
On the Proof of the 2-to-2 Games Conjecture

Subhash Khot∗

November 6, 2019

Abstract

This article gives an overview of the recent proof of the 2-to-2 Games Conjecture in [68, 39, 38, 69]
(with additional contributions from [75, 18, 67]). The proof requires an understanding of expansion in
the Grassmann graph.

The 2-to-2 Games Conjecture is a lesser variant of the more well-known Unique Games Conjecture
in Theoretical Computer Science. These conjectures have applications to “hardness of approximation”,
namely, the phenomenon that for many NP-hard problems, even computing approximate solutions to
them remains NP-hard. They have several additional connections to computational complexity, algo-
rithm design, analysis, and geometry.

The proof of the 2-to-2 Games Conjecture proves the Unique Games Conjecture “half-way” (at least
in a certain technical sense) and in author’s opinion, provides a strong evidence in favor of the latter.

1 Introduction

Since it was proposed in 2002 by the author [63], the Unique Games Conjecture has found many connections
between computational complexity, algorithms, analysis, and geometry. It is now regarded as a central
question in Theoretical Computer Science (TCS). Until recently, most researchers viewed the conjecture
skeptically. However a recent proof of the closely related 2-to-2 Games Conjecture has led to a dramatic
reversal in the popular opinion. This article gives an overview of the broader context, the proof of the 2-to-2
Games Conjecture, and a crucial ingredient in the proof, namely, a result about expansion in the Grassmann
graph. We first briefly summarize how these connections play out, which are then elaborated in subsequent
sections. Anticipating that the intended audience of this article is not necessarily familiar with TCS, we
instead focus more on the context and the combinatorial aspects.

Approximation algorithms and hardness of approximation: The well-known P 6= NP hypothesis says
that a large class of computational problems known as “NP-hard” problems do not have efficient algo-
rithms.1 An algorithm is called efficient if it runs in time polynomial in the length of the input (by the term
algorithm we would mean an efficient one unless stated otherwise). Since we do not hope to compute exact
solutions to NP-hard problems efficiently, the next natural question is whether we can compute approximate
solutions efficiently and how good an approximation can be achieved. An approximation algorithm for an
NP-hard problem is an efficient algorithm that computes a solution that is guaranteed to be within a certain
∗Department of Computer Science, Courant Institute of Mathematical Sciences, New York University. Research supported by

NSF grant CCF-1813438, Simons Collaboration on Algorithms and Geometry grant, and the Simons Investigator Award.
1Strictly speaking, we are talking about the “NP-complete” problems. A NP-hard problem is at least as hard as every problem

in NP. A NP-complete problem, in addition, is also in NP itself. We find it more convenient to use the term “NP-hard” though all
the problems we consider are indeed in NP. See Section 2.1.

multiplicative factor of the optimum (known as the approximation factor). We are interested in both upper
and lower bounds: designing algorithms with a guarantee on the approximation (upper bounds) as well as
results showing that no efficient algorithm exists that achieves an approximation guarantee beyond a certain
threshold (lower bounds). It is the latter question, namely the lower bounds, that is the focus of this arti-
cle. Such results are known as “inapproximability” or “hardness of approximation” results, proved under a
standard computational hypothesis such as P 6= NP.

Illustrative example of 3Lin problem: Let us consider the 3Lin problem as an illustration. We are given a
system of linear equations over F2 with three variables in each equation and the goal is to find an assignment
that satisfies the maximum number of equations. This is known to be an NP-hard problem. We note that
if there is an assignment that satisfies all equations, it can certainly be found efficiently using Gaussian
elimination. What makes the problem hard is that even the best possible assignment could satisfy only, say,
three-quarters of the equations.

Consider a trivial approximation algorithm that achieves a multiplicative approximation guarantee of
2. The algorithm simply assigns a random value in F2 to each variable and in expectation satisfies half of
the equations. The optimal assignment may satisfy all (or nearly all) equations and thus the assignment
produced by the algorithm is within factor 2 of the optimal assignment.

On the other hand, a well-known result of Håstad [52] shows that such a trivial algorithm is the best
we can hope for! Specifically, let ε > 0 be an arbitrarily small constant.2 Then unless P = NP, there is
no efficient algorithm that given an instance of 3Lin that has an assignment satisfying 1 − ε fraction of the
equations, finds an assignment that satisfies 1

2 + ε fraction of the equations! We would like to emphasize
the remarkable implication of this result: if there were an algorithmA that, on a (1− ε)-satisfiable instance,
finds a (1

2 +ε)-satisfying assignment, then P = NP, and hence there is another algorithmA′ that actually finds
the best possible assignment on every instance, and in particular, (1− ε)-satisfying assignment on a (1− ε)-
satisfiable instance. Moreover, as turns out to be the case, the algorithm A′ can be constructed somehow
using the algorithm A as a sub-routine. Stated differently, on a (1 − ε)-satisfiable instance, the task of
finding a (1

2 +ε)-satisfying assignment is as hard as the seemingly harder task of finding a (1−ε)-satisfying
assignment, both tasks being NP-hard. Stated yet differently, the 3Lin problem is hard to approximate within
factor 2− ε, and in light of the trivial 2-approximation algorithm, we have the approximation and hardness
results that perfectly match at the threshold of factor 2, demonstrating optimality of each other.

The PCP Theorem: The complementary study of approximation algorithms and hardness of approximation
aims at characterizing precise approximation thresholds for NP-hard problems of interest, i.e. the threshold
at which the approximation factor and the hardness factor (essentially) match.

The hardness of approximation results build on a foundational result known as the Probabilistically
Checkable Proofs (PCP) Theorem [42, 8, 6]. The theorem can be viewed from a hardness viewpoint as well
as from a proof checking viewpoint. From the hardness viewpoint, it states that there exists an absolute
constant β < 1 such that, given a 3SAT formula φ, it is NP-hard to distinguish whether it is satisfiable or
whether it is at most β-satisfiable (see Definition 2.1 and Section 2.3 for a definition of the 3SAT problem
and a formal statement of the result). From the proof checking viewpoint, it states the following surprising
fact: every NP-statement has a polynomial size proof that can be checked efficiently by a probabilistic
verifier that reads only a constant number of bits from the proof! The verifier is complete and sound in the
sense that a correct proof of a correct statement is accepted with probability 1 and any proof of an incorrect
statement is accepted with probability at most, say 1

2 .

2Unless stated otherwise, ε > 0 will henceforth denote an arbitrarily small constant and the statements are meant to hold for
every such ε.

2

The equivalence between the hardness and the proof checking viewpoints, though not difficult to see,
has led to many illuminating insights and strong hardness results over the last three decades. The proof
checking viewpoint (whose roots go back to the work on interactive proofs) played a decisive role in the
discovery of the PCP Theorem. However, for the sake of uniformity and ease of presentation, we adopt the
hardness viewpoint here. We refer the reader to the surveys [5, 53, 97, 64] for an overview of the extensive
and influential body work on PCPs and hardness results.

Soon after the discovery of the PCP Theorem, researchers started seeking precise approximation thresh-
olds for NP-hard problems of interest, i.e. the threshold at which the approximation factor and the hardness
factor (essentially) match. The hardness result for the 3Lin problem described above was a major success
in this regard, showing that factor 2 is the precise threshold. However such precise thresholds are known
only for a handful of other problems, e.g. 3SAT, Clique, Set Cover (see Section 2.4, [52, 51, 41]). For a vast
majority of problems, there remains a significant gap between the best known approximation factor and the
best known hardness factor.

One such problem is Vertex Cover. Given a graph G = (V,E), a subset C ⊆ V is called a vertex cover
if for every edge e = (u, v) ∈ E, either u or v is in C. Finding a minimum vertex cover is a well-known
NP-hard problem [60]. It admits a simple 2-approximation, namely, an efficient algorithm that outputs a
vertex cover C of size at most twice the minimum. The algorithm picks an arbitrary edge e = (u, v) ∈ E,
adds both u, v to C, removes all edges that are incident on either u or v, and repeats this step. It is easily
seen that this yields a 2-approximation: the edges e1, . . . , ek picked by the algorithm successively form a
matching in the graph and while the vertex cover C output by the algorithm has 2k vertices, the minimum
vertex cover must contain at least k vertices, one from each edge ei. Whether there exists an algorithm with
approximation factor strictly below 2 is among the flagship questions in approximability. Surprisingly, there
is now good reason to believe that no such algorithm exists, i.e. it is conceivable that approximating Vertex
Cover within factor 2− ε is NP-hard!

The Unique Games and 2-to-2 Games Conjectures: As noted, the quest towards proving optimal hardness
results was stalled after the remarkable but relatively few successes. In [63], the author introduced the
Unique Games Conjecture as a plausible avenue to make further progress.3 The conjecture turned out to be
very successful, way beyond the author’s initial expectations. Optimal hardness results are now known for
a vast majority of problems of interest assuming the Unique Games Conjecture. In particular, in [74], it was
shown that the Unique Games Conjecture implies NP-hardness of approximating Vertex Cover within 2−ε.

The conjecture states that a specific, canonical problem called Unique Games is hard to approximate. It
can then be “reduced” to other problems showing their hardness as well. An instance of the Unique Games
is a system of linear equations over the group F`2 where every equation is of the form (here ⊕ denotes the
group addition)

xi ⊕ xj = cij ,

{x1, . . . , xn} are variables, and cij ∈ F`2 are constants. The goal is to find an assignment to the variables
that satisfies a good fraction of the equations.

The Unique Games Conjecture states that for every constant ε > 0, there is a large enough constant ` =
`(ε), such that given an instance of Unique Games over F`2 that has an assignment satisfying 1− ε fraction
of the equations, it is NP-hard to find an assignment that satisfies (even) an ε fraction of the equations.

3The Unique Games problem was studied earlier in [43] in the context of parallel repetition, but not in the context of its
computational hardness. The notion of “2-to-2” constraints appeared implicitly in [36] concurrently with [63].

3

In addition to implying hardness of approximation results, the Unique Games Conjecture has found
many connections to computational complexity, algorithms, analysis, and geometry. It has led to many un-
conditional results that would hold true even if the conjecture itself were proven incorrect. A few examples
include the Majority Is Stablest Theorem in Boolean function analysis [66, 84], non-embeddability of neg-
ative type metrics into L1, disproving the Goemans-Linial Conjecture [76], construction of optimal tiling
[92, 77], and connection between eigenvalues and small-set expansion [9].

Until recently however, most researchers viewed the conjecture skeptically and many arguments were
cited as evidence against it. The perception has suddenly changed however thanks to a recent proof of the
closely related 2-to-2 Games Conjecture. This conjecture is very similar to the Unique Games Conjecture
except that the constraints are “2-to-2”, namely, of the type

xi ⊕ xj ∈ {cij , c′ij}.

As before, {x1, . . . , xn} are variables, and cij , c′ij ∈ F`2 are constants. The term “2-to-2” refers to the
property that for every assignment to the variable xi, there are two acceptable values to the variable xj , and
vice versa (the term “unique” in the Unique Games is for a similar reason).

The 2-to-2 Games Conjecture (now a Theorem), proved recently in a sequence of papers [68, 39, 38, 69],
states that for every constant ε > 0, there is a large enough constant ` = `(ε), such that given an instance of
2-to-2 Games over F`2 that has an assignment satisfying 1− ε fraction of the equations, it is NP-hard to find
an assignment that satisfies (even) an ε fraction of the equations.

We note that a 2-to-2 constraint xi ⊕ xj ∈ {cij , c′ij} can be replaced by two “unique” constraints
xi ⊕ xj = cij and xi ⊕ xj = c′ij . This automatically gives a “half-way” version of the Unique Games
Conjecture that given a (1

2 − ε)-satisfiable Unique Games instance, it is NP-hard to find a ε-satisfying
assignment. All the arguments that were cited as evidence against the Unique Games Conjecture apply to
the “half-way” version as well and the latter we now know to be NP-hard! Thus we now have, in author’s
opinion, a strong evidence towards the correctness of the Unique Games Conjecture.

An interesting aspect of the proof of the 2-to-2 Games Theorem is that it led to new Fourier analytic
tools and an understanding of expansion in the so-called Grassmann graph. The Grassmann graph Grk,` is
defined as follows. Its vertex set consists of all `-dimensional subspaces L of Fk2 and (L,L′) is an edge if and
only if dim(L∩L′) = `− 1. Expansion Φ(S) of a set of vertices S is the probability that picking a random
vertex in S and a random edge our of it, one lands outside of S. A set S is said to have imperfect expansion
if φ(S) 6 1−ε for some small ε > 0. In [38, 69], a complete characterization of sets of imperfect expansion
is obtained, which completes the proof of the 2-to-2 Games Conjecture proposed earlier in [68, 39]. The
subsequent sections of this article explain, in more detail, the overall context and the combinatorial aspects
involving the Grassmann graph.

2 Preliminary Background

In this section, we review the basic notions and the context leading to the proof of the 2-to-2 Games Con-
jecture. While much of this is repeating what has already been said in the introductory section, we hope that
the reader benefits from a more detailed exposition.

2.1 P, NP, and Computational (Hardness) Hypotheses

The class P consists of all computational problems that can be solved in deterministic polynomial time. A
related class BPP, which includes P, consists of all computational problems that can be solved in randomized

4

polynomial time. Here the algorithm is allowed to use randomness and its output is guaranteed to be correct
with high probability. BPP is viewed as the class of efficiently solvable problems; as far as efficiency is
concerned, we do not mind if an algorithm is deterministic or randomized. There is a strong indication that
P and BPP could coincide and that every randomized algorithm could be turned into a deterministic one up
to a polynomial loss in running time (see [55] for a survey)!

The class NP consists of all computational problems that can be solved in nondeterministic polynomial
time. Equivalently, NP is the class of problems for which their solution can be “checked” in deterministic
polynomial time. We avoid entering into a discussion of nondeterminism and proof checking and instead
work with concrete, canonical problems that capture the essence of the class NP. A problem I is called
NP-complete if firstly, it is in NP and secondly, it is “at least as hard as” every other problem in NP, meaning
every other problem in NP can be “reduced” to the single problem I. It is a remarkable fact (the well-known
Cook-Levin Theorem) that NP-complete problems exist and moreover many natural problems happen to be
NP-complete. Perhaps the most well-known and canonical NP-complete problem is 3SAT.

Definition 2.1. A 3SAT instance φ consists of n Boolean, i.e. {True, False}-valued, variables x1, . . . , xn
and m clauses {C1, . . . , Cm}. Each clause is of the form `i ∨ `j ∨ `k for distinct i, j, k. The `i is referred
to as a literal which is either a variable xi or in negated form xi. The goal is to decide whether there
exists a {True,False} assignment to the variables that satisfies all the clauses (referred to as a satisfying
assignment) and to find one if one exists.

We now make some clarifying comments which are taken for granted in TCS literature, but which the
reader might not be familiar with. An instance φ is called satisfiable if there exists a satisfying assignment
and unsatisfiable otherwise.

• Exact versus Approximate: We will sometimes refer to the problem as Exact-3SAT to emphasize
that the goal here is to find an exact solution, i.e. an assignment that satisfies all clauses (if one exists).
Later we will consider the approximation problem where the goal is to find an assignment that satisfies
say 90% of the clauses given that there exists a (fully) satisfying assignment.

• Search versus Decision (Distinguishing) Problem: The problem is stated as a search problem, where
we actually seek a satisfying assignment (if one exists). In the decision version of the problem, we
only seek to decide (distinguish) whether the instance φ is satisfiable or not, the answer being just
Yes or No. Formally speaking, the classes P, BPP, NP are defined as classes of decision problems and
formally, it is the decision version of 3SAT that is NP-complete.

In this article, we do not differentiate between search and decision versions of problems since these
are “morally” the same. For example, for Exact-3SAT, the search version formally reduces to the de-
cision version (as easy fact) and hence the two versions are polynomial time equivalent to each other.
Moreover, we will be mostly concerned with hardness of problems and showing that the decision
version is hard makes the result only better.

• NP-complete versus NP-hard: We find it more convenient to use a related term “NP-hard”. A NP-
hard problem is at least as hard as every problem in NP but need not be in NP itself. However all
the problems in this article will be in NP and hence usage of the term “NP-hard” will be synonymous
with that of “NP-complete”.

• Reductions: To show that a problem is NP-hard, we show that some NP-hard problem, say Exact-
3SAT, reduces to it. Consider the Third-Clique problem for instance. A clique in a graph is a subset

5

of vertices in which all pairs of vertices are connected by an edge. In the Third-Clique problem, given
a graph G with 3n vertices, the goal is to decide whether there exists a clique of size n. This is a
well-known NP-hard problem and a reduction from Exact-3SAT to Third-Clique appears in standard
textbooks. Specifically, a reduction here is a polynomial time algorithm that, given a Exact-3SAT
instance φ, constructs a Third-Clique instance G, such that φ is satisfiable if and only if G has a clique
of size one-third.

We now state some standard hypotheses in TCS. These are viewed as increasingly stronger hypotheses: for
Exact-3SAT, these hypotheses successively state that an algorithm (deterministic or randomized) must take
time that is super-polynomial, exponential (that is 2n

γ
), and “truly exponential” (that is 2γn).

• P 6= NP, BPP 6= NP.

• NP 6⊆ ∩γ>0TIME(2n
γ
). In words, an algorithm (deterministic or randomized) for a NP-hard problem

must take time 2n
γ

for some constant γ > 0 (that may depend on the problem).

• Exponential Time Hypothesis [56, 57]: An algorithm (deterministic or randomized) for Exact-3SAT
with n variables must take time 2γn for some absolute constant γ > 0.

Some remarks are in order:

• The relationship between BPP and NP is a bit mysterious and we don’t know for sure whether BPP is
contained in NP. However, as mentioned before, P and BPP could very well coincide.

• Most TCS researchers strongly believe that P 6= NP and also that NP 6⊆ ∩γ>0TIME(2n
γ
). The con-

fidence in the Exponential Time Hypothesis is less but it is still viewed as a reasonable hypothesis.
We note that Exact-3SAT does have a trivial 2n-time algorithm that goes over all 2n assignments and
hence the Exponential Time Hypothesis is quite strong.

• Most hardness results in TCS rely on such hypotheses. While the situation is less than ideal, ac-
tually proving such hypotheses is exceedingly difficult, and TCS researchers choose to further their
understanding modulo such hypotheses rather than not proceeding further at all!

• In this article, all hardness results are NP-hardness results and hence rely, by default, on the hypothesis
P 6= NP. Stated differently, if it were the case that P = NP, then all problems in this article would have
efficient algorithms, none would be hard, leaving nothing to talk about!

2.2 Approximation Algorithms and Hardness of Approximation

Since we do not hope to efficiently solve NP-hard problems exactly, a natural next step is to seek approxi-
mations. Let I denote an NP-hard problem. For an instance I of the problem with input size n, let OPT(I)
denote the value of the optimal solution. For example, for a 3SAT instance φ, OPT(φ) will denote the
maximum fraction of clauses satisfied by any (that is the “best possible”) assignment.

For a specific polynomial time approximation algorithm, let ALG(I) denote the value of the solution
that the algorithm finds (or its expected value if the algorithm is randomized). Let C > 1 be a parameter
that could be a function of n and regarded as the approximation factor (closer C is to 1, the better the
approximation as per definition below).

6

Definition 2.2. An algorithm achieves an approximation factor of C if on every instance I ,

ALG(I) > 1
C · OPT(I) if I is a maximization problem,

ALG(I) 6 C · OPT(I) if I is a minimization problem.

We refer the reader to Vazirani’s book [99] for an extensive treatment on approximation algorithms. We
now indicate how hardness of approximation results are proved. In short, by a reduction as always! More
specifically, a maximization problem I is proved to be hard to approximate by giving a reduction from a
canonical NP-hard problem such as Exact-3SAT to a gap version of I.

Definition 2.3. Let 0 < s < c be parameters. A (c, s)-gap version of a maximization problem I, denoted
as Gap Ic,s, is a promise problem where it is guaranteed that either OPT(I) > c or OPT(I) 6 s and the
problem is to distinguish between the two cases.

We say that Gap Ic,s is NP-hard if there is a polynomial time reduction from Eaxact-3SAT to GapIc,s,
i.e. a polynomial time reduction that given a Exact-3SAT instance φ, constructs an instance I of the problem
I such that:

• (Yes/Completeness Case): If φ has a satisfying assignment, then OPT(I) > c.

• (No/Soundness Case): If φ has no satisfying assignment, then OPT(I) 6 s.

Such a reduction implies that approximating I within factor less than c
s is NP-hard. While this is self-

evident, we elaborate for clarity. Suppose on the contrary that there is an algorithm for I with approximation
factor less than c

s . We show that A can be used to design an algorithm that decides whether φ is satisfiable,
which is a NP-hard problem. Indeed, given φ, construct the instance I via the reduction, run the algorithm
A on I , declare Yes if the value of the solution output by A is > s, and declare No otherwise. Clearly,
if φ is satisfiable, the reduction guarantees that OPT(I) > c, and since A has approximation factor less
than c

s , it outputs a solution with value > s, and the overall algorithm declares Yes. On the other hand, if
φ is unsatisfiable, the reduction guarantees that OPT(I) 6 s, and the value of the solution output by A is
necessarily 6 s, and the overall algorithm declares No.

We note here that hardness of approximation results show that the decision problem Gap Ic,s is NP-
hard. It follows that the search problem, namely, the task of finding a solution with value (at least) s given
an instance with optimum (at least) c, is also NP-hard (and hence we ignore the distinction between decision
and search). Hardness of approximation results for minimization problems can be proved in a similar way.
Sometimes, for a maximization problem, it is more convenient to talk of c-approximation for c < 1, meaning
ALG(I) > c · OPT(I) (it will be clear from the context).

2.3 The PCP Theorem

In practice, a reduction as described above is actually a sequence of (potentially very involved) reductions.
The first reduction in the sequence is the well-known PCP Theorem [42, 8, 6] discovered in early 1990s. In
this sense, the PCP Theorem is the “mother of all hardness results”. It yields a mild hardness result which
is then amplified by subsequent reductions.

The PCP Theorem can be phrased as a reduction from Exact-3SAT to a gap version of 3SAT. For a
3SAT formula φ, let OPT(φ) denote, as before, the maximum fraction of clauses that can be satisfied by
any assignment. Thus OPT(φ) = 1 if and only if φ is satisfiable. The PCP Theorem states that for some

7

universal constant θ < 1, there is a (explicitly described) polynomial time reduction from Exact-3SAT to
Gap-3SAT1,θ. More specifically, the reduction maps a Exact-3SAT instance φ to another 3SAT instance ψ
such that:

• (Yes/Completeness Case): If OPT(φ) = 1, then OPT(ψ) = 1.

• (No/Soundness Case): If OPT(φ) < 1, then OPT(ψ) 6 θ.

We stress that in the Case, it could be that φ has m clauses and OPT(φ) = 1 − 1
m , that is there could

be an assignment that satisfies all but one clause. However, in this case, any assignment to ψ fails on a
constant fraction of its clauses. In other words, the reduction maps satisfiable instances to satisfiable ones
(Yes Case) and unsatisfiable ones to highly unsatisfiable ones (No Case). We remark that the PCP Theorem
is viewed as one of the landmarks in TCS and its original proof was rather involved and algebraic. A simpler,
combinatorial proof was discovered much later in 2006 [35].

We stated the PCP Theorem as a reduction. There is an equivalent formulation of it in terms of proof
checking. In fact, the proof checking viewpoint played a major role in its discovery and is very surprising. In
this formulation, The PCP Theorem states that every NP statement has a polynomial size proof that can be
checked by a probabilistic polynomial time verifier by reading only a constant number of bits in the proof!
The verifier has the completeness and the soundness property: (completeness) every correct statement has a
proof that is accepted with probability 1 and (soundness) every proof of an incorrect statement is accepted
with only a small probability, say at most 1%.

The equivalence between the two views, namely reduction versus proof checking, is simple but illumi-
nating, and has influenced much of the work in this area. In this article, we mostly stick to the reduction
viewpoint for clarity.

2.4 Towards Optimal Hardness Results: Some Successes

The PCP Theorem, as stated above, shows that 3SAT is hard to approximate within factor 1
θ > 1. After the

discovery of the PCP Theorem, the focus shifted to proving optimal results, that is proving hardness results
that match the best known algorithmic results. By late 1990s, some major successes were achieved in this
regard, obtaining optimal hardness results for 3SAT [52], Clique [51], Set Cover [82, 41] (and also 3Lin
[52] as described in the introductory section). We state these results below. We do not get into the details
of their proofs, but for reader’s benefit, we mention that some of the important developments included the
introduction of the 2-Prover-1-Round Games problem [3] (of which Unique Games is a special case), the
Parallel Repetition Theorem [91], the introduction of the Long Code and the basic reduction framework
using Long Code [20], and use of Fourier analysis in analyzing the Long Code [51, 52].

3Lin

The 3Lin problem was described in the introductory section. The optimum of a given instance is the maxi-
mum fraction of the equations satisfied by any assignment. The following result was also described in the
introductory section [52].

Theorem 2.4. For an arbitrarily small constant ε > 0, Gap3Lin1−ε, 1
2

+ε is NP-hard.

8

3SAT

Given a 3SAT instance φ, the goal here is to find an assignment that satisfies a maximum fraction of clauses
(the optimum being this maximum). There exists a trivial 7

8 -approximation algorithm: just assign True or
False at random to every variable. Out of 8 possible assignments to every clause of type xi ∨ xj ∨ xk, 7
are satisfying assignments. Therefore a random assignment satisfies 7

8 fraction of the clauses in expectation.
Since the best possible assignment could satisfy (at most) all the clauses, this qualifies as 7

8 -approximation.
Quite surprisingly, no polynomial time algorithm can hope to do better [52]!

Theorem 2.5. For an arbitrarily small constant ε > 0, Gap3SAT1, 7
8

+ε is NP-hard.

We emphasize here that the PCP Theorem, as noted, only shows that Gap3SAT1,θ for some absolute
constant θ < 1. One takes this as a starting point, builds a further reduction on top of it, and shows that
in fact Gap3SAT1,θ is NP-hard for every θ = 7

8 + ε. This is a remarkable self-improving, gap-amplifying
reduction. The tools used (here as well as in most reductions post PCP Theorem) include, as mentioned, the
Parallel Repetition Theorem, the Long Code, and Fourier analysis over the Boolean hypercube.

Clique

Definition 2.6. An instance of the Clique problem is a n-vertex graph G(V,E). The goal is to find a clique
of maximum size (the optimum being this maximum size). A clique in a graph is a subset S of vertices such
that there is an edge between every pair of vertices in S.

Clique is a notorious problem. The best known algorithm can achieve only a weak guarantee: given a
graph that is promised to contain a clique of size n

logn , the algorithm manages to find a clique of size log2 n
(up to log log n factor). Again, no polynomial time algorithm can hope to do much better [51]!

Theorem 2.7. For an arbitrarily small constant ε > 0, GapCliquen1−ε,nε is NP-hard on n-vertex graphs.

Set Cover

Definition 2.8. An instance F of Set Cover consists of a ground set U with n elements and a family of
subsets {S1, . . . , Sm} such that ∪mi=1Si = U . The goal is to find a set cover of minimum size (the optimum
being this minimum size). A set cover is a sub-family {Si1 , . . . , Sir} whose union still equals U .

There is a lnn approximation algorithm for Set Cover. The algorithm greedily picks the largest set,
removes it along with the elements it covers, and then repeats (by next picking a set that covers the largest
number of remaining elements). Showing that this gives a lnn approximation requires a short, neat argument
and can be found in standard text [99]. Again, no polynomial time algorithm can hope to do much better
[41]!4

Theorem 2.9. For an arbitrarily small constant ε > 0, GapSetCovern
k
,(1−ε) lnn·n

k
is NP-hard on Set Cover

instances with n elements and all sets of size exactly k.
4The result is quoted here as NP-hardness result. Strictly speaking, the reduction runs in slightly super-polynomial time and

hence one requires the hypothesis NP 6⊆ TIME (nO(log logn)).

9

2.5 Towards Optimal Hardness Results: Many Challenges

In spite of the successes in hardness of approximation just mentioned, the goal of establishing optimal
hardness results remains elusive for most problems of interest. We cite here three prominent examples,
Vertex Cover, Max-Cut, and Max Acyclic Subgraph.

Definition 2.10. An instance of Vertex Cover is a graph G(V,E). The goal is to find a vertex cover of
minimum size (the optimum being this minimum size, but as a fraction relative to the total number of vertices
in the graph). A vertex cover is a subset of vertices C such that for each edge (u, v) ∈ E, either u ∈ C or
v ∈ C (or both).

There is a trivial 2-approximation algorithm for Vertex Cover as described in the introductory section. It
is a major challenge whether or not there is a better algorithm.

Definition 2.11. An instance of Max-Cut is a graph G(V,E). The goal is to find a cut of maximum size (the
optimum being this maximum size, but as a fraction relative to the total number of edges in the graph). A
cut is a partition of vertices into sets (S, V \ S) and its size is the number of edges “cut” (that is with one
endpoint in S and the other in V \ S).

For Max-Cut, there is a well-known αGW -approximation by Goemans and Williamson [47] where
αGW ≈ 0.878 is the constant defined as below. The algorithm is based on “semi-definite programming
relaxation” and was the first time semi-definite programming was used to design approximation algorithms.

αGW = min
θ∈[0,π]

(
2

π

θ

1− cos θ

)
. (1)

Since the discovery of this algorithm, it has remained a challenge whether or not there is a better algorithm.

Definition 2.12. An instance of Max Acyclic Subgraph is a directed graph G(V,E). The goal is to find an
acyclic subgraph G(V,Esub), Esub ⊆ E of maximum size (the optimum being this maximum size, but as a
fraction relative to the total number of edges in the graph, i.e. |Esub|

|E|).

There is a trivial 1
2 -approximation: simply order the vertices on a line arbitrarily and let Esub be the

set of all edges either going forward or going backward, whichever is larger. Clearly this yields an acyclic
subgraph containing at least half of the edges whereas the maximum acyclic subgraph can (at most) have all
the edges. It is a major challenge whether or not there is a better algorithm.

On all the three problems above (and many more), we neither know a better algorithm nor a matching
hardness result. Until the Unique Games Conjecture was proposed in 2002 and the subsequent develop-
ments, there wasn’t even a plausible argument why the answer should be one way or the other5 and the
researchers were stuck unable to make progress in either direction.

2.6 The Unique Games Conjecture

The Unique Games Conjecture [63] was proposed to break the aforementioned impasse in study of approx-
imability. A problem called Unique Games was proposed as a hard to approximate problem and proposed
as a canonical problem to reduce to other problems establishing their hardness. The full potential of the con-
jecture however became apparent only in the subsequent decade. We briefly outline below the developments
spawned by the research on the Unique Games Conjecture (please see surveys [97, 64, 62, 65]).

5As far as the author knows, several researchers believed that Max-Cut would have a better algorithm and possibly Vertex
Cover too.

10

Hardness of Approximation

The main motivation for the conjecture is to prove hardness results for problems that researchers have
been unable to prove otherwise. The conjecture states that a specific computational problem called the
Unique Games is hard to approximate. A reduction from this problem then implies hardness results for
other NP-hard problems. Such a reduction was exhibited in [63] for the Min-2SAT-Deletion problem and
it was soon followed by a flurry of reductions for various problems, in some cases using variants of the
conjecture. In particular, it is now known that the Unique Games Conjecture implies optimal 2−ε, αGW +ε,
and 1

2 + ε hardness results for Vertex Cover, Max-Cut, and Max Acyclic Subgraph problems ([74], [66],
[50] respectively) and hence these problems do not have (modulo the conjecture) better algorithms than
mentioned in the previous section!

Theorem 2.13. Assuming the Unique Games Conjecture, for an arbitrarily small constant ε > 0,

• Gap Vertex Cover 1
2

+ε, 1−ε is NP-hard.

• Gap Max Cut 1−cos θc
2

−ε, θc
π

+ε is NP-hard where θc is the critical angle that minimizes the ratio in
Equation (1).

• Gap Max Acyclic Subgraph1−ε, 1
2

+ε is NP-hard.

Remarkably, there is even a general result by Raghavendra [89] that gives a semi-definite programming
based algorithm and a matching hardness result under the Unique Games Conjecture for the entire class of
so-called Constraint Satisfaction Problems (see Section 2.9 for a definition).

Discrete Fourier Analysis

The reductions from the Unique Games problem often use “gadgets” constructed from a Boolean hypercube.
The gadgets can be viewed as probabilistic checking procedures to check whether a given codeword is a
Long Code (or a Hadamard Code or a Grassmann Code as is the case in this article regarding the proof of
the 2-to-2 Games Theorem). Fourier analytic theorems on hypercube play a crucial role in ensuring that
the gadgets indeed “work”. Such theorems were either already known before (e.g. the Kahn Kalai Linial
(KKL) Theorem [58] and Friedgut’s Theorem [45]) or invented specifically towards application to hardness
of approximation. We cite an example below, namely, the Majority Is Stablest Theorem [66, 84], along with
the minimal definitions needed for its statement. Here the intended application was to the Max Cut problem
as in Theorem 2.13. More examples include Bourgain’s Junta Theorem [23] (the intended application was
to the Min-2SAT-Deletion problem) and the Grassmann Expansion Theorem in this article, Theorem 4.6, the
intended application being the 2-to-2 Games problem.

Let us consider Boolean functions f : {−1, 1}n → {−1, 1}with E [f] = 0. For a coordinate 1 6 i 6 n,
its influence on the function Ii[f] is defined as the probability that on a random input x ∈ {−1, 1}n, changing
the ith coordinate of x changes the value of the function. For a parameter β ∈ (0, 1

2), let NSβ(f) denote
the noise-sensitivity of f at noise-rate β, defined as the probability that f(x) 6= f(y) when x ∈ {−1, 1}n
is a random input and y is obtained by changing every coordinate of x independently with probability β.
Finally, let Majorityn denote the majority function on {−1, 1}n where the output is −1 or 1 whichever is in
majority among the input bits (and say−1 in case of a tie). The Majority Is Stablest Theorem states, roughly
speaking, that among the functions whose all influences are small, Majority is the most stable function under
noise. Formally,

11

Theorem 2.14. For every β ∈ (0, 1
2) and ε > 0, there exists a sufficiently small constant τ > 0 such that

the following holds: for any function f : {−1, 1}n → {−1, 1}, E [f] = 0 and ∀ 1 6 i 6 n, Ii[f] 6 τ , it
holds that

NSβ(f) >
(

lim
n→∞

NSβ(Majorityn)
)
− ε =

2

π
arccos(1− 2β)− ε.

Geometry

The task of proving a Fourier analytic theorem on the Boolean hypercube can sometimes be reduced
to an isoperimetry type question in geometry. This step relies on powerful invariance style theorems
[93, 84, 28, 85], some of which were motivated in a large part by their application to hardness of ap-
proximation. The geometric questions, in turn, are either already studied or are new, and many of these
remain challenging open questions, the Propeller Conjecture [71, 72] being one such example. Some “inte-
grality gap” constructions, metric non-embeddability results, and the solution to a tiling problem are more
examples of connections to geometry, described next.

Integrality Gaps

For many problems, the Unique Games Conjecture rules out every polynomial time algorithm to compute a
good approximate solution. One can investigate a less ambitious question: can we rule out algorithms based
on a specific linear or semi-definite programming “relaxation”? This amounts to the so-called integrality
gap constructions that are explicit combinatorial constructions, often with geometric flavor. While we do
not give a formal definition here, roughly speaking, an integrality gap for a (maximization) problem I with
respect to a specific convex (linear or semi-definite) relaxation Relax(·), is the worst case ratio Relax(I)

OPT(I) over
all problem instances I . An integrality gap is taken as evidence that the problem is hard to approximate, at
least via the specific convex relaxation.

It was demonstrated in [76] and subsequent papers that the reduction from the Unique Games problem
to a target problem can in fact be used to construct an (unconditional, explicit) integrality gap instance for the
target problem. This strategy was used in [76] to refute the Goemans-Linial Conjecture in metric geometry
(the connection to approximability is via the Graph Partitioning and/or Sparsest Cut problem). We state the
result below along with the minimal definitions needed for its statement.

An n-point finite metric d(·, ·) is said to be of negative type if the metric
√
d is isometrically embeddable

in L2. Let c1(NEG, n) be the least number such that every n-point negative type metric embeds into the
class of L1 metrics with distortion c1(NEG, n), i.e. preserving all distances up to a factor of c1(NEG, n).
Goemans and Linial [48, 81] conjectured that c1(NEG, n) is a universal constant independent of n. If this
were correct, it would have led to O(1)-approximation to Graph Partitioning and a host of related problems.
However in [76], the authors were able to disprove the Goemans and Linial conjecture, as stated below.
The lower bound is now known to be Ω(

√
log n) and is optimal, via an alternate construction based on the

geometry of the Heisenberg group, proved in an amazing sequence of papers [80, 31, 30, 33, 32, 87].

Theorem 2.15. c1(NEG, n) > Ω((log log n)1/8).

Another striking example in the context of integrality gaps is the result of Raghavendra [89] mentioned
before. It shows duality between approximation algorithms and hardness reductions as far as Constraint
Satisfaction Problems are concerned: a natural semi-definite programming relaxation leads to an algorithm
and surprisingly, an integrality gap instance for the same relaxation leads to a hardness reduction!

12

Algorithms and Parallel Repetition

Attempts to prove or disprove the Unique Games Conjecture have led to some very nice algorithms [27,
98, 11, 9], a connection to the small set expansion problem in graphs [88, 9], a deeper understanding of the
parallel repetition theorem [92], and solution to a tiling problem in Euclidean space [44, 77, 2]. We describe
the last one as an example (without explaining how it was inspired by musings about the Unique Games
Conjecture).

A Tiling Problem: Let S ⊆ Rd be a “shape” with unit volume such that its translations by Zd tile Rd. What
is the least surface area of such a shape?

Clearly, the surface area of a tiling shape S must at least be that of the unit volume ball, namely Ω(
√
d).

But the unit volume ball is not a legal tiling shape. On the other hand, a unit volume cube is a legal tiling
shape and has surface area of 2d. The best known constructions were only a constant factor better than the
cube. Based on a counter-example to strong parallel repetition for Unique Games [92], one now knows a
tiling shape whose surface area is O(

√
d) [77, 2]!

The Statement of the Unique Games Conjecture

We now state the Unique Games Conjecture formally. For the purposes of this article, it suffices to define
Unique Games as the following computational problem. Let F`2 denote the `-dimensional vector space over
the binary field F2, considered as an additive group with the ⊕ operation.

Definition 2.16. An instance U of the UniqueGames[F`2] problem consists of n variables x1, . . . , xn taking
values over (the alphabet) F`2 and m constraints C1, . . . , Cm where each constraint Ci is a linear equation
of form xi1 ⊕ xi2 = bi and bi ∈ F`2. Let OPT(U) denote the maximum fraction of the constraints that can
be satisfied by any assignment to the instance.

The term “unique” refers to the specific nature of the constraints: for every assignment to the variable
xi1 , there is a unique assignment to the variable xi2 that satisfies the constraint and vice versa (the Unique
Games problem was studied earlier by Feige and Lovász in the context of parallel repetition [43]). For con-
stants 0 < s < c < 1, let GapUG[F`2](c, s) be the gap-version where the instance U of the UniqueGames[F`2]
problem is promised to have either OPT(U) > c or OPT(U) 6 s. The Unique Games Conjecture states
that6.

Conjecture2 2.17. For every constant ε > 0, there exists a sufficiently large integer ` = `(ε) such that
GapUG[F`2](1− ε, ε) is NP-hard.

2.7 Arguments Raised Against the Unique Games Conjecture

In spite of the rather large body of work surrounding the Unique Games Conjecture, its correctness itself
remains open. In fact, over the last decade, several arguments were put forward against the Unique Games
Conjecture. We sketch these arguments here to the best of our knowledge.7

6The original statement in [63] refers to more general constraints. However it follows from [66] that the original conjecture is
equivalent to the statement here, i.e. when the constraints are linear equations over the group F`2.

7Since these arguments were not made by us, we are not taking responsibility as to whether these arguments were indeed made
or whether these are/were considered pressing arguments. We present these only for reader’s benefit.

13

• Usually, for a problem that is believed to be hard, there is a distribution (often a “natural” one) over
instances that is hard against all known algorithms. For instance, for the Factoring problem, known al-
gorithms fail even on numbers that are products of two random n-bit primes. For the 3SAT-Refutation
problem, where the goal is to prove unsatisfiability of a formula, known algorithms fail even on in-
stances that are random, with say n variables and 100n clauses.

However, there is no known distribution over instances of the Unique Games problem that is plausibly
hard. In fact, results in [11, 78] showed that the problem is easy on “semi-random” instances (for a
rather generous interpretation of the term semi-random), thus indicating otherwise.

• There is a candidate algorithm for solving the Unique Games problem for which there is no known
counter-example showing that the algorithm does not work (but there is no proof that the algorithm
works either). The algorithm is simply a constant number, say 10, of “rounds” of the Sum-of-Squares
(a.k.a. Lasserre, Parrilo) hierarchy of semi-definite programming relaxation [16, 19]. For all we know,
this algorithm could already qualify as an efficient algorithm for the problem, disproving the Unique
Games Conjecture.

Counter-examples to LP/SDP-based algorithms are known as integrality gaps as mentioned before.
Stated differently, we do not know of a Unique Games integrality gap example for a constant round
of Sum-of-Squared hierarchy (but see [70] towards a plausible construction of such integrality gap).

• Arora Barak Steurer [9, 96] presented an algorithm that runs in time 2n
ε′

and:

– On (1−ε)-satisfiable instances of the Unique Games problem, finds say 3
4 -satisfying assignment.

– On 1
2 -satisfiable instances of the Unique Games problem, finds ε-satisfying assignment.

Here ε′ depends on ε and ε′ → 0 as ε → 0. If the running time of the algorithm is improved
so that ε′ → 0 independently of ε, then the Unique Games problem would not be NP-hard.8 The
improvement could arguably come from a quantitative improvement in the connection between the
number of large eigenvalues and expansion of small sets in graphs.

• The Arora Barak Steuter algorithm and the Unique Games Conjecture together imply that the Unique
Games problem has “intermediate complexity” (see Section 2.9), a behavior one might not expect for
a constraint satisfaction problem.

The context so far leads finally to the recent line of work: a sequence of papers [68, 39, 38, 69] proved
the 2-to-2 Games Conjecture (or alternately the Unique Games Conjecture on 1

2 -satisfiable instances, if the
reader finds it more convenient to think about). In conjunction with a missing link provided in [18], the
first three papers in the sequence finally reduced the 2-to-2 Games Conjecture to a concrete combinatorial
hypothesis regarding the expansion properties of the Grassmann graph (stated as Theorem 4.6). In [69]
(using an insight from [67]), the authors proved this combinatorial hypothesis, thus completing the proof
of the 2-to-2 Games Conjecture/Theorem. The 2-to-2 Games Theorem gives, among other things, a strong
evidence towards the Unique Games Conjecture (in our opinion). All the arguments against the Unique
Games Conjecture that we described applied equally well, a priori, to the 2-to-2 Games Conjecture and
in spite of it, the 2-to-2 Games Conjecture, at the end of the day, does happen to be correct, somehow
circumventing all these arguments!

8Under the rather standard hypothesis NP 6⊆ ∩γ>0 TIME (2n
γ

) mentioned in Section 2.1.

14

2.8 The Statement of the 2-to-2 Games Theorem

We now state the 2-to-2 Games Theorem formally and describe its significance. This is followed by the
description of the Grassmann graph and its role in its proof. We note that the definition below requires
constraints that are a bit more general than those described in the introductory section.

Definition 2.18. An instance U2↔2 of the 2-to-2 Games[F`2] problem consists of n variables x1, . . . , xn
taking values over (the alphabet) F`2 and m constraints C1, . . . , Cm where each constraint is of the form
Tijxi ⊕ T ′ijxj ∈ {bij , b′ij}, Tij , T ′ij are `× ` invertible matrices, and bij , b′ij ∈ F`2. Let OPT(U2↔2) denote
the maximum fraction of the constraints that can be satisfied by any assignment to the instance.

The term “2-to-2” refers to the specific nature of the constraints: for every assignment to the variable
xi, there are exactly two assignments to the variable xj that satisfy the constraint and vice versa. For
constants 0 < s < c 6 1, let Gap 2-to-2[F`2](c, s) be the gap-version where the instance U2↔2 of the
2-to-2 Games[F`2] problem is promised to have either OPT(U2↔2) > c or OPT(U2↔2) 6 s. The 2-to-2
Games Theorem is stated below along with an immediate corollary for the hardness of the Unique Games
problem with completeness 1

2 . The latter is obtained by writing each 2-to-2 Games constraint as a pair of
Unique Games constraints so that in the completeness case, there is a 1

2(1− ε)-satisfying assignment. The
completeness can be increased artificially to precisely 1

2 by adding a small fraction of constraints that are
always satisfied.

Theorem 2.19. For every constant ε > 0, there exists a sufficiently large integer ` = `(ε) such that Gap
2-to-2[F`2](1− ε, ε) is NP-hard.

Theorem 2.20. For every constant ε > 0, there exists a sufficiently large integer ` = `(ε) such that Gap
UG[F`2](1

2 , ε) is NP-hard.

2.9 Significance of the 2-to-2 Games Theorem

We now summarize the main implications of the 2-to-2 Games Theorem (some of these implications depend
on its specific proof). As before, ε > 0 denotes a constant that can be taken as arbitrarily small.

Hardness Results

The following results were already known based on the 2-to-2 Games Conjecture. With the proof of the
latter, we now know these results unconditionally. These represent a big progress, in our opinion, on flagship
problems in approximability.

• Max Cut Close to Half:
A special case of the Max Cut problem is when the optimal cut in the graph cuts 1

2 + ε fraction of the

edges. In this case, the best known approximation algorithm yields a cut of size 1
2 + Ω

(
ε

log(1/ε)

)
.

From [73], we now know that this is optimal up to the constant in the Ω(·) notation, i.e. that finding a
cut of size 1

2 + Ω
(

ε
log(1/ε)

)
is NP-hard.

• Vertex Cover and Independent Sets of Linear Size:
An independent set in a graph G(V,E) is a subset of vertices S such that there is no edge between
any pair of vertices u, v ∈ S. Clearly a set S is an independent set if and only if the set V \ S is a
vertex cover.

15

From [63], we now know that given an n-vertex graph that contains an independent set of size(
1− 1√

2
− ε
)
n, it is NP-hard to find an independent set of size εn. As a corollary, Vertex Cover

is NP-hard to approximate within a factor strictly less than
√

2 (the previous best hardness result
being ≈ 1.36 [36]).

• Almost Graph Coloring:

Coloring 3-colorable n-vertex graphs is perhaps the most notorious problem at the intersection of TCS
and combinatorics. The best known polynomial time algorithms need nc colors with the exponent c
improving over the years, c ≈ 0.199 being the current best [10, 61]. From the hardness side, we only
know that it is NP-hard to color 3-colorable graphs with 5 colors, leaving a huge gap between the
upper and lower bounds [26].

From the hardness side, showing NP-hardness of coloring 3-colorable graphs with any constant num-
ber of colors is considered a holy grail. From [40], we now almost achieve this holy grail. A catch
is that the result doesn’t quite hold for 3-colorable graphs but holds for “almost 4-colorable” graphs
(the concern is of second order in our mind). Specifically, it is NP-hard to distinguish whether a graph
has four disjoint independent sets of size (1

4 − ε)n each (and hence is almost 4-colorable) or whether
there is no independent set of size εn (and hence cannot be colored with 1

ε colors).

• Independent Set on Degree-d Graphs

On graphs of degree d (thought of as a large growing constant), the best known approximation al-
gorithm [13, 14] approximates the size of the maximum independent set within a factor Õ(d

log2 d
),

the Õ(·) notation hiding a factor polynomial in log log d. From [12, 21], we now know that this is
essentially optimal, i.e. that it is NP-hard to find a O(d

log2 d
)-approximation. This is a remarkable

example where both the approximation algorithm as well as the hardness result are highly non-trivial
and the results essentially match! The algorithm is based on a hierarchy of SDP-relaxation whereas
the hardness result requires the 2-to-2 Games Theorem.

Integrality Gaps and Hard Distributions

The proof of the 2-to-2 Games Theorem gives a reduction from the 3Lin problem to the 2-to-2 Games
problem and subsequently to the Unique Games problem with completeness 1

2 . Denoting either of these
problems by P , the reduction can be used

• To “translate” an integrality gap instance of the 3Lin problem (as in [49, 95]) to an integrality gap
instance of the problem P .

• To “translate” a distribution over 3Lin instances that is plausibly hard (e.g. random instances with
appropriate parameters) to a distribution over P instances that is plausibly hard.

In both cases, we do not know an alternate construction, i.e. without having to go through a NP-hardness
reduction (and lack of any construction so far was an argument against the Unique Games Conjecture as
discussed before). On the other hand, “logically”, integrality gap construction (and maybe construction
of a plausibly hard distribution as well) ought to precede an NP-hardness reduction, since these are lesser
standards of hardness than the “gold standard” of NP-hardness. We find this phenomenon quite interesting.

16

Intermediate Complexity Theorem

The Constraint Satisfaction Problems are arguably the most well-studied family of computational problems,
3SAT being one example. We give a rough definition. For a k-ary predicate P : [q]k → {True,False}, an
instance of a CSP(P) consists of variables x1, . . . , xn over an alphabet [q] = {0, 1, . . . , q − 1} and a set of
constraints C1, . . . , Cm where each constraint Ci is of the type P (xi1 , . . . , xik), i.e. the predicate P applied
to some variables xi1 , . . . , xik . It should be evident that 3SAT, 3Lin, Max Cut, Unique Games and 2-to-2
Games are all constraint satisfaction problems.

In the exact version, denoted Exact-CSP(P), the goal is to determine whether there is an assignment
that satisfies all constraints. We note that there is always the brute-force algorithm that checks all possible
assignments to the n variables and runs in time 2O(n). The well-known Dichotomy Theorem established
in a recent breakthrough [25, 100] shows that every Exact-CSP(P) either has a polynomial time algorithm
or is NP-hard. Moreover, those that are NP-hard, cannot be solved in time 2γn, a remarkable conclusion
considering that the brute-force algorithm takes 2O(n) time! The conclusion depends on the Exponential
Time Hypothesis (ETH) stated in Section 2.1. We recall its statement that Exact-3SAT cannot be solved in
time 2γn for some γ > 0. The Dichotomy Theorem gives, for Exact-CSPs that are NP-hard, a linear time
reduction from Exact-3SAT, so the same holds for them as well.

In the approximate version, denoted GapCSP(P)c,s for parameters 0 < s < c 6 1, the goal is to
distinguish whether the instance is c-satisfiable or at most s-satisfiable. Before the proof of the 2-to-2 Games
Theorem, it seemed that all such problems either have a polynomial time algorithm or9 that the problem
requires time essentially 2γn. That is, all the past experience suggested that no CSP has “intermediate
complexity”, say between super-polynomial and 2n

0.10
. Stated differently, all the past experience suggested

that if a CSP has an algorithm that runs in time say 2n
0.10

, it in fact should have a polynomial time algorithm.
Since Arora Barak Steuter [9, 96] do give an algorithm for GapUG(P) 1

2
,ε that runs in time 2n

β
(β → 0 as

ε→ 0), one could have argued that Unique Games should have a polynomial time algorithm, casting doubt
on its correctness.

However, the 2-to-2 Games Theorem now shows that an Approximation-CSP with intermediate com-
plexity exists, namely Gap UG 1

2
,ε. The theorem shows that it is NP-hard and hence cannot be solved in

time 2n
β′

for some β′ > 0 (under the Exponential Time Hypothesis or under NP 6⊆ ∩γ>0 TIME (2n
γ
)).

Since it can be solved in time 2n
β

for some β > 0 by Arora Barak Steurer, its true complexity is somewhere
between 2n

β′
and 2n

β
! Existence of such CSP with intermediate complexity is viewed as a most interesting

consequence of the 2-to-2 Games Theorem by many researchers.

Evidence towards the Unique Games Conjecture

GapUG 1
2
, ε is NP-hard, i.e. a weaker form of the Unique Games Conjecture holds with completeness 1

2 . As
far as the author knows (and we have consulted the algorithmic experts), the known algorithmic attacks on
the Unique Games problem work equally well whether the completeness is≈ 1 or whether it is 1

2 . Thus, the
implication that GapUG 1

2
, ε is NP-hard is a compelling evidence, in our opinion, that the known algorithmic

attacks are (far) short of disproving the Unique Games Conjecture. Moreover, as remarked before, all the
arguments against the Unique Games Conjecture, sketched in Section 2.7, apply equally well to its weaker
form with completeness 1

2 . In spite of all these arguments, the GapUG 1
2
,ε problem, at the end of the day,

does happen to be NP-hard, circumventing all the arguments mentioned!
9The evidence here is a near-linear time reduction from Exact-3SAT or in some cases an integrality gap on random instances.

17

3 Framework for Reductions, Why Grassmann Graphs?

As indicated earlier, the proof of the 2-to-2 Games Theorem is via a reduction from the 3Lin problem to
the 2-to-2 Games problem. The reduction has two components: the first one is purely mathematical and
the second one involves ideas and techniques in TCS. The mathematical component amounts to Theorem
4.6 about expansion in Grassmann graph and the reader who is mainly interested in this aspect may jump
directly to Sections 4 and 5. On the other hand, this theorem was discovered with an eye on the application,
namely, the 2-to-2 Games Theorem. For the benefit of an interested reader, we provide a general framework
for reductions in this section and indicate how the consideration of expansion in Grassmann graph arises
naturally in this context.

3.1 Inner Reduction: Linearity Testing

A reduction (or rather a specific kind of reduction since there are several reductions outside of this frame-
work) consists of two “layers”, an “inner layer” and an “outer layer”. The inner layer amounts to an encoding
scheme and a probabilistic test to check whether a given “word” is close to a valid codeword. We emphasize
that the considerations here are quite different in nature than those in the traditional coding theory.10

A very useful encoding scheme is the Long Code [20]; we refer to the survey [62] on how Long Code
testing is connected to hardness of approximation results, Boolean function analysis, and geometry. In the
current article, the encoding schemes of relevance are those that are “linear”. What really concerns us is
the Grassmann Code and the Grassmann (Linearity) Test. However, for the sake of broader context, we
also describe (a) the Hadamard Code with a basic test and a more general, query-efficient test and (b) the
Grassmann Code with a much easier-to-analyze Subspace-Subspace Test.

3.1.1 Hadamard Code and the Basic 3-Bit Test

Definition 3.1. A Hadamard Code of a string x ∈ Fk2 is the table of values of the F2-linear function
fx : Fk2 → F2 defined as

∀a ∈ Fk2, fx[a] = ⊕ki=1xiai.

The Linearity Testing problem (for the Hadamard Code) is as follows. Given a table f : Fk2 → F2, the
goal is to “test” whether f is a Hadamard codeword. The tester is allowed only a constant number of queries
(independent of k), is allowed to be probabilistic, and is required to satisfy the completeness and soundness
properties as follows. The completeness property requires that any Hadamard Codeword fx is accepted
with probability 1. The soundness property requires, roughly speaking, that any table f that is “far” from
being a Hadamard codeword is accepted with “low” probability, say at most s. Stated in the contrapositive,
the requirement is that if the test accepts with probability (at least) s, then the table f is “close to” or “is
correlated with” some codeword fx. We haven’t formally defined the requirement here on purpose since
the specific requirement is tailored towards intended application and the concrete examples below should
clarify the issue.

The basic 3-bit linearity test for the Hadamard Code is as follows. It is based on the self-evident property
that if fx is a Hadamard Codeword, then fx(a ⊕ b) = fx(a) ⊕ fx(b). The test was proposed and analyzed
originally in [22].

10E.g., to encode a k-bit string, the Long Code requires 22
k

bits and Hadamard Code requires 2k bits. In traditional coding
theory, one usually wants an encoding with O(k) bits. Moreover, in traditional coding theory, the coding schemes are usually
linear, meaning, the sum (over F2) of two codewords is also a codeword. On the other hand, the Long Code is not linear in this
sense whereas Hadamard Code is.

18

The Test THad,basic

• Given: f : Fk2 → F2.

• Pick a, b ∈ Fk2 uniformly and independently.

• Accept if and only if f(a⊕ b) = f(a)⊕ f(b).

The completeness property is self-evident. The soundness property can be summarized in the following
theorem. We provide a quick proof for reader’s benefit and then make additional remarks regarding its
application. We note that the “agreement” between tables f and g, Pra [f(a) = g(a)], is a measure of how
close the two tables are and herein, agreement strictly above 1

2 is considered non-trivial.

Theorem 3.2. If the test THad,basic accepts a table f : Fk2 → F2 with probability 1
2 + ε, then there exists a

codeword fw such that

Pr
a

[f(a) = fw(a)] >
1

2
+ ε.

Proof. The proof uses elementary Fourier analysis. We note the standard fact that any function h : Fk2 → R
can be uniquely expressed as

h =
∑
w∈Fk2

ĥ(w) χw,

where ĥ(w) are real numbers called the Fourier (or Walsh) coefficients and χw(a) = (−1)⊕
k
i=1wiai are the

Fourier (or Walsh) characters. By the orthogonality of the characters, ĥ(w) = 〈h, χw〉 = Ea [h(a)χw(a)].

For a function f : Fk2 → F2, let h(a) = (−1)f(a) be a real, {−1, 1}-valued function. This is really the
same function as f , but written in the “multiplicative” notation. Clearly, χw are same as the corresponding
linear functions fw, but written in the multiplication notation (here w and w denote the same vector in the
“Fourier domain” and the “original domain”). The test, in the multiplicative notation, is same as testing
h(a ⊕ b) = h(a)h(b). Further, the expression 1+h(a)h(b)h(a⊕b)

2 equals 1 if the test accepts and 0 otherwise.
Hence,

1

2
+ ε = Pr [TestAccepts] = E

a,b

[
1 + h(a)h(b)h(a⊕ b)

2

]
=

1

2
+

1

2
E
a,b

[h(a)h(b)h(a⊕ b)].

This gives, after writing h in its Fourier expression,

2ε = E
a,b

[∑
u,v,w

ĥ(u)ĥ(v)ĥ(w) · χu(a)χv(b)χw(a⊕ b)

]
=

∑
u,v,w

ĥ(u)ĥ(v)ĥ(w) · E
a

[χu⊕w(a)] · E
b

[χv⊕w(b)]

=
∑
w

ĥ(w)3.

We note that the expectations over a, b vanish unless u = w and v = w respectively. Since, by Parseval,∑
w ĥ(w)2 = ‖h‖22 = 1, it follows that there exists w such that ĥ(w) > 2ε. This is easily seen to be

equivalent to the statement that h agrees with the character χw on 1
2 + ε fraction of the inputs. Switching to

the “additive” notation, this is same as saying that f agrees with the linear function fw on 1
2 + ε fraction of

the inputs, completing the proof.

19

We make some remarks regarding the application of Theorem 3.2. Similar remarks hold for the tests
and their applications described in subsequent sections as well.

• Along with the framework described next in Sections 3.2 and 3.3, Theorem 3.2 implies the hardness
of approximation for the 3Lin problem, namely, Theorem 2.4. Specifically, using Theorem 3.2, one
can reduce Gap3Lin1−ε′, 3

4
to Gap3Lin1−ε, 1

2
+ε, amplifying the hardness.11

• The acceptance predicate of the test is a linear predicate on three bits and this naturally leads to
hardness of approximation for 3Lin. In general, if the acceptance predicate is P , it leads to hardness
of approximation of the constraint satisfaction problem with the same predicate P . Rather, if one
desires a hardness result for CSP with predicate P , one better design an encoding scheme and a test
with the predicate P . This consideration leads naturally to the Grassmann Code and the 2-to-2 Test
described in Sections 3.1.4 and 4 with an eye towards proving the 2-to-2 Games Theorem.

• While applying Theorem 3.2, one needs to take into consideration every w ∈ Fk2 such that fw has
(1

2 + ε)-agreement with f . In coding theoretic language, fw is referred to as a decoding of f . If 1
2 + ε

is close to 1, then the decoding is unique because any two distinct codewords have agreement exactly
1
2 . On the other hand, if ε is small, then the decoding need not be unique and one decodes every such
w, outputting their list. This is referred to as the list-decoding. Naturally, one wishes that the list is
of bounded size, its size depending only on ε and not on the dimension k. This indeed turns out to be
the case here: for every potential decoding w, we observed that the corresponding Fourier coefficient
is at least 2ε and since the squared Fourier coefficients sum up to 1, there are at most O(1

ε2
) of them.

3.1.2 Hadamard Code and the Query-Efficient Test

We now describe a test on Hadamard Code that is more general and is “query-efficient”. Let r > 2 be a
fixed integer. The test is as follows.

The Test THad,qe

• Given: f : Fk2 → F2.

• Pick a1, . . . , ar ∈ Fk2 uniformly and independently.

• Accept if and only if ∀1 6 i < j 6 r, f(ai ⊕ aj) = f(ai)⊕ f(aj).

This test amounts to
(
r
2

)
invocations of the basic test, but in a highly dependent manner. What is remarkable

is that somehow the
(
r
2

)
tests behave as if they were independent; the soundness conclusion is concerned

summarized below.

Theorem 3.3. If the test THad,qe accepts a table f : Fk2 → F2 with probability 2−(r2) + ε, then there exists
a Fourier coefficient ĥ(w) for the function h(x) = (−1)f(x) such that ĥ(w) > ε.

As before, the list-decoding gives a bounded list of large Fourier coefficients. The test and its proof
appear in [94]. One of its intended applications is the hardness result for Clique, namely, Theorem 2.7. This
gives a different and much easier proof than the original proof for the hardness of Clique in [51].

11This however amounts to circular reasoning since the framework needs the hardness of 3Lin to begin with. Still, in our opinion,
this serves as a good illustration of the framework. The actual hardness of approximation for 3Lin is proved using the Long Code
based reduction [52], which directly yields the 1− ε versus 1

2
+ ε gap.

20

3.1.3 Grassmann Code and the Subspace-Subspace Test

We now define the Grassmann Code that is of relevance in this article. To encode a string x ∈ Fk2 , one writes
down the restriction of the linear function fx : Fk2 → F2 to all subspaces of Fk2 of dimension `. Here ` is
an integer parameter thought of as � k. We note that the restriction of fx to a subspace L, dim(L) = `,
denoted as fx|L, is itself a linear function and since there are 2` linear functions on L, the alphabet for the
encoding has size 2`. Formally:

Definition 3.4. The Grassmann Encoding Fx of a string x ∈ Fk2 is a table with one entry for every subspace
L ⊆ Fk2, dim(L) = ` and

Fx[L] = fx|L.

Here fx[a] = ⊕ki=1xiai is the linear function (as before) on Fk2 .

There is a natural test for the Grassmann Code. Let 1 6 b 6 `
2 be a parameter. The test picks two

random subspaces L,L′ such that dim(L ∩ L′) = b and tests consistency on L ∩ L′. Clearly, for a valid
encoding of some string x, the entries in the table at L,L′ are fx|L and fx|L′ respectively and these are
consistent on L ∩ L′, both being the restrictions of the same global linear function fx.

The Test TGr,subspace

• Given: F [L], a linear function on L, for every subspace L ⊆ Fk2, dim(L) = `.

• Pick subspaces L,L′ ⊆ Fk2 uniformly at random so that dim(L ∩ L′) = b.

• Accept if and only if F [L]|L∩L′ = F [L′]|L∩L′ .

We note that if the linear functions on L,L′ were random, then they would agree on L∩L′ with probability
1
2b

. It is possible to show that if a table F [·] is accepted with probability significantly larger than this and for
“reasonable” b, say b 6 `

4 , then F [·] has non-trivial agreement with some codeword (or equivalently some
global linear function).

Theorem 3.5. If the test TGr,subspace accepts a table F [·] with probability δ, then there exists a global linear
function f : Fk2 → F2 such that

Pr
L

[F [L] = f |L] > Ω(δ3),

and this holds for 1 6 b 6 `
4 and δ > 6 · 2−

b
4 .

We are not aware of a direct, compelling application of this theorem by itself. It is used however in
the overall proof of the 2-to-2 Games Theorem and an analogous theorem over large field Fq has a nice
application to hardness of approximation [75]. We note that coding theoretic arguments show easily that the
list-size, that is the number of codewords Fx that have Ω(δ3) agreement with the given table F [·], is at most
polynomial in 1

δ . The reason is that the code has very good distance; the fraction of subspaces L for which
Fx[L] 6= Fy[L] for distinct codewords Fx and Fy is 1− 1

2`
.

21

3.1.4 Grassmann Code and the Grassmann (Linearity) Test

We finally describe the Grassmann Linearity Test that is most relevant for this article. The Grassmann Code
is same as in Definition 3.4. The test is also the same, except that it picks a pair L,L′ with dim(L ∩ L′) =
`− 1.

The Test TGr, Glt

• Given: F [L], a linear function on L, for every subspace L ⊆ Fk2, dim(L) = `.

• Pick subspaces L,L′ ⊆ Fk2 uniformly at random so that dim(L ∩ L′) = `− 1.

• Accept if and only if F [L]|L∩L′ = F [L′]|L∩L′ .

It is observed immediately that the test is a “2-to-2 test” in the sense that for every assignment/answer F [L]
there are exactly two answers to F [L′] so that the test accepts (and vice versa). This is because a linear
function on L ∩ L′ can be extended to L (and similarly to L′) in exactly two ways (and this is how the
test eventually leads to hardness of 2-to-2 Games). By design, the test has perfect completeness: if F [·]
is a codeword, then the test passes with probability 1 since F [L], F [L′] are then restrictions of the same
global linear function. However it turns out that a conclusion similar to Theorem 3.5 does not hold even
for constant δ (say 0.01) and there is no list-decoding (with bounded list size) either. Still, it is possible to
derive a more refined conclusion and a more refined way of list-decoding, namely Theorem 4.3, and use it
to prove the 2-to-2 Games Theorem! The details appear in Section 4.

3.2 Outer Reduction: 3Lin to 3Lin-Blocks

We now describe the “outer layer” of the reduction. Here one starts with an instance of 3Lin and constructs
an instance of a constraint satisfaction problem where every constraint depends on two variables, but whose
variables are “large”; specifically, its variables are tuples of equations and variables of the 3Lin instance.12

Let (X,Eq) be an instance of the NP-hard problem Gap3Lin(1 − ε, 3
4) as in Theorem 2.4. Here X =

{x1, . . . , xn} is the set of variables over F2 and Eq = {e1, . . . , em} is the set of equations. Let k be a
sufficiently large integer parameter. The parameter ε is chosen to be sufficiently small so that ε � 1

k .
The parameters ε, k are thought of as constants and n,m represent the growing input size. We construct a
CSP instance I as below. It is a weighted instance in the sense that there is a probability distribution on
the constraints and for any assignment, the fraction of constraints satisfied is measured with respect to this
distribution. The set of variables, constraints, and the distribution on constraints is defined as follows. The
variables will be referred to as blocks to distinguish them from variables of the 3Lin instance.

• Blocks: The set of blocks is partitioned as U ∪ V and each constraint depends on one block U ∈ U
and another block V ∈ V . The set U = Eqk is simply the set of all k-tuples U = (ei1 , . . . , eik) of
equations in Eq. The set V = (X ∪ Eq)k is the set of all “mixed” k-tuples V = (a1, . . . , ak) where
aj is either a variable in X or an equation in Eq.

• Distribution on constraints: A random constraint (U, V) is chosen as below:

– Pick a uniformly random tuple of k equations U = {ei1 , . . . , eik}.
12In the hardness of approximation literature, this is a canonical construction that is refereed to as Label Cover or 2-Prover-1-

Round Game.

22

– Independently for 1 6 j 6 k, with probability 1−β, let aj be same as the equation eij and with
probability β, let aj be one of the three variables, picked at random, appearing in the equation
eij .

– Let V = (a1, . . . , ak).

• Constraint: Let U also denote the set of all 3k variables that appear in its k equations and V also
denote the set of all 3k−2t variables that appear in k− t equations and as t variables. Here t is w.h.p.
close to it expected size βk and clearly V ⊆ U .

The assignments to the blocks U and V are supposed to be strings sU ∈ FU2 = F3k
2 and sV ∈ FV2 =

F3k−2t
2 respectively, (supposedly) giving values to all variables appearing in them. The constraint is

satisfied if sU agrees with sV on the variables in V and moreover if sU satisfies the k equations in U .

(Completeness): It is clear that if the instance (X,Eq) has a (1− ε)-satisfying assignment σ, then one can
take this assignment σ and define the assignments sU = σ(U), sV = σ(V) to all U ∈ U , V ∈ V according
to σ, and satisfy 1 − kε fraction of the constraints of the instance I. A constraint (U, V) is satisfied if all
equations in U are satisfied by σ and this happens with probability at least 1− kε.
(Soundness): On the other hand, it follows from the Parallel Repetition Theorem [91, 54, 90] that if every
assignment to the instance (X,Eq) is at most 3

4 -satisfying, then any assignment {U → sU}U∈U , {V →
sV }V ∈V satisfies at most 2−Ω(βk) fraction of the constraints. It is emphasized here that the assignment here
need not be consistent with a (global) assignment σ to X (and hence the conclusion is highly non-trivial).

3.3 Inner/Outer Composition

We finally describe, at a high level, the overall reduction that combines the inner and outer layers of the
reduction. Let I be the CSP instance as in the outer reduction. We choose an encoding scheme along with
a test, e.g. any of the four schemes described in Section 3.1. For the sake of concreteness, let the scheme be
the Grassmann Code with the Grassmann Linearity Test.

We replace every block U ∈ U by the Grassmann Code of the (intended) assignment sU ∈ FU2 . More
precisely, there is a table FU , with one entry for each `-dimensional subspace L ⊆ FU2 , and FU [L] is
intended to be the restriction of the linear function fsU : FU2 → F2, for some assignment sU to the block U
as in the outer reduction. We stress that while this is the intention and while this will indeed be the case in
the “completeness” part of the reduction, the table FU can be entirely arbitrary in the “soundness” part of
the reduction.

Similarly, we replace every block V ∈ V by the Grassmann Code of the (intended) assignment sV ∈ FV2 .
More precisely, there is a table F V , with one entry for each `-dimensional subspace L′ ⊆ FV2 , and FU [L′]
is intended to be the restriction of the linear function fsV : FV2 → F2, for some assignment sV to the block
V as in the outer reduction.

The entries FU [L] and F V [L′] (over all (U,L), (V,L′)) are the variables of the 2-to-2 Games instance.
The constraints are now defined as follows. The constraints are weighted, so we indicate the distribution
from which a random constraint is picked:

• Pick a constraint (U, V) in the outer reduction according to the distribution therein.

• Pick a random pair of `-dimensional subspaces L,L′ ⊆ FV2 such that dim(L ∩ L′) = `− 1.

• Since V ⊆ U , one naturally views FV2 ⊆ FU2 (by setting coordinates in U \ V to zero). Thus L is
viewed as a subspace of FU2 .

23

• The constraint is now on FU [L] and F V [L′] and it tests that (this is a “2-to-2” test)

FU [L]|L∩L′ = FV [L′]|L∩L′ . (2)

This completes the reduction from 3Lin to 2-to-2 Games. We have left out many crucial details and we
will skip the analysis of the correctness of the reduction. The analysis (in the “soundness” part) needs to
show that any assignment {FU}U∈U , {F V }V ∈V , for which a δ fraction of the constraints as in Equation
(2) are satisfied, can be “decoded” into an assignment {sU}U∈U , {sV }V ∈V to the instance I as in the outer
reduction that satisfies α = α(δ) fraction of the constraints therein. This is a contradiction if the parameters
of the instance I were chosen so that its “soundness” 2−Ω(βk) was lower than α. As we remarked, the Grass-
mann (Linearity) Test on the Grassmann Code does not lead to a (list-) decoding in the usual/standard sense
and new ideas are needed towards the correct “interface” between the inner reduction (= the Grassmann Test
on the Grassmann Code and a refined version of decoding) and the outer reduction (= the blocked instance
I and assignments to it). The details are skipped from this article.

4 (Grassmann) Expansion Theorem and Linearity Testing Theorem

We now present the main mathematical results, Theorem 4.3, referred to as the Grassmann Linearity Testing
Theorem and Theorem 4.6, referred to as the Grassmann Expansion Theorem. We stress how these two
theorems are related and their relevance to the proof of the 2-to-2 Games Theorem.

• The Grassmann Linearity Testing Theorem is viewed as the “soundness” statement for the Grassmann
Code and the Grassmann Linearity Test presented in Section 3.1.4. As shown in [68, 39], the theorem
implies the 2-to-2 Games Theorem via the reduction described in Section 3.3.

• The Grassmann Expansion Theorem implies, almost immediately, the Grassmann Linearity Testing
Theorem as shown in [18]. A proof appears in Section 4.1.

• The Grassmann Expansion Theorem gives a characterization of sets in the Grassmann graph (defined
below) that have expansion strictly below 1. It is proved in [38, 69]. In Section 5, we present the basic
approach and a (very) partial proof.

We recall some of the definitions again for reader’s benefit. In the following, one thinks of the parameter `
as a sufficiently large integer and (after fixing it) the parameter k as a sufficiently large integer.

Definition 4.1. The Grassmann graph Grk,` is defined as follows. Its vertex set consists of all `-dimensional
subspaces L of Fk2 and (L,L′) is an edge if and only if dim(L ∩ L′) = `− 1.

As in Section 3.1.4, associated with the Grassmann graph is the Grassmann Code that encodes linear
functions f : Fk2 → F2. The encoding of a linear function f is given by a table F [·] that assigns to each
vertex L of the graph, the restriction of f to L, i.e. F [L] = f |L. Since there are 2` linear functions on an
`-dimensional space, the alphabet for the encoding has size 2`. The Grassmann Code is equipped with a
natural testing primitive that we called the Grassmann Linearity Test: given a word F [·] (not necessarily a
codeword), the test picks an edge (L,L′) uniformly at random from the graph and checks that F [L]|L∩L′ =
F [L′]L∩L′ , i.e. that the linear functions F [L] and F [L′] are consistent on the common intersection of L,L′.

It is observed immediately that the test is a “2-to-2 test” in the sense that for every assignment/answer
F [L] there are exactly two answers to F [L′] so that the test accepts (and vice versa). This is because a linear

24

function on L ∩ L′ can be extended to L (and similarly to L′) in exactly two ways. By design, the test has
perfect completeness: if F [·] is a codeword, then the test passes with probability 1 since F [L], F [L′] are
then restrictions of the same global linear function.

The question of interest is what about the soundness of the test? I.e. if a given table F [·] passes the
test with (small) probability > δ, what “decoding” could we infer? Could we infer that the given table F [·]
necessarily has good consistency with some codeword (and if so, list-decode)? One is tempted to speculate
that the answer is positive, formally stated below.13 Here δ, ε are thought of as constants independent of the
parameters k, `.

Speculation 4.1. For every δ > 0, there exists ε > 0 such that if a table F [·] passes the Grassmann Linearity
Test with probability δ, then there exists a global linear function f : Fk2 → F2 such that

Pr
L

[F [L] = f |L] > ε.

It turns out however that the speculation is false, the key reason being that the Grassmann graph has small
sets whose expansion is strictly bounded away from 1. We present a counter-example to the speculation now.

Definition 4.2. Let G = (V,E) be an n-vertex, d-regular graph. For a non-empty set of vertices S ⊆ V
with |S| 6 n

2 , its (edge-)expansion is defined as

Φ(S) =

∣∣E(S, S)
∣∣

d · |S|
,

where E(S, S) denotes the set of edges with one endpoint in S and the other in S = V \ S.

Alternately, Φ(S) is the probability that selecting a uniformly random vertex in S and moving along a
uniformly random edge incident on that vertex, one lands outside S. We will be interested in whether a set
S has expansion very close to 1 (near-perfect expansion) or has expansion strictly bounded away from 1.

Counter-example to Speculation 4.1

Consider the following construction (it will be clear soon what the sets Si would be):

1. Let S1, . . . , Sm be disjoint subsets of vertices of the Grassmann graph Grk,`, all of equal size, such
that their union constitutes a constant α fraction of vertices of the graph.

2. The sets Si are very small. Specifically, m = m(k, `)→∞ as k, `→∞.

3. Suppose that Φ(Si) 6 1− β for every 1 6 i 6 m for a constant β.

4. For each 1 6 i 6 m, select a global linear function fi : Fk2 → F2 at random.

5. Define F [L] = fi|L for every L ∈ Si. For L 6∈ ∪mi=1Si, F [L] is defined at random.

We show that the table F [·] passes the Grassmann Linearity Test with probability αβ, but has negligible
consistency with any global linear function. Firstly, since Si cover α fraction of vertices and each Si has
expansion at most 1 − β, the fraction of edges of the Grassmann graph that are inside some Si is at least

13Moreover, a positive answer would have led to a very straightforward analysis of the reduction to 2-to-2 Games, avoiding
most of the complications in [68, 39].

25

αβ. Since on each Si, the table F [·] is consistent with the global function fi, the table passes the test for all
edges (L,L′) that are inside some Si. Secondly, since the functions fi on different pieces Si are random and
unrelated to each other, no single global function has non-negligible consistency with F [·]. This completes
the description of the counter-example.

How does one get around this counter-example, i.e. reformulate Speculation 4.1 so that it is correct as
well as sufficient towards analysis of the reduction to 2-to-2 Games? With regards to the specific counter-
example above, here is a vacuous statement: if we restrict our attention to only the subset of vertices in say
S1, then F [·] indeed has full consistency with a global linear function, namely the function f1. Moreover,
as we will see, a canonical example of a small set with expansion strictly bounded away from 1 is S =
Grk,`[A,B] where A ⊆ B ⊆ Fk2 are subspaces with dim(A) + codim(B) 6 r and

S = Grk,`[A,B] = {L | A ⊆ L ⊆ B}.

In this case, Φ(S) = 1−2−r which is strictly bounded away from 1 for small integer r (say r = 4).14 These
observations motivated the following Linearity Testing Hypothesis (now a theorem) in [39].

Theorem 4.3. Grassmann Linearity Testing Theorem: For every constant δ > 0, there exists a constant
ε > 0 and an integer r such that for all sufficiently large integers ` and (after fixing it) for all sufficiently
large integer k, the following holds. If a table F [·] passes the Grassmann Linearity Test with probability δ,
then there exist subspaces A ⊆ B ⊆ Fk2 with dim(A) + codim(B) 6 r and a linear function f : B → F2,
such that

Pr
A⊆L⊆B

[F [L] = f |L] > ε.

In words, while F [·] need not have good consistency with a global linear function on the entire graph
Grk,`, there must be a structured subgraph Grk,`[A,B] on which it does have good consistency with a global
linear function and moreover this subgraph is of constant “co-order”, defined as dim(A) + codim(B). As
remarked before, the Grassmann Linearity Testing Theorem is sufficient towards analysis of the reduction
to 2-to-2 Games [68, 39]. The theorem is implied immediately by the Grassmann Expansion Theorem,
proposed and proved in [38, 69], that we describe next. It states, roughly, that a set in the Grassmann graph
whose expansion is strictly bounded away from 1 “resembles” a canonical set Grk,`[A,B] as described
earlier.

Definition 4.4. Suppose A ⊆ B ⊆ Fk2 are subspaces. Let dim(A) = a, codim(B) = b and think of a, b
as small constants (say a = b = 2). Then (as introduced before) the subgraph Grk,`[A,B] is an induced
subgraph of Grk,` induced on precisely the set of vertices L such that A ⊆ L ⊆ B. It is easily seen that
Grk,`[A,B] is an isomorphic copy of a lower order Grassmann graph Grk−a−b,`−a. We call a + b as the
co-order of Grk,`[A,B] with respect to Grk,`.

The sets Grk,`[A,B] are natural examples of sets in Grk,` that have expansion strictly bounded away
from 1 (when a, b are small constants). Indeed, the expansion of Grk,`[A,B], when seen as a subset of Grk,`,
has expansion precisely 1 − 2−(a+b) (up to an error O(2−`) which is thought of as negligible and ignored
for the ease of presentation). The reasoning is as follows. For a vertex L ∈ Grk,`[A,B], its random neighbor
L′ is obtained by picking a random subspace T ⊆ L, dim(T) = ` − 1 and a random point x ∈ Fk2 \ L

14The sets Si in the counter-example are essentially the canonical sets of this kind. We can arrange them to be disjoint by
carefully selecting S1, . . . , Sm successively as follows. Let S̃i be a canonical set such that at most α fraction of it is covered by the
sets S1, . . . , Si−1 already selected. Let Si = S̃i \ (S1 ∪ . . . ∪ Si−1). The process continues until an α fraction of the whole graph
is covered.

26

and letting L′ = T ⊕ Span(x). Now L′ ∈ Grk,`[A,B] if and only if A ⊆ T and x ∈ B and these events
happen independently with probabilities 2−a and 2−b respectively (up to an error O(2−`)). Thus a random
neighbor of a random vertex in Grk,`[A,B] is also inside it with probability 2−(a+b) and hence its expansion
is 1− 2−(a+b). Furthermore, we observe that if S ⊆ Grk,`[A,B] ⊆ Grk,` is such that

|S|
|Grk,`[A,B]|

= ε,

then Φ(S) 6 1−ε·2−(a+b). This is because (we skip the easy proof) any set of density ε inside a Grassmann
graph has at least ε2 fraction of the edges inside it (and hence has expansion at most 1 − ε). Therefore, a
random neighbor of a random vertex in S ⊆ Grk,`[A,B] lies inside Grk,`[A,B] with probability 2−(a+b)

as seen above and then inside S with probability at least ε, justifying the observation. We summarize the
overall observation as:

Fact 4.5. (Informal): A subset of constant density inside a constant co-order copy of Grassmann graph
inside a Grassmann graph has expansion strictly bounded away from 1.

(Formal): Let S ⊆ Grk,`[A,B] ⊆ Grk,` be such that dim(A) = a, codim(B) = b and the density of S inside
Grk,`[A,B] is ε. Then Φ(S) 6 1− ε · 2−(a+b).

The converse of the above fact is essentially correct. As the theorem below states, any set S in the
Grassmann graph Grk,` whose expansion is strictly bounded away from 1 has constant density inside some
copy of Grassmann graph of constant co-order. From this statement, it is easy to derive a structural result that
there is a subset T ⊆ S such that (1) T has constant density inside S (2) T can be written as T = T1∪. . .∪Tm
where Ti are disjoint and (3) each Ti has constant density inside some copy of Grassmann graph of constant
co-order. We skip the easy proof.

Theorem 4.6. Grassmann Expansion Theorem: For every constant 0 < α < 1, there exists a constant
ε > 0 and an integer r > 0 such that for all sufficiently large integers ` and (after fixing it) for all sufficiently
large integers k, the following holds. let S ⊆ Grk,` be such that Φ(S) 6 α. Then there exist subspaces
A ⊆ B ⊆ Fk2 such that dim(A) = a, codim(B) = b, a+ b 6 r and

|S ∩ Grk,`[A,B]|
|Grk,`[A,B]|

> ε.

The theorem is proved by spectral analysis of the Grassmann graph (introduced in [38, 68]; the eigen-
values and eigenspaces of the Grassmann graph were known before). Roughly speaking, given a set S with
expansion at most α < 1 − 2−(s+1), it is easily observed that the indicator vector of the set 1S must have
a significant projection onto the eigenspace at “level” at most s (s is a constant when α is strictly bounded
away from 1). The spectral analysis then attempts to use this projection to deduce the desired structure of S.
In Section 5 we sketch the approach in more detail and present a proof when 1S has a significant projection
onto the eigenspace at level 1.

We make a few remarks on Theorem 4.6. Firstly, the subspaces A and B therein are referred to as
“zoom-in” and “zoom-out” spaces respectively [68, 39, 38]. This makes sense if one imagines searching
for the appropriate subgraph Grk,`[A,B] where the set S happens to have significant density. Secondly, we
note that if S has density > ε, then the conclusion of the theorem is vacuously true without any need for
a zoom-in or a zoom-out (i.e. a = b = 0, A = {0}, B = Fk2), so the theorem is really about “small” sets.
Thirdly, the proof gives correct dependence of the required zoom-in-out dimension r on the upper bound on

27

expansion α. For α < 1 − 2−(s+1), one gets a significant projection onto the eigenspace at level at most
s and then in the proof, a combined zooim-in-out dimension of at most r = s is needed. This is tight (i.e.
a lesser zoom-in-out dimension is not sufficient) since we know that subgraphs Grk,`[A,B] have expansion
1 − 2−(a+b) and the combined zoom-in-out dimension (obviously) a + b. Finally, we note that towards
proving the theorem, it is easier to work with the contra-positive: a set S that has very small density inside
every copy of the Grassmann graph with constant co-order (such a set will be called pseudorandom) has
near-perfect expansion (i.e. very near 1).

The phenomenon as in Theorem 4.6 occurs also in the Johnson graph and has been analyzed in [67]. In
the Johnson graph, the vertices are `-subsets of a k-set and the edges are t-wise intersecting pairs (we are
concerned with the case when t = b `2c). The Johnson case can informally be seen as a special case of the
Grassmann case and the analysis of the former in [67] has been insightful in the analysis of the latter (there
are no zoom-outs in the Johnson case, only the zoom-ins).

4.1 (Grassmann) Expansion Theorem implies Linearity Testing Theorem

We present a quick proof that Theorem 4.6 implies Theorem 4.3 [18]. Consider a table F [·] that passes
the Grassmann Linearity Test with probability δ. Consider a random linear function on the whole space
g : Fk2 → F2 and consider the set S = Sg ⊆ Grk,` on which g agrees with F [·], i.e.

Sg = {L | F [L] = g|L}.

Since g is a random linear function and each L is `-dimensional, the (fractional) size of Sg, in expectation,
is θ = 2−`. On the other hand, consider any edge (L,L′) for which the Linearity Test passes, i.e. for which
F [L] and F [L′] agree on L∩L′. For such an edge, L⊕L′ is (`+1)-dimensional and with probability 2−(`+1)

over the choice of g, both the events g|L = F [L] and g|L′ = F [L′] happen and then both L,L′ ∈ Sg. The
fraction of such edges is δ, the probability with which the Linearity Test passes.

Hence we conclude that, the size of Sg is θ in expectation and the fraction of edges inside Sg is at least δ2θ
in expectation. Clearly, there exists a choice of g, say g∗, for which the fraction of edges inside Sg∗ is at least
δ
2 times the size of Sg∗ , or in other words Φ(Sg∗) 6 1 − δ

2 . Now we apply Theorem 4.6 (the choice of ε, r
are as therein) and conclude that there exist subspaces A ⊆ B ⊆ Fk2 such that dim(A) = a, codim(B) = b,
a+ b 6 r and

|Sg∗ ∩ Grk,`[A,B]|
|Grk,`[A,B]|

> ε.

This is same as saying that for f = g∗|B : B → F2,

Pr
A⊆L⊆B

[F [L] = f |L] > ε.

5 Outline of Proof of Grassmann Expansion Theorem

In this section, we give an outline of the proof of Theorem 4.6 and as an illustration, give essentially a full
proof when expansion of a set is below 3

4 (which in turn implies that the indicator of the set has significant
projection onto the eigenspace of level 1). It will be convenient to restate Theorem 4.6 in the contra-positive
and in terms of “pseudo-random sets”.

28

Definition 5.1. A subset of vertices S ⊆ Grk,` is called (r, ε)-pseudorandom if for any subspaces A ⊆ B ⊆
Fk2 such that dim(A) = a, codim(B) = b, a+ b 6 r, we have

µin(A),out(B)(S)
def
=
|S ∩ Grk,`[A,B]|
|Grk,`[A,B]|

6 ε.

Theorem 5.2. (Theorem 4.6 restated) For every constant ζ > 0, there exists a constant ε > 0 and an
integer r > 0 such that for all sufficiently large integers ` and (after fixing it) for all sufficiently large
integers k, the following holds. If S ⊆ Grk,` is (r, ε)-pseudorandom, then Φ(S) > 1− ζ.

5.1 Spectral Decomposition of Grk,`
To prove Theorem 5.2, we use spectral analysis of the graph Grk,`. This is a distance-regular graph and its
spectrum is well-known. We only state here facts that are relevant in the current context. Let J denote the
linear space of functions F : Grk,` → R (on the vertex set of the graph). The standard inner product on
this space is 〈F, F ′〉 = EL [F [L]F [L′]]. Let Madj denote the normalized adjacency matrix of the graph (i.e.
entries corresponding to non-edges are zero and corresponding to edges are 1

Degree). It is well-known that
the space J decomposes into mutually orthogonal eigenspaces

J = J=0 ⊕ J=1 ⊕ · · · ⊕ J=`.

The eigenvalue corresponding to the eigen-space J=i is very close to 2−i. For clarity of exposition, we
will assume henceforth that this eigenvalue is exactly 2−i. Thus for any F ∈ J=i, MadjF = 2−iF. The
space J=0 is single-dimensional consisting of all constant functions. In general, the dimension of J=i equals[
k
i

]
−
[
k
i−1

]
where

[
k
i

]
denotes the number of i-dimensional subspaces of Fk2 . We will explain in more detail

the structure of the space J=1 in Section 5.4 when we need it.
It follows that any function F : Grk,` → R has a decomposition F =

∑`
i=0 F=i where F=i is the

component in (projection onto) the space J=i. Henceforth, let S ⊆ Grk,` denote a set as in the statement
of Theorem 5.2 and F : Grk,` → {0, 1} denote its indicator function. Let δ = µ(S) = ‖F‖22 denote the
(fractional) size of the set S relative to the size of the whole graph Grk,`. Using Parseval’s identity (since F
is Boolean and F=0 = EL [F [L]] = δ),

δ = ‖F‖22 = δ2 +
∑̀
i=1

‖F=i‖22.

The squared norm ‖F=i‖22 will be referred to as the Fourier weight at the ith level. Roughly speaking,
Theorem 5.2 is proved by showing that the (r, ε)-pseudorandomness condition on the set S implies that F
has low weight on low (that is first r) levels (this is the difficult step). This in turn is used to show that S
has near-perfect expansion (this is easy). We sketch the overall reasoning and then as an illustration, give
essentially a full proof that (1, ε)-pseudorandomness condition on the set S implies that F has low weight
on the first Fourier level, which in turn implies that expansion of S is at least 3

4 − o(1).

5.2 Pseudorandomness implies Low Weight at Low Levels implies Near-Perfect Expansion

As noted, F : Grk` → {0, 1} denotes the indicator function of a pseudorandom set S and δ = µ(S) = ‖F‖22
denotes its density. Theorem 5.2 requires us to show that if S is (r, ε)-pseudorandom, then it has near-
prefect expansion, that is at least 1 − ζ. At a high-level, this is accomplished in two steps below (here
γ = γ(r, ε)→ 0 as ε→ 0 for fixed r; a precise dependence is stated in Theorem 5.3).

29

• One shows that a (r, ε)-pseudorandom set must have low (that is 6 γδ for some constant γ) weight at
all low (that is up to r) levels.

• One shows that if there is low weight at all low levels, then the set must have near-perfect expansion

(that is > 1− γ(r + 1)− 2−(r+1) def= 1− ζ).

We stress that as ε→ 0 for a fixed r, the lower bound on the expansion→ 1− 2−(r+1). We include a quick
proof of the second step below for the sake of completeness. The main task remains thereafter to prove the
first step. Assume therefore that F has weight at most γδ at each level up to r. Below, a random neighbor
of vertex L ∈ Grk,` is denoted as L′ ∼ L, and as before, the normalized adjacency matrix is Madj and the
inner product is 〈F, F ′〉 = EL [F [L]F [L′]]. We have

1− Φ(S) = Pr
L∈S,L′∼L

[
L′ ∈ S

]
= (1/δ) · Pr

L,L′∼L

[
L ∈ S ∧ L′ ∈ S

]
= (1/δ) · 〈F, Madj F 〉.

Using the decomposition F =
∑`

i=0 F=i into mutually orthogonal components F=i of eigenvalues 2−i, and
that δ =

∑`
i=0 ‖F=i‖22, we get that

δ(1− Φ(S)) =
∑̀
i=0

2−i‖F=i‖22 6
r∑
i=0

‖F=i‖2 + 2−(r+1)
∑̀
i=r+1

‖F=i‖22 6 γδ(r + 1) + δ 2−(r+1).

Dividing by δ gives us Φ(S) > 1 − γ(r + 1) − 2−(r+1) def
= 1 − ζ as claimed. To summarize, to prove

Theorem 5.2, it suffices to prove (hence this can ve viewed as the main result):

Theorem 5.3. Let S be a set of vertices in Grk,` that has density δ and is (r, ε) pseudo-random. Let
F : Grk,` → {0, 1} be the indicator function of S. Then for any i = 0, 1, . . . , r,

η = ‖F=i‖22 6 27r3+3ε
1
4 δ.

We now summarize the high-level plan to prove Theorem 5.3 as in [38, 69]. The idea is to consider the
fourth moment of F=i and prove both a lower bound and an upper bound on it. Specifically, let S be a set
that has density δ and is (r, ε) pseudo-random as in the statement of the theorem. Let 0 6 i 6 r and let
η = ‖F=i‖22. The theorem follows by showing that (one cancels η from both sides, moves 29δ4 on the right
and then takes a fourth root)

η5

29 · δ4
6 E

[
F 4

=i

]
6 225r3ηε. (3)

5.3 Lower-bounding the Fourth Moment of F=i

Lemma 5.4. Under the condition and notation of Theorem 5.3, E
[
F 4

=i

]
> η5

29·δ4 .

Proof. We note the decomposition F =
∑`

j=0 F=j into mutually orthogonal components and that ‖F‖22 =

δ, ‖F=i‖22 = η. Hence E
[
(F − F=i)

2
]

= δ − η. By Markov’s inequality,

Pr
[
(F − F=i)

2 > 1− η

2δ

]
6 δ − η

2
.

On the other hand, F is Boolean and Pr [F = 1] = δ. Thus with probability at least η
2 , both the events

below occur:
F = 1, (F − F=i)

2 6 1− η

2δ
,

30

in which case it holds that (1− F=i)
2 6 1− η

2δ and in turn that F=i >
η
4δ . Hence as claimed,

E
[
F 4

=i

]
>
η

2
·
(η

4δ

)4
.

5.4 Upper-bounding the Fourth Moment of F=1

In general, upper bounding the fourth moment of F=i requires a rather involved analysis and appears in
[38, 69]. However the special case i = 1 is easy and quite illustrative, so we present (essentially) a full
proof in this case. Specifically, we prove the statement below and its immediate corollary.

Theorem 5.5. Let S be a set of vertices in Grk,` that has density δ and is (1, ε) pseudo-random. Let
F : Grk,` → {0, 1} be the indicator function of S and η = ‖F=1‖22. Then

E
[
F 4

=1

]
6 O(ηε).

Corollary 5.6. Let S be a set of vertices in Grk,` that has density δ and is (1, ε)-pseudorandom. Let
F : Grk,` → {0, 1} be the indicator function of S. Then the Fourier weight of F at the first level is at most
O(ε

1
4 δ) and hence S has expansion at least 3

4 −O(ε
1
4).

Towards proving Theorem 5.5, we need some understanding of the first level component F=1 in the
decomposition F =

∑`
i=0 F=i. We recall that the space J of all functions on Grk,` has a decomposition

into eigenspaces J = ⊕`i=0J=i and for any function F , F=i is its projection onto the eigen-space Ji. The
eigen-space J=0 is single dimensional, consisting of all constant functions.

For a point x ∈ Fk2, x 6= 0, let 1x : Grk,` → {0, 1} denote the indicator of the set {L|x ∈ L} and
let Θ = EL [1x(L)]. In the calculations below, Θ would (merely) serve as a normalizing factor. Similarly,
for a subspace W ⊆ Fk of dimension k − 1, let 1W : Grk,` → {0, 1} denote the indicator of the set
{L|L ⊆ W} so that EL [1W (L)] ' 2−`. Henceforth, for the sake of clarity, we use the notation “'” to
denote an approximation that is correct up to a negligible additive or multiplicative term, which does not
affect the analysis in any significant manner, and if desired, the correcting terms can be accounted for at the
expense of clarity.

The main observation we need is that the eigen-space J=0
⊕
J=1 is spanned precisely by the indicators

1x or alternately by the indicators 1W .

Lemma 5.7. J0 consists of the constant functions on Grk,` and J=0
⊕
J=1 consists of the linear span of all

functions {1x|x 6= 0}. Moreover

J=0 ⊕ J=1 = Span({1x|x 6= 0}) = Span({1W |dim(W) = k − 1}).

Proof. While we refer the reader to [39] for a proof, it is instructive to see that the function 1W lies in the
span of functions 1x. Indeed,

2`−1(2` − 1) · 1W = 2`−1 ·
∑

x∈W,x6=0

1x − (2`−1 − 1) ·
∑
x6∈W

1x.

To confirm, any L ⊆W is counted exactly 2`−1(2` − 1) times on both sides. Specifically, on the right hand
side, it is counted for exactly 2` − 1 of x ∈ L, x 6= 0. On the other hand, any L 6⊆ W is not counted on
either side. Specifically, on the right hand side, it is counted positively for 2`−1 − 1 of x ∈ L ∩W,x 6= 0
and counted negatively for 2`−1 of x ∈ L \W .

31

Lemma 5.8. A function F lies in the space J=1 if and only if there exists a function f : Fk2 → R, f(0) =
0,Ex [f(x)] = 0 and

∀L, F [L] =
∑
x∈L

f(x).

Proof. For the forward direction, we note that since J=1 is contained in the span of {1x|x 6= 0}, any
F ∈ J=1 can be written as

F [L] =
∑

x∈Fk2 , x 6=0

f(x)1x(L) =
∑

x∈L,x6=0

f(x),

for some coefficients f(x). Since F ∈ J=1, EL [F [L]] = 0. Taking expectation (over L) on both sides,
0 =

(∑
x 6=0 f(x)

)
Θ. By defining in addition f(0) = 0 proves the claim. For the reverse direction, we note

similarly that for f as therein, we have

F [L] =
∑
x∈L

f(x) =
∑

x∈Fk2 , x 6=0

f(x)1x(L),

and hence F belongs to the span of functions {1x|x 6= 0}. Moreover EL [F [L]] = 0 since
∑

x 6=0 f(x) = 0
and hence F ∈ J=1.

As usual, we will be concerned with a function F : Grk,` → {0, 1} that is an indicator of a set S ⊆ Grk,`
and δ = µ(S) = E [F] its relative size. The level one component F=1 is defined, according to above Lemma
5.8, in terms of a function f=1 : Fk2 → R, Ex [f=1(x)] = 0, f=1(0) = 0. The main point we need is that
the function f=1 and its Fourier coefficients capture how the density of the set S changes when restricted to
those L for which x ∈ L or L ⊆ W respectively (for x ∈ Fk2, x 6= 0 and dim(W) = k − 1 as before). To
see this, let us define

Sx = {L|x ∈ L,L ∈ S}, SW = {L|L ⊆W,L ∈ S},

and denote by µ(Sx) and µ(SW) their relative conditional sizes, i.e.

µ(Sx) = Pr
L:x∈L

[L ∈ S], µ(SW) = Pr
L:L⊆W

[L ∈ S].

Let us define the function h : Fk2 → R, h(0) = 0, and for x 6= 0,

h(x) = µ(Sx)− µ(S).

That is, h(x) records the change in the density of S when restricted to those L for which x ∈ L. The main
point is that f=1 is essentially same as h and that the Fourier coefficients of h essentially record (up to a
normalization factor 2−`) the change in the density of S when restricted to those L for which L ⊆ W . For
a vector w ∈ Fk2, w 6= 0, let ĥ(w) denote the corresponding Fourier coefficient and W = w⊥ denote its
orthogonal subspace of dimension k − 1 (with respect to standard inner product in Fk2).

Lemma 5.9. We have

• ‖F=1‖22 ' 2` ‖f=1‖22.

• f=1(x) ' h(x).

32

• ĥ(w) ' 2−`(µ(SW)− µ(S)).

Proof. For the first item in the lemma, we first note that Ex [f=1(x)] = 0 and hence

E
x 6=y

[f=1(x)f=1(y)] = E
x

[f=1(x)]2 − 1

2k
· E
x

[
f=1(x)2

]
' 0,

where the first term is zero and the second term is negligible due to the factor 1
2k

. Thus,

‖F=1‖22 = E
L

(∑
x∈L

f=1(x)

)2
 ' 2` E

x

[
f=1(x)2

]
+ 22` E

x 6=y
[f=1(x)f=1(y)].

The second term is ' 0 as seen and hence ‖F=1‖22 ' 2`Ex
[
f=1(x)2

]
= 2`‖f=1‖22 as desired. For the

second item in the lemma, noting that Θ = E [1x] and treating it as a normalization factor,

Θ · µ(Sx) = 〈F, 1x〉 = 〈F=0, 1x〉+ 〈F=1, 1x〉 = Θ · µ(S) + 〈F=1, 1x〉.

Further,

Θ−1 〈F=1, 1x〉 = E
L:x∈L

[F=1[L]] = E
L:x∈L

∑
y∈L

f=1(y)

.
We note that over the choice of L such that x ∈ L, in the inner summation, the term for y = x always
appears whereas the terms for y 6= x appear with probability roughly 2−k+`. Hence

Θ−1 〈F=1, 1x〉 ' f=1(x) + 2−k+` E
y 6=x

[f=1(y)] ' f=1(x).

We remark that the second term is negligible, both due to the factor 2−k+` and due to Ey [f=1(y)] = 0. Thus
we have,

f=1(x) ' µ(Sx)− µ(S)
def
= h(x),

as desired. For the third item in the lemma, we denote by 1W and 1W the indicators of the subspace W and
its complement W respectively. We note that h(0) = 0. The Fourier coefficient is by definition,

ĥ(w) = E
x

[
h(x)(1W (x)− 1W (x))

]
' E

x6=0

[
(µ(Sx)− µ(S))(1W (x)− 1W (x))

]
.

We note that µ(S) is a constant and Ex6=0

[
1W (x)− 1W (x)

]
' −2−k (which is negligble and is ignored).

Hence
ĥ(w) ' E

x 6=0

[
µ(Sx) · (1W (x)− 1W (x))

]
.

Denoting by 1S the indicator of set S, the above is same as

E
x 6=0,L:x∈L

[
1S(L)(1W (x)− 1W (x))

]
= E

L,x:x∈L,x6=0

[
1S(L)(1W (x)− 1W (x))

]
' 2−`(µ(SW)− µ(S)),

as desired. In the last step, we observed that for L ∈ S,L ⊆ W , we get a contribution of 1, and for
L ∈ S,L 6⊆W , we get a contribution of −2−`.

33

5.5 Proof of Theorem 5.5: the Main Argument

We now have all the ingredients needed to prove Theorem 5.5. We note the crucial fact that since S is
(1, ε)-pseudorandom, by definition of pseudorandomness, we have

• ‖F‖22 = µ(S) 6 ε.

• For all x 6= 0, |h(x)| def= |µ(Sx)− µ(S)| 6 max{µ(Sx), µ(S)} 6 ε.

• For all w 6= 0, |ĥ(w)| ' 2−`|µ(SW)− µ(S)| 6 2−` max{µ(SW), µ(S)} 6 2−`ε.

In short, ‖h‖∞ 6 ε and ‖ĥ‖∞ 6 2−`ε. We start by writing E
[
F 4

=1

]
as

EL
[
F=1[L]4

]
= EL

(∑
x∈L

f=1(x)

)4
 ' EL

(∑
x∈L

h(x)

)4
 = EL

 ∑
x,y,z,w∈L

h(x)h(y)h(z)h(w)

 .
We note that in the expectation above, first picking L and then picking x, y, z, w ∈ L is equivalent to
picking x, y, z, w ∈ Fk2 while preserving the linear dependencies among x, y, z, w. We consider different
cases depending on these linear dependencies and in particular depending on the dimension of the space
spanned by them. We note that if d = dim(Span(x, y, z, w)), 1 6 d 6 4, then the corresponding term
appears with a coefficient of (at most) 2`d, i.e. the number of tuples (x, y, z, w) ∈ L with d-dimensional
span. We now show how to bound each term by O(ηε) where η = ‖F=1‖22 ' 2`‖f=1‖22 ' 2`‖h‖22.

Case dim(Span(x, y, z, w)) = 1

In this case, we have x = y = z = w. In the notation below, the choice of x is switched from x ∈ L to
x ∈ Fk2 as indicated earlier (incurring a factor 2` in this case). The term is bounded as

E
L

[∑
x∈L

h(x)4

]
= 2` E

x

[
h(x)4

]
6 2`‖h‖2∞‖h‖22 6 ηε2 6 ηε.

Case dim(Span(x, y, z, w)) = 4

In this case, x, y, z, w are independent. Noting that Ex [h(x)] = 0, the term is bounded as

E
L

 ∑
x,y,z,w∈L

h(x)h(y)h(z)h(w)

 ' 24` E
x

[h(x)]4 = 0.

Case dim(Span(x, y, z, w)) = 3

In this case, let us consider x, y, z as being independent. Then we have three subcases (up to symmetry):
either w = x or w = x+ y or w = x+ y+ z. The terms are bounded as (the third one being the interesting
one)

E
L

 ∑
x,y,z∈L

h(x)2h(y)h(z)

 ' 23` E
x

[
h(x)2

]
E
y

[h(y)] E
z

[h(z)] = 0.

34

E
L

 ∑
x,y,z∈L

h(x)h(y)h(z)h(x+ y)

 ' 23` E
x,y

[h(x)h(y)h(x+ y)] E
z

[h(z)] = 0.

E
L

 ∑
x,y,z∈L

h(x)h(y)h(z)h(x+ y + z)

 ' 23` E
x,y,z

[h(x)h(y)h(z)h(x+ y + z)] = 23`
∑
w

ĥ(w)4,

which is bounded in turn as

23`‖ĥ‖2∞

(∑
w

ĥ(w)2

)
6 23`(2−`ε)2‖h‖22 ' ηε2 6 ηε.

Case dim(Span(x, y, z, w)) = 2

In this case, let us consider x, y as being independent. Then we have three subcases (up to symmetry): either
z = w = x or z = x and w = y or z = w = x + y. These terms are bounded as (using Cauchy-Schwartz
for the third and the fourth terms and using η = ‖F=1‖22 6 ‖F‖22 6 ε)

E
L

 ∑
x,y∈L

h(x)3h(y)

 ' 22` E
x

[
h(x)3

]
E
y

[h(y)] = 0.

E
L

 ∑
x,y∈L

h(x)2h(y)2

 ' 22` E
x

[
h(x)2

]2
= (2`‖h‖22)2 ' η2 6 ηε.

E
L

 ∑
x,y∈L

h(x)h(y)h(x+ y)2

 ' 22` E
x,y

[h(x)h(x+ y)h(y)h(x+ y)]

6 22`
√

E
x,y

[h(x)2h(x+ y)2]
√

E
x,y

[h(y)2h(x+ y)2]

= 22`‖h‖42 = (2`‖h‖22)2 ' η2 6 ηε.

This completes the proof of Theorem 5.5 (modulo all the approximations involved that are not incorporated
for the sake of clarity).

6 Open Problems

We conclude this article by pointing out some open problems at the interface of approximation algorithms
and hardness, analysis, and geometry. We keep our descriptions brief, pointing to the respective sources for
more detailed descriptions.

35

The Unique Games Conjecture

Even though the 2-to-2 Games Theorem now gives strong evidence towards its correctness, the Unique
Games Conjecture remains open and baffling. As far as we know, it is possible (though not likely) that
a constant number of rounds of the Lasserre hierarchy already gives an efficient algorithm for the Unique
Games problem, disproving the Unique Games Conjecture. In other words, we do not know of a counter-
example (= integrality gap) showing that this algorithm does not work. The proof of the 2-to-2 Games
Theorem is not likely to extend to that of the Unique Games Conjecture: here the issue, at a technical level,
is that the relevant mathematical structure is over a field F2, limiting the “completeness” to 1

2 . To prove the
Unique Games Conjecture, one might wish to work over a field with 1 + ε elements!

At present, the best hope seems to be an approach suggested in [70]. The authors suggest a candidate
reduction (or alternately a candidate integrality gap instance) where the relevant mathematical structure is
over the real, Gaussian space. However the authors are unable to provide a full soundness analysis. Though
it seems, roughly speaking, that it would help to understand surfaces with low Gaussian surface area, the
authors are unable to isolate a concrete mathematical question whose solution would imply the soundness
of their reduction (see [86] for some progress).

The Small Set Expansion Conjecture

Raghavendra and Steurer [88] propose the Small Set Expansion Conjecture and show that it implies the
Unique Games Conjecture. Their conjecture states, roughly speaking, that it is NP-hard to find small, non-
expanding sets in graphs. More formally, let Φ(S) denotes the expansion of a set S in an n-vertex graph G.
The Small Set Expansion problem is to determine the expansion of G at “scale” δ, that is,

Φδ(G) = min
δ
2
n6|S|6δn

Φ(S),

for a small, given constant δ > 0. The conjecture states that for every constant ε > 0, there is a sufficiently
small constant δ > 0 such that is NP-hard to distinguish whether Φδ(G) 6 ε or whether Φδ(G) > 1− ε.

While it would be great if this conjecture were correct (it would have several interesting consequences
on top of those already implied by the Unique Games Conjecture), we note that there is a reason to doubt it.
The conjecture implies the following combinatorial conjecture.

Conjecture 6.1. For every positive constant ε > 0, there is a positive constant δ > 0 and a family of
n-vertex graphs {Gn}n→∞ such that: (1) every subset of size between δ

2n and δn in Gn has expansion at
least (say) 1

2 and (2) the number of eigenvalues of the normalized adjacency matrix of Gn that exceed 1− ε
is at least nδ.

We refer the reader to [17, 65] regarding this implication of the Small Set Expansion Conjecture. Contra-
positively, if there were no such family of graphs for some ε > 0, the Small Set Expansion Conjecture would
be incorrect.

The Symmetric Parallel Repetition

Given a Unique Games instance U , k-wise “parallel repetition” is a natural product operation that yields
a new Unique Games instance U⊗k. Roughly speaking, the variables of the instance U⊗k are k-tuples of
variables (u1, . . . , uk) of the instance U and constraints are between tuples (u1, . . . , uk) and (v1, . . . , vk)
whenever there are constraints between (ui, vi) in the instance U . A well-studied question is how OPT(U)

36

and OPT(U⊗k) are related. Clearly, if OPT(U) = 1 − ε, then OPT(U⊗k) > (1 − ε)k since U⊗k always
has an assignment that is derived faithfully from an assignment to U (but there could be other assignments
and that’s what makes the question challenging). It is known that OPT(U⊗k) 6 (1− ε2)Ω(k) and moreover
that this upper bound cannot be improved [91, 54, 90, 92].

The open question is whether the upper bound can be improved to OPT(U⊗k) 6 (1 − ε)Ω(k) provided
(1) there is a (expansion-like) structural condition on the graph of constraints of the instance U and (2)
the assignments to the instance U⊗k are required to be symmetric, meaning, the assignments to a tuple
(u1, . . . , uk) and its permuted copy (uπ(1), . . . , uπ(k)) are permuted as well. The question is relevant towards
“gap-amplification”, whereby, one might hope to first prove hardness of Unique Games with a weaker gap
and then amplify the gap to prove the Unique Games Conjecture in full. The strength of the (expansion-like)
structural condition would need to depend on this intended application.

Approximating CSPs on Satisfiable Instances

As mentioned before, Constraint Satisfaction Problems (CSPs) are some of the most widely studied NP-
hard problems. Let P : {0, 1}k → {True,False} be a k-ary Boolean predicate. An instance of the CSP(P)
problem consists of n Boolean variables x1, ..., xn and m constraints C1, . . . , Cm where each constraint is
the predicate P applied to an ordered subset of k variables, possibly in negated form.

A CSP(P) instance is said to be satisfiable if there is an assignment that satisfies all constraints. The
instance is said to be near-satisfiable if there is an assignment that satisfies almost all the constraints. A
most fascinating question is: given a predicate P , what is the optimal approximation algorithm for CSP(P)
where the goal is to efficiently find an assignment that satisfies a maximum number of the constraints?

A remarkable result of Raghavendra [89] cited before completely characterizes such “optimal algorithm”
on near-satisfiable instances; moreover, the algorithm is necessarily based on a semi-definite programming
relaxation. However a complete characterization on satisfiable instances remains wide open. This case
is qualitatively different and much more delicate (as demonstrated by CSPs with linear constraints; these
are easy on satisfiable instances but hard on near-satisfiable instances). The optimal algorithm here is,
at the very least, a clever combination of SDPs and Gaussian elimination. The well-known “Dichotomy
Conjecture” needed to be resolved first before attempting this question; thankfully, it has now been resolved
(independently) by Bulatov and Zhuk [25, 100]! While the proofs are algebraic, it could be very productive
to seek an analytic proof of the Dichotomy Conjecture (as suggested in [79, 24]), which in turn, might hold
the key to resolving the question of approximability of CSPs on satisfiable instances,

Uniform Sparsest Cut

In the Uniform Sparsest Cut problem, given an n-vertex graph G, one seeks to determine its expansion
Φ(G) = min16|S|6n

2
Φ(S). There is a natural semi-definite programming relaxation to estimate the graph

expansion, but we do not know its precise apprximation guarantee (= the integrality gap). The known upper
and lower bounds are Õ(

√
log n) [7] and 2Ω(

√
log logn) [34, 59] respectively. For the more general version

of this problem known as the Non-uniform Sparsest Cut problem, the sharp bound of Θ̃(
√

log n) is known
[4, 87]. These problems have influenced a tremendous amount of research (e.g. [80, 32, 87]) including
connections with the Unique Games Conjecture (e.g. [76]) as referred to in Section 2.6.

37

ETH versus Gap-ETH

We recall the Exponential Time Hypothesis (ETH) stating that solving Exact-3SAT with n variables, i.e.
distinguishing whether a Exact-3SAT instance is satisfiable or not, takes truly exponential time, i.e. time
2γn for some constant γ > 0. The Gap-ETH [37, 83] is a stronger hypothesis that solving Gap3SAT,
i.e. distinguishing whether a 3SAT instance is satisfiable or at most (1 − β)-satisfiable, takes time 2βn for
some constant β > 0. Both these hypotheses are very useful towards hardness results where the standard
techniques do not suffice. Recently, researchers have been quite interested in knowing whether Gap-ETH
follows from ETH (if so, both would be equivalent).

Analysis of Boolean Functions

Analysis of Boolean functions f : {−1, 1}n → {−1, 1} has played an influential role in hardness of
approximation (and there has been influence in the reverse direction as well). Some prominent examples
of this interaction, as cited before, are: (1) Sparsest Cut: the Kahn Kalai Linial Theorem and Bourgain’s
Junta Theorem [76, 29, 58, 23] (2) Vertex Cover: Friedgut’s Junta Theorem and It Ain’t Over Till It’s Over
Theorem [74, 15, 45, 84] (3) Max Cut: Majority Is Stablest Theorem [66, 84] (4) 2-to-2 Games: Structure
of non-expanding sets in Grassmann graph [68, 39, 38, 69].

While we do not know their direct application to hardness of approximation results, we do mention a
couple of open questions in Boolean function analysis, posed in [46, 1] respectively.

• Entropy-Influence Conjecture: There is an absolute constant C > 1 such that for any f : {−1, 1}n →
{−1, 1}, ∑

w∈Fn2

f̂(w)2 log

(
1

|f̂(w)|

)
6 C · I[f],

i.e. the Fourier entropy of a Boolean function is at most a constant times its total influence. The total
influence I[f] =

∑n
i=1 Ii[f] is the sum of all coordinate-wise influences.

• There is an absolute constant K such that for any g : {−1, 1}n → [−1, 1], E [g] = 0,E
[
g2
]
> 1

50
(say), there exists a co-ordinate 1 6 i 6 n such that

Ii[g] >
1

K · deg(g)K
,

i.e. when the variance is a constant, there exists a co-ordinate with influence at least inverse polyno-
mial in the degree (this is known to hold if g were Boolean). The influence for a real-valued function
is defined as Ii[g] =

∑
w:wi 6=0 ĝ(w)2.

7 Acknowledgement

Many thanks to Amey Bhangale, Euiwoong Lee, and Dor Minzer for proof-reading and commenting on
an earlier draft of the article. Thanks to the organizers of the Current Developments in Mathematics 2019
conference at Harvard University, for inviting the author and for insisting on writing this article!

38

References

[1] Scott Aaronson and Andris Ambainis. The need for structure in quantum speedups. Theory of
Computing, 10:133–166, 2014.

[2] N. Alon and B. Klartag. Economical toric spines via Cheeger’s inequality. Journal of Topology and
Analysis, 1:101–111, 2009.

[3] S. Arora, L. Babai, J. Stern, and E.Z. Sweedyk. The hardness of approximate optima in lattices, codes
and systems of linear equations. Journal of Computer and Systems Sciences, 54:317–331, 1997.

[4] S. Arora, J. Lee, and A. Naor. Euclidean distortion and the sparsest cut. In Proc. 37th ACM Sympo-
sium on Theory of Computing, pages 553–562, 2005.

[5] S. Arora and C. Lund. Approximation Algorithms for NP-hard Problems, editor : D. Hochbaum.
PWS Publishing, 1996.

[6] S. Arora, C. Lund, R. Motawani, M. Sudan, and M. Szegedy. Proof verification and the hardness of
approximation problems. Journal of the ACM, 45(3):501–555, 1998.

[7] S. Arora, S. Rao, and U. Vazirani. Expander flows, geometric embeddings and graph partitioning. In
Proc. 36th ACM Symposium on Theory of Computing, pages 222–231, 2004.

[8] S. Arora and S. Safra. Probabilistic checking of proofs : A new characterization of NP. Journal of
the ACM, 45(1):70–122, 1998.

[9] Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential algorithms for unique games and
related problems. J. ACM, 62(5):42:1–42:25, 2015.

[10] Sanjeev Arora, Eden Chlamtac, and Moses Charikar. New approximation guarantee for chromatic
number. In Proc. ACM Symposium on the Theory of Computing, pages 215–224, 2006.

[11] Sanjeev Arora, Subhash Khot, Alexandra Kolla, David Steurer, Madhur Tulsiani, and Nisheeth K.
Vishnoi. Unique games on expanding constraint graphs are easy. In Proc. ACM Symposium on the
Theory of Computing, pages 21–28, 2008.

[12] Per Austrin, Subhash Khot, and Muli Safra. Inapproximability of vertex cover and independent set in
bounded degree graphs. Theory of Computing, 7(1):27–43, 2011.

[13] Nikhil Bansal. Approximating independent sets in sparse graphs. In Proceedings of the Twenty-Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January
4-6, 2015, pages 1–8, 2015.

[14] Nikhil Bansal, Anupam Gupta, and Guru Guruganesh. On the Lovász theta function for independent
sets in sparse graphs. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of
Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 193–200, 2015.

[15] Nikhil Bansal and Subhash Khot. Optimal long code test with one free bit. In 50th Annual IEEE Sym-
posium on Foundations of Computer Science, FOCS 2009, October 25-27, 2009, Atlanta, Georgia,
USA, pages 453–462, 2009.

39

[16] Boaz Barak, Fernando G. S. L. Brandão, Aram Wettroth Harrow, Jonathan A. Kelner, David Steurer,
and Yuan Zhou. Hypercontractivity, sum-of-squares proofs, and their applications. In Proceedings of
the 44th Symposium on Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19
- 22, 2012, pages 307–326, 2012.

[17] Boaz Barak, Parikshit Gopalan, Johan Håstad, Raghu Meka, Prasad Raghavendra, and David Steurer.
Making the long code shorter. SIAM J. Comput., 44(5):1287–1324, 2015.

[18] Boaz Barak, Pravesh K. Kothari, and David Steurer. Small-set expansion in shortcode graph and
the 2-to-2 conjecture. In 10th Innovations in Theoretical Computer Science Conference, ITCS 2019,
January 10-12, 2019, San Diego, California, USA, pages 9:1–9:12, 2019.

[19] Boaz Barak, Prasad Raghavendra, and David Steurer. Rounding semidefinite programming hierar-
chies via global correlation. In FOCS, pages 472–481, 2011.

[20] Mihir Bellare, Oded Goldreich, and Madhu Sudan. Free bits, pcps, and nonapproximability-towards
tight results. SIAM J. Comput., 27(3):804–915, 1998.

[21] Amey Bhangale and Subhash Khot. UG-hardness to NP-hardness by losing half. In 34th Com-
putational Complexity Conference, CCC 2019, July 18-20, 2019, New Brunswick, NJ, USA., pages
3:1–3:20, 2019.

[22] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applications to nu-
merical problems. J. Comput. Syst. Sci., 47(3):549–595, 1993.

[23] J. Bourgain. On the distribution of the Fourier spectrum of Boolean functions. Israel J. of Math.,
(131):269–276, 2002.

[24] Jonah Brown-Cohen and Prasad Raghavendra. Correlation decay and tractability of CSPs. In 43rd
International Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-15,
2016, Rome, Italy, pages 79:1–79:13, 2016.

[25] Andrei Bulatov. A Dichotomy theorem for nonuniform CSPs. In IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS, 2017.

[26] Jakub Bulı́n, Andrei A. Krokhin, and Jakub Oprsal. Algebraic approach to promise constraint satis-
faction. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC
2019, Phoenix, AZ, USA, June 23-26, 2019., pages 602–613, 2019.

[27] Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Near-optimal algorithms for unique
games. In Proc. ACM Symposium on the Theory of Computing, pages 205–214, 2006.

[28] S. Chatterjee. A simple invariance theorem. arXiv:math/0508213v1, 2005.

[29] S. Chawla, R. Krauthgamer, R. Kumar, Y. Rabani, and D. Sivakumar. On the hardness of approximat-
ing multicut and sparsest-cut. In Proc. 20th IEEE Conference on Computational Complexity, pages
144–153, 2005.

[30] J. Cheeger and B. Kleiner. On the differentiation of Lipschitz maps from metric measure spaces to
Banach spaces. Inspired by S.S. Chern, Volume 11 of Nankai Tracts. Math., pages 129–152, 2006.

40

[31] Jeff Cheeger and Bruce Kleiner. Differentiating maps into L1, and the geometry of BV functions.
Ann. of Math. (2), 171(2):1347–1385, 2010.

[32] Jeff Cheeger, Bruce Kleiner, and Assaf Naor. A (log n)Ω(1) integrality gap for the sparsest cut SDP.
In 2009 50th Annual IEEE Symposium on Foundations of Computer Science—FOCS 2009, pages
555–564. IEEE Computer Soc., Los Alamitos, CA, 2009.

[33] Jeff Cheeger, Bruce Kleiner, and Assaf Naor. Compression bounds for Lipschitz maps from the
Heisenberg group to L1. Acta Math., 207(2):291–373, 2011.

[34] N. Devanur, S. Khot, R. Saket, and N. Vishnoi. Integrality gaps for sparsest cut and minimum linear
arrangement problems. In Proc. 38th ACM Symposium on Theory of Computing, 2006.

[35] I. Dinur. The PCP theorem by gap amplification. In Proc. 38th ACM Symposium on Theory of
Computing, 2006.

[36] I. Dinur and S. Safra. The importance of being biased. In Proc. 34th Annual ACM Symposium on
Theory of Computing, 2002.

[37] Irit Dinur. Mildly exponential reduction from gap 3sat to polynomial-gap label-cover. Electronic
Colloquium on Computational Complexity (ECCC), 23:128, 2016.

[38] Irit Dinur, Subhash Khot, Guy Kindler, Dor Minzer, and Muli Safra. On non-optimally expanding
sets in grassmann graphs. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 940–951, 2018.

[39] Irit Dinur, Subhash Khot, Guy Kindler, Dor Minzer, and Muli Safra. Towards a proof of the 2-to-
1 games conjecture? In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 376–389, 2018.

[40] Irit Dinur, Elchanan Mossel, and Oded Regev. Conditional hardness for approximate coloring. SIAM
J. Comput., 39(3):843–873, 2009.

[41] U. Feige. A threshold of lnn for approximating set cover. Journal of the ACM, 45(4):634–652, 1998.

[42] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Interactive proofs and the hardness of
approximating cliques. Journal of the ACM, 43(2):268–292, 1996.

[43] U. Feige and L. Lovász. Two-prover one-round proof systems, their power and their problems. In
Proc. 24th Annual ACM Symposium on Theory of Computing, pages 733–744, 1992.

[44] Uriel Feige, Guy Kindler, and Ryan O’Donnell. Understanding parallel repetition requires under-
standing foams. In Proc. Annual IEEE Conference on Computational Complexity, pages 179–192,
2007.

[45] E. Friedgut. Boolean functions with low average sensitivity depend on few coordinates. Combina-
torica, 18(1):27–35, 1998.

[46] Ehud Friedgut and Gil Kalai. Every monotone graph property has a sharp threshold. Proc. Amer.
Math. Soc., 124(10):2993–3002, 1996.

41

[47] M. Goemans and D. Williamson. 0.878 approximation algorithms for MAX-CUT and MAX-2SAT.
In Proc. 26th ACM Symposium on Theory of Computing, pages 422–431, 1994.

[48] Michel X. Goemans. Semidefinite programming in combinatorial optimization. Math. Program.,
79:143–161, 1997.

[49] Dima Grigoriev. Linear lower bound on degrees of positivstellensatz calculus proofs for the parity.
Theor. Comput. Sci., 259(1-2):613–622, 2001.

[50] Venkatesan Guruswami, Rajsekar Manokaran, and Prasad Raghavendra. Beating the random ordering
is hard: Inapproximability of maximum acyclic subgraph. In Proc. Annual IEEE Symposium on
Foundations of Computer Science, pages 573–582, 2008.

[51] J. Håstad. Clique is hard to approximate within n1−ε. Acta Mathematica, 182:105–142, 1999.

[52] J. Håstad. Some optimal inapproximability results. Journal of ACM, 48:798–859, 2001.

[53] Johan Håstad. On the Efficient Approximability of Constraint Satisfaction Problems. In Surveys in
Combinatorics, volume 346, pages 201–222. Cambridge University Press, 2007.

[54] Thomas Holenstein. Parallel repetition: simplifications and the no-signaling case. In Proc. ACM
Symposium on the Theory of Computing, pages 411–419, 2007.

[55] Russell Impagliazzo. Hardness as randomness: a survey of universal derandomization. In Proceed-
ings of the International Congress of Mathematicians, Vol. III (Beijing, 2002), pages 659–672. Higher
Ed. Press, Beijing, 2002.

[56] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst. Sci.,
62(2):367–375, 2001.

[57] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly exponen-
tial complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

[58] J. Kahn, G. Kalai, and N. Linial. The influence of variables on Boolean functions. In Proc. 29th
Symposium on the Foundations of Computer Science, pages 68–80, 1988.

[59] Daniel M. Kane and Raghu Meka. A PRG for Lipschitz functions of polynomials with applications
to sparsest cut. In Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA,
June 1-4, 2013, pages 1–10, 2013.

[60] Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and James W.
Thatcher, editors, Proceedings of a symposium on the Complexity of Computer Computations, held
March 20-22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York.,
The IBM Research Symposia Series, pages 85–103. Plenum Press, New York, 1972.

[61] Ken-Ichi Kawarabayashi and Mikkel Thorup. Coloring 3-colorable graphs with less than n1/5 colors.
J. ACM, 64(1):4:1–4:23, March 2017.

[62] S. Khot. Inapproximability of NP-complete problems, discrete Fourier analysis, and geometry. In
Proc. the International Congress of Mathematicians, 2010.

42

[63] Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of 34th Annual ACM
Symposium on Theory of Computing, May 19-21, 2002, Montréal, Québec, Canada, pages 767–775,
2002.

[64] Subhash Khot. On the unique games conjecture (invited survey). In IEEE Conference on Computa-
tional Complexity, pages 99–121, 2010.

[65] Subhash Khot. Hardness of approximation. In Proc. of the International Congress of Mathematicians,
2014.

[66] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inapproximability
results for MAX-CUT and other 2-variable CSPs? SIAM J. Comput., 37(1):319–357, 2007.

[67] Subhash Khot, Dor Minzer, Dana Moshkovitz, and Muli Safra. Pseudorandom sets in Johnson graph
have near-perfect expansion. ECCC Report TR18-078.

[68] Subhash Khot, Dor Minzer, and Muli Safra. On independent sets, 2-to-2 games, and Grassmann
graphs. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 576–589, 2017.

[69] Subhash Khot, Dor Minzer, and Muli Safra. Pseudorandom sets in Grassmann graph have near-
perfect expansion. In 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2018, Paris, France, October 7-9, 2018, pages 592–601, 2018.

[70] Subhash Khot and Dana Moshkovitz. Candidate hard unique game. In Proceedings of the 48th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21,
2016, pages 63–76, 2016.

[71] Subhash Khot and Assaf Naor. Approximate kernel clustering. In 49th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA, pages
561–570, 2008.

[72] Subhash Khot and Assaf Naor. Sharp kernel clustering algorithms and their associated grothendieck
inequalities. Random Struct. Algorithms, 42(3):269–300, 2013.

[73] Subhash Khot and Ryan O’Donnell. SDP gaps and UGC-hardness for Max-Cut-Gain. Theory of
Computing, 5(1):83–117, 2009.

[74] Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2−ε. J. Comput.
Syst. Sci., 74(3):335–349, 2008.

[75] Subhash Khot and Muli Safra. A two-prover one-round game with strong soundness. Theory of
Computing, 9:863–887, 2013.

[76] Subhash Khot and Nisheeth K. Vishnoi. The unique games conjecture, integrality gap for cut prob-
lems and embeddability of negative-type metrics into l1. J. ACM, 62(1):8:1–8:39, 2015.

[77] Guy Kindler, Ryan O’Donnell, Anup Rao, and Avi Wigderson. Spherical cubes and rounding in high
dimensions. In Proc. Annual IEEE Symposium on Foundations of Computer Science, pages 189–198,
2008.

43

[78] Alexandra Kolla, Konstantin Makarychev, and Yury Makarychev. How to play unique games against
a semi-random adversary: Study of semi-random models of unique games. In IEEE 52nd Annual
Symposium on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October
22-25, 2011, pages 443–452, 2011.

[79] Gábor Kun and Mario Szegedy. A new line of attack on the dichotomy conjecture. Eur. J. Comb.,
52:338–367, 2016.

[80] J. R. Lee and A. Naor. lp metrics on the Heisenberg group and the Goemans-Linial conjecture. In
Proc. 47th IEEE Symposium on Foundations of Computer Science, pages 99–108, 2006.

[81] N. Linial. Finite metric spaces-combinatorics, geometry and algorithms. In Proc. International
Congress of Mathematicians, volume 3, pages 573–586, 2002.

[82] C. Lund and M. Yannakakis. On the hardness of approximating minimization problems. Journal of
the ACM, 41:960–981, 1999.

[83] Pasin Manurangsi and Prasad Raghavendra. A birthday repetition theorem and complexity of approx-
imating dense CSPs. In 44th International Colloquium on Automata, Languages, and Programming,
ICALP 2017, July 10-14, 2017, Warsaw, Poland, pages 78:1–78:15, 2017.

[84] E. Mossel, R. O’Donnell, and K. Oleszkiewicz. Noise stability of functions with low influences:
invariance and optimality. In Proc. 46th IEEE Symposium on Foundations of Computer Science,
pages 21–30, 2005.

[85] Elchanan Mossel. Gaussian bounds for noise correlation of functions and tight analysis of long codes.
In Proc. Annual IEEE Symposium on Foundations of Computer Science, pages 156–165, 2008.

[86] Elchanan Mossel and Joe Neeman. Noise stability and correlation with half spaces. Electron. J.
Probab., 23:Paper No. 16, 17, 2018.

[87] Assaf Naor and Robert Young. The integrality gap of the Goemans-Linial SDP relaxation for sparsest
cut is at least a constant multiple of

√
log n. In Proceedings of the 49th Annual ACM SIGACT

Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages
564–575, 2017.

[88] P. Raghavendra and D. Steurer. Graph expansion and the unique games conjecture. In Proc. 42nd
ACM Symposium on Theory of Computing, 2010.

[89] Prasad Raghavendra. Optimal algorithms and inapproximability results for every CSP? In Pro-
ceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia,
Canada, May 17-20, 2008, pages 245–254, 2008.

[90] Anup Rao. Parallel repetition in projection games and a concentration bound. In Proc. ACM Sympo-
sium on the Theory of Computing, pages 1–10, 2008.

[91] R. Raz. A parallel repetition theorem. SIAM J. of Computing, 27(3):763–803, 1998.

[92] Ran Raz. A counterexample to strong parallel repetition. In Proc. Annual IEEE Symposium on
Foundations of Computer Science, pages 369–373, 2008.

44

[93] V.I. Rotar’. Limit theorems for polylinear forms. J. Multivariate Anal., 9(4):511–530, 1979.

[94] A. Samorodnitsky and L. Trevisan. A PCP characterization of NP with optimal amortized query
complexity. In Proc. 32nd ACM Symposium on Theory of Computing, pages 191–199, 2000.

[95] Grant Schoenebeck. Linear level Lasserre lower bounds for certain k-CSPs. In 49th Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2008, October 25-28, 2008, Philadelphia,
PA, USA, pages 593–602, 2008.

[96] D. Steurer. Subexponential algorithms for d-to-1 two-prover games and for certifying almost perfect
expansion. Unpublished manuscript, 2011.

[97] L. Trevisan. Inapproximability of combinatorial optimization problems. Optimisation Combinatiore
2, (Vangelis Paschos, Editor), Hermes, 2005.

[98] Luca Trevisan. Approximation algorithms for unique games. Theory of Computing, 4(1):111–128,
2008.

[99] V. V. Vazirani. Approximation Algorithms. Springer, 2001.

[100] Dmitriy Zhuk. The proof of CSP Dichotomy conjecture. In IEEE Annual Symposium on Foundations
of Computer Science, FOCS, 2017.

45

	Introduction
	Preliminary Background
	P, NP, and Computational (Hardness) Hypotheses
	Approximation Algorithms and Hardness of Approximation
	The PCP Theorem
	Towards Optimal Hardness Results: Some Successes
	Towards Optimal Hardness Results: Many Challenges
	The Unique Games Conjecture
	Arguments Raised Against the Unique Games Conjecture
	The Statement of the 2-to-2 Games Theorem
	Significance of the 2-to-2 Games Theorem

	Framework for Reductions, Why Grassmann Graphs?
	Inner Reduction: Linearity Testing
	Hadamard Code and the Basic 3-Bit Test
	Hadamard Code and the Query-Efficient Test
	Grassmann Code and the Subspace-Subspace Test
	Grassmann Code and the Grassmann (Linearity) Test

	Outer Reduction: 3Lin to 3Lin-Blocks
	Inner/Outer Composition

	(Grassmann) Expansion Theorem and Linearity Testing Theorem
	(Grassmann) Expansion Theorem implies Linearity Testing Theorem

	Outline of Proof of Grassmann Expansion Theorem
	Spectral Decomposition of Grk,
	Pseudorandomness implies Low Weight at Low Levels implies Near-Perfect Expansion
	Lower-bounding the Fourth Moment of F=i
	Upper-bounding the Fourth Moment of F=1
	Proof of Theorem 5.5: the Main Argument

	Open Problems
	Acknowledgement

