Honors Analysis of Algorithms
Practice Exam

Solve all three problems. This is a closed book exam.

Problem 1 (5 points)
Given k lists of integers, each of them sorted and having length n, design an efficient algorithm to merge all the k lists into a single sorted list. What is the running time of your algorithm?

Problem 2 (5 points)
Design a simple algorithm, using a max-heap, that finds the k^{th} smallest integer from a given list of n integers. The algorithm should run in time $O(n \cdot \log k)$.

Note: (1) Of course, we discussed in class (and in Homework 1) a recursive algorithm that solves the problem in $O(n)$ time. You are not allowed to use that algorithm (which is too complicated).

(2) Max-heap is similar to the min-heap that we discussed in class, except that a node holds a value that is larger than the values held by its children.

Problem 3 (10 points)
Recall the greedy algorithm for the Minimum Spanning Tree problem. Given a graph $G(V, E)$ with costs on the edges, the algorithm starts with a graph G' with the same vertex set V and no edges. It considers the edges of $G(V, E)$ in increasing order of their costs and at each step, decides whether to add an edge $e = (u, v)$ to G'. Let T_1, T_2, \ldots, T_s denote the connected components of G' just before considering the edge $e = (u, v)$. The algorithm needs to perform two operations:

- **Check-Components**: Check whether u, v belong to the same connected component of G'. If they do, ignore the edge $e = (u, v)$.

- **Merge-Components**: If u, v belong to different connected components, merge the two connected components into a single connected component and add the edge $e = (u, v)$ to G'.

When the algorithm terminates, G' is a minimum spanning tree of $G(V, E)$. We propose a data-structure that allows efficient implementation of the two operations above. Each connected component T is maintained as a rooted tree (denoted again as T). Initially, there are n singleton trees, one for each vertex of $G(V, E)$. To merge two trees T_1 and T_2, supposing that $|T_1| \geq |T_2|$, we make the root of T_2 a child of the root of T_1, and the root of T_1 becomes the root of the merged tree.

- **Show that the height of any tree T is at most $\log |T|$**.

- **Give an upper bound on the time required to implement either of the two operations above. If $G(V, E)$ has n vertices and m edges, what is the total running time to find a minimum spanning tree?**