Georgia Tech Fall'04

CS 8002: PCPs and Hardness of Approximation

Lecture 2: The *PCP* Theorem

Lecturer: Subhash Khot Scribe: Nayantara Bhatnagar

In this lecture we will state the **PCP** Theorem and show that it is equivalent to the existence of a reduction from any **NP**-complete language L to Gap-MAX-3SAT with a constant gap.

1 Gap Preserving Reductions

DEFINITION 1 Let P and P' be maximization problems. A gap preserving reduction from P to P' is a polynomial time algorithm which given an instance I of P with |I| = n, produces an instance I' of P' with |I'| = n' such that if

- OPT(I) > h(n), then OPT(I') > h'(n')
- OPT(I) < q(n)h(n), then OPT(I') < q'(n')h'(n')

for some functions h(n), g(n), h'(n'), g'(n') with g(n), g'(n') < 1.

Observe that if Gap- $P_{g(n)}$ is **NP**-hard, then the problem Gap- $P'_{g'(n')}$ is also **NP**-hard.

EXAMPLE 1 Let G = (V, E) be an undirected graph. An independent set of G is a set $S \subseteq V$ such that for every pair of vertices $u, v \in S$ the edge $(u, v) \notin E$. We will see that the usual reduction from MAX 3SAT to Independent Set(IS) is gap preserving. Let ϕ be an instance of MAX3SAT with n variables and m clauses. We construct the graph G_{ϕ} from ϕ as follows. The graph G_{ϕ} has a vertex $v_{i,j}$ for every occurrence of the variable x_i in clause C_j . All the vertices corresponding to literals from the same clause are joined by an edge (thus forming triangles). Also, if a variable x_i occurs in clause C_j and its negation \overline{x}_i occurs in clause $C_{j'}$, we join the vertices $v_{i,j}$ and $v_{i,j'}$ by an edge. Verify that there is an independent set of size $\geq k$ in G_{ϕ} if and only if there is an assignment which satisfies $\geq k$ of the clauses of ϕ . Hence, we have

- $OPT(\phi) = 1 \Rightarrow OPT(G_{\phi}) \geq m$
- $OPT(\phi) \le c \Rightarrow OPT(G_{\phi}) \le cm$

where c < 1 is an absolute constant. By the **PCP** Theorem, we know that there exists a polynomial time reduction from SAT to Gap-3SAT, hence, we get

THEOREM 1

IS is hard to approximate within $\frac{1}{c}$.

In fact, we can amplify this constant by a reduction from an instance of IS with a gap of $\frac{\alpha}{\beta}$ to an instance of IS with gap $\left(\frac{\alpha}{\beta}\right)^2$. By repeating any constant k times, we can show

THEOREM 2

IS is hard to approximate within a factor of $\left(\frac{1}{c}\right)^k$ for every constant integer $k \geq 1$.

PROOF: Given an instance G = (V, E), construct the graph G' = (V', E') where $V' = V \times V$ and $E' = \{((u, v), (u', v')) \mid (u, u') \in V \text{ or } (v, v') \in E\}$. Let $I \subseteq V$ be an independent set of G. The $I \times I$ is an independent set of G' by construction. Hence $OPT(G') \geq OPT(G)^2$. On the other hand, let I' be an optimal independent set of G' with vertices $(u_1, v_1), \dots, (u_k, v_k)$. By construction, the vertices u_1, \dots, u_k and v_1, \dots, v_k are independent sets in G. Hence each contains at most OPT(G) distinct vertices, and therefore $OPT(G') \leq OPT(G)^2$. Thus we have $OPT(G') = OPT(G)^2$. Hence

•
$$OPT(G) \ge \alpha n \Rightarrow OPT(G') \ge \alpha^2 n^2$$

•
$$OPT(G) < \beta n \Rightarrow OPT(G') < \beta^2 n^2$$

Since a maximum clique of G is a maximum independent set of the complement \overline{G} , the same amplification property (and hardness result) is true for Maximum Clique.

In the next section, we define probabilistic verifiers for **NP** and state the PCP Theorem in terms of existence of efficient probabilistic verifiers.

2 The PCP Theorem

NP can be defined as the class of languages that are accepted by polynomial time nondeterministic Turing machines. Equivalently it can be defined in terms of existence of a polytime deterministic verifier that can check membership proofs:

DEFINITION 2 A language L is in **NP** if and only if there exists a deterministic polynomial time verifier V such that given an input x, and a proof π such that $|\pi| = |x|^{O(1)}$ it satisfies

- Completeness: $x \in L \Rightarrow \exists \pi \text{ such that } V(x,\pi) = 1$
- Soundness: $x \notin L \Rightarrow \forall \pi, V(x,\pi) = 0$

Now let us define probabilistic verifiers that are restricted to look at only a few bits of the proof instead of reading the whole proof.

DEFINITION 3 A(r(n), q(n))-restricted verifier is one that is restricted to using at most r(n) random bits, runs in probabilistic polynomial time, and queries q(n) bits from the proof.

DEFINITION 4 A language L is in $\mathbf{PCP}(r(n), q(n))$ if and only if there exists a (r(n), q(n))restricted verifier such that given an input x, |x| = n and a proof π , the verifier satisfies

- Completeness: $x \in L \Rightarrow \exists \pi \text{ such that } \Pr[V(x,\pi) = 1] = 1$
- Soundness: $x \notin L \Rightarrow \forall \pi, \Pr[V(x,\pi) = 1] \leq \frac{1}{2}$

where V accepts or rejects on the basis of the bits read from the proof and the probabilities are computed over the choice of random bits. Since there are $2^{r(n)}$ possible "runs" of the verifier and every run reads q(n) bits, one can place an a priori bound $|\pi| \leq q(n) \cdot 2^{r(n)}$.

PCP for Graph Non-Isomorphism (GNI)

Two graphs $G_1 = (V_1, E_1)$, $G_2 = (V_2, E_2)$ on n vertices are said to be isomorphic if there exists a permutation in S_n , $\pi : V_1 \to V_2$ such that $(\pi(u), \pi(v)) \in E_2$ iff $(u, v) \in E_1$. Two graphs are non-isomorphic if there exists no such permutation. Denote isomorphism by $G_1 \approx G_2$.

```
THEOREM 3 GNI \in \mathbf{PCP}(O(n \log n), 1)
```

PROOF: The input $x = (G_1, G_2)$, is a pair of graphs on n vertices. Each bit of the proof π corresponds to a labeled graph on n vertices H, and the bit is supposed to be 1 or 2 respectively if H is isomorphic to G_1 or G_2 . If H is isomorphic to neither, the bit may be arbitrary. The verifier uses $O(n \log(n))$ random bits to choose $i \stackrel{R}{\longleftarrow} \{1,2\}$ and to choose a random permutation. She applies the permutation to the vertices of G_i to obtain its random isomorphic copy, say H. She queries π at the position corresponding to H and accepts if and only if the bit queried is i.

- Completeness: Suppose $G_1 \not\approx G_2$. Since every graph H is isomorphic to either G_1 or G_2 but not both, we can construct a proof π such that $\mathbf{Pr}[V((G_1, G_2), \pi) = 1] = 1$.
- Soundness: Suppose $G_1 \approx G_2$. Since H could "arise" from G_1 or G_2 with probability 1/2 each, no matter which bit the location H contains, the verifier accepts with probability exactly 1/2. Thus for any proof π , $\mathbf{Pr}[V((G_1, G_2), \pi) = 1] = \frac{1}{2}$

Now we are ready to state the PCP Theorem:

```
THEOREM 4 (PCP THEOREM)

\mathbf{NP} = \mathbf{PCP}(O(\log(n)), O(1))
```

The inclusion $\mathbf{PCP}(O(\log(n), O(1)) \subseteq \mathbf{NP}$ is easy to see. Let V be a verifier for $L \in PCP(O(\log(n), O(1))$. The proof π has at most $2^{O(\log(n))}$ bits. Hence we can construct a polynomial time deterministic verifier V' by simulating all possible coin flips and computing the probability that V accepts. The verifier V' accepts if and only if this probability is 1.

Now we will show that $\mathbf{NP} \subseteq \mathbf{PCP}(O(\log n), O(1))$ if and only if there is a reduction from any \mathbf{NP} -complete language to Gap-MAX-3SAT. Thus the PCP Theorem is same as an inapproximability result for MAX-3SAT.

THEOREM 5

 $\mathbf{NP} = \mathbf{PCP}(O(\log(n)), O(1)) \Leftrightarrow \exists \text{ a polytime reduction from any } \mathbf{NP}\text{-complete language}$ $L \text{ to } MAX\text{-}3SAT, \text{ mapping instances } x \text{ for } L \text{ to instances } \phi \text{ for } MAX\text{-}3SAT \text{ such that,}$

- $x \in L \Rightarrow OPT(\phi) = 1$
- $x \notin L \Rightarrow OPT(\phi) < c$, c < 1

PROOF: (\Leftarrow :) Assume that for $L \in \mathbf{NP}$ there is a reduction f as in the statement of the theorem to MAX-3SAT where $f(x) = \phi$, and ϕ has variables Y_1, \dots, Y_n and clauses C_1, \dots, C_m where $m = n^{O(1)}$.

We show that L has a PCP with $O(\log(n))$ random bits and O(1) queries. The verifier V reads the input x and produces the formula ϕ . Using $\log(m) = O(\log(n))$ random bits, she chooses a uniformly random clause $C_j = Y_i^* \vee Y_k^* \vee Y_\ell^*$ of ϕ , where * denotes the variable or its complement. The proof π corresponds to an assignment to the variables. The verifier reads the bits corresponding to the variables appearing in C_j and accepts if and only if the values satisfy C_j . Then we have,

- Completeness: If $x \in L$, there exists a satisfying assignment for ϕ . Setting π to the satisfying assignment ensures that $\mathbf{Pr}[V(x,\pi)=1]=1$.
- Soundness: If $x \notin L$, any assignment to the variables Y_1, \dots, Y_n satisfies at most a fraction c of the clauses. Hence, for all π , since V chooses a clause uniformly at random $\Pr[V(x,\pi)=1] \leq c$.

The soundness probability can be amplified by a constant number of repetitions. Now we prove the other direction.

 $(\Rightarrow:)$ Assume that $L\in\mathbf{NP}$ and has a PCP using $O(\log(n))$ random bits and O(1) queries. We first reduce L to an intermediate constraint satisfaction problem whose variables $Y_1,\cdots,Y_{|\pi|}$ are the bits in the proof π . Consider a fixed random string τ used by the verifier. Let $Y_{i_1}^{\tau},\cdots,Y_{i_q}^{\tau}$ be the query bits fixed by τ . Let $C_{\tau}=C(Y_{i_1}^{\tau},\cdots,Y_{i_q}^{\tau})$ denote the constraint that V tests for acceptance. The number of constraints is $2^{O(\log(n))}=n^{O(1)}$. The maximization problem is to find an assignment to the variables Y_i 's which maximizes the fraction of satisfied constraints. This is the same as the problem of constructing a proof π maximizing the probability that V accepts. The completeness and soundness conditions guarantee

- If $x \in L$, $\exists \pi$ such that $\Pr[V(\pi) = 1] = 1$. Hence, there is an assignment to the variables $Y_1, \dots, Y_{|\pi|}$ such that all the constraints C_{τ} are satisfied.
- If $x \notin L$, for all π , $\Pr[V(\pi) = 1] \leq \frac{1}{2}$. Hence, any assignment to the variables $Y_1, \dots, Y_{|\pi|}$ satisfies at most $\frac{1}{2}$ fraction of the constraints.

We will take an instance of this constraint satisfaction problem I and map it to an instance of MAX-3SAT ϕ such that

- $OPT(I) = 1 \Rightarrow OPT(\phi) = 1$
- $OPT(I) \le \frac{1}{2} \Rightarrow OPT(\phi) \le 1 \frac{1}{q^{2q+1}}$

We can write any constaint $C(Y_{i_1}^{\tau}, \dots, Y_{i_q}^{\tau})$ as a CNF with at most 2^q clauses and q literals in each clause. We can write the CNF as a 3SAT formula by using at most q extra variables, and with at most $q2^q$ clauses in total.

If there is a staisfying assignment for the Y_i 's, then this gives a satisfying assignment for the 3SAT. If for any assignment, at least $\frac{1}{2}$ of the constraints are unsatisfied, then any assignment will satisfy at most $1 - \frac{1}{q2^{q+1}}$ fraction of clauses of the 3SAT formula ϕ .