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Abstract

Assuming the Unique Games Conjecture (UGC), we show optimal inapproximability results for two
classic scheduling problems. We obtain a hardness of 2 − ε for the problem of minimizing the total
weighted completion time in concurrent open shops. We also obtain a hardness of 2− ε for minimizing
the makespan in the assembly line problem.

These results follow from a new inapproximability result for the Vertex Cover problem on k-uniform
hypergraphs that is stronger and simpler than previous results. We show that assuming the UGC, for
every k ≥ 2, the problem is inapproximable within k − ε even when the hypergraph is almost k-partite.

1 Introduction

A k-uniform hypergraph G = (V,E) consists of a collection of vertices v ∈ V and a collection of edges
e ∈ E where an edge corresponds to a k element subset of V . A vertex cover of G is a subset S of vertices
such that each edge contains at least one vertex from S (i.e. e∩S 6= ∅ for each edge e ∈ E). The Ek-Vertex-
Cover problem is to find the minimum vertex cover of G. This is equivalent to the Set Cover problem (by
viewing edges as elements and vertices as sets) where each element lies in exactly k sets. An independent
set in a k-uniform hypergraph is defined as the complement of a vertex cover, i.e. an independent set is a
subset of vertices T such that no edge is completely contained in T .

The Ek-Vertex-Cover problem, and in particular the case k = 2 corresponding to the Vertex Cover
problem on graphs, is extremely well-studied. There is an almost trivial k-approximation by finding a
maximal matching and the best known algorithms achieve only a slight improvement of (1− o(1))k [9, 13].
On the inapproximability side, for the case k = 2, Dinur and Safra [5] obtained 1.36 NP-hardness improving
on the 7

6 − ε hardness by Håstad [10]. For larger k, a sequence of works obtained hardness factor k1/19

(Trevisan [22]), 2 − ε for some constant k (Goldreich [8]), 2 − ε for k = 4, 3
2 − ε for k = 3, k1−o(1)

(Holmerin [12, 11]), k − 3 − ε (Dinur et al [3]), and finally k − 1 − ε (Dinur et al [4]) that superseded all
earlier results for k ≥ 3.

Assuming the Unique Games Conjecture [14] however, optimal k − ε hardness is known due to Khot
and Regev [15]. Recently, in [1], the authors of this paper strengthened the Khot-Regev result for the case
k = 2: they showed that assuming the UGC, vertex cover in graphs is 2 − ε hard to approximate even
when the graph is almost bipartite, i.e. when the graph has two disjoint independent sets V1, V2 ⊆ V of size
(1
2 − ε)|V | each. The techniques developed were also used to show a tight 2 − ε inapproximability result

(assuming a variant of the UGC) for the classic problem of minimizing the weighted completion time with
precedence constraints. They designed a PCP with one free bit, near-perfect completeness, and arbitrarily
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low soundness, and used the equivalence between hardness of vertex cover problem and existence of PCPs
with zero free bits [6, 2].

In this paper, we obtain a stronger UGC-based inapproximability result for Ek-Vertex-Cover which
subsumes both [15, 1] and holds on hypergraphs that are almost k-partite (essential for the applications).
Our result is conceptually different and much simpler than both these results (albeit using a recent invariance
style theorem of Mossel [19]). Formal statement of our result is:

Theorem 1.1 Assuming the Unique Games Conjecture, for any integer k ≥ 2 and arbitrary constants
ε, δ > 0, given a k-uniform hypergraph G = (V,E), distinguishing between the following cases is NP-
hard:

• (YES Case): there exist disjoint subsets V1, . . . , Vk ⊆ V , satisfying |Vi| ≥ 1−ε
k |V | and such that no

hyperedge contains two or more vertices from some Vi.

• (NO Case): every vertex cover has size at least (1− δ)|V |.

Note that in the YES case, letting V ′ = V \ (V1 ∪ . . .∪ Vk), the sets V ′ ∪ Vi for i = 1, . . . , k are almost
disjoint vertex covers of size at most ( 1

k + ε)|V | each.

1.1 Applications

Our hypergraph vertex cover result was motivated by showing hardness results for two classic problems
in scheduling. The first is the problem of minimizing weighted completion time of jobs in the so-called
Concurrent Open Shop model (also referred to as the Order Scheduling model). The second is the problem
of minimizing the makespan in the so-called assembly line problem.

Concurrent Open Shop: There is a collection of machines M = {1, . . . ,m} with each machine capable
of producing its own unique type of component. There is a collection of jobs J = {1, . . . , n} where each
job requires a specific amount of components from each machine. Formally, each job j ∈ J has weight wj

and requires a processing of pij units for each i = 1, . . . ,m. In the concurrent open shop model, there is
no restriction on how the pij units for a job must be scheduled. The components of a job are independent
of each other, and for example, all of them can be scheduled in parallel. A job is completed when all its
components are completed and the goal is to minimize the total weighted completion time of the jobs.

Given its generality, it is widely used to model various applications in manufacturing and supply chain
(see for example [16] for a survey). Several 2 approximations, using various different techniques are known
for this problem [17, 7, 18]. However, until recently only NP-Hardness was known. Garg et al showed that
the problem is APX-Hard [7]. More recently, Mastrolilli et al [18] showed that the problem is NP-hard to
approximate within 6

5 − ε, and that it is hard to approximate within 4
3 − ε assuming the UGC. In this work

we give a tight hardness result assuming the UGC and show that the problem is hard to approximate within
2− ε. Our result is based on combining the construction of [18] with Theorem 1.1.

The Assembly Line Problem: There are m + 1 machines M = {0, . . . ,m}. Machine 0 is special and
called the assembly machine. Each job j has an operation Oij of size pij for each machine i = 1, . . . ,m.
These operations can be done in any order. After all these operations are completed, a final operation O0j of
size p0j is performed on machine 0 (that assembles the operations O1j , . . . , Omj to produce the final product
j). The job j is completed when O0j is completed. The goal is to minimize the makespan, or equivalently,
the latest completion time of a job.
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The problem is a classic one [20]. It has a trivial 2-approximation: in fact any arbitrary schedule that
does not waste time unnecessarily is a 2-approximation. This is because maxi=0,...,m Load(i) is a lower
bound for the problem, where Load(i) is the total size of operations on machine i. On the other hand, any
schedule of the type described above achieves a makespan of Load(0)+maxi=1,...,m Load(m). A somewhat
better 2 − 1

m approximation is also known [20]. The problem was known to be strongly NP-hard even for
m = 2 [20]. It featured in Schuurman and Woeginger’s [21] well-known list of important open problems in
scheduling. It was subsequently observed by several researchers (but unpublished) that an APX-Hardness
follows from known hardness results for coloring k-colorable graphs. However, these results only yield a
small hardness factor. In this paper, we show that the trivial 2-approximation algorithm described above is
essentially the best one can hope for, assuming the UGC.

1.2 Techniques

Our hardness reduction for the hypergraph vertex cover problem is quite simple and described in Sections
2.2, 3, and 4. Here we give a quick overview. As is standard in UGC-based reductions, the crux of our
construction is a dictatorship test. This can be viewed as a construction of a k-uniform hypergraph with
vertex set Ωn for a finite set Ω. The hypergraph has these two properties:

• (Completeness): If the hypergraph is partitioned into |Ω| sets {Vω}ω∈Ω based on jth co-ordinate for
any fixed j, then each hyperedge contains at most one vertex from Vω for any ω ∈ Ω.

• (Soundness): Any large (i.e. linear sized) independent set in the hypergraph must have an influential
co-ordinate. This follows directly from a theorem of Mossel [19] that gives gaussian bounds for noise
correlation of functions.

Since in the completeness case, we need the hypergraph to be (almost) k-partite, it would be natural to
take |Ω| = k. To satisfy the completeness property, we are led to define (x1, . . . , xk) ∈ (Ωn)k to be
an hyperedge iff for every co-ordinate j, (x1

j , . . . , x
k
j ) are distinct, i.e. this tuple is a permutation of Ω.

However, this does not quite work as the set of all permutations of Ω is disconnected as a subset of Ωk,
whereas application of Mossel’s theorem has a certain connectedness requirement. We get around this
problem by a simple trick that seems quite useful for future applications: we introduce a dummy element
called 0 and let Ω = {0, 1, . . . , k}. The hyperedges are defined as before: (x1, . . . , xk) ∈ (Ωn)k is an
hyperedge iff for every co-ordinate j, (x1

j , . . . , x
k
j ) are distinct. Now the set of all k-tuples of distinct

elements of the k + 1 sized set Ω happens to be a connected subset of Ωk and therefore Mossel’s theorem
is applicable. We let the element 0 to have negligible probability mass relative to the other elements so that
the hypergraph is almost k-partite. Construction of this hypergraph (i.e. the dictatorship test) leads to a
UGC-based hardness result in a straightforward manner.

2 Preliminaries

2.1 The Unique Games Conjecture

Definition 2.1 An instance L(G(V,W,E), [n], {σ(v, w)}(v,w)∈E) of Unique Games consists of a regular
bipartite graph G(V,W,E) and a set [n] of labels. For each edge (v, w) ∈ E there is a constraint specified
by a permutation σ(v, w) : [n] 7→ [n]. The goal is to find a labelling ` : V ∪ W → [n] of the vertices
such that as many edges as possible are satisfied, where an edge e = (v, w) is said to be satisfied if
`(v) = σ(v, w)(`(w)).
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Definition 2.2 Given a Unique Games instance L(G(V,W,E), [n], {σv,w}(v,w)∈E) let OPT(L) denote the
maximum fraction of simultaneously satisfied edges of L by any labeling, i.e.

OPT(L) :=
1
|E|

max
`:V ∪W→[n]

|{ e ∈ E : ` satisfies e }|.

A formal statement of the Unique Games Conjecture appears below; the conjecture has been widely
employed to prove strong inapproximability results for several problems.

Conjecture 2.3 ([14]) For any constants ζ, γ > 0, there is a sufficiently large constant n = n(ζ, γ) such
that, for Unique Games instances L with label set [n] it is NP-hard to distinguish between

• OPT(L) ≥ 1− ζ,

• OPT(L) ≤ γ.

2.2 Gaussian bounds on Correlated Spaces

Let (Ωk,P) be a (so-called correlated) probability space where Ω is a finite set and P is a probability
distribution over Ωk, and let the relation R := {x ∈ Ωk | P(x) > 0} ⊆ Ωk be the support of P. Assume
moreover that the marginal of P on any co-ordinate is the same, denote it by P as well. We say that R is a
connected relation if for any x, y ∈ R, there exists a path x = y(0), y(1), . . . , y(r) = y in R such that y(i)
and y(i + 1) differ in one coordinate only.

Consider a k-uniform hypergraph with the vertex set Ωn. A tuple (x1, . . . , xk) ∈ (Ωn)k is defined
to be an hyperedge if for every co-ordinate 1 ≤ i ≤ n, we have (x1

i , . . . , x
k
i ) ∈ R. In fact we define

a probability distribution on the set of hyperedges where a random hyperedge (x1, . . . , xk) is selected by
selecting independently for 1 ≤ i ≤ n, the tuple (x1

i , . . . , x
k
i ) from space (Ωk,P). We will use a theorem of

Mossel [19] stating that every large independent set in this hypergraph must have an influential co-ordinate.
Specifically, let A ⊆ Ωn be a set and fA : Ωn 7→ {0, 1} be its indicator function. The fraction of hyperedges
that lie entirely inside A is clearly,

E(x1,...,xk)

 k∏
j=1

fA(xj)

 .

Mossel’s theorem states that if E[fA] is large and all influences of fA are sufficiently small, then this expec-
tation is lower bounded by a constant, and therefore A cannot be an independent set. In fact, as is necessary
for our application, the theorem works even for (non-boolean) functions f : Ωn 7→ [0, 1] and one only re-
quires that degree d influences are sufficiently small. We state the theorem below and also define the notion
of influence of variable.

Theorem 2.4 (Mossel [19]) Let (Ωk,P) be a correlated space such that the support R ⊆ Ωk of P is
connected and the minimum probability of any atom in R is at least α ≤ 1

2 . Then there exist continuous
functions Γ : (0, 1) 7→ (0, 1) and Γ : (0, 1) 7→ (0, 1) such that the following holds: for every ε > 0, there
exists a τ > 0 and integer d such that for any function f : Ωn 7→ [0, 1], satisfying

∀ 1 ≤ i ≤ n, Infl≤d
i (f) ≤ τ,

we have:

Γ(E[f ])− ε ≤ E(x1,...,xk)

 k∏
j=1

f(xj)

 ≤ Γ(E[f ]) + ε.
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Remark 2.5 We have stated Theorem 2.4 in the form that we need (we only need the lower bound). This is
essentially the same statement as Theorem 6.4 in [19]. Therein, the theorem is stated for a multi-function
version whereas we only need the single-function version. The bound ρ(Ω(1)

i , . . . ,Ω(k)
i ) ≤ ρ < 1 required

there follows from the fact that the relation R is connected, see Lemma 2.9 therein. The author also gives
quantitative bounds for Γ(),Γ(), τ , but we don’t necessarily need specific bounds.

For the sake of quick reference, we note the definition of influence and low degree influence (see [19,
Section 3]). We assume that (Ω,P) is a finite probability space and distribution on Ωn is the product
distribution Pn. Let f =

∑
φ f̂(φ)Xφ be the multi-linear representation of f (analogue of the standard

Fourier representation).

Definition 2.6 For a function f : Ωn 7→ R, and a co-ordinate 1 ≤ i ≤ n,

Infli(f) := E[Var(f)|x1, xi−1, xi+1, . . . , xn] =
∑

φ:φi 6=0

f̂(φ)2.

Definition 2.7 For a function f : Ωn 7→ R, a co-ordinate 1 ≤ i ≤ n, and integer d, the degree d influence
is defined as:

Infl≤d
i (f) :=

∑
φ:φi 6=0,|φ|≤d

f̂(φ)2.

Lemma 2.8 If f : Ωn 7→ [0, 1], then the number of co-ordinates i such that Infl≤d
i (f) ≥ τ is at most d/τ .

Proof: This follows from:
n∑

i=1

Infl≤d
i (f) =

n∑
i=1

∑
φ:φi 6=0,|φ|≤d

f̂(φ)2 ≤ d ·
∑

φ

f̂(φ)2 = d · ‖f‖2
2 ≤ d.

3 Dictatorship Test

In this section we define the appropriate dictatorship test that we will later use as a gadget to show the UGC
based Hardness. Let Ω be a finite set consisting of k + 1 elements, Ω := {0, 1, . . . , k} (the element 0 is
special as we see next). Let P̃ be a distribution on Ω where the elements 1, . . . , k have probability mass
(1− δ)/k and element 0 has mass δ. Later we will set δ � 1/k.

Let R denote the following relation on Ωk: A k-tuple (a1, . . . , ak) ∈ R if and only if elements
{a1, . . . , ak} are all distinct. It is easy to see that one can define a probability distribution P on R such
that on each co-ordinate its marginal is P̃ and moreover each atom in R has probability mass at least α > 0.

Claim 3.1 R is a connected relation.

Proof: Suppose (a1, . . . , ak), (b1, . . . , bk) ∈ R. Let us first consider the case when |{a1, . . . , ak, b1, . . . , bk}| =
k + 1. Then there is some index i such that bi /∈ {a1, . . . , ak}. We set ai = bi and proceed induc-
tively on the remaining k − 1 coordinates (without ever considering coordinate i again). Now suppose that
|{a1, . . . , ak, b1, . . . , bk}| = k. In this case we arbitrarily set some coordinate ai to [k + 1] \ {b1, . . . , bk},
and reduce to the previous case.
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Consider a hypergraph G = (V,E) defined on Ωn as follows: Each element a ∈ Ωn corresponds to a
vertex in G. A k-tuple (a1, . . . , ak) ∈ (Ωn)k is an hyperedge if and only if the relation R is satisfied for
each coordinate j, i.e. for each 1 ≤ j ≤ n, (a1

j , a
2
j , . . . , a

k
j ) ∈ R. The instance satisfies the following

completeness and soundness properties:

Completeness: Fix any coordinate j, and consider the partition of the vertices based on the coordinate.
That is, for i = 0, . . . , k, let Vi denote the set of vertices Vi = {v = (a1, . . . , an) : aj = i}. Clearly,
|V0| = δ|V | and Vi = (1− δ)|V |/k for i = 1, . . . , k.

Claim 3.2 Any hyperedge contains at most one vertex from any set Vi.

Proof: Consider any hyperedge e = (a1, . . . , ak) and consider the k-tuple (a1
j , . . . , a

k
j ) of the j-th coordi-

nates of the vertices in e. By definition, this tuple satisfies R, and hence no two of them can be i, and hence
lie in Vi.

Soundness:

Claim 3.3 For every β > 0, there exists τ > 0 and integer d, such that if A ⊆ Ωn is an independent set of
size β|V |, then A (or rather its indicator function) has a coordinate with degree d influence at least τ .

Proof: This follows by a direct application of Theorem 2.4, by choosing ε = Γ(β)/2.

4 UGC based Hardness

We assume the following variant of Unique Games Conjecture.

Hypothesis 4.1 For arbitrarily small constants ζ, γ > 0, there exists an integer n = n(ζ, γ) such that for a
Unique Games instance L(G(V,W,E), [n], {σv,w}(v,w)∈E), it is NP-hard to distinguish between:

• (YES Case:) There is a set W ′ ⊆ W such that |W ′| ≥ (1 − ζ)|W | and a labeling ` : V ∪W 7→ [n]
that satisfies every edge (v, w) for v ∈ V and w ∈ W ′.

• (NO Case:) No labeling satisfies even a γ fraction of edges.

Moreover, we can assume that the graph is both left and right regular. This variant is equivalent to the
original Unique Games Conjecture as shown by Khot and Regev [15, Lemma 3.6].

Given the UGC instance L, we construct the following hypergraph instance H = (X, Y ). With each
vertex v ∈ V and w ∈ W , we associate the hypercube Ωn, where Ω is chosen as in the gadget in section
3. Let Ωn(v) denote the hypercube for vertex v. The set of vertices X for the hypergraph is defined as
X := ∪w∈W Ωn(w).

Before we describe the edges, we give some notation. Let σ : [n] → [n] be a permutation. For an
element x = (x1, . . . , xn) ∈ Ωn, let x ◦ σ denote the string (xσ(1), . . . , xσ(n)). For each vertex v ∈ V

and every subset of its k neighbors w1, . . . , wk ∈ W , we define a block B(v, w1, . . . , wk). There will be
a collection of hyperedges for each block defined as follows: For each x1, x2, . . . , xk ∈ Ωn(v) such that
(x1, . . . , xk) ∈ Rn, we have a hyperedge y = (x1 ◦ σ(v, w1), . . . , xk ◦ σ(v, wk)). Here R is the relation
defined in the gadget in section 3.

In other words, we identify the coordinates of Ωn(w1), . . . ,Ωn(wk) via the permutations σ(v, wj), and
add an hyperedge among k vertices if they satisfy the relation R on each coordinate.
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Completeness: Consider the labeling ` in the YES case, and let W ′ be the set of vertices satisfying the
condition in the UGC Hypothesis 4.1.

For i = 0, 1, . . . , k, we define

Xi =
⋃

w∈W ′

{x : x ∈ Ωn(w), x`(w) = i}.

Note that for each hypercube corresponding to w ∈ W ′, we are partitioning its vertices based on their `(w)
coordinate.

Claim 4.2 The sets X0, X1, . . . , Xk are pairwise disjoint. |Xi| ≥ (1−δ)(1−ζ)|X|/k for each i = 1, . . . , k
and no hyperedge contains more than one vertex from Xi.

Proof: The disjointness of the Xi follows by construction. Since the elements 1, . . . , k have probability
mass (1− δ)/k in Ω, it follows that |Xi ∩Ωn(w)| = (1− δ)|Ωn(w)|/k for each w ∈ W ′ and i = 1, . . . , k.
As |W ′| ≥ (1− ζ)|W | this implies the claimed bound on the size of Xi.

It remains to show that no hyperedge contains two or more vertices from Xi. Consider some hyperedge
y and suppose it lies in some block B(v, w1, . . . , wk), then y = (x1 ◦σ(v, w1), . . . , xk ◦σ(v, wk)) for some
(x1, . . . , xk) ∈ Rn. Let S denote the set of indices j such that wj ∈ W ′.

Since Xi ∩ Ωn(w) = ∅ for w /∈ W ′, it follows that if j /∈ S then the vertex xj ◦ σ(v, wj) cannot
lie in Xi. Thus we need to consider only the indices in S. Now for any j ∈ S, xj ◦ σ(v, wj) lies in
Xi iff (xj ◦ σ(v, wj))`(wj) = i. Since the labeling ` satisfies the constraints (v, wj) for j ∈ S, we have
σ(v, wj)`(wj) = `(v). Thus (xj ◦ σ(v, wj))`(wj) = (xj)`(v) for j ∈ S. So if there exist j 6= j′ ∈ S such
that both xj ◦ σ(v, wj) and xj′ ◦ σ(v, wj′) lie in Xi, then this implies that (xj)`(v) = (xj′)`(v) contradicting
the fact that (x1, . . . , xk) ∈ Rn.

Soundness: Suppose A is an independent set and that |A| ≥ β|X|. Let Aw = Ωn(w) ∩ A be the vertices
of A that lie in Ωn(w) for w ∈ W . Define the boolean function fw : Ωn(w) → {0, 1} where fw(x) = 1 if
x ∈ Aw and is 0 otherwise. Let N(v) ⊆ W denote the set of neighbors of v ∈ V . Let

fv(x) = E
w∈N(v)

[fw(x ◦ σ(v, w))].

Since the unique games graph is regular, Ev,x[fv(x)] ≥ β. Call a vertex v ∈ V good if Ex[fv(x)] ≥ β/2.
By an averaging argument, at least β/2 fraction of vertices in V are good.

Since A is independent set, for any hyperedge y = (x1, . . . , xk) in block B(v, w1, . . . , wk), it must be
that not all fwi(xi) are 1. Thus for any v ∈ V and any k neighbors w1, . . . , wk of v, we have

E(x1,...,xk)

[
k∏

i=1

fwi(xi ◦ σ(v, wi)

]
= 0. (1)

Averaging over all k-tuples w1, . . . , wk of neighbors of v, we have

E(x1,...,xk)

[
k∏

i=1

fv(xi)

]

= E(x1,...,xk)Ew1,...,wk∈N(v)

[
k∏

i=1

fwi(xi ◦ σ(v, wi))

]
= 0. (2)
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Applying Theorem 2.4 with ε = Γ(β/2)/2, it follows that fv must have a co-ordinate with degree d
influence at least τ . Let S(v) 6= ∅ be the set of all such influential co-ordinates.

For every good vertex v ∈ V we give it an arbitrary label j from its (non-empty) set S(v). For any
j ∈ S(v),

τ ≤ Infl≤d
j (fv) =

∑
φj 6=0,|φ|≤d

f̂v(φ)2 =
∑

φj 6=0,|φ|≤d

(
Ew

[
f̂w(σ(v, w)−1(φ))

])2

≤
∑

φj 6=0,|φ|≤d

Ew

[
f̂w(σ(v, w)−1(φ))2

]
= Ew

[
Infl≤d

σ(v,w)−1(j)
(fw)

]
. (3)

For every w ∈ W define the set of candidate labels for w to be

Cand[w] = {i ∈ [n] : Infl≤d
i ≥ τ/2}.

Since the sum of degree d influences is at most d, the number of candidates |Cand[w]| is at most 2d/τ . Since
at least β/2 fraction of vertices v ∈ V are good, and by (3) for each good vertex at least τ/2 fraction of its
neighbors in W have Infl≤d

σ(v,w)−1(j)
(fw) ≥ τ/2. Now if we label each vertex w ∈ W by choosing a random

element of Cand[w] (or any label if this set is empty), it follows that among the set of edges adjacent to
good vertices v, at least a (τ/2)(τ/2d)-fraction are satisfied in expectation. Thus it follows that there is a
labeling for all vertices which satisfies a (β/2)(τ/2)(τ/2d) fraction of all edges. This completes the proof
of soundness.

5 Applications

5.1 Total weighted completion time concurrent open shop

Recall the problem definition from Section 1.1. We give a reduction from Ek-Vertex-Cover. Given a k-
uniform hypergraph instance G = (V,E) satisfying the properties of Theorem 1.1. We construct an instance
I of the concurrent open shop problem as follows: A vertex v ∈ V corresponds to a job Jv in I . Each
hyperedge e ∈ E corresponds to a machine me in I . Let Ev denote the set of hyperedges in G that contain
the vertex v. For each edge in e ∈ Ev we introduce an operation of unit size for job Jv that needs to be
executed on machine me. All other operations of Jv have size 0. Each job has weight 1.

We claim that in the YES case, the optimum average weighted completion time is at most (1 + ε)(k +
1)/2. Let V1, . . . , Vk be the disjoint subsets of V satisfying the properties of G stated in theorem 1.1.
Consider the following schedule. For each job v ∈ Vi schedule all its unit size operations at time i (the
operations of size 0 can all be completed instantaneously at beginning schedule, and do not play any role
in the proof). This gives a valid schedule for the jobs corresponding to vertices in V1 ∪ . . . ∪ Vk, because
any hyperedge e ∈ E contains at most one vertex from Vi, and hence no two operations are assigned to a
machine at the same time. For the remaining jobs in V \ (V1∪ . . .∪Vk), we place their operations arbitrarily
in the gaps in the schedule. Since it is a k-uniform hypergraph, each machine has load at most k, and hence
each job completes by time k. Thus the average completion time is at most

1− ε

k
(1 + 2 + . . . + k) + εk = (1− ε)(k + 1)/2 + εk ≤ (1 + ε)(k + 1)/2.

In the NO case, in any schedule consider the collection V ′ of jobs (vertices) that complete on or before
time k − 1. Now V ′ forms an independent set, since for any machine (hyperedge) e at most k − 1 unit size
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operations could have been completed by time k − 1, and hence at most k − 1 vertices from e could lie in
V ′. Thus, if the average completion time is less than (1 − δ)k, this would imply that at least δ fraction of
the jobs finish by time k − 1 or sooner, which implies the existence of an independent set of size δ|V | in G.

Choosing k large enough and ε, δ arbitrarily small, by Theorem 1.1 it follows that the problem is hard
to approximate within a factor arbitrarily close to 2 assuming the UGC.

5.2 Makespan minimization in the Assembly Line Problem

Recall the problem definition from Section 1.1. We give a reduction from Ek-Vertex-Cover. Consider a k-
uniform hypergraph instance G = (V,E) satisfying the properties of Theorem 1.1. We construct an instance
I of the assembly line problem as follows: A vertex v ∈ V corresponds to a job Jv in I . A hyperedge e ∈ E
corresponds to a machine me in I . Let Ev denote the set of hyperedges in G that contain the vertex v. For
each edge in e ∈ Ev we introduce an operation of unit size for job Jv that must be processed on machine
me. On machine 0, the job Jv has an operation of size k/|V |. All other operations are of size 0.

We claim that in the YES case, the optimum makespan is at most k + 1 + εk. Let V1, . . . , Vk be the
disjoint collection of vertices satisfying the properties of Theorem 1.1. Consider the following schedule.
For each job v ∈ Vi schedule all its unit size operations (except those on machine 0) during the time slot
[i−1, i]. For each of these jobs, we schedule their final operation on machine 0 arbitrarily during the interval
[i, i+1]. This gives a valid schedule for jobs corresponding to vertices in V1∪ . . .∪Vk because no hyperedge
contains more than one vertex in any Vi and hence no two unit size operations are assigned to a machine
corresponding to an hyperedge at the same time. Since Vi ≤ (1 − ε)|V |/k, all the final operations of jobs
in Vi can also be completed during [i, i + 1]. For the remaining jobs in V \ (V1 ∪ . . . ∪ Vk), we place their
operations on machines 1, . . . ,m arbitrarily, and schedule their final operations on machine 0 arbitrarily
after time k + 1. Thus the makespan is at most

k + 1 + ε|V | · k/|V | = k + 1 + εk.

In the NO case, in any schedule let V ′ denote the subset of vertices corresponding to the jobs for which
the final operation is scheduled before time k − 1. We claim that V ′ corresponds to an independent set,
because for any machine (hyperedge) at most k − 1 operations of unit size could have been completed by
time k − 1, and hence at most k − 1 vertices from the hyperedge could lie in V ′. Thus, if the makespan is
less than 2k − 1 − δk = k − 1 + (1 − δ)|V | · k/|V |, this implies that |V ′| ≥ δ|V | and hence there is an
independent set of size δ|V |.

Choosing k large enough and ε, δ arbitrarily small, by Theorem 1.1 it follows that the problem is hard
to approximate within a factor arbitrarily close to 2 assuming the UGC.
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