SDP-MC(t)

In this section we will describe the construction of anapproximatesolution for the relaxationSDP-MC(t)
for the MAXIMUM CUT instanceIρ(V ∗, E∗). The parametert is a superconstant which we shall explicitly
define later. Our solution will satisfy all constraints ofSDP-MC(t) except for the Constraint(4) which will

2For the MAXIMUM CUT problem,ρ < 0 will be chosen so thatαGW := minρ∈[−1,1]
2·arccos(ρ)
π(1−ρ) is attained. For the SPARSEST

CUT problem,ρ = 1− δ will be close to1.
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be satisfied only approximately. More precisely, the solutionA has two componentsA = (DA(·), GA)
where for every setS ⊆ V ∗ of size at mostt,DA(S) is a distribution over{−1, 1}-assignments overS and
GA is an assignment of unit vectors toV ∗. The distributionsDA(S) satisfy the consistency property of the
Sherali-Adams relaxation, i.e. forT ⊆ S ⊆ V ∗, |S| ≤ t, we haveDA(S) |T= DA(T ). Moreover, the
vector solutionGA is approximately consistent with the Sherali-Adams solution at the second level, i.e. for
any two verticesa, b ∈ V ∗, if ya, yb are the marginals of the distributionDA({a, b}) on either co-ordinate,
thenE[yayb] ≈ 〈GA(a), GA(b)〉 .

We first describe the distributionsDA(S). This is done in two stages. In the first stage, for a parameter
r ≤ 0.1, we construct distributionsDA,r(S) and then in the second stage, we letDA(S) to be the average
of DA,ri(S) for appropriately chosen sequence of parameters{ri | i ∈ [∆]}. We will ensure that the
distributionsDA,ri(S) (and therefore their averageDA,r(S)) satisfy the consistency property of the Sherali-
Adams solution.

C.1 Construction of the Sherali-Adams solutionDA,r(·)

Fix a parameterr ≤ 0.1. For every setS ⊆ V ∗, |S| ≤ t, the distributionDA,r(S) is given by the following
algorithm (i.e. the algorithm outputs a{−1, 1}-assignment toS in a randomized manner):

1. LetU ⊆ V be defined asU := {v | (v,x) ∈ S} (recall thatV is the set of vertices of the Unique
Games instance from which the MAXIMUM CUT instance is derived). Clearly|U | ≤ t.

2. Run UG-LABEL(U, r) to obtain a random labelingσ : U 7→ [N ] and a partitionP = P (r) of U .

3. For every clusterC ∈ P choose a valueωC ∈ {−1, 1} at random uniformly and independently.

4. For every vertex(v,x) ∈ S such thatv ∈ C, assign it the valuex(σ(v)) · ωC .

Observe that the distributionsDA,r(·) satisfy the consistency property of the Sherali-Adams relaxation.
This is inherited from the consistency property of the UG-LABEL algorithm.

C.2 Construction of the Sherali-Adams solutionDA(·).

Let ∆ := t4 and fori ∈ [∆], define a decreasing sequence of radii:

ri = 2−it. (11)

For any setS ⊆ V ∗, |S| ≤ t, the following algorithm defines the distributionDA(S) over {−1, 1}-
assignments toS.

1. Choose a random indexi ∈ [∆].

2. Output a random{−1, 1}-assignment toS according to the distributionDA,ri(S).

C.3 Construction of vector solutionGA

Finally we construct the vector solutionGA and show that it is approximately consistent with the Sherali-
Adams solutionDA at the second level. Fori ∈ [∆], define an increasing sequence of integerssi as,

si = 8 · 22it. (12)

Roughly speaking, for everyi ∈ [∆], there will be a vector solutionGA,si parameterized by integersi,
that approximately agrees with the Sherali-Adams solutionDA,ri . However, as it turns out, this is not
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necessarily true foreveryi, but formosti ∈ [∆] (in fact for all but two values). The values ofi for which the
approximation fails may depend on the pair of vertices under consideration. We will then define the overall
vector solutionGA to be the combination (direct sum) of the solutionsGA,si for i ∈ ∆. SinceDA is an
average ofDA,ri , andDA,ri approximately agrees withGA,si for mosti ∈ [∆], it would follow thatDA
approximately agrees withGA.

Now we formally describe the construction. Let(u,x) ∈ V ∗ whereu ∈ V is a vertex of the UNIQUE

GAMES instance andx ∈ {−1, 1}N .

For everyi ∈ [∆] we define the following unit vector:

SolutionGA,si :

Gi
(u,x) :=

1√
N

∑
k∈[N ]

x(k) ·T⊗siu,k . (13)

Finally, we take direct sum of these vectors to construct the following unit vector:

SolutionGA :

G(u,x) :=
1√
∆

(
∆⊕
i=1

Gi
(u,x)

)
. (14)

The following is the main theorem showing that the vector solutionGA approximately agrees with the
Sherali-Adams solutionDA(·) at the second level.

Theorem 11. Let (u,x) and (v,y) be any two vertices ofV ∗ whereu, v ∈ V andx,y ∈ {−1, 1}N . Let
y(u,x) andy(v,y) be the marginals of the{−1, 1}-assignment to the pairS = {(u,x), (v,y)}, either under
the distributionDA(S) or under the distributionDA,ri(S) (it will be clear from the context). Then,∣∣∣EDA [y(u,x)y(v,y)

]
−
〈
G(u,x),G(v,y)

〉 ∣∣∣ ≤ 2 · 2−t/2 +
2
∆
. (15)

Proof: SinceDA(·) is an average ofDA,ri(·), we have

EDA
[
y(u,x)y(v,y)

]
= Ei∈[∆]

[
EDA,ri [y(u,x)y(v,y)]

]
. (16)

Similarly, since the vector (14) is (up to normalization) direct sum of vectors in (13),〈
G(u,x),G(v,y)

〉
= Ei∈[∆]

[〈
Gi

(u,x),G
i
(v,y)

〉]
. (17)

We want to show that the left hand sides of (16) and (17) are close. We will achieve this by showing that for
all but two values ofi ∈ [∆], after fixingi, the right hand sides of (16) and (17) are close, i.e. within2 ·2−t/2
of each other. Towards this end, letr0 =

√
2 and r∆+1 = 0, so that we have a decreasing sequence of radii

√
2 = r0 > r1 > . . . r∆ > r∆+1 = 0.

Let 0 ≤ p ≤ ∆ be the unique index such thatrp ≥ ‖Tu −Tv‖ ≥ rp+1. We will show that the right hand
sides of (16) and (17) are close except possibly fori = p, p+ 1.
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Case 1:p+ 2 ≤ i ≤ ∆.

In this case, we show that the right hand sides of (16) and (17) are essentially zero. First consider the right
hand side of (16). The procedure UG-LABEL with parameterri produces clusters with diameter at mostri
and therefore always placesu andv into different clusters since‖Tu − Tv‖ ≥ rp+1 > ri. Therefore, it
outputs labelings tou andv uniformly at random and independent of each other. Moreoever, for any cluster
C, the variableωC is uniformly distributed in{−1, 1}. Hence, in this casey(u,x) andy(v,y) are independent
uniform{−1, 1} random variables and therefore,

EDA,ri [y(u,x)y(v,y)] = 0. (18)

Now consider the right hand side of (17). We bound it bye−2t .

∣∣∣〈Gi
(u,x),G

i
(v,y)

〉∣∣∣ =

∣∣∣∣∣∣
〈

1√
N

∑
j∈[N ]

x(j) ·T⊗siu,j ,
1√
N

∑
`∈[N ]

y(`) ·T⊗siv,`

〉∣∣∣∣∣∣
≤ 1

N

∑
j∈[N ]

∑
`∈[N ]

〈Tu,j ,Tv,`〉si


By symmetry, the inner sum is the same for everyj ∈ [N ], so we may fix somej0 ∈ [N ]. Since{Tv,` | ` ∈
[N ]} is an orthomormal set

∑
`∈[N ]

〈Tu,j0 ,Tv,`〉si ≤ max
`∈[N ]

〈Tu,j0 ,Tv,`〉si−2 =
(

1− 1
2

min
`∈[N ]

‖Tu,j0 −Tv,`‖2
)si−2

.

The last term can be bounded (using Lemma 6),(
1− 1

8
‖Tu −Tv‖2

)si−2

≤
(

1− 1
8
r2
p+1

)sp+2−2

=
(

1− 1
8

2−2(p+1)t

)8·22(p+2)t−2

≤ e−2t .

Case 2:1 ≤ i ≤ p− 1.

This case is more subtle. In this case‖Tu − Tv‖ ≤ rp ≤ r2 < 0.1. By Lemma 7, there is a unique
k∗ = ku,v such that the orthonormal tuples{Tu,j | j ∈ [N ]} and{Tv,` | ` ∈ [N ]} are close via the
matchingj 7→ k∗ ⊕ j. In other words,

∀j ∈ [N ], ‖Tu,j −Tv,k∗⊕j‖ ≤ rp. (19)

We will show that the right hand sides of (16) and (17) are both close to1
N

∑
j∈[N ] x(j) · y(k∗ ⊕ j).

Towards this end, first consider the right hand side of (16). LetΦ be the event thatu andv are not
separated into two clusters in the procedure UG-LABEL({u, v}, ri). From Theorem 9 we have,

Pr[¬Φ] ≤ 100 · ‖Tu −Tv‖ · t
ri

≤ 100 · rp · t
rp−1

= 100 · 2−t · t ≤ 2−t/2. (20)

In the eventΦ, bothu andv lie in the same clusterC. The procedure UG-LABEL picksj ∈ [N ] uniformly
at random, assigns labelσ(u) = j and labelσ(v) = k∗ ⊕ j. In the construction ofDA,ri (see section C.1),
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the vertex(u,x) gets assignedx(σ(u)) ·ωC = x(j) ·ωC and the vertex(v,y) gets assignedy(σ(v)) ·ωC =
y(k∗ ⊕ j) · ωC . Therefore,

EDA,ri [y(u,x)y(v,y) | Φ] =
1
N

∑
j∈[N ]

x(j)y(k∗ ⊕ j) (21)

And using (20) we obtain,∣∣∣∣∣∣EDA,ri [y(u,x)y(v,y)]−
1
N

∑
j∈[N ]

x(j)y(k∗ ⊕ j)

∣∣∣∣∣∣ ≤ 2−t/2. (22)

Now consider the right hand side of (17).

〈
Gi

(u,x),G
i
(v,y)

〉
=

〈
1√
N

∑
j∈[N ]

x(j) ·T⊗siu,j ,
1√
N

∑
`∈[N ]

y(`) ·T⊗siv,`

〉

=

 1
N

∑
j∈[N ]

x(j)y(k∗ ⊕ j) 〈Tu,j ,Tv,k∗⊕j〉si
+

1
N

∑
` 6=k∗⊕j

x(j)y(`) 〈Tu,j ,Tv,`〉si .

We show that the second term is negligible and in the first term,〈Tu,j ,Tv,k∗⊕j〉si is essentially equal to

1. This would imply that
〈
Gi

(u,x),G
i
(v,y)

〉
is very close to1

N

∑
j∈[N ] x(j)y(k∗ ⊕ j) as desired. Indeed by

equation (19),

〈Tu,j ,Tv,k∗⊕j〉si =
(

1− 1
2
‖Tu,j −Tv,k∗⊕j‖2

)si
≥
(

1− 1
2
r2
p

)sp−1

=
(

1− 1
2

2−2pt

)8·22(p−1)t

≥ 1− 4 · 2−2t.

On the other hand, if̀ 6= k∗ ⊕ j, then

‖Tu,j −Tv,`‖ ≥ |Tv,k∗⊕j −Tv,`‖ − ‖Tv,k∗⊕j −Tu,j‖ ≥
√

2− rp ≥ 1,

and hence by non-negativity (condtition (2))0 ≤ 〈Tu,j ,Tv,`〉 ≤ 1
2 . This implies that∣∣∣∣∣∣ 1

N

∑
` 6=k∗⊕j

x(j)y(`) 〈Tu,j ,Tv,`〉si
∣∣∣∣∣∣ ≤ 1

N

∑
j∈[N ]

 ∑
` 6=k∗⊕j

〈Tu,j ,Tv,`〉si
 ,

and for everyj ∈ [N ], since{Tv,` | ` 6= k∗ ⊕ j} is an orthonormal set,

∑
` 6=k∗⊕j

〈Tu,j ,Tv,`〉si ≤ max
`6=k∗⊕j

〈Tu,j ,Tv,`〉si−2 ≤
(

1
2

)s1−2

≤ 2−2t .

Combining everything, we see that the right hand sides of (16) and (17) are within2 · 2−t/2 of each other.
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Completing the proof of Theorem 11

Now we can complete the proof of Theorem 11. We have shown that the right hand sides of (16) and (17)
are within2 · 2−t/2 of each other for alli ∈ {p+ 2, . . . ,∆} ∪ {1, . . . , p− 1}, i.e. for everyi ∈ [∆] except
possiblyi = p, p+ 1. Clearly, the expressions on (16) and (17) are within2 · 2−t/2 + 2

∆ of each other.

We have shown in this section an approximate solutionA to SDP-MC(t) on the instanceIρ. The solution
satisfies all constraints except Constraint(4) of the relaxation, which is only approximately satisfied, up to
an error of2 · 2−t/2 + 2

∆ that can be made sufficiently small with the choice oft,∆. In the next section we
show how to eliminate this error and obtain the final solution to the relaxation.

D Final solution F to SDP-MC(t)

This section describes the construction of our final feasible solutionF to SDP-MC(t). In the next subsec-
tion we first prove a crucial theorem which shows that given an approximate solution of a certain kind to
the relaxationSDP-MC(t), it is possible to derive from it a feasible solution to the relaxation with only a
negligible loss in the objective value.

D.1 Deriving a feasible solution from an approximate solution

The following is the generic theorem we shall require for our construction.

Theorem 12. Lett ∈ Z+ be any (large enough) parameter and letI(V I , EI) be an instance ofMAXIMUM

CUT. Suppose there is a (possibly infeasible) solutionA to the relaxationSDP-MC(t) whereA consists of
a collection of distributions{DA(S)}S⊆V I ,|S|≤t on {−1, 1}-assignments to sets of verticesS with size at
mostt, and a vector solutionGA consisting of unit vectors{Ga}a∈V I . Suppose that forT ⊆ S ⊆ V I ,
|S| ≤ t, the distributionsDA(S) andDA(T ) are consistent. Further, for any two verticesa, b ∈ V I , if ya
andyb are the marginals of the{−1, 1}-assignments to{a, b} given by the distributionDA({a, b}), then∣∣∣EDA [yayb]− 〈Ga,Gb〉

∣∣∣ ≤ 1
t2
. (23)

Then there exists a feasible solutionF to the relaxationSDP-MC(t), consisting of a collection of distribu-
tions{DF (S)}S⊆V I ,|S|≤t and a vector solutionHF of unit vectors{Ha}a∈V I such that for any two vertices
a, b ∈ V I ,

〈Ha,Hb〉 =
(

1−O
(

1
t

))
〈Ga,Gb〉 (24)

Proof: We start by defining a collection of distributionsDF (S).

Construction of DF (S): For every pair of distinct verticesa, b ∈ V I , we construct a “correcting” distri-
butionΓ{a,b} over{−1, 1}-assignments to the set{a, b}. We will explicitly define these distributions later.
We note for now that the marginals ofΓa,b on either co-ordinate is uniform.

Let S ⊆ V I be such that|S| ≤ t. The dsitributionDF (S) on{−1, 1}-assignments to the vertices ofS
is given by the following randomized procedure:

1. LetW := S ∪ {z1, . . . , zt−|S|} wherez1, . . . , zt−|S| are dummy vertices. Thus|W | = t.

2. From the setW , select uniformly at random a pair of distinct verticesI = {w1, w2}.

3. Using the distributionDA(S \ I), sample a{−1, 1}-assignmentγ to vertices ofS \ I.
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4. If I ∩ S = ∅, we are done.

5. If I ∩ S = {a}, then the vertexa is assigned a value from{−1, 1} uniformly at random.

6. If I ∩ S = {a, b}, then the assignment to set{a, b} is sampled from the distributionΓ{a,b}.

A case analysis shows that forT ⊆ S, |S| ≤ t, the distributionsDF (S) andDF (T ) are consistent. One uses
the fact that in Step (3), the assignmentγ is sampled fromDA(S \ I), and these distributions are mutually
consistent. Moreover, the marginals ofΓa,b are uniform. We skip a formal proof.

Before we define the corresponding vector solution we analyse the distributionsDF (S) corresponding
to sets of size two. This analysis will be useful later in the proof.

AnalyzingDF (S) for |S| = 2: LetS = {a, b} ⊆ V I . Letya andyb denote the marginals of the distribution
DF (S) (orDA(S) or ΓS depending on the context). ForJ ⊆ S, letEJ denote the event thatS ∩ I = J ,
whereI is as chosen in Step (2) of the construction ofDF (S). The following are easy to see:

Pr [E∅] = 1− 2t− 3(
t
2

) . (25)

Pr
[
E{a}

]
= Pr

[
E{b}

]
=
t− 2(
t
2

) . (26)

Pr [ES ] =
1(
t
2

) . (27)

We also have,

EDF (S) [yayb] = EDF (S) [yayb | E∅] · Pr [E∅] + EDF (S)

[
yayb | E{a}

]
· Pr

[
E{a}

]
+EDF (S)

[
yayb | E{b}

]
· Pr

[
E{b}

]
+ EDF (S) [yayb | ES ] · Pr [ES ] .

If the eventE{a} occurs thenya is chosen uniformly at random from{−1, 1} independent ofyb and therefore
EDF (S)[yayb | E{a}] = 0. Similarly, EDF (S)[yayb | E{b}] = 0. Moreover, given eventE∅, DF (S) is
identical toDA(S). Similarly, given the eventES ,DF (S) is identical toΓS . Therefore,

EDF (S)[yayb] =

(
1− 2t− 3(

t
2

) )
EDA(S)[yayb] +

1(
t
2

)EΓS [yayb]. (28)

Construction of vector solutionHF : We now construct the final vector solutionHF as follows.

1. Letζ := 1−
(

1− 2(2t−3)
t(t−1)

)
.

2. Construct a pairwise orthonormal set of vectors{ha}a∈V I such that for every vertexa ∈ V I , the
vectorha is orthogonal to the set of vectors{Gb}b∈V I comprising the solutionGA.

3. In the vector solutionHF , for any vertexa ∈ V I , define the unit vector

Ha :=
(√

1− ζ
)

Ga +
(√

ζ
)

ha. (29)
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For any two verticesa, b ∈ V I , we have thatha ⊥ hb andha andhb are each orthogonal to bothGa

andGb. Therefore,

〈Ha,Hb〉 =
〈(√

1− ζ
)

Ga +
(√

ζ
)

ha,
(√

1− ζ
)

Gb +
(√

ζ
)

hb
〉

= (1− ζ) 〈Ga,Gb〉

=
(

1−O
(

1
t

))
〈Ga,Gb〉

which satisfies the desired condition of equation (24).

Finally, we show that there is a way to define the distributionsΓ{a,b} so that the solutionF satisfies the
Constraint(4) of the relaxationSDP-MC(t).

Lemma 13. For every two distinct verticesa, b ∈ V I , there is a distributionΓS (whereS = {a, b}) such
that,

〈Ha,Hb〉 = EDF (S)[yayb]. (30)

Proof: From the construction ofHF we have,

〈Ha,Hb〉 =
〈(√

1− ζ
)

Ga +
(√

ζ
)

ha,
(√

1− ζ
)

Gb +
(√

ζ
)

hb
〉

= (1− ζ) 〈Ga,Gb〉 . (31)

Equation (28) and substituting the value ofζ in it gives us,

EDF (S)[yayb] = (1− ζ)EDA(S)[yayb] +
1(
t
2

)EΓS [yayb].

Since we desire that equation (30) holds, it suffices to set

(1− ζ) 〈Ga,Gb〉 = (1− ζ)EDA(S)[yayb] +
1(
t
2

)EΓS [yayb], i.e.

EΓS [yayb] = (1− ζ)
(
t

2

)(
〈Ga,Gb〉 − EDA(S)[yayb]

)
.

Due to the bound (23), the right hand side above is in[−1, 1]. Therefore we can defineΓS appropriately,
with the additional property that its marginal on either co-ordinates is uniform. This completes the proof of
Lemma 13 as well as Theorem 12.

Applying the above Theorem to the (possibly infeasible) solutionA constructed in section C, we obtain
a feasible solutionF to the relaxationSDP-MC(t) for the instanceIρ of MAXIMUM CUT. The solution
F consists of a collection of distributions{DF (S)}S⊆V ∗,|S|≤t and a vector solutionHF with unit vectors
{H(u,x)}(u,x)∈V ∗ . The theorem guarantees that for any two vertices(u,x), (v,y) ∈ V ∗,

〈
H(u,x),H(v,y)

〉
=
(

1−O
(

1
t

))〈
G(u,x),G(v,y)

〉
. (32)
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D.2 Computation of the Integrality Gap

We start by setting the parametersη = (logN)−0.99 andt = (log logN)
1
6 . The optimum of the unique

games instance is at most1Nη = 2−(logN)0.01
. The size of the unique games instance is|V | = 2N/N

whereas the size of the max-cut instance isn := |V | · 2N = 22N/N . The value ofρ ∈ (−1, 0) is chosen so
thatα−1

GW := maxρ∈[−1,1]
π(1−ρ)

2·arccos(ρ) is attained.

We shall first show the following. Fix a vertexv ∈ V . Let e(v, w) ande′(v, w′) ∈ E(v) any two edges
incident onv. Let x ∈1/2 {−1, 1}N , andµ ∈ 1−ρ

2
{−1, 1}N . Then, with probability at least1− η,

〈
H(w,x◦π−1

e ),H(w′,xµ◦π−1
e′ )

〉
= ρ±O

(
1
t

)
(33)

Using Chernoff bound we can make the following observation.

Observation 14. The following event takes place with probability at least1− η,

Ei∈R[N ][µ(i)] ∈ [ρ− η, ρ+ η] .

Using theHigh SDP Valueproperty (condition (4)) of the UNIQUE GAMES SDP solution, we have that for
any` ∈ [N ],

〈Tv,`,Tw,ke⊕`〉 ≥ 1− 4η,
〈
Tv,`,Tw′,ke′⊕`

〉
≥ 1− 4η.

From the above and using the triangle inequality, we have,

‖Tw,ke⊕` −Tw′,ke′⊕`‖ ≤ 4
√

2η

Using theSymmetry property (condition (3)) the above can be restated as follows. For all` ∈ [N ],

‖Tw,` −Tw′,(ke⊕ke′ )⊕`‖ ≤ 4
√

2η. (34)

Combining the above with Lemma 6 we obtain,

‖Tw −Tw′‖ ≤ 8
√

2η. (35)

Combining equations (34) and (35) with Lemma 7 we obtainkw,w′ = ke ⊕ ke′ .

From our choice of the parameters
√
η � r∆ := 2−t

5
, and thus,

r∆ > ‖Tw −Tw′‖ ≥ r∆+1 = 0, (36)

whereri (i ∈ {0, . . . ,∆ + 1}) are as defined in Section C. Moreover, combining equation (36) with Case 2
of the proof of Theorem 11, we obtain that for all indicesi such that1 ≤ i ≤ ∆− 1,〈

Gi
w,x◦π−1

e
,Gi

w′,xµ◦π−1
e′

〉
=

1
N

∑
j∈[N ]

(
x ◦ π−1

e (j)
) (

xµ ◦ π−1
e′ (kw,w′ ⊕ j)

)
± 2−t

Sincekw,w′ = ke ⊕ ke′ , we can rewrite the above as,〈
Gi
w,x◦π−1

e
,Gi

w′,xµ◦π−1
e′

〉
=

1
N

∑
j∈[N ]

(
x ◦ π−1

e (ke ⊕ j)
) (

xµ ◦ π−1
e′ (ke′ ⊕ j)

)
± 2−t
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From theHigh SDP Valueproperty we have thatke(j) = πe(j) andke′(j) = πe′(j). Substituting in the
above equation we get that for all indices1 ≤ i ≤ ∆− 1,〈

Gi
w,x◦π−1

e
,Gi

w′,xµ◦π−1
e′

〉
=

1
N

∑
j∈[N ]

(
x ◦ π−1

e (πe(j))
) (

xµ ◦ π−1
e′ (πe′(j))

)
± 2−t

=
1
N

∑
j∈[N ]

x(j)xµ(j) ± 2−t

=
1
N

∑
j∈[N ]

µ(j) ± 2−t

Since the above holds for alli ∈ {1, . . . ,∆− 1}, by equation (17) we have,〈
Gw,x◦π−1

e
,Gw′,xµ◦π−1

e′

〉
=

1
N

∑
j∈[N ]

µ(j)±O
(

1
∆

+ 2−t
)

(37)

Combining the above with Observation 14, we obtain that with probability at least1− η,〈
Gw,x◦π−1

e
,Gw′,xµ◦π−1

e′

〉
= ρ±O

(
1
∆

)
, (38)

and from equation (32), 〈
Hw,x◦π−1

e
,Hw′,xµ◦π−1

e′

〉
= ρ±O

(
1
t

)
which proves the condition given by equation (33). Since equation (33) holds for allv, e = (v, w) and
e′ = (v, w′) this implies that the normalized objective value ofSDP-MC(t) onIρ is,

FRAC(Iρ) ≥ Ex,µ

1−
〈
H(w,x◦π−1

e ),H(w′,xµ◦π−1
e′ )

〉
2

 ≥ 1− ρ
2
−O

(
1
t

)
−O(η).

Applying Theorem 10, by choosing the optimum of the unique games instance2−(logN)0.01
low enough, we

see that the (normalized) value of the best cut inIρ is,

OPT(Iρ) ≤
1
π

arccos ρ+
ε

4
, (39)

whereε > 0 is the constant in Theorem 3. Therefore, the Integrality Gap ofSDP-MC(t) is,

FRAC(Iρ)
OPT(Iρ)

≥ π(1− ρ)
2 · arccos ρ

−O
(

1
t

)
−O(η)− ε

2
≥ α−1

GW − ε.

This proves Theorem 3 (note that1/t andη are sub-constant).

E Integrality gap for SPARSESTCUT

We give a brief overview of the construction of the integrality gap example for the SPARSESTCUT relaxation
SDP-SC(t). As in the construction of Khot and Vishnoi [KV05], we actually construct an integrality gap
example for a similar relaxation for the BALANCED SEPARATORproblem. For this the only change we need
to make to the construction for MAXIMUM CUT is the setting of the parameterρ. We choose setρ to be1−δ,
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whereδ = 1/t. It was shown in [KV05] that the instance of BALANCED SEPARATOR thus obtained has
an optimum ofΩ(δc) (any exponentc > 1

2 works, sayc = 7
13 ), provided that the soundness of the unique

games instance is at most2−O(1/δ2). On the other hand, the SDP value is at mostO(δ + 1/t) = O(δ).
This gives us an integrality gap ofΩ((1/δ)1−c) which, on substituting the value of the chosen parameters,
is Ω((log log log n)

1
13 ).

25


