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Abstract putational tasks, such as solving integer programs in a fixed
number of variables [14, 15, 10], factoring polynomialsiove
We show that, unle$¢éP CDTIME(2P°WY °8(™))  the clos- rationals [14], and breaking a knapsack based cryptosystem
est vector problem with pre-processing, f&y norm for [13]. Interestingly, lattices are used in both ways in cryp-
anyp > 1, is hard to approximate within a factor of tography: As an algorithmic tool for breaking other crypto-
(logn)'/P=< for anye > 0. This improves the previous best graphic systems, as well as for obtaining hard cryptog@phi
factor of 3'/? — ¢ due to Regev [19]. Our results also im-  primitives. In particular, in a ground breaking work, [2]-Aj]
ply that under the same complexity assumption, the nearestai constructed an example of the worst-case to average-cas
codeword problem with pre-processing is hard to approxi- reduction based on the shortest vector problem in a lattice.
mate within a factor oflogn)! =< for anye > 0. For a comprehensive introduction to the computational the-
ory of lattices we refer the reader to [17].

A central computational problem in the theory of lattices
1. Introduction is the so called closest vector proble@BMP): Given an in-
teger lattice, represented by a bd8isand a target vectar,
An n-dimensional (integer) lattic€ is a set of vectors th_e objective is to find a lattice poif3x that m_inim_izes the
{>" . a;b; | a; € Z}, whereby,bs,...,b, € Z"is a dlstance||B>§— t||. The best kn_own approximation factor
G i i for CVP achieved by a (randomized) polynomial time algo-

set of linearly independent vectors, called thasisof the ; o tnloglog ] lox oJh
rithm is 20 (nloglogn/logn) que to Ajtaiet al. [3]. The best

lattice. Equivalently, one may define a lattice as an anhjitra L i - k
additive subgroup of the grou’. known deterministic polynom|al time algorlthn; is due to
Lattices are important mathematical objects that have SChnorr [20] and achieves a factorasf(n(iestos )"/ o),
many applications in various fields of mathematics, includ- On the other hand, a result of Dinat al. [7] establishes

ing convex analysis, number theory and computer sciencehat it sNP-hard to approximat€VP within a factor bet-
They have been studied since the early 19th century byt€' thann @1/ 1oglos ),

Gauss [9], who gave an algorithm to compute the short-  In this paper, we investigate the complexity of the closest
est vector in a two-dimensional lattice. Subsequently, lat vector problem withpre-processingreferred to aCVPP.
tices have been studied in the works of Dirichlet, Hermite In this setting, the basiB of the lattice depends only on
and Minkowski. The original motivation came from num- the input length, and hence can be assumed to be known be-
ber theoretic problems such as solving Diophantine equa-forehand. This allows the possibility of doing arbitrargpr
tions and finding rational approximations for real numbers. processing with the basis, and using the pre-computed in-
In recent times, lattices have had several important agplic formation to solveCVP on the inpuiB, t). Although there
tions in computational mathematics. The discovery of the is no computational restriction on the pre-processing, step
celebrated LLL algorithm of Lenstra, Lenstra and Lovasz given the input, which in this case is a target vediothe
[14], that approximates the shortest vector in a lattice, al algorithm should run in time polynomial in the lengthtof

lowed one to construct efficient algorithms for many com-  The motivation to study the complexity of such pre-
processing problems comes from cryptography and coding
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ral to ask if the performance of the decoding algorithm can 2. Preliminaries

be improved, or if the security of the cryptographic proto-

col can be compromised, using this prior knowledge of the

lattice. For more details, refer to [8, 19].

The pre-processed version VP seems to be easier

This section presents formal descriptions of the prob-
lems, notions, and notations which are used in our reduc-
tions.

than the original problem in some cases. For instance,notations. Vectors and matrices will be denoted by bold

using the so-called Korkine-Zolotarev basis, Lagagas
al. [12] constructed arD(n'-%) factor approximation al-
gorithm for CVPP, which is far better than the almost-
exponential approximation factor known 6K P. This was
further improved ton by Regev [19], and subsequently to

O(y/n/logn) by Aharonov and Regev [1].

In light of the fact that one can find much better ap-
proximation algorithms fo€VPP when compared t€VP,
proving strong hardness of approximation resultsSfgPP
is a more challenging task than that f6P. Bruck and
Naor [5] showed\P-hardness for the analogue GVPP

in coding theory, the nearest codeword problem with pre-

processinglICPP). In this problem, a binary error correct-
ing codeC is fixed in advance and the goal is, given a vec-
tor v, to find the closest (in the hamming metric) codeword
in C. Subsequently, Micciancio [16] established tKE-
hardness o€VPP. Both results hold only for the exact ver-
sion of the problems. The first inapproximability result was
due to Feige and Micciancio [8], who proved®/3)!/? — ¢
factor hardness fo€VPP for ¢, norm, for anye > 0. They
proved this by showing &/3 — ¢ factor hardness faXCPP.
Regev [19] improved these 8- and3!/? —e respectively,
foranye > 0.

In this paper we show thafVPP is NP-hard to ap-

letters such aB, v etc. Vectors will be assumed to be col-
umn vectors. For a matri€ € F7**, letC(C) denote the
linear code{Cv : v € F5}. For a matrixB € Z"** let
L(B) denote the lattic§ Bv : v € Z*}. For a code and
at € Fy, let A(C,v) := mineec 6(c, v). Hered(-, -) is the
hamming distance.

For a positive integen, define[n] := {1,...,n}. For
two setsS, T' of the same cardinality, by abuse of notation,
S = T will mean that we have fixed a bijection between
S andT, and hence, us§, T interchangeably as is conve-
nient. Henceforth|| - || denotes the Euclidean norin ||2.
However, the definitions in this paper hold for afjynorm,
for p > 1. When we want to make the norm explicit, we
will use the notatior] - ||,

Following is a list of problems that we consider in this pa-
per. We also preseimiformal descriptions of the problems
we consider before their actual formalizations.

Nearest Codeword Problem NCP). Given a code C

F%, and a wordt € F%, the goal is to find a codeword
c € C which isclosesto t in the hamming metric. Here we
consider the case when the code is a linear subspdeeg. of

Problem 2.1 For a function f > 0, an instance of
GapNCP;(, is denoted by(C,t,d), whereC € Fy*¥,

proximate within any constant factor. Under the stronger t € F% andd € Z*. Itisa YES instance iA(C(C), t) < d,

assumption thaNPZDTIME(2r°¥1oe(n)) we show that
CVPP for £, norm, for anyp > 1, is hard to approximate
within a factor of(logn)'/?=¢ for anye > 0. Further, our
results imply thaNCPP is hard to approximate to within a
factor of (logn)' ¢, unlessNPCDTIME (2Pl log(n)),

and a NO instance IA(C(C),t) > f(n) - d.

Minimum Satisfiability in Linear Space (MINSAT).
Here, we are given a CNF formufa= C, Vv - - - V C,,, over
the variableqz4, ..., z,}, and a linear subspade C F3.
The goal is to find an assignment to the varialftem the

The paper is organized as follows: Section 2 presentsjinear spaceC which satisfies as few clauses s possi-
notations and problem definitions. The rest of the paperble. This is a variant of the standard satisfiability problem
contains two independent proofs of our results. Section 3 (1) This is a minimization problem, rather than a maximiza-

contains our first (self-contained) result that estabishe
NP-hardness of approximatir@/PP andNCPP to within
any constant factor. This result also implies that both prob
lems are hard to approximate within a factor(lfg n)° ("),
unlessNPCDTIME (2P leg(m)) - In Sections 4 and 5 we

tion problem. (2) The space from which one is allowed to
choose an assignment is a part of the input, ratherfjan

Problem 2.2 For a function f > 0, an instance of
GapMINSAT 4. is denoted byV, £, E, d), whereV , E €

present another proof that gives stronger hardness results{0, 1}"™*™ and correspond to a CNF formula with vari-

This proof requires a pre-processed version of the PCP Theables{z1, ..

.,z } as explained laterf is a linear sub-

orem which may be of independent interest. Due to spacespace off}, andd € Z*. The CNF formulap correspond-

limitations, the proof of the pre-processed PCP theorein wil
only appear in the full version of this paper.

ing to V, E is the following: LetV,;, E;; denote the, j-th
entry of V, E respectively¢ has the formCy A --- A Cyy,



where eaclC; is the boolean OR (over=1,...,n) of the Label Cover Problem (LCP). The input to this problem
literals xfﬂ for which'V;; = 1 (the notationz§ means that consists of: (1) A bipartite grap&(V, W, E). (2) Two in-
the variablexr; is negated if and only i = 0). Itisa YES  tegersi andsS; the intention being to assign verticesln
instance if there is & € £ which satisfies at-mostclauses  labels from[S], and to assign vertices i labels from[R].
of ¢, and a NO instance if every € £ satisfies more than  (3) The labeling has to satisfy certatonstraintsgiven by
f(n) - d clauses ofp. Let p(¢) denote the minimum, over functionsr, .,y for each edgév,w) € E. Given a label for

the assignmente € £, of the clauses of satisfied byv. w € W, the mapr, ., fixes the label that € V' should
be assigned in order &atisfythe edge(v, w). (4) Further,

k-Hypergraph Vertex Cover (HVC(k)). Given a hyper-  for everyw € W, apartition P,, of [R] is specified and a
graph(V, E), where each edge 61 has cardinalityt, the permissibleset from the partitionP,, is provided. w can

goal is to find a minimum size subset@fwhich intersects ~ ONly be assigned labels from the set C [F]. The goal
with (covers all the edges irE. is to find an assignment of labels to verticex®Eo as to

maximize the number of satisfied edges.
Problem 2.3 For f > 0, an instance ofGapHVC(K) . The reason why we have a partitid®, for every vertex
is denoted by (V, E), d), where’H is a hypergraph with 4 ¢ W is technical and will become clear in subsequent
vertex sel/ = [n], and edge set’ consisting of edges C sections. It may be useful as of now to ignore the partition
V, with each edge of cardinality, whiled € Z*. Itisa  and just think of P, C [R] as the only labels that one is
YES instance if there is a sét C V, with |C| < d, such  allowed to assign to vertices . Thus, compared to the
that|C'Nne|l > 1forall e € E. Itis a NO instance if for  vertices inV, each vertex if¥ has its own (different) set of

everyC C V,with [C| < f(n,k)-d, thereisanedge € £ |abels, but each is a subset of a common grounfiget
withC Nne = 0.
Problem 2.6 For a function f > 0, an instance of

Closest Vector Problem CVP). Given a latticeC C Z", GapLCPy(, is

and a vectot € Z", the goal is to find a lattice point € £
which isclosestto t in the ¢, distance. The lattice is typ- UGV, W, E), [R], [S],n, m, {Te}ee bs {Pu, Putwew)

ically generated by a (fu_II—_rank) bgsis matix € Z"*": whereG = (V, W, E) is a a bipartite graph, witfV| = n,
L={Bx:x¢e€Z"}. Thisis a variant of the closest vec- IW| = m, E is the set of edges$9] is the set of labels for
tor problem, but for our purposes, this turns out to be more yertices inV/, for everyw € W, P,, = L, Ru,; is a partition
convenient to work Wlth _mstead (ﬂ\_/P. Roughly, a hard- 4t the set R], while P,, € {R,,,} is a set in the partition
ness result foMISP implies an equivalent hardness result that represents all “permissible” labels from which a label
for CVP. can be assigned to € W, and forevery € E, m, : [R] —

Problem 2.4 For a function f > 0, an instance of |- A “labeling” is a pair of mapsLy : W — [R], Ly :
GapCVP;, is denoted byB, t,d), whereB € Zm*", V — [5]. An edger = (v, w) is “satisfied” by a labeling
t € Z" andd € Z". Itis a YES instance if there exists a (Lv, Lw) if Lw(w) € Py andme(Lw (w)) = Ly (v). U

x € Z" such that|Bx — t| < d, and a NO instance if for isa YES _instance_z if there _is a labeling _that sa_ltis_fies all its
allx € Z", |Bx — t|| > f(n) - d. edges. Itis a NO instance if every labeling satisfies at-most
f(n) fraction of the edges.

We note that in the standard definition of this problem,
the partition is trivial: P,, = {[R]} forall w € W, and
hence, the set of permissible labéls = [R] for all w €
Ww.

Minimum Integral Solution Problem (MISP). The in-
put to this problem consists of a set ffedlinear forms,
described byB; € Z**" a set ofvariable linear forms
B, € ZF*" and a target vectar € Z*'. The goal is to
find anintegral solutionx € Z™ to the systenB;x = t,

which is of leasty; norm with respect t@,,; or minimizes
[Box|.

2.1. Pre-processing versions dbap problems

In this section we formalize the notion of pre-
Problem 2.5 For a function f > 0, an instance of processing problemand describe the pre-processing ver-
GapMISPy .y is denoted by By, B,,t,d), whereB; ¢ sions of the problems of interest to us. We focusioiform
Zkxn B, € Zkxn t ¢ 7ZF andd € Z*. Itis a YES pre-processing problems, whose hardness can be based on
instance if there exists & € Z" such thatB;x = t and uniform complexity assumptions.

|B.,x|| < d, and a NO instance if for alk € Z" satisfy-

ing Byx = t, [Bux|| > f(n) - d. By will be referred to pre-processing problems. Consider a gap problem

as “fixed” linear fo_rms on the variables, whilB,, will be GapX(.) where inputs are tupled,, ..., 4;) of a fixed
referred to as “variable” linear forms. length, and have a size parametewhich is polynomially



related to the actual size of the input. In pre-processimg ve
sions ofGapXy,.), we consider subproblems where part of
the input depends only anand, therefore, can be assumed
to be known in advance.

Formally, a pre-processing instanceXdpX ;. is spec-
ified by an algorithm which, given the stringf, generates
in polynomial time a partial inpufA,, ..., Ax) for some
fixed k < [. We refer to this algorithm as aniform par-
tial input generatorand we call(44, ..., Ax) theuniform
input

An algorithm which solves GapXy., with pre-
processingn time T'(n), is actually an arbitrary function
P, which has no complexity constraints. Given a pre-
processing instance &apX.) (hamely the code of a uni-
form partial input generatorl;, outputs an algorithm which
solves theGapX(.) problem in polynomial time on any in-
put (Ay,..., A;) with size parameten, on the condition
that the partial tupld A4,,..., Ax) is the one obtained by
the partial input generator when run on the striftig

One can easily observe that in order to show hard-

ness of solvingGapX; ., with preprocessing, it suffices
to come up with the following ingredients: The first is a
pre-processing instance GlapX; .y, and the other is a re-
duction from a hard problem tGapXy.), which generates
inputs (A1, ..., A;) of sizen, where(4,, ..., A) is the
output of the partial instance generator on input

Note that once th&apX; ., problem is defined, its pre-
processing version is defined by specifyignamely the
entries of the partial inputs that are uniformly generated a

e Label Cover
(GapLCPPf(.))
Recall that an input tGapLCP . is a tuplel/:

Problem with Pre-processing

(G(Vv Wa E)v [R]v [S],TL, m, {ﬂ-e}ea {Pwa Pw}wEW) .

The uniform part consist ai(V, W, E), n, m, the set

of candidatelabels|R] for vertices inW¥, [S], and the
projection mapsr.. Further, for everyw € W, a par-
tition of [R], Py, = |, Rw, is fixed, which also de-
pends just on the length of the input. The input to
GapLCPPy(.) now consists of a seP,, € {Ruw,}i,

for everyw € W. Recall that this is the set of permis-
sible labels fonw.

When we do not wish to talk about the gap, we will refer
to these problems adCP, MINSAT, CVP, MISP, LCP,
NCPP, MINSATP, CVPP, LCPP andMISPP.

The following proposition states thaISPP can be re-
duced toCVPP.

Proposition 2.7 There exists a polynomial time reduction
from GapMISPP (., to GapCVPPy, .y, where f'(n) :=
f(n®), for some constant > 0.

The proof of Proposition 2.7 can be obtained by a slight
modification of Lemma 10 in [7], where a reduction is
shown from the shortest integral solution problem, which
is a special case MflISP.

are allowed to be pre-processed. In the following list we 3. Reduction from Hypergraph Vertex Cover

define pre-processing versions of problems by specifying

what the uniform part of their input should be.

e Nearest Codeword Problem with Pre-processing
From the input tuplé€C, t, d) to GapNCP .y, (C) is
the uniform input tadGapNCPP ).

e Minimum Satisfiability in Linear Space with Pre-
processing GapMINSATP.))
From the input toGapMINSAT (), which is a tu-
ple (V,L,E,d), (V,L£) is the uniform input to
GapMINSATP ..

e Closest Vector
(GapCVPPf(.))
From the input tupléB, t, d) to GapCVP; .y, (B) is
the uniform input tadGapCVPP ..

Problem with Pre-processing

e Minimum Integral Solution Problem with Pre-
processing GapMISPP.))
From the input toGapMISP; ., which is a tu-
ple (B;,B,.t,d), (Bs,B,) is the uniform input to
GapMISPP; .

In this section we present a complete proof of the follow-
ing result:

Theorem 3.1 For every constantt > 0, GapNCPP,

is NP-complete. Further, under the assumption that
NPZDTIME(2P° lee(m)) 'NCPP is hard to approximate
within a factor of(logn)?, for some constant > 0.

As an immediate corollary, via a reduction from
GapNCPP;, to GapCVPPm (see [8, 19] for detalils),

we obtain the following.

Corollary 3.2 For every constant > 0, GapCVPP,.

is NP-complete. Further, under the assumption that
NPZDTIME(2P° log(m)) - CVPP is hard to approximate
within a factor of(logn)?, for some constant > 0.

The result relies on the following theorem about the hard-
ness of approximation #1VC(k). (This problem is referred
to as E-Vertex-Cover in [6].)

Theorem 3.3 (Dinuret al. [6]) For everye > 0 and every
k > 3, GapHVC(K)x_1_. is NP-complete.



The proof of Theorem 3.1 involves two steps: (1) Lemma (C, v) of NCPP, such that, if¢ denotes the CNF formula
3.4 gives an approximation preserving reduction from corresponding tdV, E), then,

HVC(k) to MINSATP. The instance dfIINSATP produced

is of size poly¢¥). (2) Lemma 3.5 shows that, assuming
th.at.I\/IINSATP. is NP-hard,NCPP is hard to ap_proximatg 2. A(v,C(C)) < p(o)l.
within some (fixed) constant factor. Hence, a direct applica

tion of Theorem 3.3, with a large enough valuekgfroves 3. A(v,C(C)) > up(9)ly.
Theorem 3.1.

1. C dependsonly oV and L.

Herel; := poly(n,1/u) andC C F4.
Lemma 3.4 For every odd integerk, there exists a
poly (n®®) time reduction that maps an instartgV, E)
(with |V| = n) of HVC(K) to an instance(V, L, E) of
MINSATP, such that ifp,; denotes the CNF formula corre-
sponding to'V, E)

Proof: Let¢ = A", C;, whereC; are clauses over the
variable sef{z1,...,z,}. First, we define a linear code
(depending orE and £) that will be used in the reduction.
For an integer parametar = poly(n, 1/u), fix an assymp-
totically good linear error correcting cod® C {0,1}

1. The matriced/, E are of sizen x (7). of dimensionn with a generating matriG € {0, 1}/1*",
such that for allv € C’, |wt(v)/l1| > p for some positive
2. V and £ depend only om andk. constan.

3. p(¢x) is equal to the size of a minimum vertex cover For a clause; = V., _1y ;" define the matrbG;
of H. in the following way: Thej-th column ofG; is the j-th
column of G if V;; = 1, and the all zeroes vectod, €

] ) {0,1}", otherwise. Note tha; depends only on the list of

Proof:  We constructy in the following way: The ma-  yariaples inC;, which depends only oW. The generating

trices V and E can be read off from the description of matrix C of C contains the produc; - G for each clause

¢x. The variables ofpy, arey;;, for all I C [n] with C;

|I| = k, and alli € [n]. For eachi € [n], ¢ contains

a clauseC; := \/Is_i(yf,i)l‘xﬁ(”, wherexy (1) = 1 if C=(Gi -Gz, - ,Gm Gg)T,

and only ifH contains the edgé. (Recall that the notation ) ) . )
2¢ means that is negated if and only it = 0.) £ is de- where G, is any generator matrix of (i.e. a matrix

fined as the linear space ovBf spanned by the equations Such thaty € L iff there is anx such thaty = Gf’;)
(B, Y1 = 0}1cn). 1=k Note that neither the under- We are ready to define the target vectore {0, 1},
lying matrix V' of ¢, nor £ depend ort{. Only E de- For each claus€’;, define thei-th block of v (the block

pends or{. Now we prove(3). This is done in two parts: ~ Of co-ordinates from(i — 1)n + 1,...,in) asv; :=

1. p(¢y) is less than or equal to the size of a minimum ver- @j:Vi =1,E;;=0 Glj], whereG[j] is the?'th column ofG.
tex cover ofH. Now, (2) and (3) follow from the following two statements:
LetC C [n] be a vertex cover of{. For every edgé < E, 1. 1fp(¢) <k, thenA(v,C(C)) < ki o

fix a vertex(; € I which belongs t@”. Set the variablg; ; Consider the vecton such thatu € £, andu satisfies

to 1 if and only if I € E andi # ¢;, and to0 otherwise. ~ @t-mostk clauses of¢, let u = Gcx Then, the ham-
Then, y;; satisfies exactly the clauses that correspond toMNg distance from the codewo@ tovis A(v, Cx) =
vertices inC.. Also, sincek is odd, this solution lies in the ~ 2_i—1 A(Giu, v;). Note that for alli, v; — Gu is an el-

linear spacet. ement ofC’, becausev; € C’, and every column ofG;
2. p(¢w) is greater than or equal to the size of a minimum 18 in C". Also, if the clauseC; is unsatisfied by, then
vertex cover ofH. v; = G;u. Thus,

Given an assignment fory;,;, denote C = m

{i|C; is satisfied. We claim thatC is a vertex cover: A(v,u) = ZA(Giu,Vi)

Indeed, consider some edgec E. Sincek is odd, and i=1

{yr1.:} lie in the linear space, y;; is 0 for at-least one _ (G — V) < ki

1 € I. This implies that € C. This completes the proof of . Z wt(Giu —v) < ki
the lemma. - c; is satisfied by

2. If p(¢) > k,thenA(v,C(C)) > ukly
Lemma 3.5 There exists a constamt > 0, such that for ~ Assume on the contrary that there exists a vextauch that
every odd integek > 3, there exists a polynomial reduction A(v, Cx) < pkly, letu = Gzx. Then,u € L. Note that
that maps an instancéV, £,E) (V,E € {0,1}"*" and v; — G;uis either0 (if and only if C; is not satisfied by),
each row ofV has exactlyk 1s) of MINSATP to aninstance  or some non-zero codewordd. Thus, one may write



m

A(v,u) =) A(Giu,v;)

S

¢, is satisfied by

wt(Giu — v) > pkls,

which contradicts our assumption thak(v, Cu)
/Lkll.

<

The first part of Theorem 3.1 now follows from Theo-

rem 3.3, Lemma 3.4 and Lemma 3.5. The second part of

Theorem 3.1 follows similarly from a strengthening of The-
orem 3.3 when we chooge= (logn)°M,

4. PCPs for Constraint Satisfaction Problems,
2-Prover Games and the Label Cover Prob-
lem

A quadratic constraint satisfaction problem. The fol-
lowing constraint satisfaction problem (CSP) will be the
starting point for our result.

Quadratic CSP over F, (QCSP(2)). Given a set

of quadratic polynomial equations ovét,[x1,...,z,],
the goal is to find an assignment to the variables
{z1,...,2z,} € FJ which satisfies as many equations as
possible. Each equation is of the fogfe, ..., z,) = ¢,
where the degree gfis 2 andc € F,. Further, each poly-
nomial is known to depend only on at-m@stariables.

Problem 4.1 For a function f > 0, an instance
of GapQCSP(2)(. is denoted by({p;}7,, {c;}7%,)
where eacly; is a quadratic polynomial itFy[z1, . ..,z
which depends on at-most three variables, apg F,. Itis

a YES instance if there exists an assignnient. .., a,) €

F7% to the variables such that;(a1,...,a,) = ¢;, for all

1 < j < m. Itis a NO instance if for every assignment
(a1,...,a,) € F to the variables, the fraction of equa-
tions which are satisfied, that is, the fractionjoffor which
pj(a1,...,a,) = ¢; is less thanf(n). The corresponding

decision problem where the objective is to decide whether
there is an assignment which satisfies all the equations or

not is referred to aQ)CSP(2).

Quadratic CSP over F, with Pre-processing QC-
SPP(2), GapQCSPP(2)s.))

From the input ({p,;}7-,,{c;}7-,) to QCSP(2) and
GapQCSP(2)(.y, ({p;}7,) is the uniform input taQC-
SPP(2) andGapQCSPP(2);(.) respectively.

A PCP Theorem for QCSPP(2). The main reduction of
this paper uses a PCP Theorem @ESPP(2). But first,
we need to establisNP-completeness d@CSPP(2).

Theorem 4.2 QCSPP(2) is NP-complete.

Proof: We reduce3SAT to QCSPP(2). For this proof, it
is convenient to view the formulation f@SAT which has
been used in the definition INSAT: The inputis(V, E),
whereV,E € {0,1}"™*™ and corresponds to 3SAT for-
mula¢ = Cy A -+ A Cp, with variables{z1,...,z,}.
Further, each row oV has exactly3 1s. Since3SAT is
in NP, for everyn, there is a circuitC,, which takes as
input (V,E) and an assignment € {0,1}", such that,
Cn(a, V,E) = (1, V,E) if ais a satisfying assignment for
¢, and(0, V, E) otherwise.

Now we present the reduction. LEV, E) be the input
corresponding to 8SAT instancep. We may assume that
every gate irC,, has fan-in 2 and fan-out 1. For every bit
in the input(a, V, E) to C,,, there is a variablex; is sup-
posed to be assigned th¢h bit of a. x; ; iS supposed to be
assignedV;, while z; ; is supposed to be assignEg;.

Associated to the output of thieth internal gat&in C,, is
a variablez;. Further, lety, be the variable corresponding
to the gate which outputs whether an assignmaesstisfies
¢ or not, and denote by; ; andy; ; the output of the gates
outputting the, j-th entry of V andE respectively. We just
show the arithmetization (ovét,) for the AND gate (sim-
ilar arithmetizations hold for the NOT and the OR gate): If
the input to an AND gate are variables:’, and the output
2", then, one can write the equatiefi — 2z’ = 0 corre-
sponding to it.

We write such an equation for every gate, internal or out-
put, in C,,. Each equation is of degree at-m@sand has
at-most3 variables. Note that every such equation depends
only on the description of,,. To see the connection with
QCSPP(2), we think ofa, V, E as variables in this set of
polynomial equations and add the additional set of equa-
tionsyo = 1, y;; = Vi; andy; ; = E;;. Hence, we get a
QCSPP(2) instance over the set of variables

{z;:1<i<n}U{z;;:1<i,j<n}
U{a;; 1 <45 <npU{z:1<i<size(Cn)} Uyo
U{yig:1<i,j<njuU{y;:1<4,j<n},

(Notice thatC,, can be generated by a polynomial time al-
gorithm which is given as input™. Hence, this reduction
is a polynomial time reduction.) By definition, it follows
that this quadratic system has a solution if and only if
has a satisfying solution. This completes the proof of the

lemma. "

1A gate is said to be internal if its output is not an output & ¢ircuit.



PCP Theorem for QCSPP(2). We start with an instance
U of QCSPP(2) and construct another instari@éof it in
which theunsatisfiability is amplifiedif ¢/ is satisfiable, so
isU'. However, ifi/ is not satisfiable, then no assignment
to the variables of/’ satisfies more than&fraction of the
constraints iri/’. Here,f > 0 is some fixed constant. The
reduction is summarized in the following theorem:

Theorem 4.3 Let ({p;}"-,.{c;}-,) be the input to
QCSP(2) over the set of variablesxy, ..., z,}. There is

a polynomial time constructible mapping, and a constant
6 > 0, such that:

1. The mapping takes a paif{p;}/.,, {c;}}~,) to

(CATERCY R

. The set of ponnomialspg};?il are quadratic over
Fyl21,. .., 2] and depend only ofip;}™

. If the syster{p; = ¢;}7,
so does the syste; = ¢

I {p; = ¢;}1, is not satisfiable, then for any as-
signment to its variable&z, . . xn } more than &
fraction of the equationgp; = ¢/;}"*, are not satis-
fied.

has a satisfying solution,

g 1-

. Ifeachp; depends on at-mo8tvariables, so does each
/
pj-

. There is a fixed integet, such that each variable in
{z1,...,z, } appearsin exactly, of the polynomials

{Ps‘ =1

Hence, there is an absolute constaht> 0 such that
GapQCSPP(2)y is NP-hard.

The proof of this theorem, which is a laborious and an al-
most exact mimic of the proof of the PCP Theorem, is be-
yond the scope of this version of the paper.

2-Prover Games and the Label Cover Problem(s). Now

we explain the standard framework for outer PCPs. Albeit,
instead of starting with a gap instance IBAT, we start
with an instance ofGapQCSPP(2)y as in Theorem 4.3.

from among{z1, x2, 3}, sayzs, and accepts only if both
provers are consistent in their answersfgr It is easy to
see that if the instancé{pj s 1,{0 s 1) is a YES in-
stance, then there is a strategy for both the provers to suc-
ceed with probability 1. While, if it is a NO instance, then
there is no strategy for the 2 provers to succeed with proba-
bility more than2/3 + 6/3.

Given an instance¢ ({pj AT 1) of
QCSPP(2), over the variable sefz1, ..., x, }, construct
an instance

Z/[¢(G(V, w, E)v [8]7 [2]5 n/v m/v {WE}eeEv {Pw7 Pw}wGW)

as follows: The grapty(V, W, E) hasV := {z1,...,zn },
W= {p1,..., v}, and(z;,p;) € E if and only if p’
depends onr;. Note that the degree of a vertex In is

3, while of that inW is ny. We identify the sef8] with
{0,1}?, and the sef2] with {0, 1}. For a vertex; € W, let
Py C {0,1}3 = [8] be the set of solutions to the equation
pj =c}. The partition,; is just P, L ([8\ Py ) Now we
defme the projection maps(m ) ‘sSince we have fixed a

bijection betweer{0, 1} and[2], "and one betweef0, 1}3
and[8], it suffices to describe the map froff), to {0,1}.

For an edge: = (w;,p’;), wherep’; depends on variables
(xs, 2z, x), and an assignmert, b, ¢) in Pp;, the map-
ping isw.((a,b,¢)) = a. Herea is the value assigned to
z;. Notice thatl/y is an instance 0GapLCPP; /3, 4,3. By
Theorem 4.3 and the discussion preceding the reduction, it
follows thatGapLCPPy /3, 4,3 is NP-complete.

Amplifying the gap. Starting with an instance
u¢(G(Va VVv E)a [8]7 [2]3 n,m, {WG}GGEa {Pwa Pw}UJGW)

of GapLCPP;/3,4,3, for an integerk > 0, one can use
Raz's Parallel Repetition Theorem [18] to construct an
instance/;’":

(GI(Vlv le El)v [R/]v [S/]v nlv m/v {Wé}& {'P{uv Pvi;}wGW’)
with n’ = n*, m’ = mF and R, S are 20(%)_ It fol-
lows from Raz's result that thdﬂfk is an mstance of
GapLCPPy., whered’ depends only of.

The first stepisto construct a 2-Prover-1-Round Game from Smoothening the projection maps inLCPP. For our re-

the instance( {p’, A of GapQCSPP(2)y. In
J J 1 J 1

duction we will need an additional property from the pro-

the 2-Prover Game, the flrst prover is supposed to providejection maps{w.}.: For aé > 0, for anyw € W, and any
the assignments to the variables in each equation, while thepair of distinct labels, i’ € [R],
second prover is supposed to provide an assignment to the

variables which would satisfy all the equations. The varifie
then picks an equation at random, g&yt1, z2,z3) = ¢,
reads the answer of the first provefa;, as, as), a sup-
posed assignment to the variables, z2, z3), checks if
p(a1,as2,a3) = c. If so, she then picks a random variable

Pr

= T w) (i)] < 6.
vERN (w) (e, )( )] -

[0, (0)
Here the probability is over picking a random neighbor of
w. We refer to this property assmoothness, and in general
is not guaranteed by the instancesSafpL CPP/* produced



by parallel repetition. Khot [11] proposed a modification of Overview. The proof of Theorem 5.1 proceeds by re-
Raz’s parallel verifier with parametér. His construction ~ ducing asmoothenedabel cover instance to an instance
has parameterE, k (think of T, k > 1, and can be chosen of MISPP. Recall that for arbitrary paramete¥sand k,
independently of each other) and allows one to construct in-starting with aQCSPP(2) instance of sizeoly(n), the
stances which have tllesmoothnespgroperty foro = 1/7. PCP Theorem folQCSPP(2) (Theorem 4.2) combined
More precisely, in our setting, starting with an instance with Khot’s 2-Prover Game produces an instance©PP,
Uy(G(V, W, E), [8], 2], n, m, {7e } ey Puwy { Pw ywew)  Of namelyt/""* of sizen®(™*) in which the constraint maps
GapLCPPy/3,4/3, and integer parameters, k, Khot's arel/T-smooth. Further, it is also guaranteed that deciding
2-Prover Game can be used to construct an |nsW§d& whether there is a Iabeling which satisfies all the condisain
or no labeling satisfies more thaga’* fraction of the con-
GV, W' B[R], [S],n/,m' A7 Y es {Pays Py Ywew) straints iSNP-hard, for some fixed > 0.
with n/ = nOTh) ! = mOTk) and R!, S' are20(Tk). The reduction takelg™* and, in time polynomial in the size
Using Raz’s result, he shows thf ** is an instance of  of ™**, converts it into aMISPP instanceB3(T’, k, n) such
GapLCPP, -, where0 < v < 1 depends only o, and that:
hence, is fixed. Further, he shows thr{j,ff”C has thel /T-

smoothness propgrty._ _ _ _ 1. If there is a labeling which satisfies all the constraints
Some explanation is in order regarding the partifidp of UT"F thenB(T, k, n) hasshortintegral solutions of
and the set of permissible labelg,. We obtain an in- cost at-most/(n).

stance oL CPP by combining an instance promised by the
PCP Theorem folQCSPP(2) with Khot's 2-Prover Game.
Hence, the set of satisfying assignments of a polynomial
change based on the right hand side of the equation it is in. ] "
Hence, for ak-tuple of polynomials, based on ti2é pos- B(T, k,n) is of cost at-least™> C(n).

sible values of the right hand sides of the equations, there

are2* sets. These correspond to the candidate labels for arhus, pickingk = Q(loglog N), T = 2%*) whereN is
vertexw, which in turn corresponds to thetuple of poly- the size of3(T’, k, n), we obtain about/log N hardness for
nomials under consideration. From these candidate labelsMISPP. Now we move on to the precise description of the
based on the right hand side of the polynomial equations,reduction and the choice of parameters.

the input; the set of permissible labels for is specified.

This partition of candidate labels, of course, depends en th

right hand sides of the polynomials. The reduction. For parameter§’, k to be decided later,
_ consider the following instancé/{*) of GapLCPP,+
5. Reduction from Label Cover: (logn)/?=¢  from Section 4:

hardness

2. If no labeling oft/™"* satisfies more tha@—7* frac-
tion of the constraints, then every integral solution to

. (G(V,V[/,E),[R],[S],n,m, {We}eGEa{Pwan}wGW)v
Theorem 5.1 For everye > 0, GapMISPP , ,y1/2-« is

NP-complete unlessPCDTIME (2Pl log()), wheren = |V|,m = |[W| are n®T® and R',S’ are
This implies, via Proposition 2.7, the hardness of approxi- 20(TM. The only part of the input which is not uniform (or
mation ofCVPP. does not depend om) is {Pw}wew. R(_ecall that for every

) w € W, ||, Ry, a partition of[R], while the input is the
Corollary 5.2 For everye > 0, GapCVPP 5, ,)1/2-c iS set of permissible labels for eaeh P, € {R,,;};. Thein-
NP-complete unlesNPCDTIME (2rely los(n), stance iy := 1/T smooth. Recall that this means that for

Remark 5.3 The proof of Theorem 5.1 (and hence, of anyw € W and any pair of distinct labels i’ € [R],
Corollary 5.2) can be easily seen to imply a hardness of

(logn)'/P=< for MISPP and CVPP over(,, norm, for any e szr(w) [T w0 () = () (i)] < 6.
p>1. 8

Noticing that our reduction producesMISPP instance  Now we define the correspondi@apMISP instance. The
with 0/1 valuesa la Aroraet al. [4], we infer the following  \ariables are:

corollary:

Corollary 5.4 For everye > 0, GapNCPP 5 ,,)1- is Twi : YweW, VielR]
NP-complete unlessPCDTIME (2Pl log(n)), Yo, : YveV,Vjel[S]



Thefixedlinear forms are

S wwi =1 YweWw 1)
1€ Py,

Z Twi =0  YweW, Ru#Pu(2)
1€ER

Zym -1 VYoeV 3)
JE[S]

Ve=(v,w)EE,
( > xw) —Yo; =0 we[(51 < “)

BT (0,0 [1]=3
Thevariablelinear forms are

\/ﬁ AT}
\/E *Yu,j

Since the partitio?,, = | |, R.,; depends only om, the
only part that depends ofP,, }..ew Is the r.h.s. of1) and
(2), and hence, this is an instance@ipMISPP. Now we
analyze the gap of this reduction and its tradeoff with the
size of the instance produced.

VweW, Vie [R]
VoeV, Vjels]

Completeness

If "k isa YES instance dBapLCPP, ., then there is
an assignment to the variables of the correspon@iag-
MISPP instance such that the objective is at-mo@mn.
Consider a labeling which satisfies all the edge#/6f:.
Now we construct a solution to th@apMISPP with ob-
jective at-most/2mn as follows: If the label is assigned
to the vertexw € W, then, assign to z,, ;, and assigrd

to all z,, 7, for i’ # i. This makes sure that the constraints
(1) and(2) are satisfied. Similarly, if the labglis assigned
to the vertexv € V, then, assign to y,, ;, and assigr to
Yu,j, fOr j° # j. This makes sure that the constrai(3$
are satisfied. Further, if labefsandj are assigned taw
andv respectively in this satisfying assignment, then for the
edge(v,w), T(,.w) (i) = j, and hence, the constrain(s)
are also satisfied.

Soundness

This is where we need the = 1/T-smoothness ai(7-*.
We will establish factorh hardness, wheré, as well as

for everyv € V. By (5), the average number of non-zero
variables in theB-blocks, as well as in thel-blocks, is at
most2h2. We throw away alb € V andw € W whose
respective blocks contain more th26042 non-zero entries.
We do not care about satisfying the edges incident to such
vertices, as they make up for at-modgi.a1-fraction of the
edges.

We can therefore assume that for each of the remaining
vertices, there are at-mo200h? non-zero variables in its
block. Let A} (resp. B;) denote the set of non-zero vari-
ables in the respective blocks. From (1), we have that there
is at-least one:,, ; € P, which is non-zero, or in our no-
tation, B}, N P,, # 0. We therefore arbitrarily assign, for
everyw € W, alabell,, from B}, N P,,. Similarly, for every
v € V, there is at-least one non-zeyp ;. We assigr with
a label choseat randomfrom A;f.

Now using thed-smoothness property, and a union
bound, we have that for all the remaining verticess W
(that have not been thrown away)

Pr

I # Ly Ty () = Ty (T
S B b w0 () = Mo ()]

< §|B;f| < 2006R2.

Call an edge(v, w) good if for all I" # Ly, T(yw) (') #
T(w,w)(lw). FOr everyw, there are at-least — 2000h?
fraction of edgegv,w) which are good. For a vertex
neighbouringw on a good edge, the constraint (4) implies
thatyvy,,(vyw)(lw) = Ty, SiNCex, 1, IS NON-zero, so is
Yo,m(0.u) (L) @ND hENCE, With probability at-least| A} | >
1/200h2, the edg€v, w) is satisfied. Hence, the fraction of
edges satisfied is at-lealst(200%2) (1 — 0.01 — 200672) .
This has to be at-mo&t—*, ast/”"* is a NO instance of
GapLCPPy— k.

Choice of parameters. We choosed as a function of

h, such that2006h®> < 0.01. Since this leaves the
fraction of edges satisfied by the above labeling at-least
0.981/(200R?), it must be thath = 22%—¢ for some
fixed constanta. This implies thats = 277%° for
some fixed constarit. Hence,T'(= 1/§) = 275+ The
size of the instanceV is n°T* for some fixed constant

c. Letk = Lloglogn. Hence,n = 22", and N =

g2Yeh kb log ketlog ¢ Hence h — 9%k—a > (log N)1/2—6_

other parameters, are fixed in the end. Assume that there iSThis establishes that the size of the instanceGaip-

a solution to theGapMISPP instance with objective equal
to hv2mn. Then,

>

xfm <2mh? and Z yij < 2nh?.

weEW,iE[R] veV,je[S]
(5)
We define the block of variableB,, := {x,,; : 1 < i <
R}, foreveryw € W, andA4, = {y,; : 1 < j < S},

MISPP produced isNP°1e(N) and the hardness factor is
(log N)'/2=¢ and hence, Theorem 5.1 follows.
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