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In this lecture we will state the PCP Theorem and show that it is equivalent to the
existence of a reduction from any NP-complete language L to Gap-MAX-3SAT with a
constant gap.

1 Gap Preserving Reductions

DEFINITION 1 Let P and P' be mazimization problems. A gap preserving reduction from P
to P' is a polynomial time algorithm which given an instance I of P with |I| = n, produces
an instance I' of P with |I'| =n' such that if

e OPT(I) > h(n), then OPT(I') > h'(n')
e OPT(I) < g(n)h(n), then OPT(I') < ¢'(n’)h'(n')
for some functions h(n),g(n),h' (n"), g (n') with g(n),q'(n’) < 1.

Observe that if Gap-Py(,) is NP-hard, then the problem Gap—Pg’ , is also NP-hard.

(n')
EXAMPLE 1 Let G = (V, E) be an undirected graph. An independent set of G is a set
S C V such that for every pair of vertices u,v € S the edge (u,v) ¢ E. We will see that
the usual reduction from MAX 3SAT to Independent Set(IS) is gap preserving. Let ¢ be
an instance of MAX3SAT with n variables and m clauses. We construct the graph Gy
from ¢ as follows. The graph G4 has a vertex v; ; for every occurrence of the variable z; in
clause C;. All the vertices corresponding to literals from the same clause are joined by an
edge (thus forming triangles). Also, if a variable z; occurs in clause C; and its negation 7;
occurs in clause Cjr, we join the vertices v;; and v; j» by an edge. Verify that there is an
independent set of size > k in G if and only if there is an assignment which satisfies > &
of the clauses of ¢. Hence, we have

o OPT(¢) =1= OPT(Gy) >m
e OPT(¢) <c= OPT(Gy) < cm

where ¢ < 1 is an absolute constant. By the PCP Theorem, we know that there exists a
polynomial time reduction from SAT to Gap-3SAT, hence, we get

THEOREM 1
IS is hard to approximate within %

In fact, we can amplify this constant by a reduction from an instance of IS with a gap of %
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to an instance of IS with gap (£ ) . By repeating any constant k times, we can show
B
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THEOREM 2 )
IS is hard to approximate within a factor of (%) for every constant integer k > 1.

PROOF: Given an instance G = (V, E), construct the graph G' = (V', E') where V! =V xV
and E' = {((u,v), (u',v") | (u,u') € V or (v,0") € E}. Let I CV be an independent set of
G. The I x I is an independent set of G’ by construction. Hence OPT(G') > OPT(G)?. On
the other hand, let I’ be an optimal independent set of G’ with vertices (uy,v1),- - , (ug, Vk)-
By construction, the vertices uy,--- ,ur and vy,--- , v, are independent sets in G. Hence
each contains at most O PT(G) distinct vertices, and therefore OPT(G') < OPT(G)?. Thus
we have OPT(G') = OPT(G)?. Hence

e OPT(G) > an = OPT(G') > o?n?
e OPT(G) < fin = OPT(G') < %n? 0

Since a maximum clique of G is a maximum independent set of the complement G, the
same amplification property (and hardness result) is true for Maximum Clique.

In the next section, we define probabilistic verifiers for NP and state the PCP Theorem
in terms of existence of efficient probabilistic verifiers.

2 The PCP Theorem

NP can be defined as the class of languages that are accepted by polynomial time non-
deterministic Turing machines. Equivalently it can be defined in terms of existence of a
polytime deterministic verifier that can check membership proofs :

DEFINITION 2 A language L is in NP if and only if there exists a deterministic polynomial
time verifier V' such that given an input x, and a proof © such that |x| = |z|°M) it satisfies

e Completeness: x € L = 3 m such that V(z,7) =1

e Soundness: x ¢ L=V m, V(z,m) =0

Now let us define probabilistic verifiers that are restricted to look at only a few bits of
the proof instead of reading the whole proof.

DEFINITION 3 A (r(n),q(n))-restricted verifier is one that is restricted to using at most r(n)
random bits, runs in probabilistic polynomial time, and queries q(n) bits from the proof.

DEFINITION 4 A language L is in PCP(r(n), q(n)) if and only if there exists a (r(n),q(n))-
restricted verifier such that given an input x, |z| =n and a proof m, the verifier satisfies

e Completeness: x € L = 3 7w such that Pr[V(z,m) =1] =1

o Soundness: ¢ L=V m, Pr[V(z,m) =1] < 3
where V' accepts or rejects on the basis of the bits read from the proof and the probabilities
are computed over the choice of random bits. Since there are 2" possible “runs” of the

verifier and every run reads q(n) bits, one can place an a priori bound |x| < q(n) - 27,



PCP for Graph Non-Isomorphism (GNI)

Two graphs G; = (V1, E1), Gy = (Va, E3) on n vertices are said to be isomorphic if there
exists a permutation in Sy, m : Vi — V5 such that (7 (u),n(v)) € Esy iff (u,v) € E1. Two
graphs are non-isomorphic if there exists no such permutation. Denote isomorphism by
G1 ~ GQ.

THEOREM 3
GNI € PCP(O(nlogn),1)

PROOF: The input z = (G1,G2), is a pair of graphs on n vertices. Each bit of the proof
7 corresponds to a labeled graph on n vertices H, and the bit is supposed to be 1 or 2
respectively if H is isomorphic to Gy or Ga. If H is isomorphic to neither, the bit may be

arbitrary. The verifier uses O(nlog(n)) random bits to choose i L {1,2} and to choose a
random permutation. She applies the permutation to the vertices of G; to obtain its random
isomorphic copy, say H. She queries 7 at the position corresponding to H and accepts if
and only if the bit queried is i.

e Completeness: Suppose G % G4. Since every graph H is isomorphic to either Gy or
G2 but not both, we can construct a proof = such that Pr[V ((G1,G2),n) = 1] = 1.

e Soundness: Suppose G; =~ (5. Since H could “arise” from G or G5 with probability
1/2 each, no matter which bit the location H contains, the verifier accepts with
probability exactly 1/2. Thus for any proof , Pr[V((G1,Gs),m) =1] =1 O

Now we are ready to state the PCP Theorem :

THEOREM 4 (PCP THEOREM)
NP = PCP(O(log(n)),0(1))

The inclusion PCP(O(log(n),0(1)) € NP is easy to see. Let V be a verifier for
L € PCP(O(log(n),0(1)). The proof m has at most 2°(°8(") bits. Hence we can construct a
polynomial time deterministic verifier V' by simulating all possible coin flips and computing
the probability that V accepts. The verifier V' accepts if and only if this probability is 1.

Now we will show that NP C PCP(O(logn),O(1)) if and only if there is a reduction
from any NP-complete language to Gap-MAX-3SAT. Thus the PCP Theorem is same as
an inapproximability result for MAX-3SAT.

THEOREM 5
NP = PCP(O(log(n)),0(1)) < 3 a polytime reduction from any NP-complete language
L to MAX-3SAT, mapping instances z for L to instances ¢ for MAX-3SAT such that,

e z€L=0PT(¢)=1

e ¢ L= 0OPT(p)<ec, c<l1



PROOF: (< :) Assume that for L € NP there is a reduction f as in the statement of
the theorem to MAX-3SAT where f(z) = ¢, and ¢ has variables Yj,---Y,, and clauses
Cy,--- ,Cp where m = n°W),

We show that L has a PCP with O(log(n)) random bits and O(1) queries. The verifier
V reads the input 2 and produces the formula ¢. Using log(m) = O(log(n)) random bits,
she chooses a uniformly random clause Cj = Y;* VY;* VY, of ¢, where * denotes the variable
or its complement. The proof 7 corresponds to an assignment to the variables. The verifier
reads the bits corresponding to the variables appearing in C; and accepts if and only if the

values satisfy C';. Then we have,

e Completeness: If z € L, there exists a satisfying assignment for ¢. Setting 7 to the
satisfying assignment ensures that Pr[V(z,7) = 1] = 1.

e Soundness: If z ¢ L, any assignment to the variables Y7,--- .Y, satisfies at most
a fraction ¢ of the clauses. Hence, for all 7, since V' chooses a clause uniformly at
random Pr[V (z,7) = 1] <ec.

The soundness probability can be amplified by a constant number of repetitions. Now
we prove the other direction.

(= :) Assume that L € NP and has a PCP using O(log(n)) random bits and O(1)
queries. We first reduce L to an intermediate constraint satisfaction problem whose variables
Yi,-++, Y}y are the bits in the proof 7. Consider a fixed random string 7 used by the
verifier. Let Y;7, - Y be the query bits fixed by 7. Let C, = C(Y,--- ,YZ:) denote the
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constraint that V tests for acceptance. The number of constraints is 20(08(n) = pOM) The
maximization problem is to find an assignment to the variables Y;’s which maximizes the
fraction of satisfied constraints. This is the same as the problem of constructing a proof
m maximizing the probability that V accepts. The completeness and soundness conditions
guarantee

e If + € L, 37 such that Pr[V(m) = 1] = 1. Hence, there is an assignment to the
variables Y7, -+, Y|, such that all the constraints C are satisfied.

e If z ¢ L, for all m, Pr[V(n) = 1] < % Hence, any assignment to the variables

Y1, , Y|, satisfies at most % fraction of the constraints.

We will take an instance of this constraint satisfaction problem I and map it to an
instance of MAX-3SAT ¢ such that

e OPT(I)=1= OPT(¢) =1
o OPT(I) < 5= OPT($) <1~ e

We can write any constaint C(Y7,-- ’YZD as a CNF with at most 29 clauses and ¢
literals in each clause. We can write the CNF as a 3SAT formula by using at most ¢ extra
variables, and with at most ¢2¢ clauses in total.

If there is a staisfying assignment for the Y;’s, then this gives a satisfying assignment
for the 3SAT. If for any assignment, at least % of the constraints are unsatisfied, then any

assignment will satisfy at most 1 — 1 fraction of clauses of the 3SAT formula ¢. O
q24



