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Abstract

We construct integrality gap instances for SDP relaxation of taaiMum CuUT and the $ARSEST
CuT problems. If the triangle inequality constraints are added to the SDP, then the SDP vectors naturally
define am-point negative type metric whereis the number of vertices in the problem instance. Our
gap-instances satisfy a stronger constraint that every sub-mettic-o®((log log log n)%) points is
isometrically embeddable intt. The localé;-embeddability constraints are implied when the basic
SDP relaxation is augmented witlmounds of the Sherali-Adams LP-relaxation.

For the Maximum CuUT problem, we obtain an optimal gap oa‘g;év — ¢, whereagw is the
Goemans-Williamson constant [GW95] aad> 0 is an arbitrarily small constant. For thee&Rs
EST CUT problem, we obtain a gap of)((logloglogn)). The latter result can be rephrased as a
construction of am-point negative type metric such that everpoint sub-metric is isometrically, -
embeddable, but embedding the whole metric ihtocurs distortiorf2((log log log 1) 7).



1 Introduction

For several well-studied problems such asxMvum CuT and SPARSESTCUT, the best known approx-
imation algorithms are based on a Semi-definite Programming relaxation. kKemm CuUT, the basic

SDP relaxation suffices to achieve the best-known approximation guarantee whereas foariSE S

CuT problem, adding additional constraints called thHangle-inequality constraintgrovably improves

the approximation guarantee. Once these constraints are added, the SDP vectors naturally define a so-called
negative type (or squareld) metric, and such metrics can be embeddedl into the class of; metrics.

After the /;-embedding is carried out, it is straightforward to output a good cut siRgeint /; metrics

are precisely the convex combinationsooft-metrics In general, it is a worthwhile (and of great current
interest) goal to investigate whether stronger LP/SDP relaxations help, by adding (say polynomially many)
natural constraints that an integral solution must satisfy. One natural family of constraints is to require that
the negative type metric defined by the SDP vectors has an additional property that every sub-nietric on
points embeds isometrically intG. This certainly makes sense for theARSESTCUT problem since we

would like the metric to be as close £p as possible. The locdl -embeddability condition can be enforced

by addingn®®) LP-constraints and requiring that the LP solutiomdmsistentvith the SDP vectors. Con-
cretely, it suffices to add all LP constraints generated bgunds of the Sherali-Adams LP hierarchy. In

this paper, we give evidence that this approach is unlikely to ygelad approximations. Specifically, we
construct integrality gap instances for the SDP relaxation augmented moitinds of the Sherali-Adams LP
hierarchy. Let us first describe such a relaxation.

SDP Augmented with Sherali-Adams LP

For a cut-problem such as Mimum CuT, t-rounds of the Sherali-Adams LP hierarchy (of¢)-rounds

if a somewhat different formulation is used, see [dIVKMO07]) amount to the following: on a grdphE),

for every subses$ of up tot vertices, there is a distributioP(S) on {—1, 1}, thought of as a distribution

over cuts onS. The distributions{ D(S)}scy,s/<; are mutually consistent in the sense thdf'ic S C

V, |S| < t, thenD(S)|r = D(T), i.e. the marginal ofD(S) on the subseT is exactly equal taD(T).

The value of such a solution is average over all edges) € E, of the probabilityp, , thatu andv

are separated by a random cut on the$et {u, v} sampled according to the distributidn(.S). On the

other hand, a basic SDP relaxation (one used by Goemans and Williamson [GW95]) amounts to assigning
a unit vectorw,, for every vertexu € V and the value of the solution is average over edges) € F,

of the quantityw. We say that the SDP solution is consistent with the Sherali-Adams solution if
Yu,v €V, puy = % Finally, a(c, s)-integrality gap (or/s-gap if concerned only with the ratio)

for a LP/SDP relaxation is a graph along with a LP/SDP solution such that the relaxation has valuecat least
whereas the true (integral) optimum, i.e. the relative size of the maximum cut, is at mssis standard,
existence of an integrality gap instance is taken as evidence that an algorithm based on such relaxation
cannot yield an approximation guarantee better than

MAXIiMUM CuT

For the Maximum CuT problem, a break-through result of Goemans and Williamson [GW95] showed that
the integrality gap of the basic SDP relaxation is at m@i‘, whereagw ~ 0.878 is the optimum of a
certain trigopnometric function. Feige and Schechtman [FS02] gave a matching integrality gap instance with
gapaa%,v — . Khot and Vishnoi [KV05] showed that even after adding the triangle inequality constraints,
the integrality gap is still lower bounded byg”ly — e. This result is quite involved and especially, the
proof that the triangle inequality constraints hold, is by brute-force with little intuitive explanation. In an
incomparable result, Charikar, Makarychev, and Makarychev [CMMO09] ¢aves, % + ¢)-integrality gap



for the Sherali-Adams hierarchy even with®) rounds. However, Goemans and Williamson showed that
for the basic SDP relaxation, the gap cannot be stronger(thas, 1 —(,/2)) and thus the Sherali-Adams
relaxation is qualitatively different from the SDP relaxation. This suggests a natural question: what is the
integrality gap if we combine the SDP witlrounds of the Sherali-Adams LP hierarchy, as in the previous
section, for some large constant or super-congtait/e resolve this question in this paper:

Theorem (Informal). Lete > 0 be an arbitrarily small constant. For thBlAximum CuT problem on a
. . 1 .

graph ofn vertices, the SDP relaxation augmented witf(log loglogn)s ) rounds of Sherali-Adams LP

hierarchy has an integrality gap at Iea&g%y — €.

Consider the distana#{u, v) := ||w, — w,||? defined on the set of vertices by the SDP vector solution
{wu.}uev. An easy and well-known observation is that (see the last paragraph in Section 3.1) if the vector
solution is consistent with rounds of Sherali-Adams solution, then for any Se€ V, |S| < t, the space
(S,d(-,-)) embeds isometrically intéy . In particular, the distancé(-, -) satisfies triangle inequality. As we
mentioned, in [KV05], the proof that the triangle inequalities hold is very technical. On the other hand, our
construction, though not necessarily simpler, is quite intuitive and there is a reasonable explanation why it
works. Our construction does use technigues from [KVO05].

SPARSESTCUT

For the (uniform) $ARSESTCUT problem omn-vertex graphs, the basic SDP relaxation is very poor and
has an integrality gap d2(n). In a recent break-through, Arora, Rao, and Vazirani [ARV04] showed that
the gap improves t®)(v/log n) after adding the triangle inequality constraints (i.e. the distatice) is
required to be a metric). Arora, Lee, and Naor [ALNOS8] proved essentially the same upper bound even for
the more general non-uniformrPE8RSESTCUT problem. In fact, it had been conjectured earlier by Goemans
and Linial that the integrality gap for non-uniformrP&RSeSTCUT problem is at most a universal constant.
This is equivalent to a conjecture thatpoint negative type metrics embed intp with constant distor-
tion. Khot and Vishnoi [KV05] disproved the conjecture by constructingugmoint negative type metric
with ¢;-distortion at leastlog log n)*("). The lower bound was subsequently improvefdog log n) by
Krauthgamer and Rabani [KR06], afit{log logn) for the uniform version by Devanwt al. [DKSVO06].
Lee and Naor [LNO6] proposed a different counter-example to the Goemans-Linial conjecture, and the works
of Cheeger, Kleiner, and Naor [CK06a, CK06b, CKNQ9] showed that this counter-example gives a further
improved lower bound oflog n)?(") (the upper bound i®(v/Iog n) as mentioned before).

In light of the extensive research on theARSESTCUT integrality gap, it is natural to investigate
whether the integrality gap becomes a constant if we require the negative type dietrido have the
property that every sub-metric @mpoints embeds isometrically intQ. We provide a negative answer:

Theorem (Informal). For the SPARSESTCUT problem on a graph of. vertices, the SDP relaxation aug-
mented wittO((log log log n) %) rounds of Sherali-Adams has an integrality gap at l€agtog log log n) 15 ).
Also, there is am-point negative type metric such that every sub-metrieXgflog loglog n)%) points is
isometrically/; -embeddable, but embedding the whole metricfpiacurs distortion((log log log n) %).

We note that in an incomparable result, Charikar, Makarychev, and Makarychev [CMMO09] gave inte-
grality gap ofQ2 (« /logtﬁ%) for ¢ rounds of the Sherali-Adams heirarchy (without the SDP). This

amounts to arf; lower bound for (general, not negative-type) metrics such that any sub-metripaints
is isometrically/;-embeddable.



Inapproximability Results via the Unique Games Conjecture

All the results mentioned so far are intimately connected with the Unique Games Conjecture of [Kho02].
The conjecture states that approximating thei@Ue GAMES problem (see Definition 3) is NP-hard and

is proposed as an avenue towards proving strong inapproximability results for many NP-hard problems.
Indeed, assuming the conjecture, Kkbal.[KKMOO7] proved that it is NP-hard to approximate thea-

IMUM CuUT problem within any factor strictly less tharg%v. This means that, assuming the UGC and that

P = NP, any LP/SDP relaxation for MxiMuM CuUT with polynomially many constraints, must have inte-
grality gap arbitrarily close tagy. Thus integrality gap instances for potentially more and more powerful
LP/SDP relaxations give more and more evidence towards the truth of the UGC.

[KVO05] used this connection in the reverse direction to actually construct integrality gap instances for
cut-problems. They (and independently Chawtaal. [CKK+06]) gave areductionfrom the WNIQUE
GAMES problem to $ARSESTCuUT and showed that if the UGC is true, themARSESTCUT has no
constant approximation and hence Goemans-Linial conjecture must be false. This observation led [KVO05]
to a construction of an integrality gap instance for theiQUE GAMES problem (see the SDP in Figure 1)
and then theyranslatedthis instance into an integrality gap instance f@n8sSeSTCUT via the reduction
alluded to before. A nice feature of the reduction is that it allows a translation of the SDP solution as well,
i.e. starting with a vector solution for theNUQUE GAMES SDP, one can construct a vector solution for
SPARSESTCUT SDP in a natural way. However an unsatisfying feature of [KVO05] is that there is no intu-
itive reason why the SARSESTCUT vector solution obeys triangle inequalities. As we said, we are able to
(at least partially) fix this, though following the same high-level methodology.

We now explain how our result fits with Raghavendra’s recent result [Rag08]. Raghavendra shows that
for everyconstraint satisfaction problenthere is a certain generic relaxation such that, any integrality gap
instance for this relaxation with gag, can be translated into a UGC based hardness result with the hardness
factor same a&. The relaxation he uses is exactly the combination of a basic SDP and a constant number
of rounds of the Sherali-Adams LP (the number of rounds is at @¢kt+ ¢) for a k-ary CSP oveg-ary
alphabet)! An implication of his result is that (assuming UGC and thgt IRP) adding more constraints
to the generic relaxation does not help. We believe that the results in our paper can be generalized to
arbitrary CSPs though we haven't attempted this so as to keep the presentation readable. If so, it would
partially confirm Raghavendra’s implication, namely that adding more Sherali-Adams rounds to the generic
relaxation does not help.

Other LP and SDP Hierarchies

Finally, a few words about other LP and SDP hierarchies are in order. Recent works have obtained integrality
gap results for many different problems (cut problems, vertex cover, independent set, 3SAT etc.) for LP
and/or SDP relaxations in different hierarchies, i.e. 4sma+Schrijver, Sherali-Adams, and Lasserre. A full
overview of these results is beyond the scope of this paper and we do not attempt it here. We would like
to mention however that the Lasserre hierarchy is the most powerful one and it remains a challenging open
problem to prove Lasserre integrality gapst-found Lasserre includes, for example, the basic SDP as well
ast rounds of Sherali-Adams LP. It is conceivable that the techniques in our paper could be applied towards
obtaining strong Lasserre integrality gaps.

2 Overview of Our Construction

The constructions for the MxiMuMm CuUT and the ARSESTCUT integrality gaps are very similar (one
only needs to change a certgiarturbation parametgrand therefore, for the sake of exposition we shall
focus only the MaxiMmum CuUT integrality gap.



High level strategy

Our construction relies in large part on the work of Khot and Vishnoi [KV05] who gave SDP integrality
gap examples for MIQUE GAMES and cut-problems including Mximum CuT. Their overall approach

was to follow the reduction from NIQUE GAMES to the target problem (say) Mkimum CuT. They first
construct an integrality gap example for thelldue GAMES SDP, i.e. an instance with low optimum (i.e.

no good labeling) and a vector solution with high objective value. Using the reduction from [KKMOOQ7],
they convert the instance ofNUQUE GAMES with low optimum to an instance of MxiIMuM CuUT, also

with low optimum. The same reduction also transforms the vector solution for thelut GAMES SDP

into a vector solution for the MxiMum CuT SDP. The transformation ensures that thexwum CuTt

SDP solution has a high objective value, thereby providing an integrality gap. In this work, we observe
that there is also a natural way to construajad solution to the Sherali-Adams LP relaxation for the
UNIQUE GAMES instance constructed in [KV05]. This solution can then be transformed into one for the
Sherali-Adams LP relaxation for theAfimum CuT instance, via the same reduction as before. Again, the
transformation ensures that the objective value of the Sherali-Adams solution remains high. Moreover, for
any set of two vertices, the Sherali-Adams solutioalimostconsistent with the SDP vector solution. We
thenmassagéehese solutions so that they are exactly consistent, yielding the integrality gapafamdm

Cut SDP augmented with super-constant rounds of Sherali-Adams LP. The next few paragraphs give an
informal description of the construction.

Sherali-Adams solution (labeling) to Unique Games instance

We start with the WIQUE GAMES instance/ constructed by Khot and Vishnoi [KVO05]. L&t (V, E) be
its constraint graph andV] be the label set. The first step is to construct Sherali-Adams solutidd.for
Specifically, we construct for every sBtC V, |U| < ¢, a distributionD(U) over labelingsr : U — [N]
such that:

e The distributions are mutually consistent, i.e. for aiyC U C V, |U| < ¢, D(U)|w = D(W).

e The objective value of the solution is high, i.e.(if,v) € E is a UNIQUE GAMES constraint, then a
random labelingr : {u,v} — [N] from D({u,v}) satisfies the constraint with probability closelto

Towards this end, we look at the [KV05] example closely, and observe that one can define gnelric
on the vertex set” such that any two vertices with an edge/constraint between them are very closg. w.r.t.
Moreover for any set/ C V, |U| < ¢ that has low diameter w.r.p, it is possible to assign a randomized
labelingo : U +— [N] that satisfies all the constraints insile The labeling has a very strong consistency
property that we do not describe here. This property ensures that for any $libsetU (it also has a
low diameter), the randomized labeling: W +— [N] is same ago : U — [N])|w in distribution. In
other words, we construct mutually consistent Sherali-Adams distribufigbs) for all setsU having low
p-diameter.

However, the Sherali-Adams relaxation requires us to define a randomized labélingfor everyset
of size at most. Here is a natural idea: for an arbitrary §&tpartition it (possibly in a randomized way)
into sets oflow p-diameter (call these clusters), and then label each cluster as earlier. Such partitioning
schemes are well-known in the literature on metric embeddings. For us, the issue however is the consistency
between sets. Fd C U, we desire that the partition & on its own is same as partition &f induced
by a partition ofU (in distribution if the partitioning scheme is randomized). At this point, we observe
that the metricp can be chosen to be dp metric on points of a unit sphere. The sphere has unrestricted
dimension, but if look only at a séf C V, |U| < ¢, thenU can be thought of as embedded ofte- 1)-
dimensional unit spher® ! via a random orthogonal transformation. Now we partién! into clusters



with low diameter using a well-known partitioning scheme and that automatically gives a partitioimtaf
low diameter clusters. Since the partitionléfdepends only on itg, geometry, it follows that il C U,
then partition ofiV is consistent in distribution with that induced from a partitiorUof

A somewhat magical part is coming up with thametricp. It turns out that the metric can be constructed
from the SDP solution to the Uniqgue Games instance. The solution consists (up to a normalization) of
an orthonormal tuplgT, ;} ;v for every vertexu € V. Roughly speaking, desired metyicshould
capture the closeness between these tuples. Defining a single unit ¥gcfoom the tuple byT, :=
ﬁ > jelN] T;‘i‘]‘., the/, metric||T,, — T, || captures the closeness between tuples. This is the mpetrat
we desire.

Sherali-Adams solution toMAXIMUM CuT

It is quite straightforward to translate the&ound Sherali-Adams solution for the\lQUE GAMES instance

U into at-round Sherali-Adams solution for theAtimum CuUT instanceZ. In the reduction of [KVO05,
KKMOO07], a UNIQUE GAMES vertex is replaced by &-dimensional boolean hypercube where fkie

labels correspond to th& dimensions of the hypercube. Roughly speaking, the Sherali-Adams solution
to UNIQUE GAMES instance defines a labeling to its vertices. Each label corresponds to a dimension of a
hypercube and the hypercube can be cut along that dimension. This yields Sherali-Adams solution for the
MAxiMuMm CuT instance.

Approximately consistent SDP solution toMAXIMUM CUT

In a similar way to [KV05], the vector solution féf can be transformed into one fdwia a certain tensoring
operation. We need to ensure that for the instaficthe Sherali-Adams solution at the second level and
the SDP vector solution are consistent, at least approximately. Unfortunately, we do not know whether this
is true. We get around this problem in the following manner (which is possibly another place where some
magic happens):

The Sherali-Adams solution for theNUQUE GAMES instance (and therefore theAtiMum CuUT in-
stance) is parameterized by that specifies hoiow the diameter of the clusters is. On the other hand,
the SDP solution for Mximum CuUT instance is parameterized by an integethat specifies hodarge a
tensor power is used. We appropriately choose a large number of{gairs;) le. For every choice of
indexi, we have a Sherali-Adams solution and the SDP solution parameterized by the diameter parameter
r; and the tensor-power parameter Finally, we define overall Sherali-Adams and SDP solutions to be the
combinationsof i** solutions fori € {1,...,A}. The crux of our argument is to show that for all but two
values ofi € [A], thei!" Sherali-Adams and SDP solutions are almost consistent. Chodslagye, we
see that the overall Sherali-Adams and SDP solutions are almost (i.e. approximately) consistent.

Correction step
Finally we massage the Sherali-Adams and the SDP solutions fonwum CuT and ensure that the two
are perfectly consistent with each other. The change in the LP/SDP objective value is negligible.

Organization of the paper

In Section 3, we formally define the problemsilgue GAMES, MAXIMUM CuT and SPARSESTCUT,

describe the relaxations we consider, and state our results. In Section A, we describe the construction of
local labelings to sets of NIQUE GAMES vertices with low diameter under the appropriate metridn

Section B, the MxIMUM CuUT instance is derived from MIQUE GAMES instance via the same reduction



as in [KV05]. Section C contains the construction of Sherali-Adams and SDP solutions toatkie M

CuT instance that are approximately consistent. In Section D the approximate solution is transformed to a
feasible one and the value of the integrality gap is computed. The constructiorRARSESTCUT is very

similar to the one for MxiMuMm CuT and we only sketch it in Section E.

3 Preliminaries
We first formally define the MxiMumMm CuT, SPARSESTCUT, and INIQUE GAMES problems.

Definition 1. (MAxiMum CuT) For a weighted grapiG = (V, E) with non-negative weighte't(e) for
each edge <€ F, the goal is to find a cut that maximizes the weight of crossing edges, i.e. to maximize the
following objective function,

t(e).
@%ang Z_ wt(e)
c€E(S,5)

Definition 2. (non-uniform $ARSESTCUT) Given a graph = (V, E') with non-negative weightst(e)
and demanddem(e) for each edge, the goal is to find a cut to minimize the following,

. Deen(ss) WHe)
min :
0£SCV Y cep(s,5) demi(e)

Definition 3. Aninstance ofUNIQUE GAMES U(G(V, E), [N],{m.}.ck) is a constraint satisfaction prob-
lem. For every edge = (u,v) in the graph, there is a bijection, : [NV] — [IN] on the label sefN]. A
labelingo : V — [N] satisfies an edge = (u,v) € Eiff n.(c(u)) = o(v). The goal is to find a labeling
that satisfies maximum fraction of edges.

The Unique Games Conjecture of Khot [Kho02] states the following:

Conjecture 1. For arbitrarily small constants:,§ > 0, there is a positive integeN = N(e,d) such
that, given an instanc& of UNIQUE GAMES with label sef N], it is NP-hard to distinguish between the
following two cases:

YES Case: There is a labeling to the verticeg/ahat satisfies at leadt — ¢ fraction of the edges.
NO Case: There is no labeling that satisfies e¥draction of the edges @f.

Letl be the instance as described in Definition 3. Figure 1 gives a natural SDP relé&&B#ellG The
relaxation is over the vector variables ; for every vertex: of the graphG and labeli € [N]. Regarding
the integrality gap of this relaxation, Khot and Vishnoi [KV05] proved the following Theorem. We will
make use of their gap example.

Theorem 2. There is aUNIQUE GAMES instanceA, (G(V, E), [N], {m }ecr) Wheren > 0 is a parameter,
such that any labeling &, satisfies at mos; fraction of the edges, whereas there exists a solution to the
relaxationSDP-UGwith an objective value of at least— 4.

3.1 Relaxations forMAXIMUM CUT and SPARSESTCUT

The relaxation we consider for theAMimum CuT and the SARSESTCUT problems is a combination of
a basic SDP androunds of the Sherali-Adams LP hierarchy. két= (V, E, wt) be a weighted graph.

The relaxation for the MxiMmum CuT problem, which we denote b$DP-MGt), is given in Figure
2. The SDP component consists of a unit vestqrfor every vertexu € V. The LP component consists

7



max Z Z <Xu,ia Xv,ﬂe(i)>
]

e=(u,v)eE i€[N

Subiject to,

VueV > ie[N] Ixuil* =1 (1)
YueV,i,j¢€ [N],Z#] <XU’Z‘,X“J’> =0 (2)

Yu,v € V,i,j € [N] (Xuis Xv,j) >0 (3)

Figure 1: RelaxatiosDP-UGfor UNIQUE GAMES.

of, for every setS C V, |S| < ¢, a distributionD(.S) over {—1, 1}-assignments t&. The distribution is
specified by the probabilitiefrs, | o € {—1,1}°} and it can be thought of as a distribution on cuts of
S. We ensure the consistency between anysets S, |S| < t, i.e. the distribution of cuts off’ is same

as the one induced by a distribution of cuts.®n Finally, we ensure that the SDP solution is consistent
with the LP solution for every sef = {u,v} of size two. Specifically, ley, andy, be the marginals

of the distributionD(.S) on {—1,1}* onto the co-ordinates andv respectively. Constraint (4) states the
consistency requirement:

(W, Wy) = ED(S)[yuyv]'

For the $ARSESTCUT problem we have an additional paramelein(e) for each edge in the graph.
In this case the objective function is the following.

2 e—fuper WE(€) (M)
> e—{unvter dem(e) (%)

We normalize the denominator foand add this as a constraint. Figure 3 gives the relax&DR-
SQ(t) for the SPARSESTCUT problem.

min

Local ¢,-Embeddability: We observe that Constraints (1)-(4) imply that the distance funeijenv) :=
||w.,—w, ||* defines a metric such that any sub-metric on at rhpsetnts is isometrically embeddable into
Indeed, fix any se§ C V, |S| < t. Constraint (4) implies for any pair,v € S, (Wu, Wy) = Ep(s)[yuyul,
wherey, is the marginal of the distributio®(S) ontow. Thus the mapping — y, gives the isometric
¢1-embedding of the sub-metri&, d(-, -)).

3.2 Our Results

We prove the following two theorems about the integrality gaps of the relaxa@ibfsMGt¢) and SDP-
Sdt). The first theorem is proved in Sections A through D, whereas for the proof of the second theorem,
we give a brief sketch in Section E.



1- <W’LL7 WU>
max Z Wt(e)f
e={u,v}eFE
Subject to,
Vu eV lul* =1 (1)
VS CV,oe{-1,1}"st|9] <t 0< 55 <1, X er 11ys T50 =1 (2)
VTQSQV‘)’S‘ St7T€ {_171}T Z TS o =TT, (3)
oc{-1,1}%
olr=r1
Vu,v € V Y oWo(v) Tueye = (Wa W) (4)
oe{—1,1}{uww}
Figure 2: RelaxatiosDP-MG¢t) for MAXIMUM CUT

Theorem 3. For all ¢ > 0, there is an instancg of MaAxIMUM CuT on (sufficiently large). vertices, such

that fort = O((log log log n)%)’
FRAC(Z) _ _,

OPT(Z) = “ew %
whereOPT(Z) is the optimum value dflaAxiMum CuT onZ, FRAC(Z) is the optimal objective value of

SDP-MGt) onZ, andagyw is the Goemans-Williamson constant, gy = min,ec(_1 1) %.

Theorem 4. There is an instanc& of SPARSESTCUT on (sufficiently large) vertices, such that for

t= O((logloglogn)%),
OPT(Z) N
— >
FRAC(Z) = Q((logloglogn)is),

whereOPT(Z) is the optimum value @PARSESTCUT on the instanc&, FRAC(Z) is the optimal objective
value of SDP-SC(t) onZ.



. 1-—- <WU7 WU)
min Z wt(e)f
e={u,v}€F
Subject to,
VueV lul|> =1 (1)
VS CV,oc{-1,1}st.|9| <t 0<25, <1, Yper11ysts0 =1 (2)
VI CSCV,|S| <tre{-1,1}T Y zse=ars (3)
oce{-1,1}°
olr=r1
Vu,v € V Y oWo(v) Tueye = (We W) (4)
oe{—1,1}{uww}
1-— U v
Z dem(e) < <“; w >> =1 (5
e={u,v}elE
Figure 3: Relaxatio®DP-SC(t) for SPARSESTCUT
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A UNIQUE GAMES Instance

In this section we state the relevant properties of the Unique Games instance and the corresponding SDP
solution constructed by Khot and Vishnoi [KV05]. For parameigrs 0 and N = 2™ for somem € Z™,

Khot and Vishnoi [KV05] construct the MIQUE GAMES instanceld,,(G(V, E), [N], {7 }ecr) Where the

number of vertice$l’| = 2V /N. ! The instance has no good labeling, i.e. has low optimum.

Lemma 5. Any labeling to the vertices of tHéNIQUE GAMES instancel,(G(V, E), [N], {7 }cck) Satis-
fies at most]% fraction of the edges.

In construction of [KVO5] the elements ¢iNV] are identified with the additive grou[2]™, ®). The
authors construct a vector solution that consists of unit ve@igrsor every vertex: € V and label € [N].
These vectors (up to a normalization) form the solution to theQue GAMES SDP relxatiorSDP-UG We
highlight the important properties of the SDP solution below:

Properties of the Unique Games SDP Solution

e (Orthonormality) Vu € V, Vi # j € [N],

[Tyl =1, (Tui, Tuy) = 0. (1)

e (Non-negativity) vV u,v € V, Vi, j € [N],

<Tu,i> Tv,j> > 0. (2)

e (Symmetry)Vu,v € V, Vi, j k€ [N],
(Tui, Toj) = (Tukei Toka;) 3)
where ©’ is the group operation ofiV] as described above.
e (High SDP Value)For every edge = (v,w) € E,
Vie [N], (Tui Tur@)>1—4n. 4)
In fact, there isk. € [N] such thatV i € [N], m.(i) = k. @ i.

We now define for every vertex € V' a unit vectorT,, as follows (it is a unit vector due to orthonormality
condition (1)),

1
VueV T,:= N TS (5)

1E€[N]
Our main idea is that the Euclidean distances between the vddgrs,cy are a measure of the ‘close-
ness’ between the orthonormal tupléB,,; | ¢ € [IV]}. Specifically:
Lemma 6. For everyu,v € V,

min T = Togl| < [T =T < 2 min [T~ To | (6)

1,J€[N 2]

!For the sake of simplicity, we have slightly altered the presentation from [KV05].
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Proof: Note that

1 1 , 1 . 1 A
L= 5T = TP = (T, T = <7N Toh % 2 Ti?ij> =% 2 | 2 (TuiTug)

i€[N] JEIN] i€[N] \JE[N]
Due to symmetry (i.e. condition (3)), the inner sum above is the same for everyireé¥]. Therefore
fixing someiy € [N],
1 4
1 - §HTU - TUH2 = Z <TU,iovTU,j> : (7)
JEIN]
Since{T, ;}jen is an orthonormal set (and using non-negativity condition (2)), we have

1 .
> (Tuie, Tuj)t < max (Ty o, Ty j) = 1 — = min [Ty, — To > )

e jelN] 2 jelN]

Combining (7) and (8), we get the left inequality in (6). On the other hand,

1. *
Z <Tu,i0,Tv,j)4 > max <Tu,i0>Tv,j>4 = <1 — 5 min | Tw,ip — Tv7j||2>

eV JE[N] JEIN]
> 1—2min || Ty, — Tyill% 9
> min 1T Jl 9)
Combining (7) and (9), and using symmetry, we get the right inequality in (6). .

A.1 Local Consistency

Lemma 7. Suppose:, v € V are such that|T,, — T, || < o < 0.1. Then there is a unique, , € [N] such
that

Proof: Since||T, — T,|| < «, by Lemma 6, there exish, jo € [IV] such that|T, ;, — Ty | < a.
Defining k., = i9 @ jo and using symmetry, we satisfy the hypothesis of the lemma. For the uniqueness,
suppose that, ,, k;, , both satisfy the hypothesis of the lemma. Then for any

I Tokuwwi = Tonr, pill < N Toku@i = Tugll + [ Tui — Togy @il < a4 a=2a
Since{T,; | j € [IV]} is an orthonormal set, the distance between any two distinct vectors in this set is
exactlyy/2. So one must have, , © i =k, , ® i and hencé,, = k, . n
Definition 4. A set of vertice§’’ C V is called 0.1-local if ¥V u,v € V', |T,, — T,|| <0.1.

Lemma 7 states that whenever two vertiosendv are close (in terms of the distan¢®,, — T, ||), there
is a unique matching — k., & ¢ such that the orthonormal tupl¢¥’,,; | < € [N]} and{T,; | j € [N]}
are close via this matching. The next lemma shows that for &'sétat is0.1 local, the matchings induced
between every pair of vertices IfY are consistent with each other.

Lemma 8 (Local Consistency).Suppose a sét’ is 0.1-local andu, v, w € V'. Letk,, ,, ky w, kv.w € [V]
be the elements given by Lemma 7,¥ec [N],

HTU,J - TU,ku,,v@iH S 017 ||TU7'L - Tw7k7l.,’l,l)®i|| S 017 HTU,i - Tw7k1),uf@7:‘| S 0]‘

Thenk, o = kuv ® kuw-
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Proof: By triangle inequality,
”T'in - Twyku,v@ku,w@in S ||TU7i - Tuyku,v@in + ||Tu7k?u,v@i - Tw,ku,v@ku,w@i” S 0]‘ + 01 = 02

Since|Ty; — Tk, @il <0.1, it follows that

Hvakv,w@i - Tw,ku,v@ku,w@in S 03

Now note that the se{T.,, ;}c[n) iS orthonormal, so the distance between any two distinct vectors in this
set is exactly/2. Therefore one must havg ., B i = kv @ kyw ® ¢, and hencé,, ,, = ky o  ky - n

A.2 Construction of local labelings

Now we construct a (randomized) labelifg- for any0.1-local setV’ = {uy,...,us} C V. Chooseu; as
the pivotvertex. We pick the label af; to be a random € [N] and let the label of every other vertex to be
the mateof i via the induced matching between and that vertex. Thanks to Lemma 8, the labeling
does not depend on the choice of the pivot vertex. Formally, the labElings obtained as:

e Pick one vertex fron/’, sayu; .
e Choose the label af; to be a random elemente [N].

e For 2 <p </, setthe label ofi, to bei & Kuy -

A.3 Construction of labelings to arbitrary size-t sets

Let ¢ be the universal parameter denoting the number of levels of Sherali-Adams relaxation our solution
satisfies. We will now describe a procedure UG@BEL which, given a parameter < 0.1 and a subset

U CV,|U| < t, outputs a (randomized) labeling to the vertice/oNote thatl/ need not b@®.1-local and

is completely arbitrary. The idea is to first partitibhinto clusters such that each clustefis-local, and

then each cluster is labeled according to (local) labeling procedure described in Section A.2. The algorithm
UG-LABEL outputs the partition o/ as well, along with a labeling to'.

The following Theorem can be inferred from [GKLO3, Theorem 3.2] applied to the Euclidean unit
sphere.

Theorem 9 ([GKLO3]). Let St=1 denote thegt — 1) dimensional unit sphere. For every > 0 there is a
randomized partitionP(r) of S'~! into disjoint clusters such that,

1. For every clusteC' € P(r), C' C St~!, diam(C) < r.

2. For any pair of pointsz, y € S'~! such thatz — y|| = 8 < &,

) . 1003t
Pr [m andy fall into different clusters < B .
P(r) r

Here is our randomized algorithm that outputs a labeling to an arbitray setV of size at most,
along with its partition intd.1-local clusters.

Algorithm UG-LABEL (U,r), r <0.1.

14



1. Embed the set of at mostnit vectors{T, | v € U} isometrically into thgt — 1)-dimensional unit
spheres'—! via a random orthogonal transformation.

2. Let P(r) be the partition of*~! given by Theorem 9. This naturally induces a partitidfr) of the
setU via the above embedding.

3. Since every clustef' € P(r) has diameter at most1, the corresponding clustét € P(r) in the
induced patrtition of/ is 0.1-local (C is possibly empty).

4. To every non-empty clustéf € P, C C U, assign the labeling as in Section A.2.

Consistency between setsFor a parameterr < 0.1, the algorithm UG-laBeL defines a distribution
Dy, (U) over labelings to the vertices 0f, for every subsel/ C V such thatU| < ¢. From the algorithm

it is clear that the labeling t&" depends only on the (geometric configuration of the) corresponding vectors
{Ty}ucv. It follows that for any two set$V C U C V such thaiU| < ¢, Dyc,(U)|lw = Dyg.(W).
Therefore these distributions define a solutiofitounds of Sherali-Adams relaxation foNUWQUE GAMES.

B Construction of MAXIMUM CUT Instance

The MaxiMumMm CuT instance is essentially the same as constructed in [KV05]. We describe it in brief. Let
p € (—1,0) be a parametérand denote the instance constructed g3/ *, £*). We start with the WIQUE
GAMES instancelt,(G(V, E), [N], {m.}ccr) and replace each vertexe V' by a block of verticegv, x)
wherex € {—1,1}". Thus each block is aN -dimensional boolean hypercube. bet, {—1,1}" denote

a random string chosen from thebiased distribution, i.e. every co-ordinatesofs chosen independently

to be—1 with probabilityp and1 with probability 1 — p.

For every pair of edges= (v, w), e’ = (v,w’) € E, there are (all possible) weighted edges between the
blocks (w, -) and(w’, -) in the instance&,(V*, E*). The weight of an edge* between(w, x) and(vw’, y)
is defined as:

wt(e*) :=Pr (x=zom, ) A(y=zpor,")|,

z€yo{—-1,1}

pe1p {-1,1}V
2

wherez o 7 := (2x(1), - - - » Zz(n))- The following theorem is proved in [KKMOO7, KVO5].

Theorem 10. For any constantg € (—1,0) and X > 0, there is a constant(p, A) such that the following
holds: Letit,(G(V, E), [N}, {mc}ccr) be an instance dNIQUE GAMES with OPT'(U,) < c(p, A), then
the corresponding instancg, as defined above satisfies the property that

1
OPT(Z,) < —arccosp+ A
s
whereOPT(Z,) is the normalized value of the maximum cut.

C Construction of Approximate Solution A to SDP-MGCt)

In this section we will describe the construction of gpproximatesolution for the relaxatiosDP-MGt)
for the MAXIMUM CuUT instanceZ,(V*, E*). The parameter is a superconstant which we shall explicitly
define later. Our solution will satisfy all constraints®DP-MGt¢) except for the Constrairitt) which will

?For the MaxiMum CuT problem,p < 0 will be chosen so thatGy := min,e_1,1] Z25=%) is attained. For the ARSEST
CuT problem,p = 1 — ¢ will be close tol.
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be satisfied only approximately. More precisely, the solutibhas two componentsl = (D4(-),GA)
where for every set C V* of size at most, D 4(.5) is a distribution ovef{ —1, 1}-assignments ove§ and

G 4 is an assignment of unit vectors¥0". The distributionsD 4(.5) satisfy the consistency property of the
Sherali-Adams relaxation, i.e. faf C S C V*, |S| < ¢, we haveD 4(S) |r= D(T). Moreover, the
vector solution 4 is approximately consistent with the Sherali-Adams solution at the second level, i.e. for
any two vertices:, b € V*, if y,, y, are the marginals of the distributidn4({a, b}) on either co-ordinate,

thenE[y,yp] = (G a(a), GA(b)) .

We first describe the distributiori3 4(.5). This is done in two stages. In the first stage, for a parameter
r < 0.1, we construct distribution® 4 ,.(S) and then in the second stage, welgi(S) to be the average
of D4, (S) for appropriately chosen sequence of paramefers| i € [A]}. We will ensure that the
distributionsD 4 ., (S) (and therefore their averade, ,(.5)) satisfy the consistency property of the Sherali-
Adams solution.
C.1 Construction of the Sherali-Adams solutionD 4 ,(-)

Fix a parameter < 0.1. For every se5 C V*,|S| < ¢, the distributionD 4 ,-(5) is given by the following
algorithm (i.e. the algorithm outputs{a-1, 1}-assignment t&' in a randomized manner):

1. LetU C V be defined a¥/ := {v | (v,x) € S} (recall thatV is the set of vertices of the Unique
Games instance from which theAiMmum CuT instance is derived). Clear|{/| < ¢.

2. Run UG-LABEL (U, r) to obtain a random labeling : U — [N] and a partitionP? = P(r) of U.

3. For every clusteilC € P choose a valuec € {—1, 1} at random uniformly and independently.

4. For every vertexv,x) € S such that € C, assign it the valug (o (v)) - wc.

Observe that the distributior3 4 ,-(-) satisfy the consistency property of the Sherali-Adams relaxation.
This is inherited from the consistency property of the UGBEL algorithm.
C.2 Construction of the Sherali-Adams solutionD 4(-).
Let A := t* and fori € [A], define a decreasing sequence of radi:

ry=2"" (11)

For any setS C V*|S| < t, the following algorithm defines the distributiab 4(S) over {—1,1}-
assignments t§.

1. Choose arandom indeéxc [A].

2. Output a randonj—1, 1}-assignment t&' according to the distributio® 4 ., (.S).

C.3 Construction of vector solutionG 4

Finally we construct the vector soluti@i 4 and show that it is approximately consistent with the Sherali-
Adams solutionD 4 at the second level. Fare [A], define an increasing sequence of integess,

s; = 8. 2%, (12)

Roughly speaking, for every € [A], there will be a vector solutioly 4 5, parameterized by integer,
that approximately agrees with the Sherali-Adams solufibp,,. However, as it turns out, this is not
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necessarily true foeveryi, but formosti € [A] (in fact for all but two values). The values ofor which the
approximation fails may depend on the pair of vertices under consideration. We will then define the overall
vector solutionG 4 to be the combination (direct sum) of the solutigig ,, for ¢ € A. SinceD 4 is an
average ofD 4 ,,, andD 4 ,, approximately agrees witf¥ 4 ;, for mosti € [A], it would follow that D 4
approximately agrees withy 4.

Now we formally describe the construction. Liet x) € V* whereu € V is a vertex of the MIQUE
GAMES instance ana € {—1, 1}V,

For everyi € [A] we define the following unit vector:

Solution G 4, :

1
Glus) = —— > x(k)- T (13)
(u,x) / u,k
Nke[N]

Finally, we take direct sum of these vectors to construct the following unit vector:

Solution G 4 :
A

1 )
Gux) = N (@ Gg%x)> . (14)

i=1
The following is the main theorem showing that the vector solufigpapproximately agrees with the
Sherali-Adams solutio 4(-) at the second level.

Theorem 11. Let (u,x) and (v, y) be any two vertices df * whereu,v € V andx,y € {—1,1}"V. Let
Y(u,x) aNdy(, y) be the marginals of thé—1, 1}-assignment to the pais = {(u, x), (v,y)}, either under
the distributionD 4(.S) or under the distributiorD 4 .., (S) (it will be clear from the context). Then,

_ 2
’EDA [y(u,x)y(v,y)] - <G(u,x)a G(v,y)> ’ <2-2 t/2 + Z (15)
Proof: SinceD 4(-) is an average ab 4., (-), we have

Ep, [y(u,x)y(v,y)] = Eija) |Epa,, [y(u,x)y(v,y)]} - (16)

Similarly, since the vector (14) is (up to normalization) direct sum of vectors in (13),

(Glux Go)) = Bietay | (Gluny Gloy)| - (17)

We want to show that the left hand sides of (16) and (17) are close. We will achieve this by showing that for
all but two values of € [A], after fixingi, the right hand sides of (16) and (17) are close, i.e. withitT /2
of each other. Towards this end, fgt= v/2 and ra+1 = 0, so that we have a decreasing sequence of radii

\/§=T0>T1>...7’A>TA+1:O.

Let0 < p < A be the unique index such that, > ||'T,, — T,|| > rp+1. We will show that the right hand
sides of (16) and (17) are close except possiblyi ferp, p + 1.
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Caselp+2<i<A.

In this case, we show that the right hand sides of (16) and (17) are essentially zero. First consider the right
hand side of (16). The procedure UGMREL with parameter; produces clusters with diameter at mest

and therefore always placesandv into different clusters sincgT,, — T, | > r,+1 > 7. Therefore, it
outputs labelings ta andv uniformly at random and independent of each other. Moreoever, for any cluster
C, the variablevc is uniformly distributed in{—1, 1}. Hence, in this casg, ) andy,, y) are independent
uniform {—1, 1} random variables and therefore,

Ep 4 [Wwx)Ywy)] =0 (18)

Now consider the right hand side of (17). We bound itby".

‘<Gé“vx)’ ?vﬂy)>‘ = <\/—Z ?jf,\/_eez;v] ®sz>

JE[N]
< = Z Z <T J?T >
]E [N] \Y€[N]

By symmetry, the inner sum is the same for evgry [N], so we may fix somg, € [N]. Since{T,, | ¢ €
[N]} is an orthomormal set

i ]. 51_2
(3 1_2
e;ﬂ <Tu,j07 TU,Z>S < ?El[%\?(] <Tu,j07 T, E)S (1 — 5 @réuj{fl] HT wjo — TU,E”2> ‘

The last term can be bounded (using Lemma 6),

1 5;—2 1 Sp+2—2 1 8.22(p+2)t_9 .
(1 — 5 ITu —Tv||2> < (1 -3 ,%+1> = (1 -3 2‘2@*1”) < e

Case2:1<i<p-—1.

This case is more subtle. In this cag€, — T,|| < r, < ro < 0.1. By Lemma 7, there is a unique
k* = ky, such that the orthonormal tuplds', ; | j € [N]} and{T,, | £ € [N]} are close via the
matchingj — k* @ j. In other words,

Vi€ [N], |Tuj— Torail <mp (19)

We will show that the right hand sides of (16) and (17) are both cIo%Eje[N] x(j) - y(k* @ j).

Towards this end, first consider the right hand side of (16). ®.dte the event that andv are not
separated into two clusters in the procedure USBEL ({u, v}, r;). From Theorem 9 we have,

100 Ty — Tyl - ¢ _ 100-7, -t

T o Tp—1

Pr[-~®] < =100-27t. ¢ < 272, (20)

In the event®, bothw andw lie in the same clustet’. The procedure UG-ABEL picksj € [N] uniformly
at random, assigns labe(v) = j and labelr(v) = k* @ j. In the construction oD 4 ,., (See section C.1),
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the vertex(u, x) gets assignet(o(u)) -we = x(j) -we and the vertexv, y) gets assigneg(o(v)) - we =
y(k* @ j) - we. Therefore,

1 . . o
EDA,” [y(u,x)y(v,y) ‘ (I)} - N Z X(J)Y(k @.7) (21)
JEIN]
And using (20) we obtain,
1 . . . _
D, sty = 3 D XUy &) < 2772 (22)
JE[N]

Now consider the right hand side of (17).

[ i 1 y Si 1 S;
i) - {2y S0 532y S0 2
JEIN

LE[N]

_ (;V S x()y(k @ j) <Tu,j,Tv,k*@j>si) +% > Xy () (Tug Toe)™

jelN] (k@)
We show that the second term is negligible and in the first t¢fi,;, T, 1~0;) iS essentially equal to

1. This would imply that<Gl('u ) GZ@ y)> is very close tog; >iern X(7)y (k* @ j) as desired. Indeed by
equation (19),

si 1 2\ TP
(Tuj, Topras)” = <1 = 5 1Tuj = To el ) > (1 -3 rp>
1 8.92(p—1)t
= <1 -3 2—2pt) >1—-4.27%

On the other hand, i £ k* @ j, then

HTu,j - TU,KH > |Tv,k:*®j - Tv,ﬁ

— | Topej — Tujll > V2—1, > 1,

and hence by non-negativity (condtition (B)X (T, ;, T, ) < &. This implies that

LN x(Gy(O) (T, T ™
N

£k B

= % > ( > <Tu,jvTv,e>Si)’

JE[N] \L#k*Dj

and for everyj € [N], since{T,, | £ # k* @ j} is an orthonormal set,

‘ a 1 s1—2
§ <Tuja T, €>SZ < max <Tu 'K T, Z)sz 2 < (‘) < 2_2t.
) 2 ” f#k*@] 2 ” 2

LF£k*Dj

Combining everything, we see that the right hand sides of (16) and (17) are ithir{/2 of each other.
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Completing the proof of Theorem 11

Now we can complete the proof of Theorem 11. We have shown that the right hand sides of (16) and (17)
are within2 - 2=%/2 of each other forall € {p+2,...,A}U{1,...,p — 1}, i.e. for everyi € [A] except
possiblyi = p, p + 1. Clearly, the expressions on (16) and (17) are withigi—*/2 + % of each other. =

We have shown in this section an approximate solutlan SDP-MGt) on the instancg,. The solution
satisfies all constraints except Constrgitit of the relaxation, which is only approximately satisfied, up to
an error of2 - 27t/2 4 % that can be made sufficiently small with the choice.,ak. In the next section we
show how to eliminate this error and obtain the final solution to the relaxation.

D Final solution F to SDP-MGt)

This section describes the construction of our final feasible solufiem SDP-MG¢). In the next subsec-

tion we first prove a crucial theorem which shows that given an approximate solution of a certain kind to
the relaxatiorSDP-MQt), it is possible to derive from it a feasible solution to the relaxation with only a
negligible loss in the objective value.

D.1 Deriving a feasible solution from an approximate solution

The following is the generic theorem we shall require for our construction.

Theorem 12. Lett € Z* be any (large enough) parameter andTgt/Z, £7) be an instance dfl AXIMUM
CuT. Suppose there is a (possibly infeasible) solutibto the relaxationrSDP-MGt) where A consists of
a collection of distribution D 4(5)} gcy s<; ON{—1, 1}-assignments to sets of verticgswith size at
mostt, and a vector solutiort 4 consisting of unit vector$G, },c1-z. Suppose that fol’ C S C Ve,
|S| < t, the distributionsD 4(S) and D 4(T') are consistent. Further, for any two verticesh € V7, if y,
andy, are the marginals of th¢—1, 1}-assignments tda, b} given by the distributiorD 4({a, b}), then

[Bpalyasn] - (GG | < - (23)

Then there exists a feasible solutignto the relaxationSDP-MG¢), consisting of a collection of distribu-
tions{D£(S)}scvr, )< and a vector solutio z of unit vectors{H, }, = such that for any two vertices
a,be Ve,
1
(H,, Hy) = (1 -0 <¥)> (Ga, Gyp) (24)
Proof: We start by defining a collection of distributiofd®r(.S).

Construction of D£(S): For every pair of distinct vertices, b € VZ, we construct a “correcting” distri-
butionT'y, ;) over{—1,1}-assignments to the sét, b}. We will explicitly define these distributions later.
We note for now that the marginals Bf, ;, on either co-ordinate is uniform.

Let S C V7 be such thatS| < t. The dsitributionD+(S) on {—1,1}-assignments to the vertices 8f
is given by the following randomized procedure:

1. LetW := SU{z1,..., 2|5/} wherezy, ..., z_|g are dummy vertices. ThysV| = ¢.
2. From the selV/, select uniformly at random a pair of distinct vertides: {wy, w2 }.

3. Using the distributiorD 4(S \ I), sample & —1, 1}-assignment to vertices ofS'\ 1.
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4. If INS = (), we are done.
5. If In S = {a}, then the vertex is assigned a value frof+1, 1} uniformly at random.
6. If INS = {a,b}, then the assignment to sgt, b} is sampled from the distributiohy, , .

A case analysis shows that forC S, |S| < ¢, the distributiond) = (S) andD£(T') are consistent. One uses
the fact that in Step (3), the assignmeris sampled fromD 4(S \ I), and these distributions are mutually
consistent. Moreover, the marginalslof;, are uniform. We skip a formal proof.

Before we define the corresponding vector solution we analyse the distribitip$) corresponding
to sets of size two. This analysis will be useful later in the proof.

Analyzing D#(S) for |S| = 2: LetS = {a,b} C VZ. Lety, andy, denote the marginals of the distribution
D£(S) (or D4(S) or I's depending on the context). FdrC S, let E; denote the event th&tN 1 = J,
wherel is as chosen in Step (2) of the constructiorf(S). The following are easy to see:

Pr(Eg]=1— %(2:)3 (25)

t—2
Pr [Ey] = Pr[Ey] = O (26)
Pr[Eg] = 1 (27)

(5)
We also have,

Ep,(s)Wave] = Ep,s) Wats | By - PrEg] +Ep,(s) [vave | Efa}] - Pr [E{a}]
+Ep,s) [Wavs | Eqy] - Pr[Epy] +Ep(s) [Wats | Es] - Pr[Esg].

If the eventFy,, occurs theny, is chosen uniformly at random frofn-1, 1} independent o, and therefore
Ep,(s)Watp | Eay] = 0. Similarly, Ep_(s)[yays | Eqy] = 0. Moreover, given eventy, Dz(S) is
identical toD 4(S). Similarly, given the evenks, Dr(S) is identical tol's. Therefore,

2t -3

6

Ep,(s)[vays] = (1 -
2

) EDA(S) [Yayp] + (Tl)EFs [Yay)- (28)

Construction of vector solution H . We now construct the final vector solutidfy= as follows.

L Let¢:=1- (1-325%).

2. Construct a pairwise orthonormal set of vectfis },.yz such that for every vertex € V7, the
vectorh, is orthogonal to the set of vectof§x, },c1-z comprising the solutiolr 4.

3. In the vector solutiod £, for any vertexa € V72, define the unit vector

H, = (\/ﬁ) G, + (\/Z) h,. (29)
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For any two vertices, b € VZ, we have thah, | h; andh, andh, are each orthogonal to bo,
andG,. Therefore,

s = (V060 (V)b (V0 6ok (VO )

= (1-¢)(Ga, Gp)

- (o))

which satisfies the desired condition of equation (24).

Finally, we show that there is a way to define the distributibps,, so that the solutiorr satisfies the
Constraint(4) of the relaxatiorSDP-MG¢).

Lemma 13. For every two distinct vertices, b € V7, there is a distributioi’s (whereS = {a,b}) such
that,

(Hq, Hy) = Ep . (5)[Yabs]- (30)

Proof. From the construction off  we have,

O (Vi [N O I R 1

- (1 - C) <Gaa Gb> . (31)
Equation (28) and substituting the value(ah it gives us,
1
Ep,s)Ways] = (1 = OEp ,(s)[vays] + WEFS [Yays]-
2
Since we desire that equation (30) holds, it suffices to set

(1 =) (Ga, Gp) = (1 = OEp () [yat] + %Ers [yaws], ie.

(2)
t

Brolyn] = (1= ) () ((Gar Go) = By o)

Due to the bound (23), the right hand side above is-i, 1]. Therefore we can definés appropriately,
with the additional property that its marginal on either co-ordinates is uniform. This completes the proof of
Lemma 13 as well as Theorem 12. "

Applying the above Theorem to the (possibly infeasible) soluloronstructed in section C, we obtain
a feasible solutiorF to the relaxatiorSDP-MGt) for the instanceZ, of MAXIMUM CuT. The solution
F consists of a collection of distributioqD #(S) } scv+ |s|<: and a vector solutiot!  with unit vectors
{H(4x) }ux)cv+. The theorem guarantees that for any two vertiees), (v,y) € V*,

1
(Hup: Hy)) = <1 -0 (;)) (G Guy)) - (32)
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D.2 Computation of the Integrality Gap

We start by setting the parameters= (log N)~*% andt¢ = (loglog N)&. The optimum of the unique
games instance is at mogt; = 2-(°¢N)*" " The size of the unique games instanceli$ = 2V /N
whereas the size of the max-cut instance is= |V| - 2V = 22N /N. The value ofp € (—1,0) is chosen so

—1 1— . .
thatagy, == max,c[_1 1) % is attained.

We shall first show the following. Fix a vertexc V. Lete(v,w) ande’ (v, w’) € E(v) any two edges
incident onv. Letx €5 {—1,1}*, andp €1, {—1,1}". Then, with probability at least — 7,
2

<H(w7m;1),H(w“xm;» —p+0 (%) (33)
Using Chernoff bound we can make the following observation.
Observation 14. The following event takes place with probability at least 7,
Eicpvlpe(d)] € [o—n,p+n].

Using theHigh SDP Valueproperty (condition (4)) of the MiQUE GAMES SDP solution, we have that for
any/ € [N],

(T, T kee) > 1 —4n, (To0s Tt o) > 1 — 4n.
From the above and using the triangle inequality, we have,

[Tw ket — Tuwr kol < 4427

Using theSymmetry property (condition (3)) the above can be restated as follows. Féra[lV],

[Tw,e — Tuwr (kear,)mell < 44/2n. (34)
Combining the above with Lemma 6 we obtain,
I T — Tur|l < 8/21. (35)

Combining equations (34) and (35) with Lemma 7 we obfain, = k. @ k.
From our choice of the parameteyg < ra := 2—755, and thus,
ra > [Ty — Twl| > rat1 =0, (36)

wherer; (i € {0,..., A + 1}) are as defined in Section C. Moreover, combining equation (36) with Case 2
of the proof of Theorem 11, we obtain that for all indiégesich thatl <i < A —1,

; ; 1 1. _ . _
<G:1),xo7'rel’ G:LU)/7XIJ'O7T€/1> = N Z (X o 7'{'e 1(.7)) (X[,l, [¢] ’]I'e/l(]{;wvw/ @J)) 4+ 2 t
JE[N]
Sincek,, v = ke @ k., we can rewrite the above as,

. . 1 ) _ ) _
<GL’XOWE_1, G;,7xuoﬂ;1> = Z[:] (xom ke ®j)) (xppom, (ke @) £ 27"
jEIN
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From theHigh SDP Value property we have that.(j) = m.(j) andk. (j) = 7w (j). Substituting in the
above equation we get that for all indicks< ¢ < A —1,

<Gfu,xow;1’Giu’,xu0W;1> = N Z XOT( ))) (XHOWe;l(ﬂ'e’(j))) :l:27t

JG (V]

:—Z ) £27¢

JE[N]

:—Z ) £27

J€[N]
Since the above holds for alke {1,...,A — 1}, by equation (17) we have,
(a G >—lz ()+0 (L 4ot (37)
W,XOTe MERR P ,X,U,OTI'E_,l - N 4V A

JE[N]

Combining the above with Observation 14, we obtain that with probability at leas,

1
and from equation (32),
1
<Hw xomg ! Hw ,X[J.Oﬂ';/1> =p=E 0O (;)

which proves the condition given by equation (33). Since equation (33) holds foreak= (v, w) and
¢ = (v,w’) this implies that the normalized objective valueSBDP-MGt) onZ, is,

1- I_wamr*1 ’Hw’x ot —
FRAC(Z,) > Exy (Hwses: Bt ’>] > 1=r o<t) o).

2 2

Applying Theorem 10, by choosing the optimum of the unique games inseantee ™)™ low enough, we
see that the (normalized) value of the best cufjiis,

1
OPT(Z,) < —arccosp + Z, (39)
v

wheres > 0 is the constant in Theorem 3. Therefore, the Integrality Ge®RP-MGt) is,

FRAC(Z,) _ «(1-p) _OG) o)
t

> agb —e.
OPT(Z,) — 2-arccosp = %ew ¢

| ™

This proves Theorem 3 (note thtt andn are sub-constant).

E Integrality gap for SPARSESTCUT

We give a brief overview of the construction of the integrality gap example forth& SESTCUT relaxation
SDP-SC(t). As in the construction of Khot and Vishnoi [KV05], we actually construct an integrality gap
example for a similar relaxation for theAlBANCED SEPARATORproblem. For this the only change we need
to make to the construction for MkiMuM CuUT is the setting of the parameterWe choose setto bel —4,
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whered = 1/t. It was shown in [KV05] that the instance ofABANCED SEPARATOR thus obtained has
an optimum ofQ2(6¢) (any exponent > % works, sayc = 1—73), provided that the soundness of the unique
games instance is at mast©(1/3*) On the other hand, the SDP value is at mo$s + 1/t) = O().

This gives us an integrality gap 6f((1/6)!~¢) which, on substituting the value of the chosen parameters,
is Q((log log log n)%)
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