
Honors Theory of Computation

Problem Set 2 Solutions

Problem 1

Solution:

(a) Suppose that L1 = {0n1m0n} is regular. Let p be the pumping length given by the pumping
lemma. Let s = 0p10p. Clearly s ∈ L1, and |s| = 2p + 1 > p. Write s = xyz satisfying |xy| ≤ p
and y 6= ε. Then y = 0k for some k ≥ 1. Thus xy2z = 0`10p where ` > p, and hence xy2z 6∈ L1,
contradicting the pumping lemma. Therefore, L1 is nonregular.

(b) We instead show that the language of palindromes is not regular (which suffices since the
class of regular languages is closed under complementation). Suppose on the contrary that the
palindromes form a regular language. Let p be the pumping length given by the pumping lemma.
Let s = 0p10p. Using exactly the same argument as in part (a), we reach a contradiction.

Problem 2

Solution: Note first that a DFA is also an All-Paths-NFA (DFA has exactly one computation on
given input) and hence every regular language is accepted by an All-Paths-NFA.
Now we show that if M is an All-Paths-NFA then the language L recognized by M is regular. Let
N be a NFA whose transition function is same as that of M , but the accept/non-accept states are
switched. Now

x ∈ L ⇐⇒ M accepts x

⇐⇒ every computation of M on x accepts

⇐⇒ no computation of N on x accepts

⇐⇒ x 6∈ L(N)

This shows that L = L(N), i.e. L is complement of a regular language. Hence L is regular.

Problem 3

Solution: Given a DFA M that accepts A, we construct an NFA M ′ that accepts A 1
2
−. The basic

idea is as follows: to decide whether a string x ∈ A 1
2
−, we non-deterministically choose y such that

|x| = |y|. We simulate M on x and at the same time simulate M backwards on string y. The
simulation on x starts with the start state of M (call it q0) whereas the simulation on y starts with
some accept state of M (call it qf). We accept iff both simulations reach the same state of M (call
it q). Thus we accept iff x takes the DFA from q0 to q and y takes it from q to qf . Since qf is an
accept state of M , we ensure that xy ∈ A. The simultaneous simulation on x and y is carried out
by the cartesian product construction, similar to proof of Theorem 1.2 in Sipser’s book.

Formally, if (Q,Σ, δ, q0, F) describes the DFA M , then the NFA M ′ = (Q′,Σ, δ′, qstart, F
′) is

defined as follows:

• Q′ = Q×Q ∪ {qstart}.

• F ′ = {(q, q) | q ∈ Q}.

1

• There is ε-move from qstart to all the states in {(q0, qf) | qf ∈ F}. These are the only moves
possible from qstart.

• There is a move from (q1, q2) to (q3, q4) on input symbol a ∈ Σ iff δ(q1, a) = q3 and δ(q4, b) =
q2 for some b ∈ Σ. Formally,

(q3, q4) ∈ δ′((q1, q2), a) iff δ(q1, a) = q3 and ∃ b ∈ Σ s.t. δ(q4, b) = q2

Problem 4

1. {w : length of w is odd}

S → 1E | 0E

E → EE | 00 | 01 |10 |11 | ε

The PDA has two states qstart and qaccept and no stack. The state changes for every input
symbol read and the PDA accepts if the end state is qaccept.

2. {w : w contains more 1’s than 0’s}
Solution:

S → R1R

R → RR | 0R1 | 1R0 | 1 | ε

The PDA scans across the input. If it sees a 1 and its top stack symbol is 0, it pops the stack.
Similarly if it sees a 0 and its top stack symbol is 1, it pops the stack. In all other cases, it
pushes the input symbol onto the stack. After it scans the input, if there is a 1 on the top of
the stack, it accepts. Otherwise, it rejects.

3.
{
w : w = wR

}
Solution:

S → 0S0 | 1S1 | 0 | 1 | ε

The PDA begins by scanning across the string and pushing the symbols onto the stack. At some
point it nondeterministically guesses the midpoint of the string has been reached. It also nonde-
terministically guesses if the string has even length or odd length. If it guesses even, then it pushes
the current symbol it’s reading (at the guessed midpoint) onto the stack. If it guesses odd, it goes
to the next input symbol without changing the stack. Now it scans the rest of the string, and
compares each symbol it scans with the symbol on the top of the stack. If they are different, it
rejects. If the stack becomes empty just after it reaches the end of the input, then it accepts. In
all other cases it rejects.

Problem 5

Solution: Let A be a context-free language recognized by a PDA M . We will construct a PDA
R that recognizes SUFFIX(A). On input v, the PDA R works in two phases. The first phase

2

operates without looking at the input. The PDA non-deterministically generates a symbol a ∈ Σ
and simulates (one or more) steps of M until the symbol a is read. The PDA repeats this sequence
of moves (as many times as it wishes). It non-deterministically decides when to switch to second
phase. In the second phase, the PDA looks at the input v and simulates M on v.

Note that R accepts v if and only if there exists u ∈ Σ∗ such that M accepts uv. The string u
(and its length!) is ”guessed”.

Problem 6

(a) L1 = {0n1n0n1n : n ≥ 0}.

Solution: Suppose that L1 were a CFL. Let p be the pumping length given by the pumping lemma.
Let s = 0p1p0p1p and we show that s cannot be pumped. Write s = uvxyz satisfying |vy| > 0
and |vxy| ≤ p. If v or y contains more than one type of symbols, then uv2xy2z does not have the
symbols in the correct order as it is not of the form aibjakb`, and thus is not a member of L1. If
both v and y contain at most one type of symbol, then uv2xy2z contains runs of 0’s and 1’s of
unequal length, and thus is not a member of L1. Therefore, s cannot be pumped without violating
the pumping lemma conditions, and hence L1 is not a CFL.

(a) L2 =
{
0i1j : i ≥ 1, j ≥ 1, i = jk for some integer k

}
Solution: Suppose L2 is CFL and let p be the pumping length. Let s = 0200p1100p and we show
that s cannot be pumped. Write s = uvxyz satisfying |vy| > 0 and |vxy| ≤ p. It can be easily seen
that uv2xy2z 6∈ L2 (I got tired of writing the proof).

3

