Class of Regular Languages is closed under \cup, \circ, \ast

Thanks to the equivalence of DFAs and NFAs, a language is regular iff an NFA accepts it. The characterization in terms of NFAs is very convenient to prove closure under \cup, \circ, \ast operations.

Theorem If A, B are regular languages, then so are $A \cup B$, $A \circ B$, A^\ast.

Proof Let N_A, N_B be NFAs that accept A and B respectively. We'll construct an NFA N that accepts $A \cup B$, $A \circ B$, or A^\ast (as the case may be).

![NFA diagrams](image-url)
NFA for $A \cup B$

N has a new start state Start and ε-moves from it to the start states q, r of N_A, N_B respectively.

NFA for $A \cap B$

Would this work?

N?

Idea is to let q be the start state of N and introduce ε-moves from...
accept states of N_A to r. This works, but we must turn the accept states of N_A into non-accept states of N (why?). The final construction is:

$$N$$

$$N_{A}$$

$$N_{B}$$

NFA for A^*

$$N$$

Note that A^* consists of all strings $x_1x_2\cdots x_k$ s.t. $x_i \in A$ for every $1 \leq i \leq k$. We can start with N_A and add ε-moves from
its accept states to its start state q_1. This ensures that

x_1 takes N_A from q to an accept state then using ε-move, back to q, then

x_2 takes N_A from q to an accept state then using ε-move, back to q,

... etc... etc and finally

x_k takes N_A from q to an accept state.

Thus N takes $x_1x_2...x_k$ as input and takes q to an accept state. Therefore N accepts A^*. (Almost!)

One needs to handle the string ε separately. Note that $\varepsilon \in A^*$ (corresponding to $k=0$) even if $\varepsilon \notin A$. To fix this, we add the new start state Start and add the ε-move

$$\text{Start} \xrightarrow[\varepsilon]{\text{Start}} q_0.$$
Exercise - Give a formal construction of N in terms of N_A, N_B.
- Write the full argument (in English) that N accepts precisely the language $A \cup B$, $A \cap B$, or A^*, as the case may be.

Regular Expressions

DFA/NFAs give a characterization of regular languages in terms of a computational model. We'll see now an equivalent characterization that is syntactic, in terms of regular exprs.

Examples $\Sigma = \{0, 1\}$.

1. The regular expression $\{0 \cup 1\}^* 001$ describes the language $L = \{w \mid w \text{ ends with suffix } 001 \}$.

2. $0 \{0 \cup 1\}^* 0 \cup 1 \{0 \cup 1\}^* 1$ describes
\[L = \{ w \mid \text{the first and the last symbol of } w \text{ is the same} \} \]

(01 U 10 U 00 U 11)* describes \[L = \{ w \mid |w| \text{ is even} \}. \]

Formal Inductive Definition

Def. \(R \) is a regular expression (over alphabet \(\Sigma \)) if

- \(R = a \) for some \(a \in \Sigma \)
- \(R = \varepsilon \)
- \(R = \emptyset \)
- \(R = (R_1 U R_2) \) \(\quad \) where \(R_1, R_2 \) are regular expressions defined already.
- \(R = (R_1 \circ R_2) \)
- \(R = (R_1^*) \)

Note While writing, we often omit the parentheses () or the \(\circ \) sign.

The language defined by an expression \(R \) is described inductively in a natural manner.
Definition: The language $L(R)$ defined by regular expression R is

- $L(R) = \emptyset$ if $R = \emptyset$
- $L(R) = \{\varepsilon\}$ if $R = \varepsilon$
- $L(R) = \{a\}$ if $R = a, a \in \Sigma$
- $L(R) = L(R_1) \cup L(R_2)$ if $R = R_1 \cup R_2$
- $L(R) = L(R_1) \circ L(R_2)$ if $R = R_1 \circ R_2$
- $L(R) = L(R_1)^*$ if $R = R_1^*$

Theorem: A language L is regular iff $L = L(R)$ for some regular expression R.

Proof of \leftarrow:

It is easily observed that if R is a regular expression then $L(R)$ is regular. This follows simply from the above inductive definition of $L(R)$ and that the class of regular languages is closed under \cup, \circ, \ast.
If one wishes, one can build an NFA accepting $L(R)$ by "parsing" the expression "bottom-up". E.g. for the expression $(ab \cup a)^*$, we can first build NFAs for ab and a as

Then we build NFA for $ab \cup a$ using the NFA construction for \cup:

Finally NFA for $(ab \cup a)^*$, using the construction for \ast.
Proof of \(\Rightarrow \)
We now show that given an NFA, we can construct an equivalent regular expr.

Example \(\Sigma = \{a, b\} \)

\[
\begin{array}{c}
\quad a \\
\downarrow \\
q_1 \\
\downarrow b \\
q_2 \\
\downarrow a, b \\
t
\end{array}
\]

Introduce new dummy

Start, accept states

\[
\begin{array}{c}
S \quad \rightarrow \quad q_1 \\
\uparrow a \\
\downarrow b \\
q_1 \\
\downarrow a, b \\
q_2 \\
\uparrow \epsilon \\
t
\end{array}
\]

Eliminate \(q_1 \)

The equivalent regular expression is \(a^* b (a \cup b)^* \).
The general construction can be sketched as:

- **k-State NFA**
- Add new dummy state
- Start, accept states
- **(k+2)-State NFA**
- Eliminate k original states one by one.

Note - The final regular expression may depend on order of elimination.

- During this process, one has NFAs whose transition arrows are labeled by regular expressions. Such NFAs may be referred to as **Generalized NFAs**, GNFA.

Eliminating State q

This involves the following operation for every $q', q'' \neq q$:

- $R_4 q' \rightarrow q$
- $R_2 q \rightarrow q''$
- $R_3 q'' \rightarrow q'$

After these operations, q is deleted.
It may be the case that q', q'' are the same. After all elimination steps, one is left with the GNFA

\[\sim \rightarrow S \]
\[\rightarrow R \]
\[\rightarrow t \]

where s, t are the dummy start, accept states.

R is the final regular expression equivalent to original NFA.

Example

\[\sim \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 \]

\[\sim \rightarrow q'_1 \rightarrow q'_{2} \rightarrow q'_{3} \]

Add dummy states

```
Eliminate $q_1$
```
$$S \xrightarrow{0^*1} q_2 \xrightarrow{1} q_3 \xrightarrow{1} t$$

Eliminate q_2

$$S \xrightarrow{0^*11^*0} q_3$$

Eliminate q_3

$$S \xrightarrow{0^*11^*} q_3 \xrightarrow{0^*11^*0 (1 \cup 01^*0)^* 01^*} t$$

R is a regular expression that is equivalent to the NFA N.