V22.0453-001: Theory of Computation

Problem Set 1

For this problem set, the alphabet is $\Sigma = \{0, 1\}$ unless otherwise specified. All problems are worth 10 points.

Problem 1

Draw diagrams of DFAs recognizing the following languages.

- 1. $\{w : w \text{ begins with a } 0 \text{ and ends with a } 1\}$.
- 2. $\{w : w \text{ contains at least two 1's}\}.$
- 3. $\{w : w \text{ has an even number of 0's and an odd number of 1's}\}$.

Problem 2

Draw diagrams of NFAs recognizing the following languages.

- 1. $\{w : w \text{ contains the substring } 0110\}.$
- 2. $\{w : w \text{ starts with } 0 \text{ and has even length, or starts with } 1 \text{ and has odd length} \}$.
- 3. The star closure of $\{w : w \text{ is any string but } 11 \text{ and } 111\}$.

Problem 3

Exercise 1.12 on page 85 of Sipser (In the new edition of the book, this appears as 1.16 on page 86).

Note: You can use the procedure to convert an NFA to an equivalent DFA that I described in class; it is a bit different from the one in the book.

Problem 4

Give a regular expression for each of the following languages.

- 1. $\{w : \text{The length of } w \text{ is a multiple of } 3\}.$
- 2. $\{w : w \text{ either starts with } 01 \text{ or ends with } 10\}.$
- 3. $\{w : w \text{ does not contain the substring } 001\}.$

Problem 5

Exercise 1.16 on page 86 of Sipser (In the new edition of the book, this appears as 1.21 on page 86).

Problem 6

The procedure for converting an NFA to an equivalent DFA given in class yields an exponential blowup in the number of states. That is, if the original NFA has n states, then the resulting DFA has 2^n states. In this problem, you will show that such an exponential blowup is necessary in the worst case.

Define $L_n = \{ w : \text{The } n \text{th symbol from the right is } 1 \}.$

- 1. Give an NFA with n + 1 states that recognizes L_n .
- 2. Prove that any DFA with fewer than 2^n states cannot recognize L_n .

Hint: Let M be any DFA with fewer than 2^n states. Start by showing that there exist two different strings, $x \neq y$, |x| = |y| = n, that drive M to the same state (by the Pigeon-Hole Principle). Then argue that the strings xz and yz, for any string z, must also drive the DFA to the same state.