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Lecture 1: Introduction

Lecturer: Subhash Khot Scribe: Nikhil R. Devanur

We assume throughout this course that the reader is familiar with basic complexity
classes like P, NP, BPP, notion of poynomial time reducability and NP-completeness. A
good reference is [11].

1 Approximation Algorithms and Hardness Results

Consider a minimization problem P. Let I be an instance of the problem and n = |I| be
the size of the instance. OPT'(I) be the value of the optimal solution to that instance. For
example, if P is the Traveling Salesman Problem (TSP), an instance I is a weighted graph
and OPT(I) is the length of the shortest tour. For an algorithm A, let A() be the value
of the solution found by A.

DEFINITION 1 A polynomial time algorithm A for a (minimization) problem P is an a(n)-
Approximation Algorithm if for all instances I of P with |I| =n, A(I) < a(n) - OPT(I).

In the above definition a(n) > 1 is a function of input size. An approximation algorithm
for a maximization problem can be defined analogously with a(n) < 1 and the guarantee
A(I) > a(n) - OPT(I). We call a(n) as approximation ratio, or the approximation factor.
Desigining approximation algorithms for NP-hard problems is a highly successful field (a
nice reference is [14]).

DEFINITION 2 Hardness of Approximation: An optimization problem P is said to be hard
to approzimate (or inapprorimable) within a factor of a(n) if the existence of an a(n)-
approzimation algorithm for P implies P = NP (or a similar complezity theoretic implica-
tion that is regarded as highly unlikely).

This course will focus on proving hardness of approximation results for many fundamen-
tal NP-hard optimization problems. Since it is widely believed that P#NP, a hardness
result rules out possibility of a better approximation. Apart from this obvious motivation,
the area has deep connections to several areas in computer science and mathematics, in-
cluding combinatorics, cryptography, proof checking, coding theory, property testing, and
Fourier analysis of boolean functions. Excellent surveys on inapproximability (see [13, 1])
are available.

2 Some NP-Hard Optimization Problems

Let us enlist some important NP-hard optimization problems and the approximation algo-
rithms known for them. We also mention the best inapproximability results known, many
of which will be covered in the course.



DEFINITION 3 MAX-3SAT: Given a set of 3-CNF clauses {C1,...,Cp}, find an assignment
that satisfies the maximum number of clauses. Every clause is guaranteed to contain three
distinct literals.

There exists a trivial 7/8-approximation algorithm for MAX-3SAT : Just assign TRUE/FALSE
at random to every variable. Out of 8 possible assignments to every clause, 7 are satisfy-
ing assignments. Therefore a random assignment satisfies 7/8 fraction of the clauses. It
is easy to derandomize the algorithm as well. It would come as a great surprise to know
that MAX-3SAT has a matching hardness result. Hastad [9] showed that for any € > 0,
MAX-3SAT is hard to approximate within ratio better than 7/8 + ¢ !

DEFINITION 4 Vertex Cover: Given a graph G, find a minimum set of vertices C C V(Q)
such that for each edge e € E(G), there is a vertex v € C that is adjacent to e.

There is a trivial 2-approximation algorithm for Vertex Cover (see [14]) and surprisingly,
this remains the best algortihm known. The best inapproximability ratio known is 1.36 due
to Dinur and Safra [4] and perhaps it is NP-hard to achieve 2 — € approximation for every
e > 0.

DEFINITION 5 Set Cover: Given a ground set U with |[U| = n and a collection of subsets of
U, {S1,...,Sm}, find a minimum sub collection whose union is U.

There is a Inn (greedy) approximation algorithm for Set Cover. Again a surprise | A
matching (1 — €) Inn hardness result is known for every € > 0, due to Feige [5].

DEFINITION 6 Max Clique: Given a n-vertex graph G, find the mazimum size clique (a
subgraph that is a complete graph).

A trivial algorithm that outputs a single vertex as Clique qualifies as a n-approximation
algorithm. Yet again, a surprise ! It is unlikely that one would do better. Hastad showed
n!~¢ hardness for every € > 0 (see [8]).

DEFINITION 7 Bin Packing: Given rationals x1,xo,...,z, € [0,1], find the minimum k

such that there is a partition Py, ..., Py of {1,2,...,n} such that for all Pi’ZjePi zj < 1.

Bin-Packing has a very good approximation algortihm. On an instance with optimum
OPT(I), the algorithm finds a packing using only (1 + €)OPT(I) + 1 bins where € > 0 is
arbitrary. We say that Bin-Packing has an (asymptotic) PTAS.

DEFINITION 8 A problem P is said to have PTAS if for every e > 0, the problem has a
polynomial time (1 £ €)-approzimation algoithm.

3 Gap Problems

The main technique used in proving hardness results is by reducing an NP-complete prob-
lem to the gap version of the target problem.

DEFINITION 9 For a (minimization) problem P, its gap wversion Gap-Py(n) is a promise
problem such that for some function h(n),



e The YES instances are instances I of P such that OPT(I) < h(n) and
e The NO instances are instances I of P such that OPT(I) > g(n)h(n).

The function g(n) > 1 is call the gap. A similar definition can be made for mazimization
problems.

Now suppose that there is a polytime reduction from an NP-complete language L to
Gap-Py(,) such that the YES (resp. NO) instances of L are mapped to YES (resp. NO)
instances of Gap-Py(,). Then g(n)-approximation algorithm for P, if exists, can be used to
decide the NP-complete language L in polytime. It follows that it is NP-hard to approximate
P within factor g(n). This is a typical way of proving inapproximability results. In the
following section, we use this strategy to prove inapproximability results for two problems.

4 Hardness of TSP and Edge Disjoint Paths

Hardness for TSP

We prove the hardness of approximating TSP within a factor «, for any constant o > 1.
An instance of TSP is a edge-weighted graph and the goal is to find a tour that visits every
vertex exactly once and has minimum length.

We reduce the Hamiltonian Cycle problem to Gap-T'SP,, with A(n) = n. That is, the
YES instances of Gap-T'SP, have OPT(I) < n, and the NO instances have OPT(I) > an.
Given a graph G, the Hamiltonian Cycle problem asks whether it has a simple cycle that
visits all vertices. Construct a graph H with V(H) = V(G). For all e € E(G), let its
weight in H be wy(e) = 1. Otherwise let wy(e) = an where n = |V(G)|. Clearly if G
has a Hamiltonian cycle, then OPT(H) = n and otherwise any tour in H must include a
non-edge of G and therefore OPT(H) > an. Thus Gap-T'SP, is NP-Hard and TSP is
hard to approximate within a factor . Note that a could be made to depend on n and
could be as large as n) Clearly, this inapproximability result is not very meaningful.

Edge Disjoint Paths

DEFINITION 10 Edge Disjoint Paths (EDP) : Given a directed graph G, and source-sink
pairs (si, t;) fori =1,...,t, find the mazimum number of edge disjoint paths {P;,, P,,..., P}
where path P;; connects si; to t;; and the indices ij are distinct for 1 <5 <I.

The special case of EDP when ¢ = 2 is called 2 Disjoint Paths (2DP). Given a directed
graph and two source-sink pairs, the problem is to decide whether there exist disjoint paths
connecting the two sources to corresponding sinks. It is known that 2DP is NP-Complete
[6]. For EDP, \/m-approximation algorithm was given by [10], where m = |E(G)|. Here
we sketch the proof of m!/2=¢ factor hardness result for any e > 0. This result is due to
Guruswami et al. [7]. We reduce 2DP to Gap-EDP,,, where n is chosen so that n = m!/2¢.

Consider an instance of 2DP, a directed graph H and two pairs (z1,y1) and (x2,ys).
Create a graph G with source sink pairs (s;,t;) for i = 1,...,n as shown in Figure 1. There
is a directed path from every s; to ¢; (directed upwards and then to the left). The set of
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Figure 1: Reduction from 2DP to Gap-EDP,,.

these paths forms a grid. At every intersection point of the grid, we place a copy of H and
the vertices z1,y1,x2,yo are identified with the edges of the grid as shown.

It is easy to see that for the YES instances of 2DP, that is when H has 2 edge disjoint
paths from z; to y; and x5 to y,, the resulting EDP instance has OPT(G) = n, i.e., all the
n pairs in G can be connected by edge disjoint paths. This is done by taking the natural
paths from s; to ¢; and within each copy of H, routing them in a edge-disjoint fashion.

Moreover the NO instances of 2DP are mapped to instances where OPT(G) = 1. In-
tuitively, it is clear that one can rout at most one pair (s;,¢;). If one tries to rout two
pairs, say i and j¥ pairs, one is forced to find two disjoint paths in the copy of H at the
intersection point of the i*” and j** natural path. However a formal argument needs a little
more work, which is left as an exercise. This gives us a reduction from 2DP to Gap-EDP,,
and since 2DP is NP-complete, EDP is hard to approximate within a factor n.

Letr h be the number of edges in H. Then the number of edges in G is m = n2h. So by
letting n = A€, for any € > 0, we get that n = m!/27¢. So EDP is hard to approximate
within a factor of m!'/27¢ for any € > 0.

5 Complete Problems for MAX-SNP and PCP Theorem

Bin Packing, Knapsack and many of the scheduling problems have a PTAS, i.e. (1 + ¢)
approximation for every € > 0. It was a perplexing question for long time whether other
problems like MAX-3SAT and Vertex Cover also have a PTAS. An influential step towards
tackling this question was taken by Papadimitriou and Yannakakis [12] who defined a class
of problems called MAX-SNP. This class is inspired by Fagin’s characterization of NP as the



set of graph-properties expressible in existential second-order logic. All problem in MAX-
SNP have a constant factor approximation. Papadimitriou and Yannakakis also defined the
notion of complete problems for this class and proved that if any of the MAX-SNP-complete
problems had a PTAS, then every problem in MAX-SNP would also have a PTAS. Several
well studied problems were shown to be MAX-SNP-complete, e.g. MAX-3SAT, Metric TSP,
Max Clique on bounded degree graphs etc.

The major open problem, whether MAX-SNP-complete problems have PTAS, was re-
solved in the negative by the PCP Theorem (due to Arora, Safra [3] and Arora et al. [2]).
Let us state the PCP Theorem :

THEOREM 1
There is a polynomial time reduction from SAT to Gap-MAX-3SAT,., i.e. a polytime
reduction that maps instances ¢ of SAT to instances 1 of MAX-3SAT such that

e If ¢ is satisfiable, so is 1, i.e. OPT () = 1.

e If ¢ is unsatisfiable, then OPT(v) < ¢ for some absolute constant c. In other words,
there is no assignment to 1 that satisfies more than a fraction c of clauses.

In particular, MAX-3SAT and therefore every MAX-SNP-complete problem has no PTAS
unless P=NP.

Discovery of this theorem has led to many breakthrough results in inappximability
theory. This course would cover the proof of PCP Theorem as well as many of the hardness
results.

In the first part of the course, we will assume the PCP Theorem as a black-box result and
use it to prove hardness results. The proof of The PCP Theorem itself is very sophisticated
and long; it will be covered in the second part of the course.
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