Undecidable Problems

We now study and exhibit undecidability of some problems. We first observe that there exists a language that is not Turing-recognizable and this follows easily from countability argument. Fix alphabet Σ.

Let A be the class of all languages L Turing-recognizable languages (over Σ).

Fact A is uncountable.

L is countable.

Note. It then follows that there is a language in $A \setminus L$, i.e. a language that is not TR.
Claim: \(\Sigma \) is uncountable.

Proof: \(\Sigma^* \) is countable (e.g., one can consider ordering strings in increasing order of length), so let an ordering of \(\Sigma^* \) be
\[
\Sigma^* = \{ w_1, w_2, w_3, w_4, \ldots \}.
\]
For any language \(L \subseteq \Sigma^* \), \(L \in \mathcal{A} \), let \(r(L) \) be the real number in \([0,1]\) defined as
\[
r(L) = 0.b_1b_2b_3b_4 \ldots \quad b_i \in \{0,1\} \quad \forall \ i \geq 1
\]
where
\[
b_i = \begin{cases}
1 & \text{if } w_i \in L \\
0 & \text{if } w_i \notin L
\end{cases} \quad \forall \ i \geq 1.
\]
This gives a 1-to-1 correspondence between the class of all languages \(\mathcal{A} \) and the set of all reals in \([0,1]\). Since the latter set is uncountable, so is \(\mathcal{A} \).
Claim L is countable.

Proof We note that every language $L \in L$ is T.R. and is accepted by some Turing m/c, say M_L. Let $<M_L>$ be an encoding of the m/c M_L, possibly over a different alphabet Π. We emphasize that $<M_L> \in \Pi^*$ is a finite length string. This gives a 1-to-1 mapping of L into Π^*. Since Π^* is countable, so is L.

Effectively Enumerable Languages

Fix some alphabet Σ. Since Σ^* is countable and any language L is a subset of Σ^*, clearly every language L is countable. I.e. for any language L, there exists an ordering of all strings
in \(L \), say
\[
L = \{ x_1, x_2, x_3, x_4, \ldots \}
\]
However it does not mean that such an ordering can be "obtained" in a "constructive", "algorithmic", "effective" manner.

Def A Turing \(m/c \) with output has (in addition to an input tape) a write-only, one-way output tape. The output tape is blank initially. The \(m/c \) can write symbols on the output tape, left to right, but the \(m/c \) cannot go back and change these output symbols.

Def A language \(L \subseteq \Sigma^* \) is called effectively enumerable if there is a TM with output that (on say empty input) runs forever and
- prints the following on the output tape
 \[x_1 \# x_2 \# x_3 \# x_4 \# \ldots \]

- Here \(\forall i \geq 1, \ x_i \in L \)

- \(\# \notin \Sigma \) is a new separator symbol

- Every \(x \in L \) occurs as \(x = x_j \) for some \(j \geq 1 \).

The definition above captures the notion that there is a "constructive", "algorithmic", "effective" ordering or enumeration of (all) strings in \(L \) (and only those that are in \(L \)). The enumeration is effective in the sense that it can be carried out by a TM.

As we show next, a language is effectively enumerable iff it is Turing-recognizable!

For this reason, TR languages are also referred to as effectively enumerable or
recursively enumerable languages.

Fact \(L \) be a language.

\(L \) is effectively enumerable \(\iff \) \(L \) is Turing recognizable.

Proof of \(\Rightarrow \) Suppose \(L \) is effectively enumerable and let \(M \) be a TM with output that enumerates it. It is easy to construct a TM \(\tilde{M} \) that recognizes \(L \).

On input \(x \), \(\tilde{M} \) simply runs the enumerator \(M \) until the enumerator outputs a string \(x_j \) that equals \(x \). If so, \(\tilde{M} \) accepts.

Otherwise \(\tilde{M} \) runs forever. Clearly,

\(x \in L \Rightarrow x \) occurs as \(x = x_j \) for some \(j \geq 1 \) in the output of the enumerator \(M \).

\(\Rightarrow \tilde{M} \) (eventually) accepts \(x \).
$x \notin L \Rightarrow x \text{ never occurs (as } x = x_j) \text{ in the output of } M.$

$\Rightarrow \tilde{M} \text{ runs forever.}$

Thus \tilde{M} recognizes L. \blacksquare

Proof of \subseteq: Suppose L is Turing-recognizable and $L \subseteq \Sigma^*$. We design an enumerator M for L given a TM \tilde{M} that recognizes L. Let

$$\Sigma^* = \{w_1, w_2, w_3, w_4, \ldots\}$$

be some effective ordering, say simply in increasing order of length.

The enumerator M works in phases. In the k^{th} phase M simulates \tilde{M} on inputs $\{w_1, w_2, \ldots, w_k\}$ for k steps each. If \tilde{M} accepts any of these inputs, M
writes them on its output tape separated by ‘#’ symbol.
This procedure is carried out for $k=1,2,3,\ldots$.

To show that M indeed enumerates L we observe that:

1. M outputs only those strings $x \in \Sigma^*$ that \tilde{M} accepts, i.e. only those strings that are in the language L.

2. If $x \in L$ is any string, then \tilde{M} accepts x, say in k_1 steps. Moreover, $x = w_{k_2}$ for some index k_2. Let $k = \max\{k_1, k_2\}$.

Then in k^{th} phase of the enumerator M, it does simulate \tilde{M} on

$$x = w_{k_2} \quad (\because k \geq k_2, x \in \{w_1, w_2, \ldots, w_k\})$$

for k_1 steps (\because $k \geq k_1$)
and when \(\hat{M} \) accepts, outputs \(x \). Thus every string \(x \in L \) is eventually output by the enumerator. This proves that \(L \) is effectively enumerable.

We are now ready to exhibit a language that is Turing-recognizable but not decidable. We note again that:

Fact \(\Sigma^* \) is effectively enumerable. Let \(\Sigma^* = \{w_1, w_2, w_3, \ldots \} \) denote its effective ordering.

We note an easy but very important fact that the set (or language) of all valid/correct Turing m/c descriptions is effectively enumerable.

Fact \(L_{TM} = \{\langle M \rangle \mid M \text{ is a TM} \} \) is effectively enumerable.
Proof. The enumerator for L_{TM} simply goes through all strings $x \in \Sigma^*$, say in increasing order of length, and outputs x iff $x = \langle M \rangle$ is a valid encoding of some TM M. Note that a TM can check whether a string $x \in \Sigma^*$ is a valid encoding of a TM. \[\square\]

Notation. Henceforth

$\langle M_1 \rangle$, $\langle M_2 \rangle$, $\langle M_3 \rangle$, $\langle M_4 \rangle$, \ldots

will denote an effective enumeration of L_{TM}, i.e., of all Turing m/c descriptions.

Now consider an infinite 2-dimensional matrix shown on the next page.

Its rows are indexed by all TM descriptions $\langle M_i \rangle$, $i \geq 1$.

Columns are indexed by all strings in Σ^* $\langle W_j \rangle$, $j \geq 1$.
The entries of this matrix are in \{YES, NO\} defined as:

\[
\text{Entry}(\langle M_i \rangle, W_j) = \begin{cases}
 \text{YES} & \text{if } M_i \text{ accepts } W_j \\
 \text{NO} & \text{otherwise}
\end{cases}
\]

The "diagonal language" \(L_{\text{Diag}}\) is now defined as:

\[
L_{\text{Diag}} = \left\{ W_i \mid i \geq 1, \text{ } M_i \text{ accepts } W_i \right\}
\]

I.e., the diagonal of the matrix above specifies whether inputs \(W_1, W_2, W_3, \ldots\) are in the language \(L_{\text{Diag}}\) or not (YES means in, NO means out).