NP-Completeness

Def A language L is called \(NP\)-complete if

1. \(L \in NP\)
2. \(\forall\) language \(A \in NP\), \(A \leq_p L\).

Theorem The following language is \(NP\)-complete:

\[
L = \{ <M, x, \#^k> | M \text{ is a NTM that has accepting computation on } x \text{ with } \leq k \text{ steps} \}
\]

Proof

1. \(L \in NP\) since it is accepted by

\[
M_{sim} := "\text{On input } <M, x, \#^k>, \\
\text{Simulate } M \text{ on } x \text{ for at most } k \text{ steps: } \\
\text{if } M \text{ accepts, accept } \\
\text{else reject}".
\]

Note: Since \(M\) is NTM, so is \(M_{sim}\).
\[\langle M, x, \#^k \rangle \in L \implies M \text{ has accepting computation on } x \text{ w/ } \leq k \text{ steps} \]

\[\implies M_{\text{sim}} \text{ has an accepting computation} \]

\[\langle M, x, \#^k \rangle \notin L \implies M \text{ has no accepting computation on } x \text{ w/ } \leq k \text{ steps} \]

\[\implies M_{\text{sim}} \text{ has no accepting computation} \]

Further, \(M_{\text{sim}} \) runs in time \(\text{poly}(|\langle M \rangle|, |x|, k) \).

2. Now we show that \(\forall A \in \text{NP}, A \leq_p L \).

Let \(A \) be accepted by polytime NTM \(M_A \).

Here is the polytime \(\sim \) reduction from \(A \) to \(L \):

\[A \rightarrow L \]

\[x \sim < M_A, x, \#^{n^c} > \]

where \(|x| = n \) and \(M_A \) has runtime \(n^c \).
$x \in A \iff M_A$ has an accepting computation on x with $\leq n^c$ steps, $|x| = n$

$\iff \langle M_A, x, \#n^c \rangle \in L$.

This shows that NP-complete languages exist. It turns out that many "natural" languages/problems are NP-complete!

Theorem [Cook-Levin] 3SAT is NP-complete.

Theorem To show that a language C is NP-complete, one shows that

1. $C \in$ NP.

2. For some NP-complete language B, $B \leq_p C$.

\[B \rightsquigarrow C \quad \text{NP} \]

\[A \]
Proof

1. Given, \(C \in \text{NP} \).
2. We need to show that \(\forall A \in \text{NP}, \ A \leq_p C \).

Since \(B \) is \(\text{NP}-\text{complete} \), \(A \leq_p B \).

Given, \(B \leq_p C \).

Hence \(A \leq_p C \).

Now we show that the following problems are \(\text{NP}-\text{complete} \):

- \(\text{3SAT} \)
- \(\text{INDEPENDENT SET} \)
- \(\text{CLIQUE} \)
- \(\text{VERTEX COVER} \)
- \(\text{SUBSET SUM} \)
- \(\text{HAMiltonian CYCLE} \)
- \(\text{TRAVELING SALESPerson} \)
3SAT

Example of a 3SAT instance:

\[(x \lor y \lor z) \land (x \lor \overline{y} \lor \overline{w}) \land (\overline{y} \lor u \lor v) \land (z \lor \overline{u} \lor \overline{v}) \land (\overline{x} \lor v \lor z \lor w).\]

Def A **3CNF** 3SAT formula \(\phi\) is

\[\phi = C_1 \land C_2 \land C_3 \ldots \land C_m\]

where each clause \(C_r\), \(1 \leq r \leq m\), is of form \(C_r = l_i \lor l_j \lor l_k\), \(1 \leq i, j, k \leq n\).

Here \(x_1, x_2, \ldots, x_n\) are Boolean variables and \(l_i = x_i\) or \(l_i = \overline{x_i}\) are literals.

Def A 3CNF formula \(\phi\) has a satisfying assignment (\(\phi\) is satisfiable) if there is an assignment \(\sigma: \{x_1, x_2, \ldots, x_n\} \rightarrow \{\text{True}, \text{False}\}\) that makes \(\phi\) evaluate to True (i.e., makes every clause \(C_r\) True).
3SAT = \{ \langle \phi \rangle \mid \phi \text{ has a satisfying assignment} \}.

Note 3SAT ∈ NP. Following polytime NTM accepts it.

M := " on input \langle \phi \rangle,
let \(x_1, \ldots, x_n \) be variables of \(\phi \).
Guess an assign. \(\sigma : \{ x_1, \ldots, x_n \} \rightarrow \{T,F\} \)
Accept if \(\sigma \) satisfies \(\phi \).
Reject otherwise."

Theorem 3SAT is NP-complete.

Note 3SAT can be thought of as the language as above
or equivalently as the problem of
deciding, given instance \(\phi \),
whether \(\phi \) has a satisfying assign.
INDEPENDENT SET

Def In a graph $G(V, E)$, an independent set $I \subseteq V$ is a subset s.t.
$\forall a, b \in I, (a, b) \notin E$.

Def
$INDEP\text{-}SET = \{ \langle G, k \rangle \mid G$ is a n-vertex graph that has an independent set of size $\geq k \}$.

Theorem INDEP\text{-}SET is NP-complete.

Proof 1 INDEP\text{-}SET \in NP. Following polytime NTM accepts it.

$M := "$ Given $\langle G, k \rangle$, $G = G(V, E)$,
Non-det. select a subset $I \subseteq V$.
Accept if $|I| \geq k$ and I is an independent set.
Reject otherwise."

2 We show that 3SAT reduces to INDEP\text{-}SET.
3SAT \rightarrow INDEP. SET

ϕ \rightarrow $\langle G, k \rangle$

Sat.

$\frac{\phi \in 3\text{SAT}}{\phi \in 3\text{SAT} \iff \langle G, k \rangle \in \text{INDEP. SET}}.$

We need to show that:

(a) $\phi \in 3\text{SAT} \Rightarrow \langle G, k \rangle \in \text{INDEP. SET}$.
(b) $\langle G, k \rangle \in \text{INDEP. SET} \Rightarrow \phi \in 3\text{SAT}$.

Reduction

ϕ

vars: x_1, x_2, \ldots, x_n \rightarrow $\langle G, k \rangle$

clauses: C_1, C_2, \ldots, C_m

- For each clause, construct a triangle whose vertices are labeled by the three literals in that clause.
- In addition, every pair of vertices labeled as \(x_i \) and \(\overline{x}_i \) are connected by an edge.
- This yields the graph \(G \). Let \(k = m \).

\[\phi \text{ has a satisfying assignment} \implies G \text{ has an independent set of size } m. \]

Proof Let \(\sigma : \{x_1, \ldots, x_n\} \to \{T, F\} \) be a satisfying assignment. For every \(i, 1 \leq i \leq n \), either \(x_i \) or \(\overline{x}_i \) is set to True (but not both). Since \(\sigma \) satisfies \(\phi \), every clause \(C_r \) contains a True literal.

Let \[I = \text{Subset of vertices obtained by picking one vertex from each clause/triangle } C_r \text{ that is labeled by a True literal} . \]

Clearly \[|I| = m. \]
Moreover, I is independent since it consists of only True literals and hence does not contain both x_i and $\overline{x_i}$ for any $1 \leq i \leq n$.

\(G \) has an independent set of size m \implies \(\phi \) has a satisfying assignment.

Proof Note first that the said independent set I of size m must contain exactly one vertex from each triangle/clause. Declare all literals (labels of vertices in I) in I to be True. This defines an assignment σ to the variables $\{x_1, \ldots, x_n\}$ in an unambiguous manner since I does not contain a pair $(x_i, \overline{x_i})$.

Since I contains one vertex from each triangle, each clause contains a True literal. Hence σ is a satisfying assignment to ϕ.

\[\square \]
CLIQUE

Def A clique in a graph $G(V,E)$ is a subset $C \subseteq V$ s.t.:

$\forall a, b \in C, a \neq b, (a, b) \in E$.

Def \overline{G} is the complement graph where:

- \overline{G} has the same vertex set V as $G(V,E)$.
- $\forall a, b \in V, a \neq b,$

(a, b) is an edge $\iff (a, b)$ is not an edge in G.

Theorem CLIQUE is NP-complete where

$\text{CLIQUE} = \{ <G, k> \mid G \text{ has a clique of size } \geq k \}$.

Proof

4) CLIQUE is NP.

Blah Blah Blah ...

2) INDEPENDENT-SET reduces to CLIQUE.
Theorem \[\text{INDEP. SET} \leq_p \text{CLIQUE} \]

Proof \[\text{INDEP. SET} \rightarrow \text{CLIQUE} \]

\[\langle G', k' \rangle \leadsto \langle G, k \rangle. \]

Let \[G = \overline{G'}, \quad k = k'. \]

Self-evident that \[G' \text{ has indep. set } \iff G = \overline{G'} \text{ has a clique of size } k' = k. \]

VERTEX-COVER

Def A vertex cover in a graph \(G(V, E) \) is a subset \(S \subseteq V \) such that \(\forall (a, b) \in E, \text{ either } a \in S \text{ or } b \in S. \)

Fact \(S \) is a vertex cover \[\iff V \setminus S \text{ is an indep. set.} \]
Theorem \(\text{VERTEX-COVER} \) is \(\text{NP} \)-complete.

\[
\text{VERTEX-COVER} = \left\{ \langle G, k \rangle \mid G \text{ has a vertex cover of size } \leq k \right\}
\]

Proof

1. \(\text{VERTEX-COVER} \in \text{NP} \).

 Blah Blah Blah ...

2. \(\text{INDEPENDENT-SET} \leq_p \text{VERTEX-COVER} \).

 \(\langle G', k' \rangle \sim \rightarrow \langle G, k \rangle \).

\(G' \) has independent set of size \(k' \) \(\iff \) \(G \) has a vertex cover of size \(k \).

Reduction

Let \(G = G' \).

\[k = n - k' \quad n = |G'|. \]

Self-evident that \(G' \) has independent set \(I \) of size \(k' \) \(\iff \) \(G = G' \) has vertex cover \(V \setminus I \) of size \(n - k' = k \).
Theorem HAMILTONIAN_CYCLE is NP-complete.

HAM-CYCLE = \{ \langle G \rangle \mid G \text{ has a Hamiltonian cycle} \}.

We skip the proof (= reduction from 3SAT).

Theorem T.S.P. is NP-complete.

T.S.P. = \{ \langle G, wt, l \rangle \mid G \text{ is a complete graph} \\
\text{with wt on the edges} \& \text{has a tour of length } \leq l \}.

Proof

1. T.S.P. \in NP.
 Blah Blah Blah ...

2. HAMILTONIAN-CYCLE \leq_p T.S.P.

 G' \iff \langle G, wt, l \rangle.
 G'(V', E')

Reduction - Let G be complete graph on same vertex set V'.

- wt(e) = \{ 1 \text{ if } e \in E' \\\n 2 \text{ if } e \notin E' \}

- l = n.
Now we show that

\[G' \text{ has Hamiltonian } \iff <G', \omega_f> \text{ has a tour of length } \leq n. \]

(a) \implies: The Hamiltonian cycle in \(G' \) serves as a tour in \(<G', \omega_f> \); its length is \(n \) since all its edges are edges of \(G' \).

(b) \implies: Consider a tour in \(<G', \omega_f> \) of length \(\leq n \). Since it has \(n \) edges and all edge weights are 1 or 2, the edges of the tour all must have weight 1. Hence the tour must correspond to a Hamiltonian cycle in \(G' \).
SUBSET-SUM

\[\text{SUBSET-SUM} = \left\{ (a_1, \ldots, a_n; t) \left| a_1, \ldots, a_n, t \text{ are non-negative integers and} \right. \ \exists S \subseteq \{1, \ldots, n\}, \sum_{i \in S} a_i = t \right\} \]

Note: \(a_1, \ldots, a_n, t\) are represented in binary or decimal.

Theorem

\[\text{SUBSET-SUM is NP complete.} \]

Proof

1. \[\text{SUBSET-SUM} \in \text{NP} \]

 Blah Blah Blah

2. We show that 3SAT \(\leq_p \) SUBSET-SUM.

 - Let \(\phi \) be a 3SAT formula.

 vars: \(x_1, \ldots, x_n \)

 clauses: \(C_1, C_2, \ldots, C_m \)

 - The SUBSET-SUM instance we construct:
 - has integers in decimal.
 - no carries while adding integers.
 - digits not shown are 0.

 described
- rows represent the (decimal) integers.

- For illustration:
 \[C_1 : x_1 \lor \bar{x}_2 \lor \bar{x}_n \]
 \[C_2 : x_1 \lor x_2 \lor x_n \]
The SUBSET-SUM instance is as follows:

- **Top right block**: An entry is 1 if the literal belongs to the clause and 0 otherwise.

- **Remaining three blocks**: As shown, and the target \(t \).

- **Note**: Only way to pick a subset of rows that sum to \(t \) is to
 - pick exactly one of the two rows labeled \(x_i \) or \(\overline{x_i} \), for every \(1 \leq i \leq n \).
 - pick none, one, or both of the rows labeled \(g_j \) or \(h_j \), for every \(1 \leq j \leq m \).

Now we prove that

\(\phi \) has a satisfying assignment \(\iff \) There is a subset of rows that sums to \(t \).
proof of \(\Rightarrow \):

- Let \(\sigma \) be a satisfying assignment.
- For \(1 \leq i \leq n \), between rows labeled \(x_i \) or \(\bar{x}_i \), pick the one corresponding to the True literal.
- For each clause \(C_j \), at least one of its literals is True and hence one, two, or three rows corresponding to its literals have been picked.
- Thus (in top-right block), column for \(C_j \) has sum 1, 2, or 3.
- Depending on these three cases, we take both, only \(g_j \), or none from the rows \(g_j \), \(h_j \) so that the sum in that column is exactly 3.
Proof of $\subseteq S$

Suppose there is a subset of rows that sums to t.

As noted, for every i, $1 \leq i \leq n$, exactly one of x_i or \overline{x}_i row is in S, and declare that literal to be True. This defines an assignment σ to x_1, x_2, \ldots, x_n.

To show that σ satisfies each clause C_j, we note that C_j must contain a True literal. Otherwise (in the top right block), the sum in column C_j is zero and even if one were to take both rows g_j, h_j, one wouldn't reach the sum 3 in that column.