
V22.0453-001 Honors Theory of Computation

Problem Set 3 Solutions

Problem 1

Solution: The class of languages recognized by these machines is the exactly the class of regular
languages, thus this TM variant is not equivalent to the standard version. The intuition is that such
a TM cannot remember what it has written on tape cells to the left of the current head position, as
the TM is unable to return to these cells and thus its computation in the future is independent of
the contents of these cells. Also for this reason, we can assume without loss of generality that the
head of the TM never goes beyond the cell containing the last symbol of the input string. (Why?)
Stay-put transitions can be simulated by ε-moves. Details follow.

Let M = (Q,Σ,Γ, δ, q0, qaccept, qreject) be any TM with stay-put instead of left. We constuct a
NFA N = (Q′,Σ, δ′, qstart, F) that simulates M as follows. The special state qstart is the start state
of N . Every other element of Q′ (i.e. state of N) is of the form 〈q, a〉, where q ∈ Q and a ∈ Γ. Set
F = {〈qaccept, a〉 : a ∈ Γ}, where qaccept is the accept state of M .

We now describe the transition function δ′.

• For each a ∈ Σ, set δ′(qstart, a) = {〈q0, a〉}, where q0 is the start state of M .

• For each p, q ∈ Q where p 6∈ {qaccept, qreject}, for each a ∈ Γ, if M has a transition of the form
δ(p, a) = (q, b, R), then for each c ∈ Σ, set δ′(〈p, a〉, c) = {〈q, c〉}.

• For each p, q ∈ Q where p 6∈ {qaccept, qreject}, for each a ∈ Σ, if M has a transition of the form
δ(p, a) = (q, b, S), then set δ′(〈p, a〉, ε) = {〈q, b〉}.

• For each a ∈ Γ and c ∈ Σ, set δ′(〈qaccept, a〉, c) = {〈qaccept, a〉}.

• For each a ∈ Γ and c ∈ Σ, set δ′(〈qreject, a〉, c) = {〈qreject, a〉}.

It is not hard to see that L(N) = L(M).
On the other hand, it is not hard to see that every NFA can be simulated by TM with stay-put

instead of left.

1

Problem 2

Solution:

(a) Let L1 and L2 be two Turing-recognizable languages, and let M1 and M2 be TMs that recognizes
L1 and L2 respectively. We construct a TM M that recognizes L1 ∪ L2: On input w,

1. Run M1 and M2 on w “in parallel”. That is, in each step, M runs one step of M1 and one
step of M2.

2. If either of M1 and M2 accepts, output ACCEPT. If both reject, output REJECT.

If M1 or M2 accepts w, then M will halt and accept w since M1 and M2 are run in parallel and
an accepting TM will halt and accept w in a finite number of steps. If both M1 and M2 reject w,
then M will reject w. If neither M1 nor M2 accepts w and one of them loops on w, then M will
loop on w. Thus L(M) = L1 ∪ L2, and Turing-recognizable languages are closed under union.

(b) Let L1 and L2 be two Turing-recognizable languages, and letM1 andM2 be TMs that recognizes
L1 and L2 respectively. We construct a NTM N that recognizes L1 ◦ L2: On input w,

1. Nondeterministically split w into two parts w = xy.

2. Run M1 on x. If it rejects, halt output REJECT. If it accepts, go to Step 3.

3. Run M2 on w. If it accepts, output ACCEPT. If it rejects, output REJECT.

If w ∈ L1 ◦ L2, then there is a way to split w into two parts w = xy such that x ∈ L1 and y ∈ L2,
thus, M1 halts and accepts x, and M2 halts and accepts y. Hence at least one branch of N will
accept w. On the other hand, if w 6∈ L1 ◦ L2, then for every possible splitting w = xy, x 6∈ L1 or
y 6∈ L2, so M1 does not accept x or M2 does not accept y. Thus, all branch of N will reject w.
Therefore, L(N) = L1 ◦ L2, and Turing-recognizable languages are closed under concatenation.

(c) Let L be a Turing-recognizable languages, and let M be a TM that recognizes L. We construct
a TM M ′ that recognizes L∗: On input w,

1. Nondeterministically choose an integer k and split w into k parts w = w1w2 · · ·wk.

2. Run M on each wi. If M accepts all of w1, . . . , wk, output ACCEPT. If M rejects one of
w1, . . . , wk, output REJECT.

If w ∈ L∗, then there is a splitting of w = w1w2 . . . wk such that wi ∈ L for each i, and thus
at least one branch of M ′ will accept w. On the other hand, if w 6∈ L∗, then for every possible
splitting w = w1w2 . . . wk, wi 6∈ L for at least one i, thus all branches of M ′ will reject w. Therefore,
L(M ′) = L∗, and Turing-recognizable languages are closed under the star operation.

(d) Let L1 and L2 be two Turing-recognizable languages, and letM1 andM2 be TMs that recognizes
L1 and L2 respectively. We construct a TM M that recognizes L1 ∩ L2: On input w,

1. Run M1 on w. If it rejects, halt and output REJECT. If it accepts, go to Step 2.

2. Run M2 on w. If it accepts, output ACCEPT. If it rejects, output REJECT.

2

Clearly L(M) = L1 ∩ L2, and thus Turing-recognizable languages are closed under intersection.

Problem 3

Solution: Given a c.f.g. G, we give an algorithm to decide whether L(G) is infinite. Let n be the
number of variables in the grammar and b be the maximum length of the right hand side of any
rule. We know from the proof of pumping lemma that p = bn serves as the pumping length.

We show that L(G) is infinite ⇐⇒ it contains a string of length l where p < l ≤ 2l.
(Proof of ⇐=:) If there is a string s ∈ L(G), |s| > p, we know by pumping lemma that no matter
how one partitions s = uvwxy, |vxw| ≤ p, |vx| > 0, we have uviwxiy ∈ L(G) ∀ i ≥ 0. Thus L(G)
is infinite.
(Proof of =⇒:) If L(G) is infinite, then let s1 ∈ L(G) be a string of length > p. Partition
s1 = uvwxy, |vxw| ≤ p, |vx| > 0. We know by pumping lemma that the string s2 = uwy ∈ L(G).
Note that |s|1 − p ≤ |s2| < |s1|. We can use this argument repetitively and produce a sequence of
strings s1, s2, s3, . . . such that all of them are in L(G) and

|si| > p =⇒ |si| − p ≤ |si+1| < |si|

Hence we will find a string si0 whose length l satisfies p < l ≤ 2p.
Thus in order to decide whether L(G) is infinite, it suffices to decide whether the grammar

generates a string of length l where p < l ≤ 2l. This can be done by trying out all strings of length
in this range.

Problem 4

Solution: We observe that L(R) ⊆ L(S) if and only L(R) ∩ L(S) = ∅. Therefore the following
TM decides

L = {〈R,S〉 : R and S are regular expressions and L(R) ⊆ L(S)} .

On input 〈R,S〉:

1. Construct a DFA D such that L(D) = L(R) ∩ L(S).

2. Run a TM T that decides EDFA on input 〈D〉 (i.e. decides whether L(D) is empty. We did
this in class).

3. If T accepts, output ACCEPT. If T rejects, output REJECT.

Problem 5

Solution: We show that ATM reduces to A =
{
〈M〉 : wR ∈ L(M) whenever w ∈ L(M)

}
. Since

ATM is undecidable, it follows that A is undecidable.

The reduction from ATM to A maps 〈M,w〉 to 〈M ′〉 where M ′ is the following TM with M and
w built in:
On input x:

1. If x = 01, then halt and output ACCEPT.

3

2. Else if x 6= 10, then halt and output REJECT.

3. Else (if x = 10), then simulate M on w. If M accepts w, then output ACCEPT; if M rejects
w, then output REJECT.

It is easy to see that if 〈M,w〉 ∈ ATM, that is, if M accepts w, then L(M ′) = {01, 10}, so 〈M ′〉 ∈ A.
On the other hand, if 〈M,w〉 6∈ ATM, that is, if M does not accept w, then L(M ′) = {01}, so
〈M ′〉 6∈ A. Therefore the above mapping is a reduction from ATM to A.

Note: You could also use Rice’s Theorem.

4

Problem 6

Solution: Suppose that exactly k of the machines {M1,M2,M3} halt on corresponding inputs.
The idea is to figure out the value of k. Once we know k, we can decide which ones halt: simply
simulate the three machines on corresponding inputs simultaneously (one step of every machine at
a time), and halt when exactly k of them halt. Since we know k, we are guaranteed to halt.

This is how we figure out the value of k. First construct a machine M that simulates the three
machines on corresponding inputs simultaneously and halts if at least two of them halt. Now decide
whether M halts by asking the oracle.
(Case 1): If M halts, we know that k ≥ 2. By running the machines simultaneously again, we
figure out which two of the machines halt. Then by asking the oracle, we can figure out whether
the third machine halts.
(Case 2): If M does not halt, we know that k ≤ 1. Construct a machine M ′ that simulates
the three machines on corresponding inputs simultaneously and halts if at least one of them halts.
Decide whether M ′ halts by asking the oracle. If M ′ halts, then we know that k = 1. If M ′ does
not halt, we know that k = 0.

5

