Honors Analysis of Algorithms
Problem Set 2

Collaboration is allowed, but you must write your own solutions. Proving correctness of algorithms
is a must.

Problem 1

Suppose G(V, E) is a connected graph and h : £ — R is an assignment of costs to its edges. Let
g : E'— R be another cost assignment that satisfies:

Ve eFE, h(e)<h(d) <= gle)<g(e).

Prove that there exists a spanning tree of G that is a minimum cost spanning tree with respect to
costs h(-) as well as a minimum cost spanning tree with respect to costs g(-).

Solve: [Kleinberg Tardos|: Chapter 4, Problem 26, on page 202.

Note: The greedy algorithm for minimum spanning tree (taught in class) works even when costs
are allowed to be negative.

Problem 2

Let G be an n-vertex connected graph with costs on the edges. Assume that all the edge costs are
distinct.

1. Prove that G has a unique minimum cost spanning tree.
2. Give a polynomial time algorithm to find a spanning tree whose cost is the second smallest.

3. Give a polynomial time algorithm to find a cycle in G such that the maximum cost of edges
in the cycle is minimum amongst all possible cycles. Assume that the graph has at least one
cycle.

Problem 3
You are given a set of n intervals on a line:
(ala bl]a (a27 bﬂa EERE (ana bn]

Design a polynomial time greedy algorithm to select minimum number of intervals whose union is
the same as the union of all intervals.

Problem 4

Solve: [Kleinberg Tardos|: Chapter 4, Problem 29, on page 203.

Hint: First prove that a non-increasing sequence (di,da,...,d,) is a degree sequence of some n-
vertex graph if and only if (da —1,ds —1,...,dg,+1 —1,dd, 42, - ..,dy) is a degree sequence of some

(n — 1)-vertex graph.



Problem 5

Suppose you have an unrestricted supply of pennies, nickels, dimes, and quarters. You wish to give
your friend n cents using a minimum number of coins. Describe a greedy strategy to solve this
problem and prove its correctness.

Problem 6

Given an array afi],1 < i < n of integers and an integer b, show how to rearrange the array and
find an index k in O(n) time so that (after the rearrangement)

e afi] <bfor1<i<k, and
o b<ali] for k <i<n.

Your algorithm is not allowed to use any other array (i.e. the rearrangement has to be “in place”).
Note that Quick-Sort would use this algorithm as a sub-routine, b being the “pivot”; the nice
feature is that no extra storage is needed.



