
G22.3520: Honors Analysis of Algorithms

Problem Set 6+7

Solutions for most of the problems

For all problems, the alphabet Σ = {0, 1}.

Problem 1

Solve Problem 4 from: http://www.cs.nyu.edu/courses/fall07/G22.3520-001/ps2.pdf

Note: This is the problem about the algorithm A(S).

Problem 2 (Pumping Lemma for regular languages)

Consider a DFA with n states and suppose x is a string accepted by the DFA with |x| > n. Show
that x can be written as x = uvw (i.e. concatenation of three strings u, v, w) such that |v| > 0 and
uviw is accepted by the DFA for every integer i ≥ 0 (i.e. concatenation of u, v repeated i times,
and w).

Using this lemma, prove that {0k1k | k ≥ 1} is not a regular language.

Proof: Consider the path of length |x| that takes the DFA from the starts state q0 to an accept
state qf . Since |x| > n, there must be a state q that repeats itself on the path. Write x = uvw
where u takes the DFA from q0 to q, then v takes the DFA from q to itself, and then w takes the
DFA from q to qf . Clearly, |v| > 0, and for every i ≥ 0, the string uviw takes the DFA from q0 to
qf , and hence is accepted by the DFA.

Now suppose on the contrary that L = {0k1k | k ≥ 1} is regular and is accepted by a DFA with n
states. Consider the string x = 0n1n ∈ L. By the pumping lemma, one can write x = uvw, |v| > 0
and uviw ∈ L ∀ i ≥ 0. Note however that this is a contradiction since no matter what the partition
x = uvw is, the string uv2w 6∈ L. Depending on what/where v is, the string uv2w either contains
more zeros than ones, or more ones than zeros, or a substring of type 011∗0.

Problem 3

The standard procedure for converting an NFA to an equivalent DFA yields an exponential blowup
in the number of states. That is, if the original NFA has n states, then the resulting DFA has 2n

states. In this problem, you will show that such an exponential blowup is necessary in the worst
case.

Define Ln = {w : The nth symbol from the right is 1}.

1. Give an NFA with n+ 1 states that recognizes Ln.

2. Prove that any DFA with fewer than 2n states cannot recognize Ln. Hint: Let M be any DFA
with fewer than 2n states. Start by showing that there exist two different strings of length n
that drive M to the same state.

1

Proof: Let M be any DFA with fewer than 2n states. We will show that M cannot recognize Ln.
Since there are 2n strings of length n, by the Pigeonhole Principle, there are two different strings
x = x1x2 · · ·xn and y = y1y2 · · · yn that drive M to the same state. Since x 6= y, there is some
i such that xi 6= yi. Without loss of generality, say that xi = 1 and yi = 0. Let x′ = x0i−1 and
y′ = y0i−1. It is easy to see that x′ ∈ Ln and y′ 6∈ Ln. However, since x and y drive M to the same
state, it is clear that x′ = x0i−1 and y′ = y0i−1 also drive M to the same state, yet x′ ∈ Ln and
y′ 6∈ Ln. Therefore M cannot recognize Ln.

Problem 4

If A is a language, let A− 1
2

be the set of all first halves of strings in A, i.e.

A− 1
2

= {x | for some y, |x| = |y|, and xy ∈ A}.

Show that if A is regular, so is A− 1
2
. Hint: Run two DFAs “in parallel”, one forward and the other

backward.

Solution: Given a DFA M that accepts A, we construct an NFA M ′ that accepts A 1
2
−. The basic

idea is as follows: to decide whether a string x ∈ A 1
2
−, we non-deterministically choose y such that

|x| = |y|. We simulate M on x and at the same time simulate M backwards on string y. The
simulation on x starts with the start state of M (call it q0) whereas the simulation on y starts with
some accept state of M (call it qf). We accept iff both simulations reach the same state of M (call
it q). Thus we accept iff x takes the DFA from q0 to q and y takes it from q to qf . Since qf is an
accept state of M , we ensure that xy ∈ A. The simultaneous simulation on x and y is carried out
by the cartesian product construction, similar to proof of Theorem 1.2 in Sipser’s book.

Formally, if (Q,Σ, δ, q0, F) describes the DFA M , then the NFA M ′ = (Q′,Σ, δ′, qstart, F
′) is

defined as follows:

• Q′ = Q×Q ∪ {qstart}.

• F ′ = {(q, q) | q ∈ Q}.

• There is ε-move from qstart to all the states in {(q0, qf) | qf ∈ F}. These are the only moves
possible from qstart.

• There is a move from (q1, q2) to (q3, q4) on input symbol a ∈ Σ iff δ(q1, a) = q3 and δ(q4, b) =
q2 for some b ∈ Σ. Formally,

(q3, q4) ∈ δ′((q1, q2), a) iff δ(q1, a) = q3 and ∃ b ∈ Σ s.t. δ(q4, b) = q2

Problem 5

For a language A, let SUFFIX(A) denote the set of all suffixes of strings in A, i.e.

SUFFIX(A) = {v | uv ∈ A for some string u}.

Show that if A is a context-free language, so is SUFFIX(A). Hint: Design a PDA.

2

Solution: Let A be a context-free language recognized by a PDA M . We will construct a PDA
R that recognizes SUFFIX(A). On input v, the PDA R works in two phases. The first phase
operates without looking at the input. The PDA non-deterministically generates a symbol a ∈ Σ
and simulates (one or more) steps of M until the symbol a is read. The PDA repeats this sequence
of moves (as many times as it wishes). It non-deterministically decides when to switch to second
phase. In the second phase, the PDA looks at the input v and simulates M on v.

Note that R accepts v if and only if there exists u ∈ Σ∗ such that M accepts uv. The string u
(and its length!) is ”guessed”.

Problem 6

Show that the following languages are decidable:

1. INFINITEDFA = {〈D〉 | D is a DFA such that L(D) is infinite}.

2. L = {〈R,S〉 | R and S are regular expressions such that L(R) ⊆ L(S)}.

Solution: Using the proof of pumping lemma from Problem 2, it is clear that L(D) is infinite if
and only if there is a state q of the DFA such that (i) q is reachable from the start state q0 (ii)
some accept state is reachable from q (iii) q is on some non-trivial cycle. All three conditions can
be checked for every state q using standard algorithms.

Solution: We observe that L(R) ⊆ L(S) if and only L(R) ∩ L(S) = ∅. Therefore the following
TM decides

L = {〈R,S〉 : R and S are regular expressions and L(R) ⊆ L(S)} .

On input 〈R,S〉:

1. Construct a DFA D such that L(D) = L(R) ∩ L(S).

2. Run a TM T that decides EDFA on input 〈D〉 (i.e. decides whether L(D) is empty. We did
this in class).

3. If T accepts, output ACCEPT. If T rejects, output REJECT.

Problem 7

In this problem, we explore the notion of oracle reducibility. If A is a language, then a Turing
machine with oracle A is a Turing machine with a “magical” subroutine that decides membership
in A. In other words, the subroutine, when given a string w, tells the machine whether or not
w ∈ A. Let

HALTTM = {〈M,x〉 | M is a Turing machine that halts on x}.

Show that there is a Turing machine with oracle HALTTM that decides the following problem with
only two questions to the oracle: Given three (machine, input) pairs 〈M1, x1〉 , 〈M2, x2〉 , 〈M3, x3〉,
decide for each pair whether the Turing machine halts on the corresponding input.

Note: This is trivial if one allows three questions. Just ask the oracle whether 〈Mi, xi〉 ∈ HALTTM

for i = 1, 2, 3.

3

Solution: Suppose that exactly k of the machines {M1,M2,M3} halt on corresponding inputs.
The idea is to figure out the value of k. Once we know k, we can decide which ones halt: simply
simulate the three machines on corresponding inputs simultaneously (one step of every machine at
a time), and halt when exactly k of them halt. Since we know k, we are guaranteed to halt.

This is how we figure out the value of k. First construct a machine M that simulates the three
machines on corresponding inputs simultaneously and halts if at least two of them halt. Now decide
whether M halts by asking the oracle.
(Case 1): If M halts, we know that k ≥ 2. By running the machines simultaneously again, we
figure out which two of the machines halt. Then by asking the oracle, we can figure out whether
the third machine halts.
(Case 2): If M does not halt, we know that k ≤ 1. Construct a machine M ′ that simulates
the three machines on corresponding inputs simultaneously and halts if at least one of them halts.
Decide whether M ′ halts by asking the oracle. If M ′ halts, then we know that k = 1. If M ′ does
not halt, we know that k = 0.

Problem 8

Show that the collection of Turing-recognizable languages is closed under the operation of (a) union
(b) concatenation (c) star and (d) intersection. What about complementation operation ?

Solution:

(a) Let L1 and L2 be two Turing-recognizable languages, and let M1 and M2 be TMs that recognizes
L1 and L2 respectively. We construct a TM M that recognizes L1 ∪ L2: On input w,

1. Run M1 and M2 on w “in parallel”. That is, in each step, M runs one step of M1 and one
step of M2.

2. If either of M1 and M2 accepts, output ACCEPT. If both reject, output REJECT.

If M1 or M2 accepts w, then M will halt and accept w since M1 and M2 are run in parallel and
an accepting TM will halt and accept w in a finite number of steps. If both M1 and M2 reject w,
then M will reject w. If neither M1 nor M2 accepts w and one of them loops on w, then M will
loop on w. Thus L(M) = L1 ∪ L2, and Turing-recognizable languages are closed under union.

(b) Let L1 and L2 be two Turing-recognizable languages, and letM1 andM2 be TMs that recognizes
L1 and L2 respectively. We construct a NTM N that recognizes L1 ◦ L2: On input w,

1. Nondeterministically split w into two parts w = xy.

2. Run M1 on x. If it rejects, halt output REJECT. If it accepts, go to Step 3.

3. Run M2 on w. If it accepts, output ACCEPT. If it rejects, output REJECT.

If w ∈ L1 ◦ L2, then there is a way to split w into two parts w = xy such that x ∈ L1 and y ∈ L2,
thus, M1 halts and accepts x, and M2 halts and accepts y. Hence at least one branch of N will
accept w. On the other hand, if w 6∈ L1 ◦ L2, then for every possible splitting w = xy, x 6∈ L1 or
y 6∈ L2, so M1 does not accept x or M2 does not accept y. Thus, all branch of N will reject w.
Therefore, L(N) = L1 ◦ L2, and Turing-recognizable languages are closed under concatenation.

(c) Let L be a Turing-recognizable languages, and let M be a TM that recognizes L. We construct
a TM M ′ that recognizes L∗: On input w,

4

1. Nondeterministically choose an integer k and split w into k parts w = w1w2 · · ·wk.

2. Run M on each wi. If M accepts all of w1, . . . , wk, output ACCEPT. If M rejects one of
w1, . . . , wk, output REJECT.

If w ∈ L∗, then there is a splitting of w = w1w2 . . . wk such that wi ∈ L for each i, and thus
at least one branch of M ′ will accept w. On the other hand, if w 6∈ L∗, then for every possible
splitting w = w1w2 . . . wk, wi 6∈ L for at least one i, thus all branches of M ′ will reject w. Therefore,
L(M ′) = L∗, and Turing-recognizable languages are closed under the star operation.

(d) Let L1 and L2 be two Turing-recognizable languages, and letM1 andM2 be TMs that recognizes
L1 and L2 respectively. We construct a TM M that recognizes L1 ∩ L2: On input w,

1. Run M1 on w. If it rejects, halt and output REJECT. If it accepts, go to Step 2.

2. Run M2 on w. If it accepts, output ACCEPT. If it rejects, output REJECT.

Clearly L(M) = L1 ∩ L2, and thus Turing-recognizable languages are closed under intersection.

(e) Not closed under complementation. Suppose it were true that whenever L is Turing-recognizable,
so is L. So whenever L is Turing-recognizable, then both L,L would be Turing-recognizable, and
hence L would be decidable (as proved in class). This is a contradiction since there exists a language
that is Turing-recognizable but not decidable, e.g. the language ATM .

Problem 9

Show that every context free language is in P. In other words, for any fixed grammar G, design
a polynomial time algorithm to test whether a given string w is generated by the grammar. The
algorithm should run in time polynomial in |w|. The size of the grammar itself is thought of as
a constant. Hint: Use dynamic programming. Assume w.l.o.g. that the grammar is in Chomsky
normal form.

Problem 10

Show that P is closed under the star operation (Hint: Use dynamic programming.) Recall that for
a language L,

L∗ = {x1x2 . . . xk | k ≥ 0, xi ∈ L ∀1 ≤ i ≤ k}

Solution: We show that P is closed under the star operation by dynamic programming. Let
L ∈ P, and let A be a polynomial-time algorithm that decides L. We construct a polynomial-time
algorithm B that decides L∗, as follows. On input w = w1 · · ·wn, algorithm B constructs a table
T such that T [i, j] = 1 if wi · · ·wj ∈ L∗, and T [i, j] = 0 otherwise. Details follow.

Algorithm B:

On input w = w1 · · ·wn,

1. If w = ε, output ACCEPT and halt.

5

2. Initialize T [i, j] = 0 for each 0 ≤ i ≤ j ≤ n.

3. For i = 1 to n: 1

(a) Run M on wi to decide whether wi ∈ L.

(b) If wi ∈ L, then set T [i, i] = 1.

4. For ` = 2 to n: 2

For i = 1 to n− `+ 1: 3

(a) Let j = i+ `− 1. 4

(b) Run M on wi · · ·wj to decide whether wi · · ·wj ∈ L.

(c) If wi · · ·wj ∈ L, then set T [i, j] = 1.

(d) For k = i to j − 1: 5

If T [i, k] = 1 and T [k, j] = 1, then set T [i, j] = 1.

5. Output ACCEPT if T [1, n] = 1; else output REJECT. 6

It is not hard to see that Algorithm B correctly decides L∗ provided that Algorithm A correctly
decides L. Moreover, Algorithm B runs in O(n3) stages, and each stage takes polynomial-time as
A runs in polynomial-time. Therefore, Algorithm B is a polynomial-time algorithm that decides
L∗.

Problem 11 (Do not submit)

Show that these problems are NP-complete (you can assume that SAT and CLIQUE are NP-
complete).

1. DOUBLE-SAT = {〈φ〉 | φ is a boolean formula that has at least two satisfying assignments}.

2. HALF-CLIQUE = {〈G〉 | G is a graph with a clique of size at least |G|/2}.

Solution: Clearly Double-SAT ∈ NP, since a NTM can decide Double-SAT as follows: On input
a Boolean formula ϕ(x1, . . . , xn), nondeterministically guess 2 assignments and verfify whether
both satisfy ϕ. To show that Double-SAT is NP-Complete, we give a reduction from SAT to
Double-SAT, as follows:

On input ϕ(x1, . . . , xn):

1. Introduce a new variable y.

2. Output formula ϕ′(x1, . . . , xn, y) = ϕ(x1, . . . , xn) ∧ (y ∨ y).

1Test each substring of length 1
2` is the length of the substring
3i is the start position of the substring
4j is the end position of the substring
5k is the split position
6T [1, n] = 1 if and only if w = w1 · · ·wn ∈ L∗.

6

If ϕ(x1, . . . , xn) ∈ SAT , then ϕ has at least 1 satisfying assignment, and therefore ϕ′(x1, . . . , xn, y)
has at least 2 satisfying assignments as we can satisfy the new clause (y ∨ y) by assigning either
y = 1 or y = 0 to the new variable y, so ϕ′(x1, . . . , xn, y) ∈ Double-SAT. On the other hand,
if ϕ(x1, . . . , xn) 6∈ SAT , then clearly ϕ′(x1, . . . , xn, y) = ϕ(x1, . . . , xn) ∧ (y ∨ y) has no satisfying
assignment either, so ϕ′(x1, . . . , xn, y) 6∈ Double-SAT. Therefore, SAT ≤P Double-SAT, and hence
Double-SAT is NP-Complete.

Solution: Clearly Half-CLIQUE ∈ NP, since a NTM can decide Half-CLIQUE as follows: On
input a graph G, nondeterministically choose at least n/2 nodes and verfiy whether they form
a clique. To show that Half-CLIQUE is NP-Complete, we give a reduction from CLIQUE to
Half-CLIQUE, as follows:

On input 〈G, k〉, where G is a graph on n vertices and k is an integer:

1. If k = n/2, then output 〈G〉.

2. If k < n/2, then construct a new graph G′ by adding a complete graph with n− 2k vertices
and connecting them to all vertices in G, and output 〈G′〉.

3. If k > n/2, then construct a new graph G′′ by adding 2k − n isolated vertices7 to G, and
output 〈G′′〉.

When k = n/2, it is clear that 〈G,n/2〉 ∈ CLIQUE if and only if 〈G〉 ∈ Half-CLIQUE.
When k < n/2, if G has a k-clique, then G′ has a clique of size k + (n − 2k) = (2n − 2k)/2,

and therefore 〈G′〉 ∈ Half-CLIQUE as G′ is a graph with 2n − 2k vertices. Conversely, if 〈G′〉 ∈
Half-CLIQUE, that is, if G′ has a clique of size n − k = k + (n − 2k), then at most n − 2k of the
clique come from the n− 2k new vertices. Therefore the remaining at least k vertices form a clique
in G, and hence 〈G, k〉 ∈ CLIQUE.

When k > n/2, if G has a k-clique, then G′′ has a clique size k = 2k/2, and therefore 〈G′〉 ∈
Half-CLIQUE as G′′ is a graph with n+ 2k−n = 2k vertices. Conversely, if 〈G′′〉 ∈ Half-CLIQUE,
that is, if G′′ has a clique of size k, then the clique does not contain any of the new vertices as they
are isolated. Thus the clique is a k-clique of G, and hence 〈G, k〉 ∈ CLIQUE.

Problem 12

Let {x1, x2, . . . , xn} be boolean variables. A literal is either a variable or its negation, i.e. xi or xi.
A clause is logical OR of one or more distinct literals. The size of a clause is the number of literals
in it. A 2CNF formula φ is a collection of m clauses (possibly with repetition),

φ = (C1, C2, . . . , Cm)

where each Ci is of size at most two. Let MAX-2SAT be the following decision problem: Given a
pair (φ, k) where φ is a 2CNF formula with n variables and m clauses, and k is a positive integer
such that k ≤ m, decide whether there exists an assignment to the n boolean variables that satisfies
at least k clauses. Show that MAX-2SAT is NP-complete, by giving a polynomial time reduction
from VERTEX COVER.

7An isolated vertice is one which is not adjacent to any other vertex.

7

Recall that VERTEX COVER is a problem where, given an undirected graph G = (V,E), with
|V | = n, and given a positive integer ` ≤ n, one needs to decide whether G has a vertex cover of
size at most `. A vertex cover is a subset V ′ ⊆ V such that for every edge in E, at least one of its
endpoints is included in V ′.

Hint: To every vertex in the graph, assign a boolean variable which is intended to be TRUE if and
only if the vertex is included in the vertex cover. Add clauses of size two corresponding to the edges,
and clauses of size one corresponding to the vertices. The clauses corresponding to edges may need
to be repeated a number of times.

Solution: It appears as Problem-2 here:
http://www.cs.nyu.edu/web/Academic/Graduate/exams/sample/algs f07 ans.pdf

8

