(G22.3520: Honors Analysis of Algorithms
Problem Set 445
Solutions

Problem 1

a) Perform binary search on each full array until the element is found. The worst-case run time is to do
binary-search on each of the log(n) arrays which takes at most log®(n) time.

b)The insertion is quite similar with the incrementing binary counter. When we insert an element, the
binary representation of n changes exactly the way the binary counter does. For all ¢ digits on the right
that change from 1 to 0, we merge the t arrays (pairwise) to get an array of size 2!+ which we associate
with the ¢ + 1st digit which now becomes 1. The cost of this insertion is O(2") (recall: merging two sorted
arrays of size m takes O(m) time). The worst case occurs when n = 21 after the insertion (a 1 followed
by all Os in the binary representation). The cost in this case is O(n).

For the amortized cost we define the following negative potential function: ®(D) = — Zle i|A;| where

k = log(n) and |A;| is the size of the array corresponding to bit ¢ in the binary representation of n (i.e.
|A;| = 0 or |A;| = 271). For any operation j, the true cost of the operation is ¢; = O(2") and the change in
potential is
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where |A]| are the new array lengths and |A;| are the old array lengths and ¢ is the number of 1s to the
right that change to 0. Therefore the accounted cost of an operation is é; = ¢; + ®(D;) — ®(D;_1) =0 (we
need to scale ® by some appropriate constant to make this work). Recall that the total cost of any n

operations is:
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Therefore the amortized cost per operation is log(n).
Alternatively, we can use the aggregate method to show an O(logn) amortized upper bound. As we
described above, any insertion takes time 2!+! if we have ¢ consecutive 1s in the least significant bits of the
binary representation of n. This happens though at most 57+ times for a sequence of n insertions. This

means that the total cost of n operations is bounded by Zf:o 472! which is O(nk) = O(nlogn). If we
divide with the total number of n operations we get O(logn) amortized cost per insert operation.

¢) In order to implement the delete operation, we first search for the element to be deleted following the
steps that we showed above. Then, if we find this element x in array A; we remove it. Let ¢ be the
right-most bit which is a 1 in the binary representation of n. Then take an arbitrary element y from A;
and insert it into A; in the appropriate position (so the number of elements in A; will not change). Now
take the array A, and split it into ¢ — 1 sorted arrays of sizes 1,2, 4,2!~! respectively. These arrays
correspond to the ¢ — 1 right-most bits in the representation of n — 1, which are now 1. This operation may
take O(n) time - for example if n is a power of 2.

Problem 2
a) Perform in-order traversal of the tree rooted at  to get a sorted array of elements. Then we build a
balanced tree out of this array as follows: choose the median element and make it a root. Then recursively



build a left subtree from the portion of the array that’s lower than the median, and a right subtree from
the portion of the array which is greater than the median.

b) If T'(n) is the amount of time that it needs in order to search a n-node a-balanced binary search tree,
then we have T'(n) = 1+ T'(an). If « is a constant then T'(n) = O(logn) (for example, by the master
theorem).

¢)Since ¢ must be a positive constant and given that A(z) is never negative (absolute value), we conclude
that the potential can’t take negative values. By the definition of 1/2-balanced trees we know that for
every vertex z we have size[right[z]] < 3size[z] and size[left[z]] < Jsize[z]. If there existed a vertex x for
which A(z) > 2, then one of the two children, say right[z] would have at least two elements more than
left[z]. This would mean that 2size[right[z]] > size[z] + 1 which in turn means that

size[right[z]] > 1size[z] + 1 which is a contradiction. Therefore A(z) < 2 and ®(T) = 0.

d)The amortized cost is é; = ¢; + ®(D;) — ®(D;_1) and we want it to be O(1). Since after each rebuild we
have ®(D;) = 0 and the rebuilding costs m, we want O(1) = m — ®(D;_1) = ®(D;_1) > m. We want to
find the minimum value of the potential that could cause the need for rebuilding. This would mean that
one of the subtrees, say the right one, would violate the a-balanced constraint and therefore

size[right[z]] > am. We also know that size[right[z]] + size[left[z]] = m — 1 so

size[left[z]] < m — 1 — am. In this case, we have

A(z) = size[right[z]] — size[left[x]] > am — (m — 1 — am) and therefore A(z) > 2am —m + 1.

Summing up all the above we want m < c(am —m +1) = ¢ > #m—rl > i

e)Now that we have shown how to rebuild a subtree in O(1) amortized time, we only need to worry about
the actual cost of an insertion or deletion and about the increase of the potential function. It is easy to see
that the actual cost of these operations is O(logn) just like we showed the same upper bound for searching
above. What remains to be shown is an upper bound for the increase of the potential function after some
insertion or deletion. Such an operation only affects the potential function of the vertices that belong to
the traversed path from the root. To be more specific, the worst case is when the new element is added to
the biggest subtree or deleted from the smallest subtree and therefore leads to an increase of A(z) by one.
Since there are only O(logn) vertices that get affected though, this means that the potential function
cannot increase by more than O(logn) and this proves that the amortized time complexity of both
operations is O(logn).

Problem 3

1)We start from some arbitrary node and perform depth first search!. At each step of this process, we
mark the node that we have just visited and then we check all the “unused” edges from its adjacency list.
If one of these edges (u,v) leads to a node v which is already marked, this can only mean one thing. Since
this edge was not already used although node v was marked, then node v is a predecessor of u in the DFS
tree. This makes it very easy to output the cycle by just traversing the path of the predecessors of u until
we reach v. It is obvious that if a cycle exists within the graph, then a DFS search would inevitably visit
the same vertex twice and since we check every vertex and every edge once, the running time is O(m + n).
2)They can just assign each butterfly to a vertex in a graph and connect the corresponding vertices for
each judgment either with a blue edge if they are believed to be the same or with a red edge if they are
believed to be different. We start by marking some arbitrary vertex with the letter A, implying that the
corresponding butterfly belongs to this species. We then perform breadth first search, marking all adjacent
vertices with different letters from {A, B} if they are connected with red edges and with the same letters
otherwise. If at some point during the execution of the algorithm we try to label some vertex with the
opposite letter from the one that it’s already labelled with, the algorithm rejects the input. If this
algorithm terminates successfully, it returns a consistent classification of the specimens based on the
consistent judgements.

Problem 4
We begin by creating a directed graph which has two vertices for each person P;, one that corresponds to
his birth: “P; born” and one to his death: “P; dead”. We add a directed edge from “P; born’ to “P; dead”

1We follow the exact same procedure for every connected component



implying chronological order. For each fact of type “P; died before P; was born”, we as a directed edge
from “P; dead” to “P; born”. For each fact “the lives of P; and P; overlap” we add one directed edge from
“P; born” to “P; dead”and another edge from “P; born” to “F; dead”.

We then do a topological sort and quit if we find a cycle. It is clear that, if a cycle exists, then there is an
inconsistency (all edges should point to future times). Otherwise, if no cycle exists then a topological sort
orders the sequence of births and deaths in a way that is consistent with all facts.

Problem 5

The initial residual graph is the same as the flow network. The Ford-Fulkerson algorithm could choose the
(s,a,b,t) augmenting path and push a flow of 1 through it. Then it could do the same thing for the path
(s,b,a,t), therefore, after two steps, the residual graph would be similar to the initial one with 999 instead
of 1000. This sequence could continue for another 1998 steps until the residual capacities of the four
peripheral edges become zero, so the running time would be 2000 steps.

Problem 6
See http://www.cs.nyu.edu/courses/fall06/G22.3520-001 /lec20.pdf slides 8-11.

Problem 7

1)Every edge of the matching M must have at least one of its vertices in S. Therefore, every edge in M,
can be mapped to some unique vertex in S.

2)A fully connected graph of three vertices has matchings of size 1 but its vertex cover must be of size at
least two.

3)In order to verify that (U\A) UBUC is a vertex cover, we notice that all possible edges have at least one
of their endpoints in this set. All possible edges must either start from (U\A) and end in W or start from
U and end in B or start from A and end in C.

It is easy to see that the size of this set is equal to the number of edges that cross the minimum cut. We
have exactly |U\A| edges from s to (U\A), exactly |B| edges from B to t and exactly C' edges from A to C.
Therefore, this is the capacity of the cut and it is equal to the value of the maximum flow. Since we
already know that the value of the maximum flow equals the size of the maximum matching, we conclude
that it suffices to just run the Ford-Fulkerson algorithm for the new graph.

Problem 8

We will use a randomized algorithm that colors each vertex uniformly at random. For each edge of the
graph, the probability that this edge is satisfied is % since the only case when it is not satisfied is if both its
vertices are colored with the same color. If X; ; is the indicator variable that is 1 if edge (4, ) is satisfied
and 0 otherwise, then E[X; ;] = 2. The expected number of edges that our algorithm satisfies is therefore
equal to E[X] = E[}_; jjep Xi,;] which by linearity of expectation is equal to

>iper BIXi ] = Z(i,j)eE% = 2|E| which is obviously at least 2c*.

Problem 9

Let us order the bids by, ...,b, in decreasing order. If some bid by modifies the value of b*, it must be
chosen before any of the & — 1 bids by,...,bx_1. There are k! ways to order the first k£ bids and (k — 1)! of
these orderings have her bid by in the first place. This means that the probability that the bid by results in
an update of b* is equal to % If X} is the indicator variable which is 1 if the bid of b affects b* and 0
otherwise, we have that F[X}] = % The expected number of changes of b* is therefore equal to

E[X] = E[}_"" | Xj] which by linearity of expectation is equal to }."" | + = O(logn).

Problem 10

a) The probability that some particular machine will still remain idle is equal to (%)k Therefore, if we

let a random variable X; be an indicator variable for machine i being idle, then E[X;] = (£-1)* and
N(k) = E[}. X;] = k(1) and therefore % = (E1)*. The limit of this fraction as k goes to infinity is

@ =



b)Since the number of jobs that are assigned is equal to the number of machines, the number of jobs that
get rejected must be equal to the number of machines that remain idle. Based on the previous subproblem
we conclude that the limit is again equal to 1.

c)We first calculate the expected number of rejected jobs for each machine and then add them to find the
value of Ra(k). Since the size of the buffer is now 2, in order to have i rejected jobs from some machine,
there must have been exactly i + 2 jobs assigned to it. If we count all possible ways that this can happen
we get that the expected number of rejections per machine is equal to
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We notice that the first part of the sum resembles the expected value of the binomial distribution and the
second part resembles the probability of the binomial distribution. For the specific case that we are
working on, both these would be equal to 1 and we only need to deal with the missing values for ¢ = 0, 1, 2.
After some computations we conclude that the expected number of rejections per machine is equal to

—1+2(1 = 4)"+ (1 — £)*71. By once again using the same arguments as above we conclude that

limy oo 220 = 2 — 1.

Problem 11

See http://www.cs.nyu.edu/courses/fall06/G22.3520-001 /lec15.pdf for an O(|V| + |E|) algorithm. Here we
give a simpler poly-time algorithm.

To begin with, we perform a depth first search from each vertex and we aggregate all the child vertices that
we reached to the root after backtracking. This way, in polynomial time, for each vertex we have a list of
all the vertices that can be reached from it through directed paths. We we pick some arbitrary vertex

u € V. For every vertex v in the reachability list of u, we check if u also exists in the reachability list of v.
We put u along with all the vertices of its list which prove to be equivalent with it in a set P;. We delete
all the vertices of P, from V and continue by picking an arbitrary next vertex and repeating the above
process, defining one new set P; each time.

Now that we have a decomposition of the graph into strongly directed components, we assume that there
exists some directed cycle in the induced graph G’. It is easy to see that if we have an edge in G’ between
two sets P; and P, this means that there exists a directed path from every vertex of the first set to every
vertex of the second set. This obviously means that the existence of a directed cycle in G’ implies the
existence of a directed cycle in G which passes through vertices that are not equivalent. This can’t be true
though, since all vertices that belong to a directed cycle must be equivalent with eachother and therefore
G’ must be acyclic.



Solution: Let A be a context-free language recognized by a PDA M. We will construct a PDA
R that recognizes SUFFIX(A). On input v, the PDA R works in two phases. The first phase
operates without looking at the input. The PDA non-deterministically generates a symbol a € X
and simulates (one or more) steps of M until the symbol a is read. The PDA repeats this sequence
of moves (as many times as it wishes). It non-deterministically decides when to switch to second
phase. In the second phase, the PDA looks at the input v and simulates M on v.

Note that R accepts v if and only if there exists u € ¥* such that M accepts uv. The string u
(and its length!) is ”guessed”.

Problem 6

Show that the following languages are decidable:
1. INFINITEppa = {(D) | D is a DFA such that L(D) is infinite}.

2. L={(R,S) | R and S are regular expressions such that L(R) C L(S)}.

Solution: Using the proof of pumping lemma from Problem 2, it is clear that L(D) is infinite if
and only if there is a state ¢ of the DFA such that (i) g is reachable from the start state go (ii)
some accept state is reachable from ¢ (iii) ¢ is on some non-trivial cycle. All three conditions can
be checked for every state ¢ using standard algorithms.

Solution: We observe that L(R) C L(S) if and only L(R) N L(S) = (. Therefore the following
TM decides

L={(R,S): R and S are regular expressions and L(R) C L(S)}.

On input (R, S):

1. Construct a DFA D such that L(D) = L(R) N L(5).

2. Run a TM T that decides Eppa on input (D) (i.e. decides whether L(D) is empty. We did
this in class).

3. If T accepts, output ACCEPT. If T rejects, output REJECT.

Problem 7

In this problem, we explore the notion of oracle reducibility. If A is a language, then a Turing
machine with oracle A is a Turing machine with a “magical” subroutine that decides membership
in A. In other words, the subroutine, when given a string w, tells the machine whether or not
w e A. Let

HALTty = {(M,z) | M is a Turing machine that halts on z}.

Show that there is a Turing machine with oracle HALT Tyt that decides the following problem with
only two questions to the oracle: Given three (machine, input) pairs (M, x1), (Ma, x9) , (Ms, z3),
decide for each pair whether the Turing machine halts on the corresponding input.

Note: This is trivial if one allows three questions. Just ask the oracle whether (M;, x;) € HALT 1\
fori=1,2,3.



Solution: Suppose that exactly k of the machines {Mj, My, M3} halt on corresponding inputs.
The idea is to figure out the value of k. Once we know k, we can decide which ones halt: simply
simulate the three machines on corresponding inputs simultaneously (one step of every machine at
a time), and halt when exactly k of them halt. Since we know k, we are guaranteed to halt.

This is how we figure out the value of k. First construct a machine M that simulates the three
machines on corresponding inputs simultaneously and halts if at least two of them halt. Now decide
whether M halts by asking the oracle.

(Case 1): If M halts, we know that k£ > 2. By running the machines simultaneously again, we
figure out which two of the machines halt. Then by asking the oracle, we can figure out whether
the third machine halts.

(Case 2): If M does not halt, we know that & < 1. Construct a machine M’ that simulates
the three machines on corresponding inputs simultaneously and halts if at least one of them halts.
Decide whether M’ halts by asking the oracle. If M’ halts, then we know that k = 1. If M’ does
not halt, we know that k = 0.

Problem 8

Show that the collection of Turing-recognizable languages is closed under the operation of (a) union
(b) concatenation (c¢) star and (d) intersection. What about complementation operation ?

Solution:

(a) Let Ly and Lo be two Turing-recognizable languages, and let M7 and Ms be TMs that recognizes
Ly and L respectively. We construct a TM M that recognizes Ly U Lo: On input w,

1. Run M; and My on w “in parallel”. That is, in each step, M runs one step of M; and one
step of Mo.

2. If either of M7 and My accepts, output ACCEPT. If both reject, output REJECT.

If M, or My accepts w, then M will halt and accept w since M and M, are run in parallel and
an accepting TM will halt and accept w in a finite number of steps. If both M; and My reject w,
then M will reject w. If neither M; nor My accepts w and one of them loops on w, then M will
loop on w. Thus L(M) = L; U Lo, and Turing-recognizable languages are closed under union.

(b) Let L1 and Lo be two Turing-recognizable languages, and let M7 and My be TMs that recognizes
L and Ls respectively. We construct a NTM N that recognizes L1 o Lo: On input w,

1. Nondeterministically split w into two parts w = xy.
2. Run Mj on z. If it rejects, halt output REJECT. If it accepts, go to Step 3.
3. Run Ms on w. If it accepts, output ACCEPT. If it rejects, output REJECT.

If w € Ly o Lo, then there is a way to split w into two parts w = zy such that z € L; and y € Lo,
thus, M; halts and accepts x, and Ms halts and accepts y. Hence at least one branch of N will
accept w. On the other hand, if w & L; o Lg, then for every possible splitting w = zy, x & L; or
y & Lo, so My does not accept x or Ms does not accept y. Thus, all branch of N will reject w.
Therefore, L(N) = L1 o Lo, and Turing-recognizable languages are closed under concatenation.

(c) Let L be a Turing-recognizable languages, and let M be a TM that recognizes L. We construct
a TM M’ that recognizes L*: On input w,



1. Nondeterministically choose an integer k and split w into k parts w = wyws - - - wy.

2. Run M on each w;. If M accepts all of wy,...,wk, output ACCEPT. If M rejects one of
wy, ..., wg, output REJECT.

If w € L*, then there is a splitting of w = wjws ... wy such that w; € L for each ¢, and thus
at least one branch of M’ will accept w. On the other hand, if w ¢ L*, then for every possible
splitting w = wyws . . . wy, w; € L for at least one 4, thus all branches of M’ will reject w. Therefore,
L(M') = L*, and Turing-recognizable languages are closed under the star operation.

(d) Let L1 and L9 be two Turing-recognizable languages, and let M7 and My be TMs that recognizes
L and Lo respectively. We construct a TM M that recognizes L1 N Lg: On input w,

1. Run M; on w. If it rejects, halt and output REJECT. If it accepts, go to Step 2.
2. Run M, on w. If it accepts, output ACCEPT. If it rejects, output REJECT.

Clearly L(M) = L1 N Ls, and thus Turing-recognizable languages are closed under intersection.

(e) Not closed under complementation. Suppose it were true that whenever L is Turing-recognizable,
so is L. So whenever L is Turing-recognizable, then both L, L would be Turing-recognizable, and
hence L would be decidable (as proved in class). This is a contradiction since there exists a language
that is Turing-recognizable but not decidable, e.g. the language Aryy.

Problem 9

Show that every context free language is in P. In other words, for any fixed grammar G, design
a polynomial time algorithm to test whether a given string w is generated by the grammar. The
algorithm should run in time polynomial in |w|. The size of the grammar itself is thought of as
a constant. Hint: Use dynamic programming. Assume w.l.o.g. that the grammar is in Chomsky
normal form.

Problem 10

Show that P is closed under the star operation (Hint: Use dynamic programming.) Recall that for
a language L,
L* :{:L'll'g...l‘k | k>0, z; € LV1 S’LSk}

Solution: We show that P is closed under the star operation by dynamic programming. Let
L € P, and let A be a polynomial-time algorithm that decides L. We construct a polynomial-time
algorithm B that decides L*, as follows. On input w = w; - - - w,, algorithm B constructs a table
T such that T[i, j] = 1 if w; ---w; € L*, and T7i, j] = 0 otherwise. Details follow.

Algorithm B:
On input w = wy - - - Wy,

1. If w = ¢, output ACCEPT and halt.
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