Theorem \(L_{\text{Diag}} \) is Turing-recognizable, but not decidable.

Proof It is easily seen that the following TM recognizes \(L_{\text{Diag}} \).

\[
M_{\text{Diag}} = \begin{cases}
\text{on input } w, \\
\text{Determine index } i \text{ s.t. } w = w_i; \\
\text{Determine (the description of) } \\
TM M_i; \\
\text{Simulate } M_i \text{ on } w_i \text{ and } \\
\text{Accept or Reject or Run forever accordingly.}
\end{cases}
\]

We note that it is possible for \(M_{\text{Diag}} \) to determine the index \(i \) and \(m/c \ M_i \) because \(\Sigma^* \) and \(L_{TM} = \{ \langle M_1 \rangle, \langle M_2 \rangle, \ldots \} \) are both effectively enumerable. Clearly, by design,

\[
L(M_{\text{Diag}}) = \{ w \mid M_{\text{Diag}} \text{ accepts } w \} \\
= \{ w_i \mid M_i \text{ accepts } w_i \} \\
= L_{\text{Diag}}.
\]
Now we show that $\overline{L_{\text{Diag}}}$ is undecidable. It is more convenient to show that

$$\overline{L_{\text{Diag}}} = \{ w_i \mid i \geq 1, \text{ } M_i \text{ does not accept } w_i \}$$

is undecidable and note the easy fact:

Fact A language L is decidable iff \overline{L} is.

Proof If a TM M decides L then a TM that decides \overline{L} can be designed so as to simulate M and in the end, switch the Accept or Reject decision of M.

Claim $\overline{L_{\text{Diag}}}$ is undecidable. In fact $\overline{L_{\text{Diag}}}$ is not even Turing recognizable.

Proof Suppose on the contrary that a TM M recognizes $\overline{L_{\text{Diag}}}$, let $k \geq 1$ be the index s.t. $\langle M \rangle = \langle M_k \rangle$ in the effective enumeration of TM-descriptions. Let $W = W_k$ be the k^{th} string in effective
enumeration of Σ^*. We show that the TM M and the language $\overline{L_{\text{Diag}}}$ "disagree" on the input w, giving a contradiction (M is supposed to recognize $\overline{L_{\text{Diag}}}$). Indeed,

$$
M \text{ accepts } w \iff M_k \text{ accepts } w_k \iff w_k \notin L_{\text{Diag}} \iff w \notin L_{\text{Diag}}.
$$

We note that
- L_{Diag} is T.R. but not decidable.
- $\overline{L_{\text{Diag}}}$ is not even T.R.

This is an example of the following general fact.

Fact A language L is decidable

$$
\iff \text{ Both } L, \overline{L} \text{ are T.R.}
$$

In particular, if L is T.R. but not decidable, then \overline{L} is not even T.R.
Proof of \Rightarrow: This is easy. If L is decidable, then so is \overline{L}, and hence both are T.R. as well.

Proof of \Leftarrow: Suppose L, \overline{L} both are T.R.

Let M, M' be TMs that recognize L, \overline{L} respectively. That is, $\forall x \in \Sigma^*$,

$x \in L \Rightarrow M$ accepts x (eventually).

$x \in \overline{L} \Rightarrow M'$ accepts x (""").

Now the TM \tilde{M} that decides L can, on input x, simulate both M and M' on x, alternately for one more step each, and Accepts if M accepts. Rejects if M' accepts.

\tilde{M} decides L because:

\[x \in L \Rightarrow M \text{ accepts } x \]

\[\Rightarrow \tilde{M} \text{ accepts } x. \]

\[x \notin L \Rightarrow x \in \overline{L} \Rightarrow M' \text{ accepts } x \]

\[\Rightarrow \tilde{M} \text{ Rejects } x. \]
Now that we know that L_{Diag} is undecidable, we can show that several problems concerning TMs are also undecidable, by reducing L_{Diag} to these problems.

Theorem Acceptance Problem for TMs:

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a } TM \text{ that accepts } w \}$$

is TR. but undecidable.

Proof It is easily seen that the following TM recognizes A_{TM}.

$$M^* := \text{ on input } \langle M, w \rangle,$$

Simulate M on w.

Accept or Reject or Runforever according.

M^* accepts $\langle M, w \rangle \iff M$ accepts w

$$\iff \langle M, w \rangle \in A_{TM}.$$

Now we show that A_{TM} is undecidable by reducing L_{Diag} to A_{TM}. Specifically, we show that if there were a (hypothetical) TM R
that decides A_{TM}, then R can be used to design a TM \tilde{M} that decides L_{Diag}. Since L_{Diag} is already known to be undecidable, it follows that A_{TM} is actually undecidable.

Towards this end, suppose (on contrary) that R decides A_{TM}. I.e.

$$R(<M, w>) = \begin{cases}
\text{Accept if } M \text{ accepts } w, \\
\text{Reject if } M \text{ rejects } w \text{ or runs forever.}
\end{cases}$$

It is easily seen now that \tilde{M} as below decides L_{Diag}.

$\tilde{M} := "$On input w,
Determine index i s.t. $w = w_i$.
Determine the TM $<M_i>$.
Use R to decide whether M_i accepts w_i.
If M_i accepts w_i, accept.
If M_i does not accept w_i, reject."
\(\tilde{M} \) accepts \(w \) if \(w = w_i \), \(M_i \) accepts \(w_i \):

\[
\text{i.e. if } w_i \in L_{Diag}.
\]

\(\tilde{M} \) rejects \(w \) if \(w = w_i \), \(M_i \) does not accept \(w_i \):

\[
\text{i.e. if } w = w_i \& L_{Diag}.
\]

Thus \(\tilde{M} \) decides \(L_{Diag} \) (a contradiction).

Corollary \(\overline{A}_{TM} \) is not even T.R.

Theorem Halting Problem for TMs:

\[
\text{HALT}_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that halts on } w \}\]

is T.R. but undecidable.

Proof: Clearly, the following TM recognizes

\[
\text{HALT}_{TM}, \quad M^* := " \text{On input } \langle M, w \rangle \\
\text{Simulate } M \text{ on } w, \\
\text{If } M \text{ halts (i.e. accepts or rejects), accept. }"
\]

\[
\langle M, w \rangle \in \text{HALT}_{TM} \quad \Rightarrow \quad M \text{ halts on } w \\
\quad \Rightarrow \quad M^* \text{ accepts } \langle M, w \rangle.
\]
\(<M,w> \notin \text{HALT}_{\text{TM}} \Rightarrow M \text{ runs forever on } w\)
\Rightarrow M^* \text{ runs forever on } <M,w> \text{ (} \because M^* \text{ just simulates } M)\).

This shows that indeed \(M^*\) recognizes \(\text{HALT}_{\text{TM}}\).

Now \(\text{HALT}_{\text{TM}}\) is undecidable because if there were a (hypothetical) decider \(R\) for \(\text{HALT}_{\text{TM}}\), one can design a decider \(\tilde{M}\) for \(A_{\text{TM}}\). The latter is not possible since \(A_{\text{TM}}\) is already known to be undecidable.

Indeed \(\tilde{M}\), on input \(<M,w>\) for \(A_{\text{TM}}\), uses \(R\) to decide whether \(M\) halts on \(w\).

If \(M\) does not halt on \(w\), \(\tilde{M}\) rejects.
If \(M\) halts on \(w\), \(\tilde{M}\) simulates \(M\) on \(w\) and accepts or rejects accordingly.

Clearly \(\tilde{M}\) accepts \(<M,w>\) if \(M\) accepts \(w\) and rejects otherwise, and hence decides \(A_{\text{TM}}\).
Corollary: HALT_TM is not even T.R.

Theorem: (Non-)Emptiness Problem for TMs.

$E_\text{TM} = \{ \langle M \rangle \mid M \text{ is a TM s.t. } L(M) \neq \emptyset \}$

is T.R. but undecidable.

Proof: Showing that E_TM is T.R. is left as a nice exercise :).

We show that E_TM is undecidable by reducing A_TM to it. Suppose (on contrary) that E_TM is decidable and a TM R decides it.

We will design a TM \widetilde{M} that decides A_TM (reaching a contradiction).

$\widetilde{M} := \text{"On input } \langle M, w \rangle \text{,}

\text{construct a TM } D \text{ that behaves as follows:}

D := \text{"On input } x, \\
\text{If } x \neq w, \text{ reject.} \\
\text{If } x = w, \text{ simulate} $
M on w and accept/reject/run forever accordingly."

By running R on <D>, determine whether L(D) ≠ ∅.

If L(D) ≠ ∅, Accept.
If L(D) = ∅, Reject."

We note that \(\tilde{M} \) indeed decides \(A_{TM} \).

\[\langle M, w \rangle \in A_{TM} \Rightarrow M \text{ accepts } w \]
\[\Rightarrow L(D) = \{w\} \neq ∅ \]
\[\Rightarrow \tilde{M} \text{ accepts } \langle M, w \rangle. \]

\[\langle M, w \rangle \notin A_{TM} \Rightarrow M \text{ rejects/runs forever on } w \]
\[\Rightarrow L(D) = ∅ \]
\[\Rightarrow \tilde{M} \text{ rejects } \langle M, w \rangle. \]

The main point is that from the perspective of the m/c D that is designed, all inputs other than w are rejected outright. Thus

\[L(D) = \{w\} \text{ or } L(D) = ∅ \]
depending on whether \(M \) accepts \(w \) or not.

\[
\text{Corollary: } \quad E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM s.t. } L(M) = \emptyset \}
\]
is not even T.R.

Exercise Using a proof similar as above show that:

- \(\text{All}_{\text{TM}} \) is \underline{decidable}
- \(\text{All}_{\text{TM}} \) is not \underline{even T.R.}. Here

\[
\text{All}_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM s.t. } L(M) = \Sigma^* \}
\]

Exercise Show that:

\[
\text{EQ}_{\text{TM}} = \{ \langle M, M' \rangle \mid M, M' \text{ are TMs, } L(M) = L(M') \}
\]
is not T.R.

Finally, we prove a rather general result known as Rice's Theorem. It states that any non-trivial "property" of the language \(L(M) \) recognized by a TM \(M \), given the description \(\langle M \rangle \), is undecidable.
Rice's Theorem

Let \mathcal{P} be a subclass of the class of T.R. languages. \mathcal{P} is non-trivial if
- there is a lang. $A \in \mathcal{P}$ (i.e. \mathcal{P} is non-empty)
- $\forall B \notin \mathcal{P}$ (i.e. \mathcal{P} is not all the T.R languages).

Then the following lang. is undecidable.

$$L_\mathcal{P} = \{ <M> | \text{M is a TM s.t. } L(M) \in \mathcal{P} \}.$$

Note: The theorem, in one sweep, shows that all these languages are undecidable.

$\{<M>| L(M) \neq \emptyset \}$ \quad $\mathcal{P} =$ All T.R. languages except \emptyset.

$\{<M>| L(M) = \Sigma^* \}$ \quad $\mathcal{P} = \{ \Sigma^* \}$.

$\{<M>| L(M) \text{ is regular} \}$ \quad $\mathcal{P} =$ Class of regular langs.

$\{<M>| L(M) \text{ is context-free} \}$ \quad $\mathcal{P} =$ _$c.f.$ languages.
Proof. W.l.o.g. we can assume that (the empty language) \(\emptyset \notin \mathcal{P} \). Otherwise, we could consider the property \(\overline{\emptyset} \), observe that \(L_{\overline{\emptyset}} = L_\emptyset \), and \(L_{\overline{\emptyset}} \) is undecidable iff \(L_\emptyset \) is.

So let's assume \(\emptyset \notin \mathcal{P} \). Since \(\mathcal{P} \) is non-trivial, there is some T.R. language \(A \in \mathcal{P} \). Suppose a TM \(M_A \) recognizes the language \(A \).

We now show that \(L_\emptyset \) is undecidable by reducing \(A_{TM} \) to it. Specifically, given input \(\langle M, w \rangle \) "we" design a TM \(R \) such that for lang. \(A_{TM} \)

\[
\langle M, w \rangle \in A_{TM} \Rightarrow L(R) = A
\]

In particular \(L(R) \in \mathcal{P} \).

\[
\langle M, w \rangle \notin A_{TM} \Rightarrow L(R) = \emptyset.
\]

In particular \(L(R) \notin \mathcal{P} \).

Thus, if \(L_\emptyset \) were decidable, "one" could decide
whether \(L(R) \in P \) or not

i.e. \(L(R) = A \) or \(L(R) = \emptyset \)

i.e. \(\langle M, w \rangle \in A_{TM} \) or \(\langle M, w \rangle \notin A_{TM} \),

and thus decide \(A_{TM} \), reaching a contradiction.

The m/c \(R \) is designed as follows:

\[
R := \text{On input } x = (q_0, \omega, G_0, M)
\]

Ignore \(x \) for now and first simulate \(M \) on \(w \).

If \(M \) rejects \(w \), reject.

If \(M \) runs forever on \(w \), run forever.

Else \(M \) accepts \(w \). In this case simulate \(M_A \) on \(x \) and Accept or Reject or Run forever accordingly.

Clearly if \(M \) rejects \(w \) or runs forever on \(w \) then \(R \) rejects or runs forever on every input \(x \).

In either case \(L(R) = \emptyset \). Thus

\[
\langle M, w \rangle \notin A_{TM} \Rightarrow L(R) = \emptyset \quad \text{as needed.}
\]
On the other hand

if M accepts w then

Behavior of R on every input x is same as M_A on that input.

since R just simulates M_A on x,

Hence $L(R) = A$, the lang. accepted by the machine M_A.

Thus $\langle M, w \rangle \in A_{TM} \implies L(R) = A$ as needed.

Remark: In the proof "we design" or "one could decide" are to be interpreted as "a TM can design" or "a TM could decide" respectively.