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Abstract

This article surveys recently discovered connections between the Unique Games Conjec-
ture and computational complexity, algorithms, discrete Fourier analysis, and geometry.

1 Introduction

Since it was proposed in 2002 by the author [60], the Unique Games Conjecture (UGC) has found
many connections between computational complexity, algorithms, analysis, and geometry. This
article aims to give a survey of these connections. We first briefly describe how these connections
play out, which are then further explored in the subsequent sections.

Inapproximability: The main motivation for the conjecture is to prove inapproximability results
for NP-complete problems that researchers have been unable to prove otherwise. The UGC states
that a specific computational problem called the Unique Game is inapproximable. A gap-preserving
reduction from the Unique Game problem then implies inapproximability results for other NP-
complete problems. Such a reduction was exhibited in [60] for the Min-2SAT-Deletion problem and
it was soon followed by a flurry of reductions for various problems, in some cases using variants of
the conjecture.
Discrete Fourier Analysis: The inapproximability reductions from the Unique Game problem
often use gadgets constructed from a boolean hypercube (also used with a great success in earlier
works [18, 49, 51]). The reductions can be alternately viewed as constructions of Probabilistically
Checkable Proofs (PCPs) and the gadgets can be viewed as probabilistic checking procedures to
check whether a given codeword is a Long Code. Fourier analytic theorems on hypercube play a
crucial role in ensuring that the gadgets indeed “work”. Applications to inapproximability actually
lead to some new Fourier analytic theorems.
Geometry: The task of proving a Fourier analytic theorem can sometimes be reduced to an
isoperimetry type question in geometry. This step relies on powerful invariance style theorems [98,
83, 24, 82], some of which were motivated in a large part by their application to inapproximability.
The geometric questions, in turn, are either already studied or are new, and many of these remain
challenging open questions.
Integrality Gaps: For many problems, the UGC rules out every polynomial time algorithm to
compute a good approximate solution. One can investigate a less ambitious question: can we rule
out algorithms based on a specific linear or semi-definite programming relaxation? This amounts
to the so-called integrality gap constructions that are explicit combinatorial constructions, often
with geometric flavor. It was demonstrated in [71] and subsequent papers that the reduction from
∗Supported by NSF CAREER grant CCF-0833228, NSF Expeditions grant CCF-0832795, and BSF grant 2008059.
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the Unique Game problem to a target problem can in fact be used to construct an (unconditional,
explicit) integrality gap instance for the target problem. This strategy was used in [71] to resolve
certain questions in metric geometry. A result of Raghavendra [90] shows duality between ap-
proximation algorithms and inapproximability reductions in the context of constraint satisfaction
problems: a natural semi-definite programming relaxation leads to an algorithm and an integrality
gap instance to the same relaxation leads to an inapproximability reduction.
Algorithms and Parallel Repetition: Attempts to prove or disprove the UGC have led to
some very nice algorithms, a connection to the small set expansion problem in graphs, a deeper
understanding of the parallel repetition theorem, and solution to a tiling problem in Euclidean
space. Some of these works demonstrate that if the conjecture were true, there must be a certain
trade-off between quantitative parameters involved, that there can be no proof along a certain
strategy, and that if pushed to certain extremes, the conjecture becomes false.

Many of the aforementioned developments were quite unexpected (to the author at least).
One hopes that the future progress culminates in a proof or a refutation of the conjecture, and
irrespective of the outcome, new techniques and unconditional results keep getting discovered. The
reader is referred to [104, 61, 62, 85] for surveys on related topics.

2 Preliminary Background

2.1 Approximation Algorithms and Inapproximability

Let I denote an NP-complete problem. For an instance I of the problem with input size N , 1 let
OPT(I) denote the value of the optimal solution. For a specific polynomial time approximation
algorithm, let ALG(I) denote the value of the solution that the algorithm finds (or its expected
value if the algorithm is randomized). Let C > 1 be a parameter that could be a function of N .

Definition 2.1 An algorithm achieves an approximation factor of C if on every instance I,

ALG(I) ≥ OPT(I)/C if I is a maximization problem,
ALG(I) ≤ C · OPT(I) if I is a minimization problem.

A maximization problem I is proved to be inapproximable by giving a reduction from a canonical
NP-complete problem such as 3SAT to a gap version of I. A (c, s)-gap version of the problem,
denoted as GapIc,s is a promise problem where either OPT(I) ≥ c or OPT(I) ≤ s. Suppose there
is a polynomial time reduction from 3SAT to GapIc,s for some 0 < s < c, i.e. a reduction that
maps a 3SAT formula φ to an instance I of the problem I such that:

• (YES Case): If φ has a satisfying assignment, then OPT(I) ≥ c.

• (NO Case): If φ has no satisfying assignment, then OPT(I) ≤ s.

Such a reduction implies that if there were an algorithm with approximation factor strictly less
than c/s for problem I, then it would enable one to efficiently decide whether a 3SAT formula is
satisfiable, and hence P = NP. Inapproximability results for minimization problems can be proved
in a similar way.

1In this article, N denotes the size of the input, and n is reserved to denote the dimension of a boolean hypercube
as well as the number of “labels” for the Unique Game problem.
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2.2 The PCP Theorem

In practice, a reduction as described above is actually a sequence of (potentially very involved)
reductions. The first reduction in the sequence is the famous PCP Theorem [37, 11, 9] which can
be phrased as a reduction from 3SAT to a gap version of 3SAT. For a 3SAT formula φ, let OPT(φ)
denote the maximum fraction of clauses that can be satisfied by any assignment. Thus OPT(φ) = 1
if and only if φ is satisfiable. The PCP Theorem states that there is a universal constant α∗ < 1
and a polynomial time reduction that maps a 3SAT instance φ to another 3SAT instance ψ such
that:

• (YES Case): If OPT(φ) = 1, then OPT(ψ) = 1.

• (NO Case): If OPT(φ) < 1, then OPT(ψ) ≤ α∗.

We stated the PCP Theorem as a combinatorial reduction. There is an equivalent formulation
of it in terms of proof checking. The theorem states that every NP statement has a polynomial size
proof that can be checked by a probabilistic polynomial time verifier by reading only a constant
number of bits in the proof! The verifier has the completeness (i.e. the YES Case) and the
soundness (i.e. the NO Case) property: every correct statement has a proof that is accepted with
probability 1 and every proof of an incorrect statement is accepted with only a small probability,
say at most 1%. The equivalence between the two views, namely reduction versus proof checking,
is simple but illuminating, and has influenced much of the work in this area.

2.3 Towards Optimal Inapproximability Results

The PCP Theorem shows that Max-3SAT is inapproximable within factor 1
α∗ > 1. By results of

Papadimitriou and Yannakakis [89], the same holds for every problem in the class MAX-SNP. After
the discovery of the PCP Theorem, the focus shifted to proving optimal results, that is proving
approximability and inapproximability results that match with each other. In the author’s opinion,
the most influential developments in this direction were the introduction of the Label Cover (a.k.a.
2-Prover-1-Round Game) problem [4], Raz’s Parallel Repetition Theorem [96], the introduction of
the Long Code and the basic reduction framework of Long Code based PCPs [18], and H̊astad’s
use of Fourier analysis in analyzing the Long Code [49, 51]. Specifically, H̊astad’s work gives
optimal inapproximbaility results for 3SAT and the Clique problem. He shows that for every ε > 0,
Gap3SAT1, 7

8
+ε is NP-hard and also that on N -vertex graphs, GapCliqueN1−ε,Nε is NP-hard. In

words, given a satisfiable 3SAT formula, it is hard to find an assignment that satisfies 7
8 +ε fraction

of the clauses (a random assignment is 7
8 -satisfying in expectation). Also, given an N -vertex graph

that has a clique of size N1−ε, it is hard to find a clique of size N ε.
We give a quick overview of these developments which sets up the motivation for formulating

the Unique Games Conjecture. We start with the (somewhat cumbersome) definition of the 2-Prover-
1-Round Game problem.2

Definition 2.2 A 2-Prover-1-Round Game U2p1r(G(V,W,E), [m], [n], {πe|e ∈ E}) is a constraint
satisfaction problem defined as follows: G(V,W,E) is a bipartite graph whose vertices represent
variables and edges represent the constraints. The goal is to assign to each vertex in V a label
from the set [m] and to each vertex in W a label from the set [n]. The constraint on an edge
e = (v, w) ∈ E is described by a “projection” πe : [m] 7→ [n]. The projection is onto, may depend on

2The 2-Prover-1-Round games allow more general constraints than projections. The projection property is crucial
for inapproximability applications and we restrict to this special case throughout this article.
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the edge, and m ≥ n. A labeling L : V 7→ [m], L : W 7→ [n] satisfies the constraint on edge e = (v, w)
if and only if πe(L(v)) = L(w). Let OPT(U2p1r) denote the maximum fraction of constraints that
can be satisfied by any labeling:

OPT(U2p1r) := max
L:V 7→[m],L:W 7→[n]

1
|E|
· |{e ∈ E | L satisfies e}| .

The 2-Prover-1-Round Game problem is to find an (approximately) optimal labeling to a given
instance. The term game derives from an equivalent formulation in terms of 2-Prover-1-Round
games. Given an instance U2p1r(G(V,W,E), [m], [n], {πe|e ∈ E}), consider the following game:
there are two proves P1 and P2 and a probabilistic polynomial time verifier. The verifier picks an
edge e = (v, w) at random, sends the vertex v to prover P1 and the vertex w to prover P2. The
provers are supposed to answer with a label in [m] and [n] respectively. The verifier accepts if and
only if πe(i) = j where i and j are the answers of the two provers respectively. The strategies of the
provers correspond to a labeling L : V 7→ [m], L : W 7→ [n]. The value of the game is the maximum
over all prover strategies, the probability that the verifier accepts and it is clearly the same as
OPT(U2p1r). Thus the constraint satisfaction view and the 2-Prover-1-Round view are equivalent.

We are interested in the case where the sizes m and n of label sets are constant and the size of
the constraint graph is the growing input size. The PCP Theorem implies that the gap version of
the problem is NP-hard and then the gap can be amplified using parallel repetition theorem.

Theorem 2.3 (PCP Theorem + Raz’s Parallel Repetition Theorem:) For every δ > 0, Gap2P1R1,δ

is NP-hard on instances with label sets of size poly(1/δ). Specifically, there exists an absolute
constant C such that for every δ > 0, U2p1r(G(V,W,E), [m], [n], {πe|e ∈ E}), m = (1/δ)C , it is
NP-hard to distinguish between:

• YES Case: OPT(U2p1r) = 1.

• NO Case: OPT(U2p1r) ≤ δ.

Many of the inapproximability results (e.g. [18, 49, 51, 47, 100]) are obtained by a reduction
from the 2-Prover-1-Round Game in Theorem 2.3. Suppose one desires a reduction from Gap2P1R1,δ

to GapIc,s for a maximization problem I. The core of such a reduction involves a gadget built from
a boolean hypercube and the fact that the gadget “works” relies on Fourier analysis of boolean
functions on the hypercube. One can also view the reduction as a PCP construction and the
gadget as an encoding scheme along with a testing procedure to check whether a given string is
indeed a codeword. An extremely useful encoding scheme is the so-called Long Code which is same
as a dictatorship function on the hypercube. A dictatorship function f : {−1, 1}n 7→ {−1, 1} is
a function that depends only on one co-ordinate, i.e. f(x) = xi0 for some fixed i0 ∈ [n]. The
truth-table of this function is thought of as an encoding of index i0 ∈ [n] and this precisely is the
Long Code. One desires a testing procedure such that a dictatorship function passes the test with
probability at least c whereas any function that is far from being a dictatorship passes the test
with probability at most s. The gap c/s essentially translates to the gap in the GapIc,s instance
constructed by the reduction. Along with the quantitative gap, the nature of the test (number
of queries, the acceptance predicate etc.) is also important and is dictated by the specific target
problem I.

The PCP, at a high level, involves replacing every vertex of the 2-Prover-1-Round Game by a
copy of a boolean hypercube (i.e. the gadget). If U2p1r(G(V,W,E), [m], [n], {πe|e ∈ E}) denotes
the 2-Prover-1-Round Game instance, then every v ∈ V is replaced by an m-dimensional hypercube
and every w ∈ W is replaced by an n-dimensional hypercube. Thus the labels are identified with
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the hypercube dimensions. The PCP proof consists of truth-tables of boolean functions on these
hypercubes. An honest proof is supposed to write down truth-tables of dictatorship functions, where
for each hypercube, the co-ordinate relevant to its dictatorship function is the supposed label of
the 2-Prover-1-Round Game vertex. The overall PCP testing has two parts: codeword testing that
checks that each boolean function, by itself, is (close to) a dictatorship and consistency testing that
checks that for e = (v, w) ∈ E, the boolean functions on hypercubes corresponding to v and w are
dictatorships of some co-ordinates i ∈ [m] and j ∈ [n] respectively such that πe(i) = j. Often, these
two parts are combined together into a single test.

2.4 The Unique Games Conjecture

The overview of a typical PCP described above is a little too simplistic. There are often serious
technical challenges to overcome and even though the above PCP strategy succeeds in some ap-
plications (e.g. Max-3SAT, Clique, Hypergraph Coloring [49, 51, 47, 100]), researchers have been
unable to make it work for many other applications, e.g. Vertex Cover, MaxCut, Min-2SAT-Deletion,
and Graph Coloring. An immediate observation is that in the first set of (successful) applications,
the PCPs are allowed to make three or more queries, whereas in the second set of (unsuccessful)
applications, the PCPs are allowed to make only two queries and two-query PCPs are potentially
very weak. The nature of the PCP test (including the number of queries) is dictated by the target
problem at hand, and hence there is no way around this particular barrier. It was pointed out by
the author [60] that, at a technical level, another barrier to further progress is perhaps the “many-
to-one”-ness of the projection constraints πe : [m] 7→ [n] in the 2-Prover-1-Round Game instance. As
δ → 0 in Theorem 2.3, the “many-to-one”-ness m

n → ∞. In the consistency testing part, one has
two hypercubes of widely differing dimensions m and n, and a two query PCP is too weak to enforce
consistency between them. This motivated the study of so-called Unique Game problem which is
a special case of 2-Prover-1-Round Game problem with m = n and πe : [m] 7→ [n] are bijections.
Such games were considered before in the context of parallel repetition theorem, but the problem
of (approximately) computing their value wasn’t considered before. The author conjectured that
the problem is computationally hard. We define the Unique Game problem and the Unique Games
Conjecture below. Henceforth, U2p1r will denote a general 2-Prover-1-Round Game, U (without any
sub-script) will denote a Unique Game, and U along with different sub-scripts will denote different
variants of the Unique Game problem .

Definition 2.4 A Unique Game U(G(V,E), [n], {πe|e ∈ E}) is a constraint satisfaction problem
defined as follows: G(V,E) is a directed graph whose vertices represent variables and edges represent
constraints. The goal is to assign to each vertex a label from the set [n]. The constraint on an edge
e = (v, w) ∈ E is described by a bijection πe : [n] 7→ [n]. A labeling L : V 7→ [n] satisfies the
constraint on edge e = (v, w) if and only if πe(L(v)) = L(w). Let OPT(U) denote the maximum
fraction of constraints that can be satisfied by any labeling:

OPT(U) := max
L:V 7→[n]

1
|E|
· |{e ∈ E | L satisfies e}| .

The Unique Game problem is to find an (approximately) optimal labeling to a given Unique
Game instance. The uniqueness refers to the property that for every edge e = (v, w), fixing a
label to v uniquely fixes the label to w and vice versa, since πe is a bijection. Note that in the
definition of 2-Prover-1-Round Game, the constraint graph is bipartite whereas in Definition 2.4, this
is not necessarily so. This distinction is minor as can be seen by the following view of the Unique
Game problem as a (2-prover and hence bipartite) game: given an instance U(G(V,E), [n], {πe|e ∈

5



E}) of Unique Game problem, the verifier picks an edge e = (v, w) at random, sends the vertex v
to prover P1 and the vertex w to prover P2. Each prover is supposed to answer with a label in
[n], and the verifier accepts if and only if πe(i) = j where i and j are answers of the two provers
respectively. The strategies of the provers correspond to labelings L1, L2 : V 7→ [n]. The value of
the game is the maximum over all prover strategies, the probability that the verifier accepts and
can be easily seen to be between OPT(U) and max{1, 4 · OPT(U)}. On the other hand, any such
game can be thought of as an instance of Unique Game where the underlying graph is bipartite by
thinking of questions to the provers as vertices and pairs of questions as edges. This shows that
the constraint satisfaction view and the 2-Prover-1-Round view are equivalent.

Let us return to the issue of determining the (approximate) optimum for a Unique Game instance.
First note that if OPT(U) = 1, i.e. when there is a labeling that satisfies every edge, such a labeling
can be easily found in polynomial time. This is because, we can assume that we have the correct
label for one vertex (by trying out all possible labels to it), and then whenever we know a label for
a vertex, it uniquely fixes labels to its neighbors and so on. Thus a labeling can be found for each
connected component of the constraint graph.

From the viewpoint of the Unique Games Conjecture, the interesting case is when OPT(U) = 1−ε
for some small positive constant ε. In this case, the above mentioned algorithm to find a good
labeling does not seem to work and one may conjecture that finding even a labeling that satisfies
a δ fraction of edges is an NP-hard problem.

Conjecture 2.5 Unique Games Conjecture ([60]): For every ε, δ > 0, there exists a constant n =
n(ε, δ), such that given a Unique Game instance U(G(V,E), [n], {πe|e ∈ E}), it is NP-hard to
distinguish between these two cases:

• YES Case: OPT(U) ≥ 1− ε.

• NO Case: OPT(U) ≤ δ.

A few remarks: as we noted, such a conjecture would be false if ε = 0. We note the order of
quantifiers: for every ε, δ, there exists a sufficiently large n for which the conjecture holds on Unique
Game instances with label set of size n. It is easy to see that a random assignment of labels satisfies
1
n fraction of the constraints, and hence for the conjecture to be true, one must necessarily have
n ≥ 1

δ . It is also known that n ≥ 2Ω(1/ε) for the conjecture to be true (see Section 5). One could
consider a formulation with edge-weights, but it is equivalent to the un-weighted case. Also, we
can assume by a standard transformation, that the constraint graph is regular, and for the sake of
convenience, that the edges are undirected (with implicit understanding of which way the bijection
πe goes).

In terms of the corresponding gap problem, the UGC states that GapUG1−ε,δ is NP-hard for a
sufficiently large label set. From the viewpoint of inapproximability, what we really care about is
that the gap problem is computationally “hard” (say, it does not have a polynomial time algorithm),
and not necessarily that the problem is “NP-hard”. It is possible that the problem is neither in
P nor NP-complete, and it would certainly be interesting if there is evidence towards this possibility.

2.5 Boolean Functions, Dictatorships, and Influence of Variables

Let F := {f | f : {−1, 1}n 7→ {−1, 1}} be the class of all boolean functions on n-dimensional
boolean hypercube. A balanced function f takes each of the values {−1, 1} equally often, i.e.
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E[f ] = 0. A (1
3 ,

2
3)-balanced function takes each of the values {−1, 1} on at most 2

3 fraction of the
inputs. 3

A dictatorship function f ∈ F is defined as a function f(x) = xi0 for some i0 ∈ [n]. We aim to
formalize when a function is considered as far from being a dictatorship. Towards this end, let the
influence of the ith co-ordinate on a function f be defined as:

Infi(f) := Prx [f(x1, . . . , xi, . . . , xn) 6= f(x1, . . . ,−xi, . . . , xn)] .

For a dictatorship function, the relevant co-ordinate has influence 1 and all other influences are
zero. Thus we may define a function as far from being a dictatorship if all of its influences are
small and this turns out to be a very useful definition. Note that the MAJORITY := sign(

∑n
i=1 xi)

function has all influences O( 1√
n

) and thus we consider it to be far from a dictatorship. 4

It is well-known that any function f : {−1, 1}n 7→ R has a Fourier expansion:

f(x) =
∑
S⊆[n]

f̂(S)
∏
i∈S

xi,

where the f̂(S) ∈ R are the Fourier coefficients. When f is a boolean function, by Parseval’s
identity,

∑
S f̂(S)2 = E[f2] = 1. It is easily proved that:

Infi(f) =
∑
i∈S

f̂(S)2.

We are now ready to informally state a framework in which most of the UGC-based inapprox-
imability results fit. The basic framework was developed by Bellare, Goldreich, and Sudan [18] and
then extended in subsequent works. In [18], the Long Code was introduced and it was demonstrated
how to combine it with the 2-Prover-1-Round Game problem.5 H̊astad’s [49, 51] work introduced
the powerful Fourier methods in analyzing the Long Code based PCPs. The UGC was introduced
in [60] and the notion of low influence functions (in PCP context) in [36, 63].

Theorem 2.6 (Informal) Suppose I is a maximization problem and Val : F 7→ R+ is a valuation
on boolean functions. Suppose there are constants 0 < s < c such that

1. (Completeness): If f is a dictatorship, Val(f) ≥ c.

2. (Soundness): If all influences of f are at most η, then Val(f) ≤ s.

Assume the Unique Games Conjecture (or its variant). Then GapIc,s is NP-hard. In particular, I
is inapproximable within any factor strictly less than c/s.

The theorem is stated in a very informal manner and calls for several comments: (1) The choice of
the valuation Val(·) depends very much on the problem I and different problems lead to different
interesting valuations. Often, Val(·) is the probability that a function passes a certain dictatorship

3The choice of the balance parameter is rather arbitrary. Any theorem that works for ( 1
3
, 2

3
)-balanced functions,

typically also works for (c, 1 − c)-balanced functions for any constant c > 0, with possibly a constant factor loss in
the parameters.

4A random function is intuitively very far from being a dictatorship, but has all influences close to 1
2

(same holds
for the PARITY function whose all influences are 1). This is a somewhat annoying issue and one gets around it by
using a more refined notion of “low degree” influence (see [62]). In this article, however, we choose not to present
this refined notion for the sake of simplicity.

5In PCP literature, this scheme is often referred to as the Outer and Inner PCP Composition.
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test. (2) We are interested in the limiting case when η → 0. Often we have s = s′ + δ where s′ is a
specific constant and δ → 0 as η → 0. (3) Sometimes the function needs to be balanced (or roughly
balanced) for the soundness condition to make sense. This is often enforced by using a PCP trick
known as folding, i.e. requiring that functions satisfy f(−x) = −f(x). (4) An analogous theorem
holds for minimization problems as well.

The reduction from GapUG1−ε, δ to the gap problem GapIc,s follows the PCP strategy described
before. One replaces every vertex of the Unique Game instance by the hypercube {−1, 1}n, and
the PCP proof consists of writing down a boolean function for each of these hypercubes. The
valuation Val(·) dictates the specific form that the codeword testing and consistency testing take.
Assume for the sake of illustration that Val(·) is defined as the probability that a function passes
a certain two-query dictatorship test. Then the codeword test consists of running the test on each
boolean function separately. The codeword test can be easily extended to a consistency test on
two functions f, g : {−1, 1}n 7→ {−1, 1}, by reading the first query from the truth-table of f and
the second one from that of g. In some sense, the Unique Games Conjecture is so powerful that it
reduces the analysis of the entire reduction to the analysis of the codeword test (i.e. the gadget)
alone.

Clearly, the valuation Val(·) is supposed to capture a certain property of dictatorship functions.
Let us observe a few such properties that are useful:

1. Dictatorships are linear, i.e. ∀x, y ∈ {−1, 1}n, f(xy) = f(x)f(y), where xy denotes the
string that is bitwise product of strings x and y.

2. Dictatorships are stable under noise. Define the ε-noise sensitivity NSε(f) as Pr[f(x) 6= f(y)]
when x ∈ {−1, 1}n is chosen uniformly at random and y ∈ {−1, 1}n is obtained by flipping
every bit of x with probability ε. Clearly, if f is a dictatorhip, then NSε(f) = ε. In contrast,
MAJORITY is less stable and NSε(MAJORITY) = θ(

√
ε).

3. If C ⊆ {−1, 1}n is a random sub-cube with dimension εn, then with probability 1 − ε, a
dictatorship function is constant on C. A sub-cube of dimension k is a set of inputs that all
agree on a specific setting of input bits outside a set of co-ordinates T ⊆ [n], |T | = k.

4. The Fourier mass of a dictatorship function is concentrated at level 1, i.e. on sets |S| = 1. In
contrast, the Fourier mass of MAJORITY at level 1 is very close to 2

π .

2.6 Integrality Gaps

An inapproximability result rules out every polynomial time algorithm to compute good approxi-
mate solutions. When such results are not available, one could try to rule out specific candidate
algorithms. One widely studied class of algorithms is based on linear or semi-definite programming
relaxations. Let us consider the MaxCut problem as an illustration. Given a graph G(V = [N ], E),
the goal is to find a partition of V that cuts a maximum fraction of the edges. The SDP relaxation
for this problem proposed by Goemans and Williamson [43] appears below:

The MaxCut problem can be formulated as the above program with vi as integer variables
restricted to taking values in the set {−1, 1}. The relaxation allows vi to be unit vectors in arbitrary
dimensional Euclidean space (since there are only N vectors, w.l.o.g. in N -dimensional space). If
OPT(G) denotes the maximum size of a cut in the graph and SDP(G) denotes the maximum of
the relaxation, then clearly OPT(G) ≤ SDP(G). The “integrality gap” αMC is defined as the least
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Maximize
1
|E|

∑
(i,j)∈E

1− vi · vj
2

Subject to,

∀i ∈ [N ], ‖vi‖ = 1.

Figure 1: SDP Relaxation for MaxCut

upper bound on the ratio SDP(G)/OPT(G) over all graphs:

αMC := sup
G

SDP(G)
OPT(G)

.

Clearly, solving the SDP-relaxation gives an approximation to the MaxCut problem within factor
αMC. An upper bound of αMC ≤ 2 is trivial. Goemans and Williamson [43] proved that:

Theorem 2.7 ([43])

αMC ≤ max
θ∈[0,π]

(
π

2
1− cos θ

θ

)
=
π

2
1− cos θc

θc
≈ 1.13,

where θc is the “critical angle” that achieves the maximum.

Goemans and Williamson [43] give a randomized “rounding algorithm” (by now well-known
random hyperplane rounding) that, given any feasible solution to the SDP, finds a cut in the
graph whose value is at least 1/αMC times the value of the SDP solution in expected sense. Thus
the approximation algorithm not only approximately finds the value of the optimum, but also
yields an approximate cut. This feature is shared by almost every algorithm based on LP or SDP
relaxation. On the other hand, a lower bound on the integrality gap is taken as evidence that the
specific LP/SDP relaxation would not give a better approximation than the lower bound. For the
above SDP, Feige and Schechtman [41] show (see also Karloff [57]) a matching lower bound on the
integrality gap.

Theorem 2.8 ([41]) For every ε > 0, there exists a graph G(V,E) such that SDP(G)
OPT(G) ≥

π
2

1−cos θc
θc
−ε.

Thus
αMC = sup

G

SDP(G)
OPT(G)

≥ π

2
1− cos θc

θc
,

and combined with Theorem 2.7, we get αMC = π
2

1−cos θc
θc

.

We note that a lower bound on the integrality gap is a construction of a graph G(V,E) for which
the gap is achieved. One needs to prove that OPT(G) is “low” and SDP(G) is “high”. The latter is
proved by exhibiting a feasible vector solution (not necessarily the one that achieves SDP optimum)
that achieves a “high” value. The integrality gap constructions are often explicit, but there are ones
using probabilistic arguments. In general, characterizing integrality gaps is a challenging question,
and unresolved for many problems, the Grothendieck’s Problem and Sparsest Cut to name a few.
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3 Variants of the Unique Games Conjecture

In this Section, we describe several variants of the UGC that are useful to prove inapproximability
results. First, we describe a variant that a priori seems much weaker but turns out to be equivalent
to the UGC.

Conjecture 3.1 Weak Unique Games Conjecture: There is an increasing unbounded function Γ :
R+ 7→ R+ such that the following holds: for every ε > 0, there exists a constant n = n(ε) such
that given a Unique Game instance U(G(V,E), [n], {πe|e ∈ E}), it is NP-hard to distinguish between
these two cases:

• YES Case: OPT(U) ≥ 1− ε.

• NO Case: OPT(U) ≤ 1−
√
ε · Γ(1/ε).

Rao [95] proves a strong parallel repetition theorem which shows that the Conjecture 3.1 implies
the Conjecture 2.5 (UGC), see Section 7.

Let ULin(G(V,E), [n], {πe|e ∈ E}) be a special case of the Unique Game problem where every
bijection πe is of the form πe(i) = i+ ce(mod n) ∀i ∈ [n], for some ce ∈ Zn. One could conjecture
that this special case is computationally hard too.

Conjecture 3.2 For every ε, δ > 0, there exists a constant n = n(ε, δ), such that given a Unique
Game instance ULin(G(V,E), [n], {πe|e ∈ E}), it is NP-hard to distinguish between these two cases:

• YES Case: OPT(ULin) ≥ 1− ε.

• NO Case: OPT(ULin) ≤ δ.

Khot, Kindler, Mossel, and O’donnell [63] show that Conjecture 3.2 is in fact equivalent to
Conjecture 2.5 (UGC). Khot and Regev [68] show that the UGC is equivalent to (an a priori stronger)
Conjecture 3.3 below: in the YES case, not only that there is an assignment that satisfies almost
all the edges, there is a large subset of vertices such that all edges inside it are satisfied.

Conjecture 3.3 For every ε, δ > 0, there exists a constant n = n(ε, δ), such that given a Unique
Game instance U(G(V,E), [n], {πe|e ∈ E}), it is NP-hard to distinguish between these two cases:

• YES Case: There is a subset S ⊆ V, |S| ≥ (1− ε)|V | such that all edges inside S are satisfied.

• NO Case: OPT(U) ≤ δ.

As the result of [7] shows, UGC cannot hold when the constraint graph is an expander beyond
a certain threshold. One could still hypothesize that the UGC holds when the graph has moderate
expansion below this threshold. Interestingly, the threshold depends on the completeness param-
eter. In the following hypothesis, t = 1

2 corresponds to this expansion threshold; Arora et al [7]
show that the hypothesis would be false for t ≤ 1

2 .

Hypothesis 3.4 ([7]) Unique Games Conjecture with Expansion:6 The following holds for some
universal constant 1

2 < t < 1. For every ε, δ > 0, there exists a constant n = n(ε, δ), such that
given a Unique Game instance U(G(V,E), [n], {πe|e ∈ E}), it is NP-hard to distinguish between
these two cases:

6The hypothesis in the conference version [7, Hypothesis 5.1] is stronger and in author’s opinion, probably false.
The author tends to believe in the hypothesis stated here; it still implies an inapproximability result for the uniform
Sparsest Cut [7, Theorem 5.2]; the proof is to be included in the journal version of [7].
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• YES Case: OPT(U) ≥ 1− ε.

• NO Case: OPT(U) ≤ δ and moreover, any ( 1
10 ,

9
10)-balanced cut in the graph G(V,E) cuts

at least εt fraction of its edges.

Bansal and Khot [15] use the following variant of the UGC:

Hypothesis 3.5 ([15]) Unique Games Conjecture with Vertex Expansion: For every ε, δ, γ > 0, there
exists an integer n = n(ε, δ, γ) such that for a bipartite Unique Game instance U(G(V,W,E), [n], {πe|e ∈
E}), it is NP-hard to distinguish between:

• YES Case: There are sets V ′ ⊆ V, W ′ ⊆W such that |V ′| ≥ (1−ε)|V | and |W ′| ≥ (1−ε)|W |
and an assignment that satisfies all the edges between V ′ and W ′.

• NO Case: OPT(U) ≤ δ. Moreover, for any two sets S ⊆ V, T ⊆ |W |, |S| = γ|V |, |T | = γ|W |,
there is an edge between S and T .

An instance of d-to-1 Game Ud→1(G(V,W,E), [n], {πe|e ∈ E}) is a variant where the graph is
bipartite with vertex sets V and W , every vertex in V is to receive a label in [dn], every vertex in
W is to receive a label in [n], and πe : [dn] 7→ [n] is a d-to-1 map, i.e. every j ∈ [n] has exactly
d pre-images. For every fixed value of d ≥ 2, one could conjecture that finding good labelings to
d-to-1 games is hard.

Conjecture 3.6 ([60]) d 7→ 1 Conjecture: For every δ > 0, there exists a constant n = n(δ), such
that given an instance Ud→1(G(V,W,E), [dn], [n], {πe|e ∈ E}), it is NP-hard to distinguish between
these two cases:

• YES Case: OPT(Ud→1) = 1.

• NO Case: OPT(Ud→1) ≤ δ.

Note that in the d-to-1 Conjecture, one may hope that the instance is satisfiable in the YES
Case. An instance of n-Game Un(G(V,E), [n], {(σe, ρe)|e ∈ E}) is a variant where n is even and
the constraint on edge e = (v, w) consists of two permutations σe, ρe : [n] 7→ [n], and a labeling
(L(v), L(w)) satisfies the edge if and only if

(L(v), L(w)) ∈
{

(σe(2i−1), ρe(2i−1)), (σe(2i−1), ρe(2i)), (σe(2i), ρe(2i−1))
}

for some 1 ≤ i ≤ n

2
.

Dinur, Mossel, and Regev [35] make the following conjecture:7

Conjecture 3.7 ([35]) n-Conjecture: For every δ > 0, there exists a constant n = n(δ), such that
given an instance Un(G(V,E), [n], {(σe, ρe)|e ∈ E}), it is NP-hard to distinguish between these two
cases:

• YES Case: OPT(Un) = 1.

• NO Case: OPT(Un) ≤ δ.
7The conjecture is [35] is somewhat weaker. We take the liberty to state a revised conjecture here.
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4 Inapproximability Results

The main motivation behind formulating the UGC is to prove inapproximability results for NP-
complete problems for which “satisfactory” results are not available otherwise. Figure 2 shows a
table of such results. For each problem, we mention the best approximation factor known, the
inapproximability factor under the UGC (or its variant), and the best inapproximability result
known without relying on the UGC. The list is not necessarily exhaustive, but covers most of the
results the author is aware of. The problems can be roughly classified into two categories: problems
for which a constant approximation is known and the goal is to characterize the exact approximation
threshold (e.g. MaxCut), and those for which the known approximation is super-constant, and the
goal is to prove a super-constant inapproximability result (e.g. Min-2SAT-Deletion). Majority of
these inapproximability results can be proved in the framework described in Theorem 2.6. We
present a complete reduction from GapUG to GapMin-2SAT-Deletion as an illustration. We refer to
the author’s recent article [62] for a more detailed survey of such reductions.

4.1 Inapproximability of the Min-2SAT-Deletion Problem

In this section, we give a sketch of a reduction from the Unique Game problem to the Min-2SAT-
Deletion problem [60] as one illustration of the UGC-based inapproximability results. An instance
of the Min-2SAT-Deletion problem is a 2SAT formula φ and OPT(φ) is defined as the minimum
fraction of clauses that need to be deleted from φ to make it satisfiable.

Theorem 4.1 Let 1
2 < c < 1 be a fixed constant. Then, for every sufficiently small constant

ε > 0, there exists a constant δ > 0 and a polynomial time reduction that maps an instance
U(G(V,E), [n], {πe|e ∈ E}) of the Unique Game problem to a 2SAT formula φ such that:

• (YES Case:) If OPT(U) ≥ 1− ε, then OPT(φ) ≤ O(ε).

• (NO Case:) If OPT(U) ≤ δ, then OPT(φ) ≥ Ω(εc).

We actually give a reduction from the Unique Game problem to a boolean 2-CSP where the
constraints are of the form x = y for boolean literals x and y. The constraints can then be
converted to 2SAT clauses since x = y is equivalent to two clauses x ∨ y and x ∨ y. It is easier to
view the reduction as a PCP where the verifier reads two bits from a proof and accepts if and only
if the two bits are equal (or unequal, as is pre-determined). The 2-CSP can then be written down
by letting the bits in the proof as boolean variables and the tests of the verifier as the constraints
of the 2-CSP. In the YES Case, there is a proof that the verifier accepts with probability 1−O(ε)
whereas in the NO Case, every proof is accepted with probability at most 1 − Ω(εc). In terms of
the 2-CSP, this means that in the YES Case, it suffices to delete O(ε) fraction of the constraints
to make the 2-CSP satisfiable, and in the NO Case, one needs to delete at least Ω(εc) fraction of
the constraints. An important ingredient in the PCP analysis is the Bourgain’s Noise-Sensitivity
Theorem that is stated in Section 6.2 as Theorem 6.2.

The PCP construction is rather straightforward. The verifier is given a Unique Game instance
U(G(V,E), [n], {πe|e ∈ E}). She expects the proof to contain, for every v ∈ V , the long code of
the label of v in a supposed labeling L : V 7→ [n]. In words, for every v ∈ V , if L(v) = i0, then the
proof is supposed to contain the truth-table of the dictatorship function of co-ordinate i0. Each of
these functions is assumed to satisfy f(−x) = −f(x) and hence balanced. This is enforced by the
standard “folding” trick: we force the proof to contain only one of the bits f(x) or f(−x) and let
the other bit to be its negation.
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Problem Best Inapprox. Best Ref.
Approx. Known Under Inapprox.
Known UGC Known

Vertex Cover (VC) 2 2− ε 1.36 [68, 15, 36]
VC on k-uniform k k − ε k − 1− ε [68, 16, 34]
Hypergraphs, k ≥ 3

MaxCut αMC αMC − ε 17
16 − ε [43, 63, 51]

[87, 66]
Max-2SAT∗ αLLZ αLLZ − ε APX-hard∗ [78, 12]
Any CSP C with αC αC − ε [90]
integrality gap αC

Max-kCSP O(2k/k) Ω(2k/k) 2k−O(
√
k) [23, 101, 13, 100]

Max-3CSP on 8
5

8
5 − ε, under 27

20 − ε [105, 88, 69]
satisfiable instances Conj. 3.6

Max Acyclic Subgraph 2 2− ε 66
65 − ε [48, 86]

Feedback Arc Set Õ(logN) ω(1) APX-hard [48, 102]

Non-uni. Sparsest Cut Õ(
√

logN) ω(1) APX-hard [8, 25, 71, 31]
Uniform Sparsest Cut, O(

√
logN) ω(1), under No PTAS [10, 7, 3]

Hypo. 3.4
Min-2SAT-Deletion, O(

√
logN) ω(1) APX-hard [1, 60]

Min-Uncut

Coloring 3-colorable N .2111 ω(1), under 5 [6, 35, 58]
Graphs Conj. 3.7

Coloring 2d-colorable N1− 3
2d+1 ω(1), under 2d+ 2b2d

3 c − 1, [55, 35]
Graphs, d ≥ 2 Conj. 3.6 dΩ(log d) [58, 59]

Scheduling with 2 2− ε, under [15]
Prec. Constraints∗ Hypo. 3.5

Kernel Clustering K(B) K(B)− ε APX-hard [64, 65]
kernel matrix B
Lp Grothendieck Prob.∗ γ2

p γ2
p − ε [72] +

p > 2 Follow-up.

Multiway Cut α α− ε APX-hard [21, 56, 81]
integrality gap α ≤ 1.344

Figure 2: (In)approximability Results for Some Optimization Problems

∗ αLLZ is the believed approximation ratio of Lewin et al’s SDP algorithm [78].
∗ APX-hard means NP-hard to approximate within some factor strictly larger than 1.
∗ Minimizing weighted completion time with precedence constraints.
∗ K(B) is a geometric parameter associated with matrix B.
∗ γp is the pth norm of a standard Gaussian variable.
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The PCP Test

• Pick a random edge (v, w) ∈ E along with the bijection π = πe : [n] 7→ [n] associated with it.
Let fv and fw be the supposed long codes corresponding to v and w respectively.

• Let x ∈ {−1, 1}n be a random input and y ∈ {−1, 1}n be obtained by flipping every bit of x
with probability ε > 0 independently.

• Do each of these two tests with probability 1
2 each: accept if fv(x) = fv(y) or fv(x) =

gw(π(x)), where π(x) := (xπ(1), . . . , xπ(n)).

YES Case: Assume the Unique Game instance has a labeling that satisfies 1 − ε fraction of the
edges. Take this labeling and encode each label with the corresponding dictatorship function.
Since the ε-noise sensitivty of a dictatorship function is exactly ε, the test fv(x) = fv(y) accepts
with probability 1 − ε. For 1 − ε fraction of the edges, the labeling satisfies the edge, i.e. fv and
fw are dictatorships of co-ordinates i and j respectively with π(i) = j. Hence fv(x) = xi and
gw(π(x)) = (π(x))j = xπ(j) = xi, and hence the test fv(x) = gw(π(x)) accepts with probability 1.
Overall, the verifier accepts with probability 1−O(ε).

NO Case: Assume for the sake of contradiction that the verifier accepts with probability at least
1 − εc

200 . We will construct a labeling to the Unique Game instance that satisfies more than a δ
fraction of its edges, giving a contradiction. Towards this end, first observe that by an averaging
argument, it must be the case that for 99% of the vertices v ∈ V , the test fv(x) = fv(y) accepts
with probability at least 1− εc. Since fv is a balanced function, applying Bourgain’s Theorem 6.2,
we conclude that fv is close to a function that depends only on K := 2O(1/ε2) co-ordinates. Let
this set of co-ordinates be Sv ⊆ [n], |Sv| ≤ K. For the ease of argument, assume that this holds for
every v ∈ V and moreover that fv depends precisely on the co-ordinates in Sv. Now consider an
edge (v, w) ∈ E. We claim that for 99% of edges, the sets π(Sv) and Sw intersect. This is because,
otherwise, the functions fv and fw depend on disjoint sets of co-ordinates (after the bijection π is
applied) and therefore the test fv(x) = fw(π(x)) fails with constant probability. Finally, consider a
labeling that assigns to each v ∈ V , a random label from the set Sv. It follows that for 99% of the
edges (v, w) ∈ E, the sets π(Sv) and Sw intersect and hence a matching pair of labels is assigned
to v and w with probability at least 1

K . We choose δ � 1
K beforehand to reach a contradiction.

4.2 Raghavendra’s Result

A beautiful result of Raghavendra [90] shows that for every CSP C, the integrality gap αC for a
natural SDP relaxation is same as the inapproximability threshold for the CSP, modulo the Unique
Games Conjecture. This is a duality type result showing that the SDP relaxation, while giving
an algorithm with approximation ratio αC , also leads to an inherent limitation: it prevents every
efficient algorithm from achieving a strictly better approximation ratio.

A k-ary CSP C is defined by a collection of finitely many predicates P : {0, 1}k 7→ {0, 1}.
By abuse of notation, we let C denote this collection of predicates as well. An instance of the
CSP is specified as I(V,E, {Pe|e ∈ E}): V = {x1, . . . , xN} is a set of boolean variables and E
is a collection of constraints, each being a size k subset of V . A constraint e ∈ E is denoted as
e = (xe1 , . . . , xek), ei ∈ [N ], with a specific order on the variables, and has an associated predicate
Pe ∈ C. An assignment is a map ρ : V 7→ {0, 1}. An assignment ρ satisfies a constraint e if

Pe(ρ(xe1), . . . , ρ(xek)) = 1.
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Let OPT(I) denote the maximum fraction of constraints satisfied by any assignment. Raghavendra
studies a natural SDP relaxation for the CSP that we do not describe here. Let SDP(I) denote the
optimum of the SDP relxation, and define the integrality gap αC as:

αC := sup
I

SDP(I)
OPT(I)

,

where the supremum is taken over all instances. Clearly, OPT(I) ≤ SDP(I) ≤ αC · OPT(I), and
hence the SDP gives an αC approximation to the CSP.8 The formal statement of Raghavendra’s
result is:

Theorem 4.2 ([90]) Suppose there is an instance I∗ of the CSP C such that SDP(I∗) ≥ c and
OPT(I∗) ≤ s. Then for every γ > 0, there exist ε, δ > 0, and a polynomial time reduction from an
Unique Game instance to an instance I of the CSP such that:

• (YES Case:) If OPT(U) ≥ 1− ε, then OPT(I) ≥ c− γ.

• (NO Case:) If OPT(U) ≤ δ, then OPT(I) ≤ s+ γ.

In particular, assuming the UGC, it is NP-hard to approximate the CSP within any factor strictly
less than αC.

Note that the theorem turns an integrality gap to an inapproximability gap. Roughly speaking,
the idea is to use the SDP gap instance to construct a dictatorship test and then combine the test
(as usual) with the Unique Game instance. The analysis of the dictatorship test relies crucially on
a powerful version of the invariance principle by Mossel [82] (see Section 6.4 for a more detailed
description of the invariance principle).

The result of Khot et al [63] shows that assuming the UGC, it is NP-hard to approximate
MaxCut within any factor strictly less than αMC, the integrality gap of the Goemans-Williamson’s
SDP. The result, in hindsight, can be interpreted as turning the Feige-Schechtman integrality gap
instance into an inapproximability result. However, the result relied on explicitly “knowing” the
integrality gap instance. Raghavendra’s result is a generalization of [63] to every CSP. For a general
CSP, the integrality gap is not explicitly known, but Raghavendra circumvents the need to know
it explicitly.

Raghavendra’s result is more general: it applies to CSPs with non-boolean alphabet, with non-
negative real valued “pay-off functions” rather than predicates, and in some restricted cases, even
with possibly negative pay-offs. As a concrete example, Raghavendra and Steurer [93] show that
for the Grothendieck’s Problem, even though the integrality gap KG (= the famous Grothendieck’s
constant) is not known, we do know, modulo UGC, that it is NP-hard to approximate Grothendieck’s
Problem within any factor strictly less than KG. Manokaran et al [81] show how to translate linear
programming integrality gap to an inapproximability gap, specifically for the Multiway Cut and
related problems.

5 Algorithms

The UGC states that given an instance of the Unique Game problem that is 1 − ε satisfiable, it
is NP-hard to find an assignment that satisfies δ fraction of the constraints when the number of

8The SDP gives the approximate value of the solution. Raghavendra and Steurer [91] also show how to round the
solution and find an actual assignment with approximation ratio arbitrarily close to αC.
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Algorithm Value of Solution Found on
1− ε satisfiable instance with
n labels and N vertices

Khot [60] 1−O(n2ε1/5
√

log(1/ε))
Trevisan [103] 1−O( 3

√
ε logN)

Gupta, Talwar [46] 1−O(ε logN)
Charikar, Makarychev, Makarychev [22] 1−O(

√
ε log n)

n−ε/2

Chlamtac, Makarychev, Makarychev [30] 1−O(ε
√

logN log n)

Arora et al [7] 1−O(ε · 1
λ log(λε ))

on graphs with eigenvalue gap λ.
Arora, Barak, Steurer [5] 1− εα for some 0 < α < 1

in time exp(N εα).

Figure 3: Algorithms for the Unique Game Problem

labels n = n(ε, δ) is a sufficiently large constant. Therefore a good enough algorithm for the Unique
Game problem would disprove the conjecture. Figure 3 summarizes the algorithmic results so far:
given an 1 − ε satisfiable instance with N vertices and n labels, the second column specifies the
fraction of the constraints satisfied by an assignment found by the algorithm.

We note that the algorithmic results fall short of disproving the UGC: In [60, 22], for constant
ε > 0, the algorithm does not work when n is sufficiently large but still constant (which the
conjecture allows). In [103, 46, 30], the algorithm works only when ε is a sub-constant function of
the instance size N whereas the conjecture is about constant ε > 0. In [7], the algorithm works
only when the graph is a (mild) expander. In [5], the algorithm runs in sub-exponential time. On
the other hand, these algorithms can be interpreted as meaningful trade-offs between quantitative
parameters if the UGC were true: one must have n � 21/ε [22], the graph cannot even be a mild
expander and in particular its eigenvalue gap must satisfy λ � ε [7], and the presumed reduction
from 3SAT to the GapUG problem must blow up the instance size by a polynomial factor where
the exponent of the polynomial grows as ε → 0 [5]. Moreover, the conjecture cannot hold for
ε� 1√

logN
[103, 46, 30]; this places a limitation on the inapproximability factor that can be proved

for problems such as Sparsest Cut, where one is interested in the inapproximability factor as a
function of the input size.

We present a very brief overview of some of these algorithms. With the exception of [46, 5],
all algorithms depend on a natural SDP relaxation for the Unique Game problem shown in Figure
4. We skip the minor differences in the SDP formulations used in different papers. The SDP
relaxation was introduced and studied by Feige and Lovasz [39] in the context of parallel repetition
(see Section 7).

For a Unique Game instance U(G(V,E), [n], {πe|e ∈ E}), one can write a quadratic integer
program in the following manner: for every v ∈ V and i ∈ [n], let xv,i be a {0, 1}-valued integer
variable such that xv,i = 1 if and only if L(v) = i for some supposed labeling L : V 7→ [n]. Clearly
one can write down the constraints that

∑n
i=1 x

2
v,i = 1, xv,ixv,j = 0 for i 6= j, and that xv,ixw,j ≥ 0.
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Maximize
1
|E|

∑
e=(v,w)∈E

∑
i∈[n]

〈
xv,i,xw,πe(i)

〉
Subject to,

∀v ∈ V
∑
i∈[n]

‖xv,i‖2 = 1.

∀v ∈ V , i, j ∈ [n], i 6= j 〈xv,i,xv,j〉 = 0.

∀v, w ∈ V , i, j ∈ [n] 〈xv,i,xw,j〉 ≥ 0.

Figure 4: SDP Relaxation for Unique Game

The fraction of constraints satisfied is:

1
|E|

∑
e=(v,w)∈E

∑
i∈[n]

xv,i · xw,πe(i).

The SDP relaxation in Figure 4 is obtained by relaxing integer variables xv,i to vectors xv,i and
replacing integer products by vector inner products.

For simplicity of exposition, let us restrict ourselves to the case of linear unique games, as
in the definition preceding Conjecture 3.2. Such games are symmetric in the following sense: if
L : V 7→ [n] is a labeling, then for any constant c ∈ Zn, the labeling L′(v) = L(v) + c(mod n) is
another labeling that satisfies exactly the same set of edges. This symmetry allows us to add more
constraints to the SDP and ensure that in the SDP solution, ∀v ∈ V,∀i ∈ [n], ‖xv,i‖ = 1√

n
. Thus,

for every v ∈ V , we have an orthonormal tuple of vectors {xv,i}ni=1 up to a normalizing factor of
1√
n

. Assume that we have a Unique Game instance that is 1−ε satisfiable. Thus, the SDP optimum
is also at least 1 − ε, and it is an average over the contribution over all edges. For simplicity of
exposition, let us also assume that the contribution over every edge e = (v, w) is at least 1− ε. For
linear games, by symmetry, this ensures that ∀i ∈ [n],〈

xv,i, xw,πe(i)
〉
≥ (1− ε) · 1

n
.

5.1 Khot’s [60] and Charikar, Makarychev, Makarychev’s [22] Algorithms

Assume that the vectors are in Rd and consider the following natural rounding procedure:

SDP Rounding:

• Pick a random unit vector r in Rd.

• For each v ∈ V , define its label to be L(v) = i0 where

i0 = arg max
i∈[n]

|〈r,xv,i〉| .
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The analysis works on edge by edge basis. Fix any edge e = (v, w). We have two tuples
{xv,i}ni=1 and {xw,πe(i)}ni=1 for vertices v and w respectively. As we said before, we will make
simplifying assumptions that ∀i, j, ‖xv,i‖ = ‖xw,j‖ = 1√

n
and that

〈
xv,i, xw,πe(i)

〉
≥ (1 − ε) · 1

n .

Thus the two tuples are very “close” and it is intuitively clear that for a random vector r, the
vectors in the two tuples that maximize the inner product with r are likely to be a “matching” pair
of vectors. Formally, we need to analyze the probability that the rounding algorithm “succeeds”
on the edge, i.e. the probability that it assigns a label i0 to v and the matching label πe(i0) to
w. In [60], a rather crude estimate is given, whereas Charikar, Makarychev, and Makarychev [22]
give the optimal 1 − O(

√
ε log n) bound on this probability. For a general unique game (i.e. not

necessarily linear), in an SDP solution, the vectors {xv,i}ni=1 need not have equal norms. In this
case, the rounding procedure in [22] is considerably more sophisticated and the analysis technically
challenging. A rough intuition is that {‖xv,i‖2}ni=1 can be thought of as a probability distribution
on the labels for a vertex v and the rounding procedure should pick a label i with probability
‖xv,i‖2, simultaneously for all vertices in a coordinated manner. The result is applicable when
ε � 1

logn . In the regime when ε � 1
logn , the authors of [22] give an alternate rounding procedure

that satisfies n−ε/2 fraction of the constraints.

5.2 Trevisan’s Algorithm [103]

Trevisan [103] presents a simple and elegant algorithm that first partitions the Unique Game graph
into components with low diameter and then on each component, finds a good labeling. The SDP
relaxation is augmented with the so-called triangle inequality constraints that we omit from this
discussion. Assume, again for simplicity, that the Unique Game instance is 1−ε satisfiable and every
edge contributes at least 1 − ε towards the SDP objective. We first apply a graph decomposition
theorem of Leighton and Rao [77] that removes ε fraction of the edges so that each connected
component has diameter at most O(logN/ε). We “give up” on the edges that are removed and
find a good labeling for each of the components separately. On each component, fix one vertex v
and consider the vectors {xv,i}ni=1. Choose the label of v to be i0 ∈ [n] with probability ‖xv,i0‖2.
Once the label i0 for v is fixed, for every other vertex w in the component, define its label to be
j ∈ [n] that minimizes ‖xw,j − xv,i0‖2. Intuitively, since the component has bounded diameter, the
label at one vertex more or less determines labels of all vertices in the component (e.g. consider
the extreme case when a component is a clique. In this case, the vector tuples for all the vertices
in the component are pairwise close to each other). The actual analysis is fairly simple using the
triangle inequality constraints.

5.3 Arora et al’s Algorithm [7]

This algorithm is again based on the SDP relaxation and works as long as the graph is a mild
expander. Let us again make the simplifying assumptions that ∀v ∈ V,∀i, ‖xv,i‖ = 1√

n
and that

for every edge e = (v, w) ∈ E,
〈
xv,i, xw,πe(i)

〉
≥ (1 − ε) · 1

n . A useful observation is that one can
define a single unit vector xv := n3/2 ·

∑n
i=1 x⊗4

v,i that captures the behavior of the entire tuple
in the following sense: for every edge (v, w), we know that the tuples {xv,i}ni=1 and {xw,πe(i)}ni=1

are close and therefore it holds that 〈xv,xw〉 ≥ 1 − O(ε). Now consider the random hyperplane
cut on the set of vectors S := {xv | v ∈ V }. Each edge (v, w) is cut with probability O(

√
ε)

since 〈xv,xw〉 ≥ 1 − O(ε). If the set S were “well-spread” on the unit sphere, then the cut will
be roughly balanced. This would imply that the Unique Game graph has a roughly balanced cut
that cuts O(

√
ε) fraction of the constraints, contradicting the assumption that the graph is a mild

expander. Therefore, the set S cannot be well-spread, i.e. most vectors in S are confined to a small
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neighborhood on the unit sphere. This implies, in turn, that the tuples {xv,i}ni=1 for almost all
v ∈ V are pairwise close to each other (we already know that the tuples are close whenever there
is an edge/constraint between them, but now this holds irrespective of it) and this easily yields a
good global labeling. The expansion requirement in [7] is stated in terms of eigenvalue gap, but as
we indicated, it also works w.r.t. edge expansion. This was also observed and the result somewhat
improved in [80].

5.4 Arora, Barak, Steurer’s Algorithm [5]

For some 0 < α < 1, Arora, Barak, and Steurer [5] give an algorithm that runs in time exp(N εα)
and finds a labeling that satisfies 1 − εα fraction of the edges. The algorithm is motivated by
the connection between Unique Game problem and the Small Set Expansion problem mentioned
below. The algorithm is based on the approach of Naor [84] and given a graph G(V,E) whose
stochastic matrix has at least M eigenvalues larger than 1 − ε, the algorithm finds a set S ⊆ V
of size Npoly(ε)/M with expansion at most poly(ε). Ideas of Kolla [74] are also used who gives a
method for solving unique games on graphs with few large eigenvalues. The author just received the
manuscript of [5] at the time of writing this article, so prefers to include only this brief description.

5.5 The Small Set Expansion Problem:

Raghavendra and Steurer [94] give a reduction from the Small Set Expansion problem to the Unique
Game problem. Whereas we have several reductions from the Unique Game problem to other opti-
mization problems, this is the first reduction in the other direction. It would indeed be interesting
if some natural problem is equivalent to the Unique Game problem, and hence “UG-complete”. The
Small Set Expansion problem is certainly a candidate and so is the GapMaxCut1−ε, 1−b·

√
ε problem

as discussed in Section 7.
For a d-regular graph G(V,E) and a set S ⊆ V , define the expansion of the set S as φ(S) :=

|E(S,V \S)|
d·|S| , i.e. the fraction of edges incident on S that leave S. One could hypothesize that:

Hypothesis 5.1 For every ε > 0, there exists γ > 0 such that given a regular graph G(V,E), it is
NP-hard to distinguish between:

• (YES Case:) There is a set S ⊆ V, |S| = γ|V | such that φ(S) ≤ ε.

• (NO Case:) For every set S ⊆ V, |S| = γ|V |, φ(S) ≥ 1− ε.

In words, it is hard to find a small set in a graph that is somewhat non-expanding even when
we are guaranteed that there exists a small set that is almost non-expanding. Raghavendra and
Steurer [94] show that this conjecture implies the Unique Games Conjecture.

Theorem 5.2 ([94]) Hypothesis 5.1 implies Conjecture 2.5 (UGC).

We give some intuition here why the UGC is related to the small set expansion problem. Suppose
U(G(V,E), [n], {πe|e ∈ E}) is an instance of Unique Game. Consider the following graph G′(V ′, E′):

V ′ := V × [n] and ((v, i), (w, j)) ∈ E′ if and only if (v, w) = e ∈ E and πe(i) = j.

In words, G′ is obtained by replacing every vertex of G by a block of n vertices and every
bijective constraint of the Unique Game instance is replaced by a matching between the two blocks.
It is easy to see that if the Unique Game instance has a labeling L : V 7→ [n] that satisfies 1 − ε
fraction of the constraints, then the set S := {(v, L(v))|v ∈ V } ⊆ V ′ is a subset with relative size
1
n and expansion at most ε. Thus a good labeling to the Unique Game instance corresponds to a
small non-expanding set in G′.
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6 Discrete Fourier Analysis

In this Section, we give a brief overview of Fourier analytic theorems that have found applications
to inapproximability. We refer to [62] for a more detailed exposition.

6.1 Friedgut’s Theorem

Theorem 6.1 ([42]) Let k, γ > 0 and let f : {−1, 1}n 7→ {−1, 1} be a boolean function with total
influence (a.k.a. average sensitivity) at most k. Then there exists a boolean function g that agrees
with f on 1− γ fraction of inputs and depends on at most 2O(k/γ) co-ordinates.

Friedgut’s Theorem was used by Dinur and Safra [36] to prove 1.36 inapproximability result for
the Vertex Cover problem. Their paper, and to a lesser extent the application of Bourgain’s Theorem
in [60], were the early examples where a “special purpose” powerful Fourier analytic theorem was
applied in the context of inapproximability. Friedgut’s Theorem was subsequently used to prove
UGC-based 2 − ε inapproximability result for Vertex Cover [68]. A theorem of Russo [99] is also
used in the Vertex Cover applications: for a monotone boolean function f , the probability Pr[f = 1]
under a p-biased distribution is an increasing, differentiable function of p, and its derivative equals
the average sensitivity.9

6.2 Bourgain’s Noise-Sensitivity Theorem

Recall that for 0 < ε < 1
2 , the ε-noise sensitivity NSε(f) is defined as the probability Pr[f(x) 6=

f(y)] where x is a uniformly random input and the input y is obtained by flipping every bit of x
independently with probability ε.

Theorem 6.2 ([20]) Let 1
2 < c < 1 be any fixed constant. For all sufficiently small ε > 0, if

f : {−1, 1}n 7→ {−1, 1} is a function with ε-noise sensitivity at most εc, then there is a boolean
function g that agrees with f on 99% of the inputs and g depends only on 2O(1/ε2) co-ordinates.

Bourgain’s Theorem is tight: for c = 1
2 , the MAJORITY function has ε-noise sensitivity θ(εc),

but cannot be approximated by a function that depends on a bounded number of co-ordinates.
The theorem was motivated by H̊astad’s [50] observation that such a theorem could lead to a
super-constant inapproximability result for the Min-2SAT-Deletion problem. It was observed in
[60] that the desired inapproximability result can indeed be proved, albeit using the Unique Games
Conjecture. The theorem was subsequently used to prove a super-constant inapproximability result
as well as (log logN)1/7 integrality gap result for the non-uniform Sparsest Cut problem [71]. The
gap holds for a natural SDP with so-called triangle inequality constraints and can be interpreted as
a construction of an N -point negative type metric that incurs distortion (log logN)1/7 to embed into
`1. It refuted a conjecture of Goemans and Linial [44, 79] that every negative type metric embeds
into `1 with constant distortion (which would have implied a constant factor approximation to
non-uniform Sparsest Cut). These connections are further explained in Section 8.2.

6.3 Kahn, Kalai, Linal’s Theorem

Theorem 6.3 ([54]) Every (1
3 ,

2
3)-balanced boolean function f : {−1, 1}n 7→ {−1, 1} has a variable

whose influence is Ω
(

logn
n

)
.

9f is monotone if flipping any bit of an input from −1 to 1 can only change the value of the function from −1 to
1. A p-biased distribution is a product distribution such that on each co-ordinate, Pr[xi = 1] = p.
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The KKL Theorem has been used to prove a super-constant inapproximability result for the
non-uniform Sparsest Cut problem by Chawla et al [25] and to construct Ω(log logN) integrality
gaps for a natural SDP relaxation for the non-uniform as well as the uniform Sparsest Cut problem
[75, 33], improving on the integrality gap obtained earlier in [71].

6.4 Majority Is Stablest and Borell’s Theorem

Bourgain’s Theorem gives a lower bound of Ω(εc) on the noise sensitivity of a balanced function
whose all influences are small and c > 1

2 . The Majority Is Stablest Theorem [83] gives an exact lower
bound, namely 1

π arccos(1−2ε), which coincides with the ε-noise sensitivity of the n-bit MAJORITY
function as n→∞. The Majority Is Stablest Theorem was conjectured in [63] and used to prove that
the approximation factor achieved by Goemans and Williamson’s algorithm for MaxCut is optimal.

Theorem 6.4 (Mossel, O’Donnell, Oleszkiewicz [83]) Fix 0 < ε < 1
2 . Let f : {−1, 1}n 7→ {−1, 1}

be a balanced function with all its influences at most η. then

NSε(f) ≥ 1
π

arccos(1− 2ε)− δ,

where δ → 0 as η → 0.

We present a sketch of the proof as it demonstrates the connection to an isoperimetric problem
in geometry and its solution by Borell [19]. The proof involves an application of the invariance
principle, also studied by Rotar [98] and Chatterjee [24], with Mossel’s [82] results being the state
of the art. Here is a rough statement of the invariance principle:

Invariance Principle [98, 83, 24, 82]: Suppose f is a low degree multi-linear polynomial in
n variables and all its variables have small influence. Then the distribution of the values of f is
nearly identical when the input is a uniform random point from {−1, 1}n or a random point from
Rn with standard Gaussian measure.

The invariance principle allows us to translate the noise sensitivity problem on boolean hyper-
cube to a similar problem in the Gaussian space and the latter problem has already been solved
by Borell! Towards this end, let f : {−1, 1}n 7→ {−1, 1} be a balanced boolean function whose all
influences are at most η. We intend to lower bound its ε-noise sensitivity. We know that f has a
representation as a multi-linear polynomial, namely its Fourier expansion:

f(x) =
∑
S⊆[n]

f̂(S)
∏
i∈S

xi ∀x ∈ {−1, 1}n.

Let f∗ : Rn 7→ R be a function that has the same representation as a multi-linear polynomial as f :

f∗(x∗) =
∑
S⊆[n]

f̂(S)
∏
i∈S

x∗i ∀x∗ ∈ Rn. (1)

Assume for the time being that f has low degree. Since f has all influences small, by the invariance
principle, the distributions of f(x) and f∗(x∗) are nearly identical, and let us assume them to be
exactly identical for the sake of argument. This implies that E[f∗] = E[f ] = 0 and since f is
boolean, so is f∗. In other words, f∗ is a partition of Rn into two sets of equal (Gaussian) measure.
The next observation is that the ε-noise sensitivity of f is same as the ε-“Gaussian noise sensitivity”
of f∗ : Rn 7→ {−1, 1}. To be precise, let (x∗, y∗) be a pair of (1 − 2ε)-correlated n-dimensional
Gaussians, i.e. for every co-ordinate i, (x∗i , y

∗
i ) are (1−2ε)-correlated standard Gaussians. One way
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to generate such a pair is to pick two independent standard n-dimensional Gaussians x∗ and z∗,
and let y∗ = (1− 2ε)x∗ +

√
1− (1− 2ε)2z∗, and thus one can think of y∗ as a small perturbation

of x∗. Let the ε-noise sensitivity of a function f∗ : Rn 7→ {−1, 1} be defined as:

NSε(f∗) := Prx∗∼1−2εy∗ [f∗(x∗) 6= f∗(y∗)] .

When f∗ is a multi-linear polynomial as in (1), it is easily observed that

NSε(f∗) =
1
2
− 1

2

∑
S⊆[n]

f̂(S)2(1− 2ε)|S|.

But this expression is same as the ε-noise sensitivity of the boolean function f and thus NSε(f) =
NSε(f∗) and Theorem 6.4 follows from Borell’s result that lower bounds NSε(f∗). The parameter
δ in the statement of Theorem 6.4 accounts for additive errors involved at multiple places during
the argument. Also, we need to make sure that f is a low degree function in order to apply the
invariance principle; this is handled by smoothening the function beforehand; we omit the details.

Theorem 6.5 ([19]) If f∗ : Rn 7→ {−1, 1} is a measurable function with E[f∗] = 0, then

NSε(f∗) ≥ NSε(HALF SPACE) =
1
π

arccos(1− 2ε),

where HALF-SPACE is the partition of Rn by a hyperplane through origin.

6.5 It Ain’t Over Till It’s Over Theorem

For a set of co-ordinates S ⊆ {1, . . . , n} and a string x ∈ {−1, 1}n, a sub-cube CS,x corresponds to
the set of all inputs that agree with x outside of S, i.e.

CS,x := {z | z ∈ {−1, 1}n, ∀i 6∈ S, zi = xi}.

A random sub-cube CS,x of dimension εn is picked by selecting a random set S ⊆ {1, . . . , n}, |S| = εn
and a random string x. For a (roughly) balanced function f , consider the probability that f is
constant on a random sub-cube of dimension εn. The dictatorship function passes the test with
probability 1 − ε whereas it can be shown that if f has all its influences small, then f passes the
test with small probability. It follows from the It Ain’t Over Till It’s Over Theorem of Mossel et
al [83]. The theorem is in fact stronger: if f has all influences small, then for almost all sub-cubes
C, not only that f is non-constant on C, but f takes both the values {−1, 1} on a constant fraction
of points in C. A formal statement appears below:

Theorem 6.6 ([83]) For every ε, δ > 0, there exist γ, η > 0 such that if f : {−1, 1}n 7→ {−1, 1} is
a (1

3 ,
2
3) balanced function with all influences at most η, then

PrC
[∣∣∣E[f(x)|x ∈ C]

∣∣∣ ≥ 1− γ
]
≤ δ,

where C is a random εn-dimensional sub-cube.

The theorem is proved using the invariance principle. Bansal and Khot [15] give an alternate
simple proof without using the invariance principle (the random sub-cube test is proposed therein),
but the conclusion is only that f is non-constant on almost every sub-cube (which suffices for
their application). The random sub-cube test qualifies as a one free bit Long Code test, with
completeness close to 1 and soundness close to zero. Via a connection between PCPs and the
Independent Set problem, it implies that given an N -vertex graph with two disjoint independent
sets of size (1

2 − ε)N each, it is NP-hard to find an independent set of size δN , modulo UGC [15].
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6.6 Gowers Uniformity

Samorodnitsky and Trevisan [101] prove an inapproximability factor of Ω(2k/k) for the Max-
kCSP problem, which is optimal up to a multiplicative constant. Their proof relies on the analysis
of the hypergraph linearity test (think of k = 2q − 1) on a function f : {−1, 1}n 7→ {−1, 1}:

• Pick q inputs x1, . . . , xq ∈ {−1, 1}n at random.

• For every set S ⊆ {1, . . . , q}, |S| ≥ 2, let wS :=
∏
i∈S x

i and zS be an ε-noisy version of wS .
That is, zS is obtained by flipping every bit of wS with probability ε independently.

• Accept if and only if for every S, f(z) =
∏
i∈S f(xi).

If f is a dictatorship, it is easily seen that it passes the test with probability at least 1− ε · 2q.
This is because it would pass the test with probability 1 if there were no noise, there are 2q − q− 1
sets S, and the test for each S could fail with probability ε due to the noise.

On the other hand, if f is a balanced function and all its influences are at most η, it can be
shown that f passes the test with probability at most 1

22q−q−1 + δ where δ → 0 as η → 0. Note that
there are 2q − q− 1 sub-tests, one for each |S| ≥ 2. If f has all influences small, these tests behave
as if they were independent tests, each test accepts with probability essentially 1

2 , and hence the
probability that all tests accept is close to 1

22q−q−1 .
Samorodnitsky and Trevisan [101] relate the acceptance probability of the test to the Gowers

Uniformity norms [45] of a function, and then show that for a function with all influences small,
the Gowers Uniformity norm is small as well.

Definition 6.7 Gowers Uniformity: Let f : {−1, 1}n 7→ {−1, 1} be a function, and d ≥ 1 be an
integer. The dimension-d uniformity of f is defined as:

Ud(f) := Ex,x1,...,xd

 ∏
S⊆{1,...,d}

f

(
x ·
∏
i∈S

xi

) .
Theorem 6.8 ([101]) If f is a balanced function and ∀i ∈ [n], Infi(f) ≤ η, then Ud(f) ≤ √η·2O(d).

6.7 Some Open Problems

We conclude this section by listing some open Fourier analytic problems that arise from applications
to inapproximability.

• The MaxCut problem can be generalized to the Max-kCut problem where one seeks to partition
a graph into k ≥ 3 sets so as to maximize the number of edges cut. An optimal inapproxima-
bility result for this problem is implied by the Plurality Is Stablest Conjecture stating that the
Plurality function from {1, . . . , k}n to {1, . . . , k} is the most stable under noise among the class
of functions that are balanced and whose all influences are small. 10 Using the invariance
principle, this conjecture can be reduced to the Standard Simplex Conjecture stated in Section
8.1 (see [63, 53] for a detailed exposition where the conjectures are made).

10There is a natural generalization for the notions of influence and Fourier representation of k-ary functions on a
k-ary hypercube that we don’t state here.
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• Khot and Naor [64, 65] study the Kernel Clustering problem and the following question arises
from their work: if a function f : {1, . . . , k}n 7→ {1, . . . , k} has all influences small, what is the
maximum Fourier mass the function can have at the first level? Again using the invariance
principle, the question can be reduced to a geometric problem described in Section 8.1. The
question is easily answered for k = 2, 3, but remains open for k ≥ 4.

• Consider a variant of the test discussed in Section 6.5: Assume that f is balanced, and one
tests whether f is constant −1 on a random sub-cube of linear dimension. We know that if
f passes the test with constant probability, say α, then it must have an influential variable.
However f need not be close to a junta.11 Is it necessarily true that there is a function g
that is close to a junta, monotonically above f , and passes the test with probability close to
α? We say that g is monotonically above f if ∀x, f(x) = 1 =⇒ g(x) = 1. Such a result,
though interesting on its own, might be useful towards inapproximability of problems related
to graph coloring.

7 Parallel Repetition Theorem

Let U2p1r(G(V,W,E), [m], [n], {πe|e ∈ E}) be an instance of the 2-Prover-1-Round Game problem
as in Definition 2.2. For an integer k ≥ 1, the k-wise parallel repetition game is defined as the
instance U⊗k2p1r(G

′(V ′,W ′, E′), [m′], [n′], {π′e′ |e′ ∈ E′}) where,

• V ′ := V k, W ′ := W k. For v′ = (v1, . . . , vk) ∈ V k, w′ = (v1, . . . , vk) ∈ V k, we have
e′ = (v′, w′) ∈ E′ if and only if ei = (vi, wi) ∈ E ∀i ∈ [k].

• [m′] is identified with [m]k and [n′] is identified with [n]k.

• If e′ = (v′, w′) ∈ E′, then πe′ : [m′] 7→ [n′] is defined as:

πe′(i1, . . . , ik) := (πe1(i1), . . . , πek(ik)).

It is clear that OPT(U⊗k2p1r) ≥ OPT(U2p1r)k by considering a labeling to the repeated game that
is, on every co-ordinate, same as the optimal labeling to the original game. The parallel repetition
theorems give an upper bound on the optimum of the repeated game in terms of that of the original
game.

Theorem 7.1 (Raz [96]) If OPT(U2p1r) = 1− ε, then

OPT(U⊗k2p1r) ≤ (1− Ω(εc))
k

logm+logn ,

where m and n are the sizes of the label sets and c is an absolute constant.

It is implicit in Raz’s paper that the exponent c = 32 works. Holenstein [52] simplified Raz’s
proof and also improved the exponent to c = 3. Both the results apply to more general 2-Prover-
1-Round games, and not just the projection games that are focus of this article. For the case of
projection games, Rao [95] showed that the exponent can be improved to c = 2 and moreover there
is no dependence on the size of the label sets.

11 A junta is a function that depends on a bounded number of co-ordinates.
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Theorem 7.2 (Rao [95]) If OPT(U2p1r) = 1− ε, then

OPT(U⊗k2p1r) ≤ (1− Ω(ε2))k.

As mentioned before, Rao’s Theorem can be used to amplify the gap of a Unique Game instance
and show that the Unique Games Conjecture is implied by its weak version.

Theorem 7.3 ([95]) Conjecture 3.1 implies Conjecture 2.5.

Proof: Assume Conjecture 3.1 and U be the Unique Game instance therein. Let k := 1
ε·Γ(1/ε) and

consider the instance U⊗k. Note that the parallel repetition of a unique game is also a unique game.
12

• (YES case:) OPT(U) ≥ 1− ε, and hence OPT(U⊗k) ≥ (1− ε)k ≥ 1− k · ε = 1− 1
Γ(1/ε) .

• (NO Case:) OPT(U) ≤ 1− Ω(
√
ε · Γ(1/ε)), and by Theorem 7.2,

OPT(U⊗k) ≤ (1− Ω(ε · Γ(1/ε)2))
1

ε·Γ(1/ε) ≤ exp(−Ω(Γ(1/ε))).

Thus as ε→ 0, the optimum of the repeated game tends to 1 in the YES Case and to 0 in the NO
Case.

Arguably, stronger parallel repetition theorems should be useful towards gap amplification of
unique games. One question is whether in Theorem 7.2, the exponent 2 can be further improved to
c < 2. If this were the case, one would have the equivalence between the UGC and an appropriate
inapproximability result for the MaxCut problem.

Theorem 7.4 ([63]) The UGC implies that for all sufficiently small ε > 0, GapMaxCut1−ε,1−b
√
ε

is NP-hard where b = 2
π .

Now suppose Theorem 7.2 were correct with the exponent c < 2. Then, starting with an
instance of GapMaxCut1−ε,1−b

√
ε (which is a unique game), one could amplify the gap using such a

strong parallel repetition theorem and obtain an instance of GapUG1−ε′, δ′ . This would show that
the UGC is equivalent to saying that GapMaxCut1−ε,1−b·

√
ε is NP-hard. However, Raz [97] showed

that the exponent c = 2 in Theorem 7.2 cannot be improved further. The odd cycle game serves as
a counter-example.

The odd cycle game is a two-prover game, first suggested in [32] and further motivated and
studied in [38, 14]. Let ` ≥ 3 be an odd integer and consider a graph that is a single cycle of length
`. Intuitively, the two provers are trying to convince the verifier that the graph is 2-colorable.
With probability one half the verifier asks the two provers about the color of the same node in
the graph and accepts if their answers are the same. With probability one half the verifier asks
the two provers about the colors of two adjacent nodes in the graph and accepts if their answers
are different. It is easy to show that the optimum (value) of the odd cycle game is 1 − 1

2` . Feige,
Kindler, and O’Donnell [38] studied the parallel repetition of this game and showed that the value
of the k-wise repeated game is at most 1 − Ω̃

(√
k
`

)
. Raz [97] showed that this is essentially the

tight bound.
12Strictly speaking, the parallel repetition theorem applies to 2-Prover-1-Round games (which are “bipartite”),

whereas we defined Unique Game problem as a constraint satisfaction problem on a general graph. This distinction
is minor in our context, and if one desires, one can switch back and forth between the two formulations as indicated
in the paragraph after Definition 2.4.
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Theorem 7.5 (Raz [97]) For k ≤ `2, there is a prover strategy for the odd cycle game (on an
`-cycle) that makes the verifier accept with probability 1−O

(√
k
`

)
.

The theorem implies that for k ≥ `2, the value of the k-wise repeated game is at least (1− 1
`2

)O(k)

showing that the exponent c = 2 in Theorem 7.2 cannot be further improved. Feige et al [38] also
discovered a beautiful connection between the value of the repeated odd cycle game and a tiling of
Euclidean space, see Section 8.3.

Feige and Lovasz [39] observed a connection between the SDP relaxation of a Unique Game in-
stance, e.g. the relaxation in Figure 4 - Section 5, and its behavior under parallel repetition.13

Consider a Unique Game instance U(G(V,E), [n], {πe|e ∈ E}) and let OPT(U) and SDP(U) denote
the optimal value of the game and the SDP relaxation respectively. Feige and Lovasz showed that
the SDP optimum is multiplicative under parallel repetition:

Theorem 7.6 ([39]) SDP(U⊗k) = SDP(U)k.

Note that this theorem implies a weak parallel repetition theorem for unique games: Suppose
a Unique Game has value bounded away from 1. It easily implies that the SDP optimum is also
bounded away from 1. Since the SDP value is multiplicative and is an upper bound on the value
of a game, it follows that the value of the k-wise repeated game tends to zero as k →∞.

Barak et al [17] used techniques from Raz’s paper to construct prover strategies and give a lower
bound on the value of a repeated game in terms of the SDP optimum of the original game:

Theorem 7.7 ([17]) If SDP(U) ≥ 1− β, then:

• OPT(U⊗k) ≥ 1−O(
√
kβ log(n/β)).

• OPT(U⊗k) ≥ 1−O(
√
kβ) for unique games with n = 2 labels (e.g. MaxCut).

Consider the following approach towards proving UGC: first prove hardness of GapMaxCut1−ε,1−b
√
ε

and then amplify hardness by parallel repetition. As we discussed before, the exponent 2 in The-
orem 7.2 cannot be improved, and therefore the amplification step is stuck. Theorem 7.7 in fact
gives an inherent (and subtle) reason why this approach is doomed to fail. Suppose on the contrary
that, we first showed GapMaxCut1−ε,1−b

√
ε to be NP-hard and then amplified the gap, via k-wise

parallel repetition, to GapUG1−ε′, δ′ . In the YES Case, we would argue that the optimum of the
repeated instance is at least (1 − ε)k, and since this is required to be close to 1, we must have
εk � 1. On the other hand, since GapMaxCut1−ε,1−b

√
ε is NP-hard, an SDP relaxation would not

be able to distinguish between the gap, and hence there must exist MaxCut instances G such that
OPT(G) ≤ 1 − b

√
ε (i.e. the NO Case) but SDP(G) ≥ 1 − ε. Theorem 7.7 then implies that

OPT(G⊗k) ≥ 1 − O(
√
kε) ≈ 1. Thus, there are NO instances such that the repeated game has

value close to 1 rather than close to 0!
Note that we currently have no approach to prove even the “starting” result, i.e. the hardness

of GapMaxCut1−ε,1−b
√
ε. In author’s opinion, such a result would be a huge step towards proving

the UGC (especially in light of the equivalence between UGC and Conjecture 3.1), even though it
might not directly imply the UGC as far as the current state of knowledge is given.

13 The Feige-Lovasz relaxation is somewhat different and the parallel repetition typically refers to only bipartite
games. We ignore these subtleties here.
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8 Geometry

The connections between the Unique Games Conjecture and geometry arise in (at least) three con-
texts: proofs of Fourier analytic theorems via the use of the invariance principle, constructing
integrality gap instances, and rather unexpectedly, constructing “foams”. We explain these con-
nections in three separate sections.

8.1 Proofs of Fourier Analytic Theorems

Raghavendra’s Theorem 4.2 shows that for every CSP, the integrality gap of a natural SDP-
relaxation gives the optimal approximation threshold for that CSP (modulo UGC). Characterizing
the integrality gap is essentially a geometric question and we point out a couple of examples where
the geometric question is interesting in its own right (in author’s opinion).

The Standard Simplex Conjecture: As demonstrated in Section 6.4, the MaxCut problem
motivates the Majority Is Stablest Theorem which in turn, reduces to an isoperimetric question in
Gaussian space, namely the question of partitioning Rn into two sets of equal (Gaussian) measure
so as to minimize the Gaussian noise-sensitivity. The latter question has been answered by Borell’s
Theorem characterizing a half-space through the origin as an optimal partition.

We also mentioned the Max-kCut problem and the Plurality is Stablest Conjecture that it mo-
tivates. Using the invariance principle, this Fourier analytic conjecture can be reduced to the
following geometric conjecture (see Isaksson and Mossel [53]).

The Standard Simplex Conjecture: The standard k-simplex partition is the most noise-stable balanced
partition of Rn with n ≥ k − 1.

A partition of Rn into k measurable sets A1, . . . , Ak is called balanced if each Ai has (Gaussian)
measure 1

k . The ε-noise sensitivity is defined as the probability that two (1 − 2ε)-correlated n-
dimensional standard Gaussian points x, y ∈ Rn belong to different sets in the partition. The
standard k-simplex partition of Rn is obtained by letting Rn = Rk−1×Rn−k+1 and then partitioning
Rk−1 into k regular simplicial cones.

The Propeller Conjecture: In Section 6.7, we mentioned the Kernel Clustering problem and the
corresponding Fourier question of maximizing the Fourier mass at the first level among the class
of low-influence functions. Using invariance principle, the Fourier question can be reduced to the
following geometric question:

Definition 8.1 Let A1, . . . Ak be a partition of Rk−1 into k measurable sets and for 1 ≤ ` ≤ k, let
z` be the Gaussian moment vector over A`, i.e.

z` :=
∫
A`

x dγ where γ is standard Gaussian measure on Rk−1.

Let C(k) be the supremum (it is achieved) of the sum of squared lengths of z`’s over all possible
partitions, i.e.

C(k) := sup
Rk−1=A1∪...∪Ak

k∑
`=1

‖z`‖2. (2)

Note that there is no restriction on the measures of the k sets in the partition and in particular,
the partition need not be balanced. It seems challenging to characterize an optimal partition (in
the sense of (2)) for k ≥ 4. For k = 2, the optimal partition of R into two sets is the partition into
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positive and negative real line, and C(2) = 1
π . For k = 3, the optimal partition of R2 into three sets

is the “propeller”, i.e. partition into three cones with angle 120o each, and C(3) = 9
8π . One would

expect that for k = 4, the optimal partition of R3 into four sets is the partition into four cones
given by a regular tetrahedron. This turns out to be false as numerical computation shows that the
value of this partition is worse than C(3) = 9

8π that can be achieved by letting R3 = R2 × R and
then partitioning R2 as a propeller. In fact Khot and Naor [64, 65] conjecture that the propeller
partition is the optimal one for any k ≥ 3:

Conjecture 8.2 Propeller Conjecture: For every k ≥ 3, C(k) = C(3). In words, the optimal
partition of Rk−1 into k sets in the sense of (2) is achieved by letting Rk−1 = R2 × Rk−3 and
partitioning R2 into a propeller.

8.2 Integrality Gaps

It was demonstrated in [71] that the Unique Games Conjecture leads to explicit constructions of
integrality gap instances. We briefly describe this approach. Suppose we have a gap-preserving
reduction from the Unique Game problem to a maximization problem I such as MaxCut. Specifically,
the reduction maps a Unique Game instance U to an instance I such that for some 0 < s < c,

• (YES Case:) OPT(U) ≥ 1− ε =⇒ OPT(I) ≥ c.

• (NO Case:) OPT(U) ≤ δ =⇒ OPT(I) ≤ s.

Such a reduction can then be used to map an integrality gap instance for the Unique Game prob-
lem to that of I in the following way. We construct an instance U of the Unique Game problem
such that w.r.t. the SDP-relaxation in Figure 4, Section 5,

SDP(U) ≥ 1− ε and OPT(U) ≤ δ. (3)

Now we use the reduction to map U to an instance I. The reduction guarantees that OPT(I) ≤ s
(the NO Case). On the other hand, a close examination of the reduction shows that there is a way
to map the SDP solution for U to a corresponding SDP solution for I that “mimics” the YES Case,
i.e. if the SDP solution for U has value 1 − ε, then the SDP solution for I that we construct has
value at least c. This gives us the desired integrality gap instance for I. This approach is quite
general and applies to every CSP. The MaxCut and Sparsest Cut are perhaps the most notable
illustrations as described below.

The construction of the Unique Game integrality gap instance as in (3) [71] is rather interesting.
We don’t describe it here, but do point out that it is hypercube based and the fact that the (integral)
optimum is low is related to the fact that small subsets of a boolean hypercube are almost fully
expanding. This partly motivates Theorem 5.2 giving a connection between the UGC and the Small
Set Expansion problem [94].

MaxCut with Triangle Inequalities: As mentioned in Section 2.6, Feige and Schechtman [41]
already constructed integrality gap instances for the Goemans-Williamson’s MaxCut SDP, with
gap arbitrarily close to αMC. As shown in [63], the UGC implies that it is NP-hard to approximate
MaxCut within any factor strictly less than αMC. Therefore, modulo the UGC (and P 6= NP), even
if one added polynomially many constraints to the SDP in Figure 1, the integrality gap would still
remain as αMC (as otherwise one would have a better polynomial time algorithm). However, this
argument is conditional on UGC, and it was an open problem whether addition of the following
triangle inequality constraints to the SDP in Figure 1 improves the MaxCut integrality gap:

∀i, j, k,∈ [N ], ‖vi − vj‖2 + ‖vj − vk‖2 ≥ ‖vi − vk‖2. (4)
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Note that if vi, vj , vk are {−1, 1} valued integer variables, then the constraints are indeed satis-
fied and therefore these are legal constraints in an SDP-relaxation. Using the Unique Game based
strategy above, Khot and Vishnoi [71] were able to construct integrality gap instances for Max-
Cut with gap arbitrarily close to αMC and where the SDP vectors also obey the triangle inequality
constraints.

Sparsest Cut and Connection to Metric Embeddings: As shown in [25, 71], the UGC implies
that it is NP-hard to approximate the (non-uniform) Sparsest Cut problem within any constant
factor. On the other hand, one can write a natural SDP relaxation for the problem, very similar
to Figure 1, where one intends to minimize the fraction of edges cut and adds a constraint that
the cut is balanced with respect to demands. The triangle inequality constraints as in (4) are added
as well. Characterizing the integrality gap for this SDP has been a challenging open problem for
many years. It turns out that the integrality gap on N -vertex graphs is exactly the least number
c1(NEG, N) such that every N -point “negative type” metric embeds into the class of `1 metrics
with distortion c1(NEG, N), i.e. while preserving all distances up to a factor of c1(NEG, N). This
follows from the characterization of the `1 metrics as convex combinations of “cut-metrics” and
from the fact that the SDP solution yields a negative-type metric thanks to the triangle inequality
constraints. A metric d(·, ·) is called negative-type if its square root

√
d(·, ·) (which is also a metric)

isometrically embeds into `2. These are precisely the metrics that arise as d(i, j) = ‖vi − vj‖2 for
vectors {vi}Ni=1 satisfying (4).

Goemans and Linial [44, 79] conjectured that c1(NEG, N) is a universal constant independent of
N . This would yield a constant factor approximation to the Sparsest Cut problem, in contradiction
with the UGC-based inapproximability result [25, 71]. In fact, using the strategy described before,
Khot and Vishnoi [71] were able to construct an integrality gap instance for the Sparsest Cut problem
with a super-constant gap and disprove the Goemans and Linial conjecture:

Theorem 8.3 ([71]) c1(NEG, N) ≥ Ω((log logN)c) for some constant c > 0.

The lower bound is strengthened by Raghavendra and Steurer [92] (also by Khot and Saket [70]
with a quantitatively weaker result):

Theorem 8.4 ([92, 70]) There is an N -point negative type metric such that its submetric on any
subset of t points is isometrically `1-embeddable, but the whole metric incurs distortion of at least
t to embed into `1, and t = (log logN)c for some constant c > 0.

The [92, 70] constructions again use the Unique Game-based strategy, in even more sophisticated
way. They first construct an integrality gap instance for the Unique Game SDP relaxation augmented
with t rounds of the so-called Sherali-Adams linear programming hierarchy. The instance is then
translated to an integrality gap instance for the Sparsest Cut SDP augmented with t rounds of
Sherali-Adams. The latter result is same as a local versus global `1 emebeddability result for the
class of negative type metrics.

We also mention related works that are not necessarily related to the UGC. In a breakthrough
work, Arora, Rao, and Vazirani [10] showed that the SDP algorithm gives O(

√
logN) approximation

to the Sparsest Cut problem without demands. This was extended to the demands version of the
problem by Arora, Lee, and Naor [8], albeit with a slight loss in the approximation factor. As
discussed, the result is equivalent to an upper bound on c1(NEG, N).

Theorem 8.5 ([8]) c1(NEG, N) ≤ Õ(
√

logN).

29



Using an alternate construction based on the geometry of Heisenberg group, a sequence of works
by Lee and Naor [76], Cheeger and Kleiner [26, 27], Cheeger, Kleiner, and Naor [28, 29] obtained
a stronger lower bound than Theorem 8.3 (see Naor’s survey for an excellent survey on this topic
[85]):

Theorem 8.6 ([76, 26, 27, 28, 29]) c1(NEG, N) ≥ Ω((logN)c) for some constant c > 0.

8.3 Constructing a Foam

Recall the odd cycle game from Section 7. Feige et al [38] showed that the question of characterizing
the value of a repeated odd cycle game is related to the question of constructing a “foam”, i.e. a
tiling of space using a shape/cell of unit volume while minimizing its surface area!

A Foam Problem: Let S ⊆ Rd be a “shape” with unit volume such that its translations by Zd
tile Rd. What is the least surface area of such a shape?

Clearly, the surface area of a tiling shape S must at least be that of the unit volume ball,
namely Ω(

√
d). But the unit volume ball is not a legal tiling shape. On the other hand, a unit

volume cube is a legal tiling shape, and has surface area of d. The best known constructions were
only a constant factor better than the cube. Kindler, O’Donnell, Rao, and Wigderson [73] used
a continuous version of Raz’s counter-example, Theorem 7.5, to construct a tiling shape whose
surface area is O(

√
d)! Alon and Klartag [2] subsequently gave a more direct construction.

9 Conclusion

We conclude by citing arguments in favor and against the Unique Games Conjecture. None of these
are particularly compelling in the author’s opinion and are subject to personal bias.

Arguments in Favor:

• The conjecture states that GapUG1−ε,δ is NP-hard. Feige and Reichman [40] show that for
every constant δ > 0, there is a constant C(δ) > 1 such that GapUGC(δ)·δ,δ is NP-hard, and
C(δ)→∞ as δ → 0. However, in their result, C(δ) · δ → 0 as δ → 0 and the result falls short
of proving the UGC.

• Conjecture 3.1, which is a priori much weaker than the UGC, seems much more believable,
but is in fact equivalent to the UGC.

• The SDP relaxation (Figure 4) for the Unique Game problem has an (1− ε, δ) integrality gap.

• The UGC implies a super-constant inapproximability result for the Sparsest Cut problem and
can be used to explicitly construct super-constant integrality gap for its SDP relaxation,
contrary to the Goemans-Linial Conjecture.

Arguments Against:

• We do not know any natural distribution on Unique Game instances such that the problem is
hard for the known algorithms on this distribution.

• We do not know any other natural problem that is provably equivalent to the Unique Game prob-
lem.
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• We do not know Unique Game integrality gap instances for the so-called Lasserre SDP relax-
ation. The current state of knowledge does not rule out the possibility that a Lasserre SDP,
even with a small (say three) number of rounds, may disprove the UGC. See however [67] for
a construction of an approximate Lasserre integrality gap.

As wishful thinking, it would be “aesthetically pleasing” to have the UGC proven correct, have
all the “right” inapproximability results in a unifying way, and all the connections to analysis and
geometry nicely fit together. On the other hand, proving the conjecture incorrect would be an
algorithmic breakthrough, likely going beyond the SDP barrier, since the UGC seems to exactly
capture the limitations of SDPs. 14 Irrespective of its truth, the conjecture will probably lead to
even more techniques and unconditional results.
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