Basic Algorithmic Techniques

- Divide & Conquer
- Greedy
- Dynamic Programming
- Amortized Analysis

Divide & Conquer

- Divide the problem of size n into two (sub-)problems of size $\frac{n}{2}$.
- Solve each (sub-) problem recursively.
- Combine two solutions to get a solution to the original problem.

Merge Sort

Recurrence relation:

\[T(n) \leq 2 \cdot T\left(\frac{n}{2}\right) + Cn \]
\[T(2) \leq C' \quad (= 2C) \]

The "solution" to this recurrence relation is $O(n\log n)$.
Claim \[T(n) \leq C n \log n \]

Proof By induction, "guess & verify."

\[
T(n) \leq 2 \, T\left(\frac{n}{2}\right) + Cn
\]
\[
\leq 2 \left(C \cdot \frac{n}{2} \log \frac{n}{2} \right) + Cn
\]
\[
\leq 2 \left(C \cdot \frac{n}{2} (\log n - 1) \right) + Cn
\]
\[
= Cn \log n - \frac{Cn}{2} + Cn
\]

Proof By "unrolling recursion."

\[
T(n) \leq 2 \, T\left(\frac{n}{2}\right) + Cn
\]
\[
\leq 2 \left(2 \, T\left(\frac{n}{4}\right) + C \cdot \frac{n}{2} \right) + Cn
\]
\[
= 4 \, T\left(\frac{n}{4}\right) + Cn + Cn
\]
\[
= 2^i \, T\left(\frac{n}{2^i}\right) + iCn
\]
\[
= n \cdot T(1) + Cn \log n \quad \text{for } i = \log n
\]
\[
\leq 2 \, Cn \log n
\]
Proof "By picture"

\[
\begin{array}{c}
\text{n} \\
\downarrow \\
C_n \\
\downarrow \\
C_n/2, C_n/2 \\
\downarrow \downarrow \downarrow \\
C_n/4, C_n/4, C_n/4, C_n/4 \\
\downarrow \downarrow \downarrow \downarrow \\
C_n/4, C_n/4, C_n/4, C_n/4 \\
\downarrow \downarrow \downarrow \downarrow \\
C_n/2, C_n/2, C_n/2, C_n/2 \\
\downarrow \downarrow \downarrow \downarrow \\
C_n, C_n, C_n, C_n \\
\end{array}
\]

Total time = \(Cn \) (level 1) \\
+ 2 \times C \cdot \frac{n}{2} \) (level 2) \\
+ 4 \times C \cdot \frac{n}{4} \) (level 3) \\
= C n \log n.

Note We'll see at least one more recurrence relation; however, the relation
\(T(n) \leq 2 T(\frac{n}{2}) + O(n) \) is the most important. Its solution is \(O(n \log n) \).
Quick Sort

- Given n integers \(a_1, a_2, \ldots, a_n \) and an
- Select one of the \(a_i \) as "pivot" b.
- Partition \(L \) into
 \[
 L_1 = \{ a_i \mid a_i \leq b \}.
 \]
 \[
 L_2 = \{ a_i \mid a_i > b \}.
 \]
- Recursively sort \(L_1 \), sort \(L_2 \).
- Output \(L_1 \circ L_2 \).

- Worst case running time is \(\Omega(n^2) \).
- "pivot" is badly chosen, it could be the case that always
 \[
 |L_1| = 1,
 \]
 \[
 |L_2| = n-1.
 \]
- This runs in time \(O(n \log n) \) if
 \[
 |L_1| = 1, |L_2| = \frac{n}{2}, \text{ i.e. if b is the median}.
 \]
- Can we find median in \(O(n) \) time? YES! \(T(n) \leq 2T(\frac{n}{2}) + O(n) \)

Recall: we desire...
Finding Median in $O(n)$ time.

Def Given integers a_1, a_2, \ldots, a_n, the median is the number a_s s.t.

$$\left| \left\{ a_i \mid a_i \leq a_s \right\} \right| = \left\lfloor \frac{n}{2} \right\rfloor.$$

I.e. the middle element in sorted order.

Theorem There is $O(n)$-time algorithm to find median.

All these

\[
\begin{align*}
 a_1 & \leq a'_1 \leq b_1 \\
 a_2 & \leq a'_2 \leq b_2 \\
 \vdots & \\
 a_n & \leq a'_n \leq b_n
\end{align*}
\]

All these

\[
\begin{align*}
 c_1 & \leq c'_1 \\
 c_2 & \leq c'_2 \\
 \vdots & \\
 c_n & \leq c'_n
\end{align*}
\]

All these

\[
\begin{align*}
 a_{\frac{n}{5}} & \leq a'_{\frac{n}{5}} \leq b_{\frac{n}{5}} \\
 b_{\frac{n}{5}} & \leq C_{\frac{n}{5}} \leq C'_{\frac{n}{5}}
\end{align*}
\]
Algorithm

- Divide n numbers into \(\frac{n}{5} \) lists of size 5 each.
- Sort each list. Let the list be
 \[a_i \leq a'_i \leq b_i \leq c_i \leq c'_i. \]
- Recursively find median of \(b_1, b_2, \ldots, b_{\frac{n}{5}} \).
 Call it \(b^* \) (median of medians).
- Reorder rows/indices so that
 \[b_1, b_2, \ldots, b_{\frac{n}{10}} \leq b^* \]
 \[b_{\frac{n}{10}+1}, \ldots, b_{\frac{n}{5}} > b^*. \]

\[|A| = \frac{3n}{10} \]
\[|C| = \frac{3n}{10}. \]
- Drop A, C.
- Find median of remaining \(n - \frac{3n}{10} - \frac{3n}{10} = \frac{2}{5}n \) elements. (Recursively).
Recurrence Relation

\[T(n) \leq T\left(\frac{n}{5}\right) + T\left(\frac{2}{5}n\right) + O(n). \]

- There is a flaw in the analysis, proof of correctness however.

- Let \(x \) be the true (hypothetical) median. If it were the case that

\[A \quad \underline{x} \quad C \]

then dropping \(A, C \) would preserve \(x \) as the median of remaining elements.

- However, this need not be the case.

- In fact, it could be that \(x \in A \cup C \) and if one drops \(A, C \), one loses the true median \(x \).

- How to fix the algorithm?
- First homework.

- Design algorithm that solves a more general problem: Given \(a_1, \ldots, a_n \) and \(1 \leq k \leq n \), algo. finds \(k^{th} \) element in sorted order.

- Depending on whether \(\text{rank} (b^x) < k \), drop either A or C.

- New recurrence relation

\[
T(n) \leq T\left(\frac{n}{5} \right) + T\left(\frac{7}{10} n \right) + O(n).
\]

\[
\]

Lemma: Let \(a, b, C \) be positive constants s.t. \(a + b < 1 \). If

\[
T(n) \leq T(an) + T(bn) + Cn
\]

\(T(1) \leq C \) then \(T(n) \leq O(n) \).
Proof. We'll prove that $T(n) \leq \beta n$

where $\beta = \frac{C}{1-(a+b)}$.

By induction,

$T(n) \leq T(an) + T(bn) + Cn$

$\leq \beta an + \beta bn + Cn$

$= \left(\beta(a+b) + C \right) n$

$\leq \beta n$

provided that $\beta(a+b) + C \leq \beta$

if $C \leq (1-(a+b)) \beta$

if $\frac{C}{1-(a+b)} \leq \beta$.