
CSCI-GA.3520-001: Honors Analysis of
Algorithms

Final Exam, Dec 18, 2023, 9:00am-1:00pm

• This is a four hour exam. There are six questions, worth 10 points each.
Answer all questions and all their subparts.

• No access is allowed to textbooks, course notes, any other written or
published materials, any online materials, and any other materials stored
on devices.

• In the past years, to pass this exam, one needed to answer 3 or 4 problems
well, instead of answering all the problems poorly.

• You must submit separate answers for separate questions.

• Read the questions carefully. Keep your answers legible, and brief but
precise. Assume standard results and algorithms (i.e., those taught or
referred to in class or homeworks).

• You must prove correctness of your algorithm and prove its time bound
unless stated otherwise. The algorithm can be written in plain English
(preferred) or as a pseudo-code.

1

Problem 1

A {0, 1}-Integer Programming instance Φ consists of variables x1, . . . , xn that
can take integer values 0 or 1 and a collection of m linear constraints (i.e.
inequalities). For 1 6 i 6 m, the ith constraint is

n∑
j=1

aijxj > ci.

Here aij , ci are also integers. The instance is said to be B-bounded if |aij | 6 B
for all i, j. Here B is thought of as a fixed constant (such as 10), but you are
allowed to choose it as convenient. The instance has a solution if there is a
{0, 1}-assignment to the variables that satisfies all constraints. Let

B-bounded-{0,1}-IP = {Φ | Φ is a B-bounded {0,1}-integer program

that has a solution}.

Show that B-bounded-{0,1}-IP is NP-complete for some fixed constant B (that
you are allowed to choose).

Problem 2

Given a directed graph G(V,E) (no self-loops), a directed walk is a sequence of
vertices

(v1, v2, . . . , vk)

such that k > 1 and (vi, vi+1) ∈ E for every 1 6 i 6 k − 1. Note that the k
vertices on the walk need not all be distinct and k = 1 is a legitimate possibility.
Two directed walks are considered different if the two corresponding sequences
are different.

Assume that G(V,E) is given in its adjacency list representation and |V | = n.

a. Design a O(|V |+ |E|) time algorithm that:

• Outputs YES if there are at least 2n different directed walks in the
graph.

• Outputs NO if the number of different directed walks in the graph
is at most 2n − 1. In this case, the algorithm also outputs the exact
number of different directed walks.

b. Give an example of a n-vertex directed graph that has exactly 2n − 1
different directed walks.

2

Problem 3

Let T (V,E) be a tree on n vertices. Recall that a tree is a connected, undirected
graph with no cycles.

A subset of vertices Z ⊆ V is called short-gapped if for any two vertices x, y ∈
Z, on the unique path from x to y in the tree T , no two consecutive ver-
tices are outside of Z. In other words, for any two vertices x, y ∈ Z, if
x = v1, v2, . . . , vk−1, vk = y is the unique x to y path in T , then for every
i, 1 6 i 6 k − 1, either vi ∈ Z or vi+1 ∈ Z (or both).

Now suppose that every vertex v ∈ T has an associated integer weight weight(v),
which could be zero, positive, or negative. Give a polynomial time algorithm to
find a subset Z of vertices that is short-gapped and has maximum total weight.

Example: In the tree below, the max-weight short-gapped subset consists of the
vertices with weights 3,−2, 5, 2.

-2

-3

2-15

3

Hint: Assume, without loss of generality, that the tree is rooted (as in the ex-
ample above).

3

Problem 4

A Horn-3SAT instance is a specialized form of a 3SAT instance where each
clause can have at most one negated variable and a clause can have one, two,
or three literals. That is, the instance consists of Boolean variables x1, . . . , xn
and m clauses where each clause is of one of six types (the indices i, j, k are
distinct):

xi, xi, xi ∨ xj , xi ∨ xj , xi ∨ xj ∨ xk, xi ∨ xj ∨ xk.

a. Give a polynomial time algorithm to decide whether a given Horn-3SAT
instance has a satisfying assignment.

Hint: The algorithm could proceed depending on whether there is a clause
of the type xi.

b. Suppose that a Horn-3SAT instance has only three types of clauses (again,
the indices i, j, k are distinct):

xi, xi ∨ xj , xi ∨ xj ∨ xk,

and of each of these three types, there are exactly m
3 clauses. Show that

there exists an assignment to the variables that satisfies at least a β frac-
tion of clauses where 0 < β < 1 is a constant that you must explicitly
specify. For full credit, you need to give the largest such value of β (but
no need to prove that this is indeed the largest such value).

4

Problem 5

a. Let A be an n × n matrix, which has at most ra non-zero entries. De-
sign a scheme, possibly randomized, to store the matrix and support the
following operations.

• Update entry (i, j) in expected O(1) time. Here update should allow
changing the entry, adding the entry if not present already, or deleting
the entry (which amounts to making it zero).

• List the non-zero entries in row i in worst case time

O(the number of non-zero entries in row i).

The listing need not be in row order.

• List the non-zero entries in column j in worst case time

O(the number of non-zero entries in column j).

The listing need not be in column order.

In addition, your data structure must use at most O(ra + n) space. In
principle, the numbers ra and rai (introduced below) could keep changing
with additions and deletions, but do not worry about that.

b. Let B be a second n × n matrix, which has at most rb non-zero entries.
Suppose B is stored in the same format as matrix A. Show how to compute
the matrix product C = AB in expected time

O
(
n2 +

n∑
i=1

n∑
j=1

rai
)

= O(n2 + n · ra),

where rai is the number of non-zero entries in A’s ith row. C needs to be
stored in the same format as matrices A and B.

5

Problem 6

Consider the following sorting algorithm. You can assume that all items are
distinct.

Input: a set of ns > 0 sorted items and a set of nu unsorted items.

If nu = 0 then return the sorted set. Otherwise:

Case 1. ns > nu.
Then let p be the middle item in the sorted set. Partition the unsorted
items according to whether they are less than p or greater than or equal
to p.
Recurse on the following two subproblems: the first, comprising the sorted
and unsorted items less than p, and the second, comprising the sorted and
unsorted items greater than or equal to p.
Return the sorted set that is ordered as the solution to the first subproblem
and then the solution to the second subproblem.

Case 2. 1 6 ns < nu.
Then create a subproblem S consisting of the ns sorted items and ns of
the unsorted items. Solve S recursively. The result is a set of 2ns sorted
items and nu − ns unsorted items. Solve it recursively.

Case 3. ns = 0.
Then take the first unsorted item, and make it into a 1-item sorted set,
leaving the remaining nu− 1 items as the unsorted set. Solve the resulting
problem recursively.

Prove that this algorithm, to sort an initially unsorted set of size n, makes at
most O(n log n) comparisons. Note that comparisons are made only in Case 1.

Hint: (a) Bound the number of comparisons that can be made by an item before
it becomes part of a sorted subset. Note that once an item becomes part of a
sorted subset, it remains in a sorted subset henceforth. (b) It will be helpful to
measure the size of a subproblem as ns+nu. How does the size of the subproblem
to which an unsorted item belongs change in the various cases?

6

